Comprehensive Physiology Wiley Online Library

Gastric Inhibitory Polypeptide

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Gastric Inhibitory Effect of Gastric Inhibitory Polypeptide
2 Insulinotropic Action of GIP
3 Isolation and Purification of Porcine GIP
3.1 Amino Acid Sequence
3.2 Synthesis
4 GIP Receptors
5 Actions of GIP
5.1 Effect of GIP on Gastric Secretion
5.2 Effect of GIP on Insulin Secretion
5.3 Effect of GIP on Glucagon Secretion
5.4 Miscellaneous Actions of GIP
6 Radioimmunoassay
6.1 Development
6.2 Circulating Levels of Immunoreactive‐GIP
7 Immunocytochemical Localization of GIP
7.1 Light Microscopy
7.2 Ontogenic Development
7.3 Ultrastructure
Figure 1. Figure 1.

Pressure changes in gallbladder of dogs during intravenous infusion of 2 cholecystokinin‐pancreozymin (CCK‐PZ) preparations, containing 100 (open triangles) and 1,500 (open circles) IDU/mg, at dose of 0.2 IDU/min.

From Brown and Pederson 25
Figure 2. Figure 2.

Acid secretory changes from Bickel pouches of animals in Figure 1. Significantly different acid responses occurred with doses that were equipotent for gallbladder contraction. CCK‐PZ, cholecystokinin‐pancreozymin.

From Brown and Pederson 25
Figure 3. Figure 3.

Effect of intravenous infusion of gastric inhibitory peptide (GIP) (1.0 μg/min) on immunoreactive insulin (IRI) release and serum glucose in normal human volunteers receiving intravenous infusion of 0.5 g/min glucose for 60 min.

From Dupré et al. 51
Figure 4. Figure 4.

Amino acid sequences of porcine, human, and two synthesized analogues of GIP.

Figure 5. Figure 5.

125I‐labeled GIP binding to In 111 cells. A: 125I‐labeled GIP binding as function of time. B: competitive inhibition of 125I‐labeled GIP binding to cells by increasing concentrations of native GIP. Inset Scatchard plot of binding data.

From Amiranoff et al. 2
Figure 6. Figure 6.

Increase in cAMP levels in In 111 cells in response to GIP. A: time course of GIP effect on cAMP levels. B: concentration dependence of GIP in increasing cAMP levels.

From Amiranoff et al. 2
Figure 7. Figure 7.

Effect of time on GIP‐, pancreatic glucagon‐, and porcine (p) vasoactive intestinal peptide (VIP)‐induced cAMP production in HGT‐1 cells. Peptides were present in following concentrations: GIP, 0.1 μM; pancreatic glucagon, 0.3 μM; and VIP, 0.1 μM.

From Gespach et al. 69
Figure 8. Figure 8.

Effect of different concentrations of GIP, glucagon, and porcine (p) or chicken (c) vasoactive intestinal peptide (VIP) on cAMP production in HGT‐1 cells.

From Gespach et al. 69
Figure 9. Figure 9.

Release of GIP by intraduodenal acid. A: serum levels of glucose, immunoreactive (IR) insulin, and IR‐GIP after intraduodenal infusion of HCl in anesthetized rats. B: increase in IR‐GIP in healthy volunteers after intraduodenal infusion of HCl

From Ebert et al. 55). Reprinted with permission from The American Gastroenterological Association
Figure 10. Figure 10.

Effect of 1 h infusion of 0.25, 0.50, and 1.0 μg·kg−1·h−1 GIP on pentagastrin‐stimulated acid secretion from canine Heidenhain pouch.

From Pederson and Brown 140
Figure 11. Figure 11.

Gastric fistula (GF) and Heidenhain pouch (HP) responses to graded doses of pentagastrin (PG) with and without infusion of GIP (1 μg·kg−1·h−1).

From Soon‐Shiong et al. 183
Figure 12. Figure 12.

From Soon‐Shiong et al. 183)

Acid output from gastric fistula (GF) and Heidenhain pouch (HP) in response to graded doses of pentagastrin (Pg) with bethanechol background, with or without infusion of GIP (1 μg·kg−1·h−1).
Figure 13. Figure 13.

Effect of GIP and vagal stimulation on release of somatostatin‐like immunoreactivity (SLI) from isolated perfused rat stomach. A: stomach perfused with Krebs‐Ringer bicarbonate buffer, and GIP (1 nM) introduced between time periods 10–30 min. Control perfusions with buffer alone. B: after buffer perfusion SLI release stimulated with GIP (1 nM) between periods 5–40 min. Vagal stimulation (7 V, 10 Hz, 5 ms duration) performed during periods 15–30 min.

From McIntosh et al. 121
Figure 14. Figure 14.

Effect of Met‐enkephalin on GIP‐stimulated somatostatin‐like immunoreactivity (SLI) secretion. After buffer perfusion, SLI release stimulated with GIP (1 nM) between periods 12–35 min. Met‐enkephalin introduced during periods 20–28 min at concentration of 1 μM (A) or 100 pM (B).

From McIntosh et al. 117
Figure 15. Figure 15.

Effect of naloxone on inhibition of somatostatin‐like immunoreactivity (SLI) secretion by vagal stimulation. After buffer perfusion, GIP (1 nM) introduced during periods 9–46 min. Vagal stimulation (7 V, 10 Hz, 5 ms duration) performed during periods 16–35 min and naloxone added during periods 20–30 min.

From McIntosh et al. 117
Figure 16. Figure 16.

Hypothetical pathway by which GIP may act as enterogastrone under physiological conditions.

Figure 17. Figure 17.

Effect of 1 h infusion of 0.25, 0.5, and 1.0 μg·kg−1·h−1 GIP on pepsin secretion from canine Heidenhain pouch.

From Pederson and Brown 140
Figure 18. Figure 18.

Effect of 5 ng/ml porcine GIP on integrated immunoreactive insulin (IRI) release from isolated, perfused rat pancreas in response to changes in glucose concentration.

From Brown 14
Figure 19. Figure 19.

Release of immunoreactive insulin (IRI) from isolated, perfused rat pancreas in response to 160 mg/dl glucose with and without 1.0 ng/ml porcine GIP.

From Brown et al. 21
Figure 20. Figure 20.

Effect of infusion of porcine GIP (6.67 ng·kg−1·min−1) on immunoreactive insulin (IRI), IR‐glucagon, and glucose infusion required to maintain stable glycemia at basal + 54 mg/dl. Results with GIP infusion are on right.

From Elahi et al. 57
Figure 21. Figure 21.

Effect of infusion of porcine GIP (6.67 ng·kg−1·min−1) on immunoreactive insulin (IRI), IR‐glucagon, and glucose infusion to maintain stable glycemia at basal + 143 mg/dl. Results with GIP infusion are on right.

From Elahi et al. 57
Figure 22. Figure 22.

Effect of varying glucose concentration on immuno‐reactive‐glucagon and immunoreactive insulin release from isolated, perfused rat pancreas in presence (filled circles) and absence (open circles) of GIP (5 ng/ml). Release of immunoreactive glucagon suppressed by increasing glucose concentration.

Figure 23. Figure 23.

Effect of intraduodenal (ID) saline or glucose on lower esophageal sphincter pressure (LESP) in dogs.

From Sinar et al. 174). Reprinted with permission from The American Gastroenterological Association
Figure 24. Figure 24.

Effect of injection into third ventricle in ovariectomized rats of 1.0 and 5.0 μg porcine GIP on plasma follicle stimulating hormone (FSH) concentrations (A) and plasma growth hormone (GH) concentrations (B).

From Ottlecz et al. 137
Figure 25. Figure 25.

Mean plasma immunoreactive GIP levels in 8 subjects after ingestion of meal. Seven different antisera were used in same assay system.

From Jorde et al. 85
Figure 26. Figure 26.

Effect on immunoreactive (IR) insulin release of introducing, as gradient, porcine GIP (0.1–1.0 ng/ml) into isolated, perfused rat pancreas preparation in control, total parenteral nutrition (TPN), and intestinal bypass‐treated animals.

From Pederson et al. 143
Figure 27. Figure 27.

Immunoreactive (IR) insulin response to 1.0 ng/ml GIP from isolated, perfused rat pancreas of lean and obese Zucker rats in presence of 80 mg/dl glucose.

From Chan et al. 35
Figure 28. Figure 28.

GIP‐containing cell in canine jejunum stained with monoclonal antibody (mouse, antibody 3.65H). Note close association with capillary, × 600.

Figure 29. Figure 29.

High‐magnification detail of GIP‐immunoreactive cell stained with monoclonal antibody (3.65 H) localized with 20 nm colloidal gold, × 1,000.



Figure 1.

Pressure changes in gallbladder of dogs during intravenous infusion of 2 cholecystokinin‐pancreozymin (CCK‐PZ) preparations, containing 100 (open triangles) and 1,500 (open circles) IDU/mg, at dose of 0.2 IDU/min.

From Brown and Pederson 25


Figure 2.

Acid secretory changes from Bickel pouches of animals in Figure 1. Significantly different acid responses occurred with doses that were equipotent for gallbladder contraction. CCK‐PZ, cholecystokinin‐pancreozymin.

From Brown and Pederson 25


Figure 3.

Effect of intravenous infusion of gastric inhibitory peptide (GIP) (1.0 μg/min) on immunoreactive insulin (IRI) release and serum glucose in normal human volunteers receiving intravenous infusion of 0.5 g/min glucose for 60 min.

From Dupré et al. 51


Figure 4.

Amino acid sequences of porcine, human, and two synthesized analogues of GIP.



Figure 5.

125I‐labeled GIP binding to In 111 cells. A: 125I‐labeled GIP binding as function of time. B: competitive inhibition of 125I‐labeled GIP binding to cells by increasing concentrations of native GIP. Inset Scatchard plot of binding data.

From Amiranoff et al. 2


Figure 6.

Increase in cAMP levels in In 111 cells in response to GIP. A: time course of GIP effect on cAMP levels. B: concentration dependence of GIP in increasing cAMP levels.

From Amiranoff et al. 2


Figure 7.

Effect of time on GIP‐, pancreatic glucagon‐, and porcine (p) vasoactive intestinal peptide (VIP)‐induced cAMP production in HGT‐1 cells. Peptides were present in following concentrations: GIP, 0.1 μM; pancreatic glucagon, 0.3 μM; and VIP, 0.1 μM.

From Gespach et al. 69


Figure 8.

Effect of different concentrations of GIP, glucagon, and porcine (p) or chicken (c) vasoactive intestinal peptide (VIP) on cAMP production in HGT‐1 cells.

From Gespach et al. 69


Figure 9.

Release of GIP by intraduodenal acid. A: serum levels of glucose, immunoreactive (IR) insulin, and IR‐GIP after intraduodenal infusion of HCl in anesthetized rats. B: increase in IR‐GIP in healthy volunteers after intraduodenal infusion of HCl

From Ebert et al. 55). Reprinted with permission from The American Gastroenterological Association


Figure 10.

Effect of 1 h infusion of 0.25, 0.50, and 1.0 μg·kg−1·h−1 GIP on pentagastrin‐stimulated acid secretion from canine Heidenhain pouch.

From Pederson and Brown 140


Figure 11.

Gastric fistula (GF) and Heidenhain pouch (HP) responses to graded doses of pentagastrin (PG) with and without infusion of GIP (1 μg·kg−1·h−1).

From Soon‐Shiong et al. 183


Figure 12.

From Soon‐Shiong et al. 183)

Acid output from gastric fistula (GF) and Heidenhain pouch (HP) in response to graded doses of pentagastrin (Pg) with bethanechol background, with or without infusion of GIP (1 μg·kg−1·h−1).


Figure 13.

Effect of GIP and vagal stimulation on release of somatostatin‐like immunoreactivity (SLI) from isolated perfused rat stomach. A: stomach perfused with Krebs‐Ringer bicarbonate buffer, and GIP (1 nM) introduced between time periods 10–30 min. Control perfusions with buffer alone. B: after buffer perfusion SLI release stimulated with GIP (1 nM) between periods 5–40 min. Vagal stimulation (7 V, 10 Hz, 5 ms duration) performed during periods 15–30 min.

From McIntosh et al. 121


Figure 14.

Effect of Met‐enkephalin on GIP‐stimulated somatostatin‐like immunoreactivity (SLI) secretion. After buffer perfusion, SLI release stimulated with GIP (1 nM) between periods 12–35 min. Met‐enkephalin introduced during periods 20–28 min at concentration of 1 μM (A) or 100 pM (B).

From McIntosh et al. 117


Figure 15.

Effect of naloxone on inhibition of somatostatin‐like immunoreactivity (SLI) secretion by vagal stimulation. After buffer perfusion, GIP (1 nM) introduced during periods 9–46 min. Vagal stimulation (7 V, 10 Hz, 5 ms duration) performed during periods 16–35 min and naloxone added during periods 20–30 min.

From McIntosh et al. 117


Figure 16.

Hypothetical pathway by which GIP may act as enterogastrone under physiological conditions.



Figure 17.

Effect of 1 h infusion of 0.25, 0.5, and 1.0 μg·kg−1·h−1 GIP on pepsin secretion from canine Heidenhain pouch.

From Pederson and Brown 140


Figure 18.

Effect of 5 ng/ml porcine GIP on integrated immunoreactive insulin (IRI) release from isolated, perfused rat pancreas in response to changes in glucose concentration.

From Brown 14


Figure 19.

Release of immunoreactive insulin (IRI) from isolated, perfused rat pancreas in response to 160 mg/dl glucose with and without 1.0 ng/ml porcine GIP.

From Brown et al. 21


Figure 20.

Effect of infusion of porcine GIP (6.67 ng·kg−1·min−1) on immunoreactive insulin (IRI), IR‐glucagon, and glucose infusion required to maintain stable glycemia at basal + 54 mg/dl. Results with GIP infusion are on right.

From Elahi et al. 57


Figure 21.

Effect of infusion of porcine GIP (6.67 ng·kg−1·min−1) on immunoreactive insulin (IRI), IR‐glucagon, and glucose infusion to maintain stable glycemia at basal + 143 mg/dl. Results with GIP infusion are on right.

From Elahi et al. 57


Figure 22.

Effect of varying glucose concentration on immuno‐reactive‐glucagon and immunoreactive insulin release from isolated, perfused rat pancreas in presence (filled circles) and absence (open circles) of GIP (5 ng/ml). Release of immunoreactive glucagon suppressed by increasing glucose concentration.



Figure 23.

Effect of intraduodenal (ID) saline or glucose on lower esophageal sphincter pressure (LESP) in dogs.

From Sinar et al. 174). Reprinted with permission from The American Gastroenterological Association


Figure 24.

Effect of injection into third ventricle in ovariectomized rats of 1.0 and 5.0 μg porcine GIP on plasma follicle stimulating hormone (FSH) concentrations (A) and plasma growth hormone (GH) concentrations (B).

From Ottlecz et al. 137


Figure 25.

Mean plasma immunoreactive GIP levels in 8 subjects after ingestion of meal. Seven different antisera were used in same assay system.

From Jorde et al. 85


Figure 26.

Effect on immunoreactive (IR) insulin release of introducing, as gradient, porcine GIP (0.1–1.0 ng/ml) into isolated, perfused rat pancreas preparation in control, total parenteral nutrition (TPN), and intestinal bypass‐treated animals.

From Pederson et al. 143


Figure 27.

Immunoreactive (IR) insulin response to 1.0 ng/ml GIP from isolated, perfused rat pancreas of lean and obese Zucker rats in presence of 80 mg/dl glucose.

From Chan et al. 35


Figure 28.

GIP‐containing cell in canine jejunum stained with monoclonal antibody (mouse, antibody 3.65H). Note close association with capillary, × 600.



Figure 29.

High‐magnification detail of GIP‐immunoreactive cell stained with monoclonal antibody (3.65 H) localized with 20 nm colloidal gold, × 1,000.

References
 1. Alumets, J., R., Häkanson, T. O'Dorisio, K. Sjölund, and F. Sundler. Is GIP a glucagon cell constituent? Histochemistry 58: 253–256, 1978.
 2. Amiranoff, B., N., Vauclin‐Jacques, and M. Laburthe. Functional GIP receptors in a hamster pancreatic beta cell line In 111: specific binding and biological effects. Biochem. Biophys. Res. Commun. 123: 671–676, 1984.
 3. Amiranoff, B., N., Vauclin‐Jacques, and M. Laburthe. Interaction of gastric inhibitory polypeptide (GIP) with the insulin‐secreting pancreatic beta cell line In 111: characteristics of GIP binding sites. Life Sci. 36: 807–813, 1985.
 4. Arnold, R., W., Creutzfeldt, R. Ebert, H. D. Becker, H. W. Borger, and A. Schafmayer. Serum gastric inhibitory polypeptide (GIP) in duodenal ulcer disease: relationship to glucose tolerance, insulin, and gastrin release. Scand. J. Gastroenterol. 13: 41–47, 1978.
 5. Bacarese‐Hamilton, A. J., T. E., Adrian, and S. R. Bloom. Human and porcine immunoreactive gastric inhibitory polypeptides (IR‐GIP) are not identical. FEBS Lett. 168: 125–128, 1984.
 6. Barbezat, G. O., and M. I. Grossman. Intestinal secretion: stimulation by peptides. Science Wash. DC 174: 422–423, 1971.
 7. Bell, F. R., D. E., Webber, J. A. Wass, L. H. Rees, J. Evans, L. M. Morgan, V. Marks, and J. Lewis. Correlation of endogenous somatostatin, gastric inhibitory polypeptide, glucagon and insulin with gastric function in the conscious calf. J. Endocrinol. 89: 451–456, 1981.
 8. Bloom, S. R., and J. M. Polak. Gut hormone overview. In: Gut Hormones, edited by S. R. Bloom. Edinburgh: Churchill Livingstone, 1978, p. 3–18.
 9. Blundell, T. L., S., Dockerill, K. Sasaki, I. J. Tickle, and S. P. Wood. The relation of structure to storage and receptor binding of glucagon. Metabolism 25, Suppl. 1: 1331–1336, 1976.
 10. Bodanszky, M., M. A., Ondetti, S. D. Levine, V. L. Narayanan, M. Von Salza, J. T. Sheehan, N. J. Williams, and E. F. Sabo. Synthesis of a heptacosapeptide amide with the hormonal activity of secretin. Chem. Ind. Lond. 42: 1757–1758, 1966.
 11. Bray, G. A. The Zucker‐fatty rat: a review. Federation Proc. 36: 148–153, 1977.
 12. Brown, J. C. A gastric inhibitory polypeptide. I. The amino acid composition and the tryptic peptides. Can. J. Biochem. 49: 255–261, 1971.
 13. Brown, J. C. Gastric inhibitory polypeptide. In: Endocrinology 1973, edited by S. Taylor. London: Heinemann, 1974, p. 276–288.
 14. Brown, J. C. Chemistry. In: Monographs on Endocrinology Gastric Inhibitory Polypeptide, edited by F. Gross, M. M. Grumbach, A. Labhart, M. B. Lipsett, T. Mann, L. T. Samuels, and J. Zander. New York: Springer‐Verlag, 1982, p. 12–18.
 15. Brown, J. C., M., Dahl, S. Kwauk, C. H. S. Mcintosh, M. Muller, S. C. Otte, and R. A. Pederson. Properties and actions of GIP. In: Gut Hormones (2nd ed.), edited by S. R. Bloom and J. Polak. Edinburgh: Churchill Livingstone, 1981, p. 248–255.
 16. Brown, J. C., M., Dahl, S. Kwauk, C. H. Mcintosh, S. C. Otte, and R. A. Pederson. Actions of GIP. Peptides Fayetteville 2, Suppl. 2: 241–245, 1981.
 17. Brown, J. C., and J. R. Dryburgh. A gastric inhibitory polypeptide. II. The complete amino acid sequence. Can. J. Biochem. 49: 867–872, 1971.
 18. Brown, J. C., J. R., Dryburgh, P. Moccia, and R. A. Pederson. The current status of GIP. In: Gastrointestinal Hormones, edited by J. C. Thompson. Austin: Univ. of Texas Press, 1975, p. 537–547.
 19. Brown, J. C., J. R., Dryburgh, and R. A. Pederson. Gastric inhibitory polypeptide. In: Endocrinology of the Gut, edited by W. Y. Chey and F. P. Brooks. Thorofare, NJ: Slack, 1974, p. 77–82.
 20. Brown, J. C., J. R., Dryburgh, S. A. Ross, and J. Dupré. Identification and actions of gastric inhibitory polypeptide. Recent Prog. Horm. Res. 31: 487–532, 1975.
 21. Brown, J. C., H., Koop, C. H. S. Mcintosh, S. C. Otte, and R. A. Pederson. Physiology of gastric inhibitory polypeptide. Front. Horm. Res. 7: 132–144, 1980.
 22. Brown, J. C., and D. F. Magee. Inhibitory action of cholecystokinin on acid secretion from Heidenhain pouches induced by endogenous gastrin. Gut 8: 29–31, 1967.
 23. Brown, J. C., C. H. S., Mcintosh, R. A. Pederson, and S. C. Otte. New peptides of the gastrointestinal tract. In: Proceedings of the Naito Foundation International Symposium on Natural Products and Biological Activities, edited by E. Hamao. Tokyo: Univ. of Tokyo Press, 1986, p. 293–301.
 24. Brown, J. C., V., Mutt, and R. A. Pederson. Further purification of a polypeptide demonstrating enterogastrone activity. J. Physiol. Lond. 209: 57–64, 1970.
 25. Brown, J. C., and R. A. Pederson. A multiparameter study on the action of preparations containing cholecystokinin‐pancreozymin. Scand. J. Gastroenterol. 5: 537–541, 1970.
 26. Brown, J. C., R. A., Pederson, J. E. Jorpes, and V. Mutt. Preparation of a highly active enterogastrone. Can. J. Physiol. Pharmacol. 47: 113–114, 1969.
 27. Bryant, M. G., A. M. J., Buchan, M. Gregor, M. A. Ghatei, J. M. Polak, and S. R. Bloom. Ontogeny of the regulatory peptides in human foetal intestine. Gastroenterology 83: 47–54, 1982.
 28. Buchan, A. M. J., J., Ingman‐Baker, J. Levy, and J. C. Brown. A comparison of the ability of serum and monoclonal antibodies to gastric inhibitory polypeptide to detect immunoreactive cells in the gastroenteropancreatic system of mammals and reptiles. Histochemistry 76: 341–349, 1982.
 29. Buchan, A. M. J., V., Lance, and J. M. Polak. The reptilian endocrine pancreas—an immunocytochemical study. In: Current Trends in Comparative Endocrinology, edited by B. Lofts and W. N. Holmes. Hong Kong: Hong Kong Univ. Press, 1985, p. 1065–1069.
 30. Buchan, A. M. J., J. M., Polak, C. Capella, E. Solcia, and A. G. E. Pearse. Electron immunocytochemical evidence for the K cell localisation of gastric inhibitory polypeptide (GIP) in man. Histochemistry 56: 37–44, 1978.
 31. Camble, R., R., Cotton, A. S. Dutta, J. J. Gormley, G. F. Hayward, J. C. Morley, and M. I. Smither. On the synthesis of a porcine gastric inhibitory polypeptide. In: Peptides 1972: Proceedings, edited by H. Hanson and H.‐D. Jakubke. Amsterdam: Elsevier/North‐Holland, 1973, vol. 6, p. 200–209.
 32. Carlquist, M., M., Maletti, H. Jörnvall, and V. Mutt. A novel form of gastric inhibitory polypeptide (GIP) isolated from bovine intestine using a radioreceptor assay. Fragmentation with staphylococcal protease results in GIP1–3 and GIP4–42, fragmentation with enterokinase in GIP1–16 and GIP17–42. Eur. J. Biochem. 145: 573–577, 1984.
 33. Castresana, M., K. Y., Lee, W. Y. Chey, and H. Yajima. Effects of motilin and octapeptide of cholecystokinin on antral and duodenal myoelectric activity in the interdigestive state and during inhibition by secretin and gastric inhibitory polypeptide. Digestion 17: 300–308, 1978.
 34. Cataland, S., S. E., Crockett, J. C. Brown, and E. L. Mazzaferri. Gastric inhibitory polypeptide (GIP) stimulation by oral glucose in man J. Clin. Endocrinol. Metab. 39: 223–228, 1974.
 35. Chan, C. B., R. A., Pederson, A. M. J. Buchan, K. B. Tubesing, and J. C. Brown. Gastric inhibitory polypeptide (GIP) and insulin release in the obese Zucker rat. Diabetes 33: 536–542, 1984.
 36. Chiba, T., T., Taminato, S. Kadowaki, Y. Inoue, K. Mori, Y. Seino, H. Abe, K. Chihara, S. Matsukura, T. Fujita, and Y. Goto. Effects of various gastrointestinal peptides on gastric somatostatin release. Endocrinology 106: 145–149, 1980.
 37. Cleator, I. G., and R. H. Gourlay. Release of immunoreactive gastric inhibitory polypeptide (IR‐GIP) by oral ingestion of food substances. Am. J. Surg. 130: 128–135, 1975.
 38. Couvineau, A., B., Amiranoff, N. Vauclin‐Jacques, and M. Laburthe. The GIP receptor on pancreatic beta cell tumor: molecular identification by covalent cross‐linking. Biochem. Biophys. Res. Commun. 122: 283–288, 1984.
 39. Creutzfeldt, W., and R. Ebert. Release of gastric inhibitory polypeptide (GIP) to a test meal under normal and pathological conditions in man. In: Diabetes, edited by J. S. Bajaj. Amsterdam: Excerpta Med., 1977, p. 63–75.
 40. Creutzfeldt, W., R., Ebert, U. Finke, S. J. Konturek, N. Kwiecien, and T. Radecki. Inhibition of gastric secretion by fat and hypertonic glucose in the dog: role of gastric inhibitory peptide. J. Physiol. Lond. 334: 91–101, 1983.
 41. Creutzfeldt, W., R., Ebert, B. Willms, H. Frerichs, and J. C. Brown. Gastric inhibitory polypeptide (GIP) and insulin in obesity: increased response to stimulation and defective feedback control of serum levels. Diabetologia 14: 15–24, 1978.
 42. Creutzfeldt, W., G., Feurle, and H. Ketterer. Effect of gastrointestinal hormones on insulin and glucagon secretion. N. Engl. J. Med. 282: 1139–1141, 1970.
 43. Crockett, S. E., S., Cataland, J. Falko, and E. L. Mazzaferri. Gastric inhibitory polypeptide: responses to variable doses of glucose in normal subjects and abnormal responses to oral glucose in patients with adult onset diabetes mellitus (Abstract). Diabetes 24: 413, 1975.
 44. Denniss, A. R., and J. A. Young. Modification of salivary duct electrolyte transport in rat and rabbit by physalaemin, VIP, GIP and other enterohormones. Pfluegers Arch. 376: 73–80, 1978.
 45. Dryburgh, J. R., S. M., Hampton, L. M. Morgan, and V. Marks. C‐peptide‐induced inhibition of GIP release. Regul. Pept. Suppl. 1: S28, 1980.
 46. Dupré, J. An intestinal hormone affecting glucose disposal in man. Lancet 2: 672–673, 1964.
 47. Dupré, J., and J. C. Beck. Stimulation of release of insulin by an extract of intestinal mucosa. Diabetes 15: 555–559, 1966.
 48. Dupré, J., J. D., Curtis, R. H. Unger, R. W. Waddell, and J. C. Beck. Effects of secretin, pancreozymin or gastrin on the response of the endocrine pancreas to administration of glucose or arginine in man. J. Clin. Invest. 48: 748–757, 1969.
 49. Dupré, J., N., Greenidge, T. J. Mcdonald, S. A. Ross, and D. Rubenstein. Inhibition of actions of glucagon in adipocytes by gastric inhibitory polypeptide. Metabolism 25: 1197–1199, 1976.
 50. Dupré, J., L., Rojas, J. J. White, R. H. Unger, and J. C. Beck. Effects of secretin on insulin and glucagon in portal and peripheral blood in man. Lancet 2: 26–27, 1966.
 51. Dupré, J., S. A., Ross, D. Watson, and J. C. Brown. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J. Clin. Endocrinol. Metab. 37: 826–828, 1973.
 52. Ebert, R., R., Arnold, and W. Creutzfeldt. Lowering of fasting and food stimulated serum immunoreactive gastric inhibitory polypeptide (GIP) by glucagon. Gut 8: 121–127, 1977.
 53. Ebert, R., and J. C. Brown. Effect of gastric inhibitory polypeptide (GIP) on lipolysis and cyclic AMP levels in isolated fat cells (Abstract). Eur. J. Clin. Invest. 6: 327, 1976.
 54. Ebert, R., and W. Creutzfeldt. Decreased GIP secretion through impairment of absorption. Front. Horm. Res. 7: 192–210, 1980.
 55. Ebert, R., K., Illmer, and W. Creutzfeldt. Release of gastric inhibitory polypeptide (GIP) by intraduodenal acidification in rats and humans and abolishment of the incretin effect of acid by GIP‐antiserum in rats. Gastroenterology 76: 515–523, 1979.
 56. Eckel, R. H., W. Y., Fujimoto, and J. D. Brunzell. Gastric inhibitory polypeptide enhanced lipoprotein lipase activity in cultured preadipocytes. Diabetes 28: 1141–1142, 1979.
 57. Elahi, D., D. K., Andersen, J. C. Brown, H. T. Debas, R. J. Hershcopf, G. S. Raizes, J. D. Tobin, and R. Andres. Pancreatic α‐ and β‐cell responses to GIP infusion in normal man. Am. J. Physiol. 237 (Endocrinol. Metab. Gastrointest. Physiol. 6): E185–E191, 1979.
 58. El‐Munshid, H. A., R., Hökanson, G. Lindberg, and F. Sundler. Effects of various gastrointestinal peptides on parietal cells and endocrine cells in the oxyntic mucosa of rat stomach. J. Physiol. Lond. 305: 249–265, 1980.
 59. Elrick, M. L., L., Stimmler, C. J. Hlad, and Y. Arai. Plasma insulin response to oral and intravenous glucose administration. J. Clin. Endocrinol. Metab. 24: 1076–1082, 1964.
 60. El‐Sahly, M., and L. Grimelius. Immunohistochemical localisation of gastrin C‐terminus, gastric inhibitory peptide (GIP) and endorphin in the pancreas of lizards with special reference to the hibernation period. Regul. Pept. 2: 97–112, 1981.
 61. Falko, J. M., S. E., Crockett, S. Cataland, and E. L. Mazzaferri. Gastric inhibitory polypeptide (GIP) stimulated by fat ingestion in man. J. Clin. Endocrinol. Metab. 41: 260–265, 1975.
 62. Falko, J. M., S. E., Crockett, S. Cataland, T. M. O'Dorisio, W. Kramer, and E. L. Mazzaferri. The effect of increasing doses of ingested glucose on insulin and gastric inhibitory polypeptide (GIP) concentrations in man. Clin. Endocrinol. 13: 587–593, 1980.
 63. Fara, J. W., and A. M. Salazar. Gastric inhibitory polypeptide increases mesenteric blood flow. Proc. Soc. Exp. Biol. Med. 158: 446–448, 1978.
 64. Flatt, P. R., C. J., Bailey, P. Kwasowski, S. K. Swanston‐Flatt, and V. Marks. Abnormalities of GIP in spontaneous syndromes of obesity and diabetes in mice. Diabetes 32: 433–435, 1983.
 65. Flemström, G., and A. Garner. Stimulation of HCO‐3 transport by gastric inhibitory peptide (GIP) in proximal duodenum of the bullfrog. Acta Physiol. Scand. 109: 231–232, 1980.
 66. Flemström, G., J. R., Heylings, and A. Garner. Gastric and duodenal HCO‐3 transport in vitro: effects of hormones and local transmitters. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G100–G110, 1982.
 67. Gespach, G., D., Bataille, M.‐C. Dutrillaux, and G. Rosselin. The interaction of glucagon, gastric inhibitory polypeptide and somatostatin with cyclic AMP production systems present in rat gastric glands. Biochim. Biophys. Acta 720: 7–16, 1982.
 68. Gespach, C., E., Chastre, S. Emami, and N. Mulliez. Vasoactive intestinal peptide receptor activity in human fetal enterocytes. FEBS Lett. 180: 196–202, 1985.
 69. Gespach, C., S., Emami, and G. Rosselin. Gastric inhibitory peptide (GIP), pancreatic glucagon and vasoactive intestinal peptide (VIP) are cAMP‐inducing hormones in the human gastric cancer cell line HGT‐1. Homologous desensitization of VIP receptor activity. Biochem. Biophys. Res. Commun. 120: 641–649, 1984.
 70. Gillespie, I. E., and M. I. Grossman. Inhibitory effect of secretin and cholecystokinin on Heidenhain pouch responses to gastrin extract and histamine. Gut 5: 342–345, 1964.
 71. Goto, Y., M., Berelowitz, and L. A. Frohman. Effect of catecholamines on somatostatin secretion by isolated perfused rat stomach. Am. J. Physiol. 240 (.Endocrinol. Metab. 3): E274–E278, 1981.
 72. Gray, J. S., W. B., Bradley, and A. C. Ivy. On the preparation and biological assay of enterogastrone. Am. J. Physiol. 128: 463–476, 1937.
 73. Greengard, H., A. T., Atkinson, M. I. Grossman, and A. C. Ivy. The effectiveness of parenterally administered “enterogastrone” in the prophylaxis of recurrences of experimental and clinical peptic ulcer. Gastroenterology 7: 625–649, 1946.
 74. Helman, C. A., and G. O. Barbezat. Effect of gastric inhibitory polypeptide on jejunal water and electrolyte transport in man (Letter to the editor). Lancet 1: 1129, 1976.
 75. Helman, C. A., and G. O. Barbezat. The effect of gastric inhibitory polypeptide on human jejunal water and electrolyte transport. Gastroenterology 72: 376–379, 1977.
 76. Holst, J. J., S. L., Jensen, S. Knuhtsen, O. V. Nielsen, and J. F. Rehfeld. Effect of vagus, gastric inhibitory polypeptide, and HCl on gastrin and somatostatin release from perfused pig antrum. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G515–G522, 1983.
 77. Horn, T., M. P., Vasser, M. E. Struble, R. Crea, B. Small, D. Kleid, D. Powers, H. L. Levine, C. H. S. Mcintosh, R. A. Pederson, S. C. Otte, A. M. J. Buchan, and J. C. Brown. Production of an immunologically and biologically active GIP in Escherichia coli through expression of a chemically synthesized gene. Regul. Pept. Suppl. 2: S193, 1982.
 78. Ipp, E., R. E., Dobbs, V. Harris, A. Arimura, W. Vale, and R. H. Unger. The effects of gastrin, GIP, secretin and the octapeptide of cholecystokinin upon immunoreactive somatostatin release by the perfused canine pancreas. J. Clin. Invest. 60: 1216–1219, 1977.
 79. Jansson, R. Effects of gastrointestinal hormones on concentrating function and motility in the gallbladder. An experimental study in the cat. Acta Physiol. Scand. Suppl. 456: 1–38, 1978.
 80. Jansson, R., G., Steen, and J. Svanvik. A comparison of glucagon, gastric inhibitory peptide, and secretin on gallbladder function, formation of bile, and pancreatic secretion in the cat. Scand. J. Gastroenterol. 13: 919–925, 1978.
 81. Jensen, R. T., C. G., Charlton, H. Adachi, S. W. Jones, T. L. O'Donohue, and J. D. Gardner. Use of 125I‐secretin to identify and characterize high‐affinity secretin receptors on pancreatic acini. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G186–G195, 1983.
 82. Jensen, R. T., G. F., Lemp, M. C. Beinfeld, and J. D. Gardner. Actions of natural gastric inhibitory peptide on pancreatic acinar cells: due to contamination with cholecystokinin. Gastroenterology 82: 20–25, 1982.
 83. Jensen, S. L., J. J., Holst, O. V. Nielsen, and K. B. Lauritsen. Secretory effects of gastric inhibitory polypeptide on the isolated perfused porcine pancreas. Acta Physiol. Scand. 111: 233–238, 1981.
 84. Jorde, R., and P. G. Burhol. Release of plasma pancreatic polypeptide in achlorhydric patients after intravenous infusion of gastric inhibitory polypeptide. Digestion 27: 239–44, 1983.
 85. Jorde, R., P. G., Burhol, and T. B. Schulz. Fasting and postprandial plasma GIP values in man measured with seven different antisera. Regul. Pept. 7: 87–94, 1983.
 86. Jorde, R., P. G., Burhol, H. L. Waldum, T. B. Schulz, I. Lygren, and J. Florholmen. Diurnal variation of plasma gastric inhibitory polypeptide in man. Scand. J. Gastroenterol. 15: 617–619, 1980.
 87. Jorde, R., J. E., Pettersen, and P. G. Burhol. Lack of effect of exogenous or endogenous gastric inhibitory polypeptide on the elimination rate of intralipid in man. Acta Med. Scand. 216: 19–23, 1984.
 88. Jörnvall, H., M., Carlquist, S. Kwauk, S. C. Otte, C. H. S. Mcintosh, J. C. Brown, and V. Mutt. Amino acid sequence and heterogeneity of gastric inhibitory polypeptide (GIP). FEBS Lett. 123: 205–210, 1981.
 89. Jorpes, J. E., and V. Mutt. Gastrointestinal hormones, secretin and cholecystokinin‐pancreozymin. Ann. Intern. Med. 55: 395–405, 1961.
 90. Jorpes, J. E., and V. Mutt. On the biological activity and amino acid composition of secretin. Acta Chem. Scand. 15: 1790–1791, 1961.
 91. Koop, H., I., Behrens, E. Bothe, H. Koschwitz, C. H. S. Mcintosh, R. A. Pederson, R. Arnold, and W. Creutzfeldt. Adrenergic control of rat gastric somatostatin and gastrin release. Scand. J. Gastroenterol. 18: 65–71, 1983.
 92. Koop, H., I., Behrens, E. Bothe, C. H. S. Mcintosh, R. A. Pederson, R. Arnold, and W. Creutzfeldt. Adrenergic and cholinergic interactions in rat gastric somatostatin and gastrin release. Digestion 25: 96–102, 1982.
 93. Koop, H., I., Behrens, C. H. S. Mcintosh, R. A. Pederson, R. Arnold, and W. Creutzfeldt. Adrenergic modulation of gastric somatostatin release in rats. FEBS Lett. 118: 248–250, 1981.
 94. Kosaka, T., and R. K. S. Lim. Demonstration of the humoral agent in fat inhibition of gastric secretion. Proc. Soc. Exp. Biol. Med. 27: 890–891, 1930.
 95. Kosterlitz, H. W. Intrinsic and extrinsic nervous control of motility of the stomach and the intestines. In: Handbook of Physiology. Alimentary Canal, edited by C. F. Code. Washington, DC: Am. Physiol. Soc., 1968, sect. 6, vol. IV, chapt. 104, p. 2147–2171.
 96. Krarup, T., and J. J. Holst. The heterogeneity of gastric inhibitory polypeptide in porcine and human gastrointestinal mucosa evaluated with five different antisera. Regul. Pept. 9: 35–46, 1984.
 97. Krarup, T., S., Madsbad, A. J. Moody, L. Regeur, D. K. Faber, J. J. Holst, and L. Sestoft. Diminished immuno‐reactive gastric inhibitory polypeptide response to a meal in newly diagnosed type I (insulin‐dependent) diabetics. J. Clin. Endocrinol. Metab. 56: 1306–1312, 1983.
 98. Kuzio, M., J. R., Dryburgh, K. M. Malloy, and J. C. Brown. Radioimmunoassay for gastric inhibitory polypeptide. Gastroenterology 66: 357–364, 1974.
 99. Kwok, Y. N., C. H. S., Mcintosh, R. A. Pederson, and J. C. Brown. Effect of substance P on somatostatin release from the isolated perfused rat stomach. Gastroenterology 88: 90–95, 1985.
 100. La Barre, J. Sur les possibilités d'un traitment du diabètes par l'incretine. Bull. Acad. R. Med. Belg. 12: 620–634, 1932.
 101. La Barre, J., and E. U. Still. Studies on the physiology of secretin. III. Further studies on the effects of secretin on the blood sugar. Am. J. Physiol. 91: 649–653, 1930.
 102. Larsson, L.‐I., and A. J. Moody. Glicentin and gastric inhibitory polypeptide immunoreactivity in endocrine cells of the gut and pancreas. J. Histochem. Cytochem. 28: 925–933, 1980.
 103. Lauritsen, K. B., and A. J. Moody. The association between plasma GIP and insulin after oral glucose. Scand. J. Gastroenterol. 15: 953–957, 1980.
 104. Leduque, P., C., Gespach, J. C. Brown, G. Rosselin, and P. M. Dubois. Ontogeny of gastric inhibitory polypeptide in the human gastro‐intestinal tract and endocrine pancreas. Acta Endocrinol. 99: 112–121, 1982.
 105. Lin, T. S. Effects of insulin and glucagon on secretory and motor function of the gastrointestinal tract. In: Gastrointestinal Hormones, edited by G. B. J. Glass. New York: Raven, 1980, p. 639–691.
 106. Lund, P. K., R. H., Goodman, P. C. Dee, and J. F. Habener. Pancreatic preproglucagon cDNA contains two glucagon‐related coding sequences arranged in tandem. Proc. Natl. Acad. Sci. USA 79: 345–349, 1982.
 107. Lytras, N., A., Grossman, L. H. Rees, A. V. Schally, S. R. Bloom, and G. M. Besser. Corticotrophin releasing factor: effects on circulating gut and pancreatic peptides in man. Clin. Endocrinol. 20: 725–729, 1984.
 108. Magee, D. F., and M. Nakamura. Action of pancreozymin preparations on gastric secretion. Nature Lond. 212: 1487–1488, 1966.
 109. Maletti, M., B., Amiranoff, M. Laburthe, and G. Rosselin. Mise en évidence de récepteurs spécifiques du inhibiteur gastrique (GIP). C.R. Seances Acad. Sci. 297: 563–565, 1983.
 110. Maletti, M., B., Portha, M. Carlquist, M. Kergoat, M. Laburthe, J. C. Marie, and G. Rosselin. Evidence for and characterization of specific high affinity binding sites for the gastric inhibitory polypeptide in pancreatic β‐cells. Endocrinology 115: 1324–1331, 1984.
 111. Martin, E. W., JR., T. M. O'Dorisio, J. Spaeth, N. R. Thomford, and S. Cataland. The association between endogenous gastric inhibitory polypeptide release and suppression of gastric acid output following intraduodenal fat stimulation. J. Surg. Res. 29: 71–74, 1980.
 112. Maxwell, V., A., Shulkes, J. C. Brown, T. E. Solomon, J. H. Walsh, and M. I. Grossman. Effect of gastric inhibitory polypeptide on pentagastrin‐stimulated acid secretion in man. Dig. Dis. Sci. 25: 113–116, 1980.
 113. Mazzaferri, E. L., G. H., Starich, and S. T. St. Jeor. Augmented increase in carbohydrate (sucrose) intake. J. Clin. Endocrinol. Metab. 58: 640–645, 1984.
 114. Mcintosh, C. H. S. Minireview. Gastrointestinal somatostatin: distribution, secretion and physiological significance. Life Sci. 37: 2043–2058, 1985.
 115. Mcintosh, C., and R. Arnold. The radioimmunoassay and physiology of somatostatin in the pancreas and gastrointestinal tract. Z. Gastroenterol. 16: 330–340, 1978.
 116. Mcintosh, C. H. S., V., Bakich, T. Trotter, Y. N. Kwok, E. Nishimura, R. A. Pederson, and J. C. Brown. Effect of cysteamine on secretion of gastrin and somatostatin from the rat stomach. Gastroenterology 86: 834–838, 1984.
 117. Mcintosh, C. H. S., Y. N., Kwok, T. Mordhorst, E. Nishimura, R. A. Pederson, and J. C. Brown. Enkephalinergic control of somatostatin secretion from the perfused rat stomach. Can. J. Physiol. Pharmacol. 61: 657–663, 1983.
 118. Mcintosh, C. H. S., T., Mordhorst, R. A. Pederson, M. K. Mueller, and J. C. Brown. The control of rat gastric somatostatin secretion by the autonomic nervous system. In: 2nd International Somatostatin Symposium, Athens, 1981 Tübingen, FRG: Tübingen Univ. Press, 1985.
 119. Mcintosh, C. H. S., and R. A. Pederson. Local somatostatin secretion from the pancreas and stomach: in vitro studies. In: Gut Hormones (2nd ed.), edited by S. R. Bloom and J. M. Polak. Edinburgh: Churchill Livingstone, 1981, p. 362–365.
 120. Mcintosh, C. H. S., R. A., Pederson, H. Koop, and J. C. Brown. Inhibition of GIP stimulated somatostatin‐like immunoreactivity (SLI) by acetylcholine and vagal stimulation. In: Gut Peptides: Secretion, Function and Clinical Aspects, edited by A. Miyoshi. Tokyo: Kodansha, 1979, p. 100–104.
 121. Mcintosh, C. H. S., R. A., Pederson, H. Koop, and J. C. Brown. Gastric inhibitory polypeptide stimulated secretion of somatostatin like immunoreactivity from the stomach: inhibition by acetylcholine or vagal stimulation. Can. J. Physiol. Pharmacol. 59: 468–472, 1981.
 122. Mcintosh, C. H. S., R. A., Pederson, M. Müller, and J. C. Brown. Autonomic nervous control of gastric somatostatin secretion from the isolated perfused rat stomach. Life Sci. 29: 1477–1483, 1981.
 123. Mcintyre, N., C. D., Holdsworth, and D. S. Turner. New interpretations of oral glucose tolerance. Lancet 2: 20–21, 1964.
 124. Moody, A. J., L., Thim, and I. Valverde. The isolation and sequencing of human gastric inhibitory peptide (GIP). FEBS Lett. 172: 142–148, 1984.
 125. Morgan, L. M. Immunoassayable gastric inhibitory polypeptide: investigations into its role in carbohydrate metabolism. Ann. Clin. Biochem. 16: 6–14, 1979.
 126. Morgan, L. M., B. A., Morris, and V. Marks. Radioimmunoassay of gastric inhibitory polypeptide. Ann. Clin. Biochem. 15: 172–177, 1978.
 127. Moroder, L., A. Halett, P. Thamm, L. Wilschowitz, J. C. Brown, and E. Wunsch. Studies on gastric inhibitory polypeptide: synthesis of the octatricontapeptide GIP1–38 with full insulinotropic activity. Scand. J. Gastroenterol. Suppl. 49: 129, 1978.
 128. Mueller, M. K., P., Demol, H. Goebell, G. Fladrich, and J. C. Brown. Natural purified porcine gastric inhibitory polypeptide (GIP) stimulates exocrine pancreas secretion due to contamination with a cholecystokinin‐like substance. Regul. Pept. 5: 307–315, 1983.
 129. Murat, J. E., and T. T. White. Stimulation of gastric secretion by commercial cholecystokinin extracts. Proc. Soc. Exp. Biol. Med. 123: 593–594, 1966.
 130. Murphy, W. A., V. A., Lance, J. Sueiras‐Diaz, and D. H. Coy. Effects of secretin and gastric inhibitory polypeptide on human pancreatic growth hormone‐releasing factor (1–40)‐stimulated growth hormone levels in the rat. Biochem. Biophys. Res. Commun. 112: 469–474, 1983.
 131. Mutt, V., and J. E. Jorpes. Secretin isolation and determination of structure. In: Proc. 4th Int. Symp. Chem. Nat. Prod., edited by N. Back, L. Marini, and R. Paoletti. New York: Plenum, 1968, p. 569–574. (Stockholm, Sweden Sec. 2C‐I.)
 132. Nasset, E. S. Enterocrinin, a hormone which excites the glands of the small intestine. Am. J. Physiol. 121: 481–487, 1938.
 133. Nasset, E. S., H. B., Pierce, and J. B. Murlin. Proof of a humoral control of intestinal secretion. Am. J. Physiol. 111: 145–158, 1935.
 134. Ohneda, A., T., Kobayashi, and J. Nihei. Effect of endogenous gastric inhibitory polypeptide (GIP) on the removal of triacylglycerol in dogs. Regul. Pept. 6: 25–32, 1983.
 135. Ohneda, A., T., Kobayashi, and J. Nihei. Response of gastric inhibitory polypeptide in fat ingestion in normal dogs. Regul. Pept. 8: 123–130, 1984.
 136. Ottlecz, A., W. K., Samson, and S. M. Mccann. The effects of gastric inhibitory polypeptide (GIP) on the release of anterior pituitary hormones. Peptides Fayetteville 6: 115–119, 1985.
 137. Pearse, A. G. E. Common cytochemical and ultrastructural characteristics of cells producing polypeptide hormones (the APUD series) and their relevance to thyroid and ultimobranchial C cells and calcitonin. Proc. R. Soc. Lond. B Biol. Sci. 170: 71–80, 1968.
 138. Pederson, R. A., The Isolation and Physiological Actions of Gastric Inhibitory Polypeptide. Vancouver, Canada: Univ. of British Columbia, 1971. PhD dissertation.
 139. Pederson, R. A., and J. C. Brown. Inhibition of histamine‐, pentagastrin‐, and insulin‐stimulated canine gastric secretion by pure “gastric inhibitory polypeptide”. Gastroenterology 62: 393–400, 1972.
 140. Pederson, R. A., and J. C. Brown. The insulinotropic action of gastric inhibitory polypeptide in the perfused isolated rat pancreas. Endocrinology 99: 780–785, 1976.
 141. Pederson, R. A., and J. C. Brown. Interaction of gastric inhibitory polypeptide, glucose, and arginine on insulin and glucagon secretion from the perfused rat pancreas. Endocrinology 103: 610–615, 1978.
 142. Pederson, R. A., A. M. J., Buchan, S. Zahedi‐Asl, C. B. Chan, and J. C. Brown. Effect of jejunoileal bypass in the rat on the enteroinsular axis. Regul. Pept. 5: 53–63, 1982.
 143. Pederson, R. A., S. M., Innis, A. M. J. Buchan, C. B. Chan, and J. C. Brown. The effect of total parenteral nutrition (TPN) on the enteroinsular axis in the rat. Regul. Pept. 10: 199–206, 1985.
 144. Pederson, R. A., C. H. S., Mcintosh, M. K. Mueller, and J. C. Brown. Absence of a relationship between immuno‐reactive‐gastrin and somatostatin‐like immunoreactivity secretion in the perfused rat stomach. Regul. Pept. 2: 53–60, 1981.
 145. Pederson, R. A., H. E., Schubert, and J. C. Brown. Gastric inhibitory polypeptide, its physiologic release and insulinotropic action in the dog. Diabetes 1050–1056, 1975.
 146. Pfeiffer, E. F., M., Telib, J. Ammon, F. Melani, and H. Ditschuneit. Direkte Stimulierung der Insulinsekretion in vitro durch Sekretin. Dtsch. Med. Wochenschr. 90: 1663–1667, 1965.
 147. Polak, J. M., S. R., Bloom, M. Kuzio, J. C. Brown, and A. G. E. Pearse. Cellular localisation of gastric inhibitory polypeptide in the duodenum and jejunum. Gut 14: 284–288, 1973.
 148. Polak, J. M., A. G. E., Pearse, L. Grimelius, and V. Marks. Gastrointestinal apudosis in obese hyperinsulinemic mice. Virchows Arch. B Cell Pathol. 19: 135–150, 1975.
 149. Premen, A. J., C. Y., Soika, J. M. Dabney, and D. E. Dobbins. Effects of gastrointestinal hormones on ileal vascular and visceral smooth muscle. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G1–G7, 1984.
 150. Prost, A., S., Emami, G. Rosselin, and C. Gespach. Activation of the cAMP‐generating system by vasoactive intestinal polypeptide (VIP) in the human laryngeal malignant cell line HEp‐2. Biosci. Rep. 4: 1045–1050, 1984.
 151. Rabinovitch, A., and J. Dupré. Insulinotropic and glucagonotropic activities of crude preparations of cholecystokinin‐pancreozymin (Abstract). Clin. Res. 20: 945, 1972.
 152. Ross, S. A., and E. S. Shaffer. The importance of triglyceride hydrolysis for the release of gastric inhibitory polypeptide. Gastroenterology 80: 108–111, 1981.
 153. Rouiller, D., V., Schusdziarra, V. Harris, and R. H. Unger. Release of pancreatic and gastric somatostatin‐like immunoreactivity in response to the octapeptide of cholecystokinin, secretin, gastric inhibitory polypeptide, and gastrin‐17 in dogs. Endocrinology 107: 524–529, 1980.
 154. Saffouri, B., G. C., Weir, K. N. Bitar, and G. M. Makhlouf. Gastrin and somatostatin secretion by perfused rat stomach: functional linkage of antral peptides. Am. J. Physiol. 238 (Gastrointest. Liver Physiol. 1): G495–G501, 1980.
 155. Salera, D. L., N., Scopinaro, L. Pironi, G. Cornia, M. Capelli, A. Marini, F. Benfenati, M. Miglioli, and L. Barbara. Gastric inhibitory polypeptide release after oral glucose: relationship to glucose intolerance, diabetes mellitus and obesity. J. Clin. Endocrinol. Metab. 55: 329–336, 1982.
 156. Sarson, D. L., H. S., Besterman, and S. R. Bloom. Radioimmunoassay of gastric inhibitory polypeptide (GIP) and its release in morbid obesity and following jejuno‐ileal bypass. J. Endocrinol. 80: 47–48, 1979.
 157. Sarson, D. L., M. G., Bryant, and S. R. Bloom. A radioimmunoassay of gastric inhibitory polypeptide following oral glucose in diabetes mellitus. Diabetes 26: 525–529, 1980.
 158. Sarson, D. L., N., Scopinaro, and S. R. Bloom. Gut hormone changes after jejunoileal (JIB) or biliopancreatic (PBP) bypass for morbid obesity. Int. J. Obesity 5: 471–480, 1981.
 159. Sarson, D. L., S. M., Wood, D. Holder, and S. R. Bloom. The effect of glucose‐dependent insulinotropic polypeptide infused at physiological concentrations on the release of insulin in man. Diabetologia 22: 33–36, 1982.
 160. Schäfer, R., and H. Schatz. Stimulation of (pro‐)insulin biosynthesis and release by gastric inhibitory polypeptide in isolated islets of rat pancreas. Acta Endocrinol. 91: 493–500, 1979.
 161. Schauder, P., J. C., Brown, H. Frerichs, and W. Creutzfeldt. Gastric inhibitory polypeptide: effect on glucose‐induced insulin release from isolated rat pancreatic islets in vitro. Diabetologia 11: 483–484, 1975.
 162. Schauder, P., B., Schindler, U. Panten, J. C. Brown, H. Frerichs, and W. Creutzfeldt. Insulin release from isolated rat pancreatic islets induced by alpha‐ketoisocaproic acid, L‐leucine, D‐glucose or D‐glyceraldehyde: effect of gastric inhibitory polypeptide or glucagon. Mol. Cell. Endocrinol. 7: 115–123, 1977.
 163. Schubert, M. L., K. N., Bitar, and G. M. Makhlouf. Regulation of gastrin and somatostatin secretion by cholinergic and noncholinergic intramural neurons. Am. J. Physiol. 243 (Gastrointest. Liver Physiol. 6): G442–G447, 1982.
 164. Schulz, T. B., R., Jorde, H. L. Waldum, and P. G. Burhol. Preparation of 125I‐labeled gastric inhibitory polypeptide, using water‐insoluble 1,3,4,6 tetrachloro‐3, alpha,6 alpha‐diphenylglycoluril (Iodo‐gen) as the oxidizing agent. Scand. J. Gastroenterol. 17: 379–382, 1982.
 165. Schusdziarra, V. Somatostatin—physiological and pathophysiological aspects. Scand. J. Gastroenterol. Suppl. 82: 69–84, 1983.
 166. Schusdziarra, V., H., Bender, and E. F. Pfeiffer. Release of bombesin‐like immunoreactivity from the isolated perfused rat stomach. Regul. Pept. 7: 21–29, 1983.
 167. Schusdziarra, V., H., Bender, A. Pfeffer, and E. F. Pfeiffer. Modulation of acetylcholine‐induced secretion of gastric bombesin‐like immunoreactivity by cholinergic and histamine H2‐receptors, somatostatin and intragastric pH. Regul. Pept. 81: 89–98, 1984.
 168. Schusdziarra, V., D., Rouiller, V. Harris, R. Dey, and R. H. Unger. Plasma somatostatin‐like immunoreactivity in chemically sympathectomized dogs. Horm. Metab. Res. 12: 656–660, 1980.
 169. Schwartz, C. K., D. V., Kimberg, H. E. Sheering, M. Field, and S. I. Said. Vasoactive intestinal peptide stimulation of adenylate cyclase and active electrolyte secretion in intestinal mucosa. J. Clin. Invest. 54: 536–544, 1974.
 170. Service, F. J., R. L., Nelson, A. H. Rubinstein, and V. L. W. Go. Direct effect of insulin on secretion of insulin, glucagon, gastric inhibitory polypeptide and gastrin during maintenance of normoglycaemia. J. Clin. Endocrinol. Metab. 47: 488–493, 1978.
 171. Sillin, L. F., R. E., Condon, W. J. Schulte, H. J. Woods, P. Bass, and V. W. I. Go. The relationship between gastric inhibitory peptide and right colon electromechanical activity after feeding. In: Gastrointestinal Motility in Health and Disease, edited by H. L. Duthie. Lancaster, UK: MTP, 1978, p. 361–362.
 172. Simmons, T. C., I. L., Taylor, V. Maxwell, J. C. Brown, and M. I. Grossman. Failure of gastric inhibitory polypeptide to inhibit pentagastrin‐stimulated acid secretion in vagotomized human subjects. Dig. Dis. Sci. 26: 902–904, 1981.
 173. Sinar, D. R., T. M., O'Dorisio, E. L. Mazzaferri, H. S. Mekhjian, J. H. Caldwell, and F. B. Thomas. Effect of gastric inhibitory polypeptide on lower esophageal sphincter pressure in cats. Gastroenterology 75: 263–267, 1978.
 174. Sirinek, K. R., W. G., Pace, S. E. Crockett, T. M. O'Dorisio, and E. L. Mazzaferri. Insulin induced attenuation of glucose‐stimulated gastric inhibitory polypeptide secretion. Am. J. Surg. 135: 151–155, 1978.
 175. Sjödin, L., and T. P. Conlon. Effect of gastric inhibitory polypeptide (GIP) on dispersed acinar cells from the guinea pig pancreas. Proc. Int. Congr. Physiol. Sci. 28th, Budapest, 1980, vol. 14, p. 706, 1980.
 176. Sjödin, L., and T. P. Conlon. Effects of gastric inhibitory polypeptide on dispersed pancreatic acinar cells from the guinea pig. Acta Physiol. Scand. 122: 79–84, 1984.
 177. Smith, P. H., F. W., Merchant, D. G. Johnson, W. Y. Fujimoto, and R. H. Williams. Immunocytological localization of a GIP‐like material within A cells of the endocrine pancreas. Am. J. Anat. 149: 585–590, 1977.
 178. Solcia, E., J. M., Polak, R. Buffa, C. Capella, and A. G. E. Pearse. Endocrine cells of the intestinal mucosa. In: Gastrointestinal Hormones, edited by J. C. Thompson. Austin: Univ. of Texas Press, 1975, p. 155–168.
 179. Soll, A. H., T., Yamada, J. Park, and L. P. Thomas. Release of somatostatinlike immunoreactivity from canine fundic mucosal cells in primary culture. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G558–G566, 1984.
 180. Soon‐Shiong, P., H. T., Debas, and J. C. Brown. The evaluation of gastric inhibitory polypeptide (GIP) as the enterogastrone. J. Surg. Res. 26: 681–686, 1979.
 181. Soon‐Shiong, P., H. T., Debas, and J. C. Brown. Cholinergic inhibition of gastric inhibitory polypeptide (GIP) action (Abstract). Gastroenterology 76: 1253, 1979.
 182. Soon‐Shiong, P., H. T., Debas, and J. C. Brown. Bethanechol prevents inhibition of gastric acid secretion by gastric inhibitory polypeptide. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G171–G175, 1984.
 183. Sue, R., M. L., Toomey, A. Todisco, A. H. Soll, and T. Yamada. Pirenzapine‐sensitive muscarinic receptors regulate gastric somatostatin and gastrin. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G184–G187, 1985.
 184. Sykes, S., L. M., Morgan, J. English, and V. Marks. Evidence for preferential stimulation of gastric inhibitory polypeptide secretion in the rat by actively transported carbohydrates and their analogues. J. Endocrinol. 85: 210–217, 1980.
 185. Takemura, J., Y., Seino, S. Masukura, and H. Imura. GIP response to glucose in STZ and VMH rats in vivo. In: Proc. 7th Int. Congr. Endocrinol. Amsterdam: Excerpta Med., 1984, p. 1270.
 186. Thomas, F. B., D., Sinar, E. L. Mazzaferri, S. Cataland, H. S. Mekhjian, J. H. Caldwell, and J. J. Fromkes. Selective release of gastric inhibitory polypeptide by intraduodenal amino acid perfusion in man. Gastroenterology 74: 1261–1265, 1978.
 187. Unger, R. H., and A. M. Eisentraut. Entero‐insular axis. Arch. Intern. Med. 123: 261–266, 1969.
 188. Unger, R. H., H., Ketterer, J. Dupré, and A. M. Eisentraut. The effects of secretin, pancreozymin, and gastrin on insulin and glucagon secretion in anesthetized dogs. Gastroenterology 55: 260–267, 1967.
 189. Usellini, L., C., Capella, E. Solcia, A. M. J. Buchan, and J. C. Brown. Ultrastructural localisation of gastric inhibitory polypeptide (GIP) in a well characterised endocrine cell of canine duodenal mucosa. Histochemistry 80: 85–89, 1984.
 190. Vagne, M., G. F., Stening, F. P. Brooks, and M. I. Grossman. Synthetic secretin: comparison with natural secretin for potency and spectrum of physiological actions. Gastroenterology 55: 260–267, 1968.
 191. Valenzuela, J. E. Effect of intestinal hormones and peptides on intragastric pressure in dogs. Gastroenterology 71: 766–769, 1976.
 192. Villar, H. V., H. R., Fender, P. L. Rayford, S. R. Bloom, N. I. Ramus, and J. C. Thompson. Suppression of gastrin release and gastric secretion by gastric inhibitory polypeptide (GIP) and vasoactive intestinal polypeptide (VIP). Ann. Surg. 184: 97–102, 1976.
 193. Waldman, D. B., J. D., Gardner, A. M. Zfass, and G. M. Makhlouf. Effects of vasoactive intestinal peptide, secretin, and related peptides on rat colonic transport and adenylate cyclase activity. Gastroenterology 73: 518–523, 1977.
 194. Wasada, T., K., Mccorckle, V. Harris, K. Kawai, B. Howard, and R. H. Unger. Effect of gastric inhibitory polypeptide on plasma levels of chylomicron triglycerides in dogs. J. Clin. Invest. 68: 1106–1107, 1981.
 195. Way, L. W. Effect of secretin on gastric acid secretion in response to cholinergic stimuli. Gastroenterology 59: 510–517, 1970.
 196. Williams, R. H., J. B., May, and J. B. Biesbroeck. Determinants of gastric inhibitory polypeptide and insulin secretion. Metabolism 30: 36–40, 1981.
 197. Wolfe, M. M., M. P., Hocking, D. G. Maico, and J. E. Mcguigan. Effects of antibodies to gastric inhibitory peptide on gastric acid secretion and gastrin release in the dog. Gastroenterology 84: 941–948, 1983.
 198. Wormsley, K. G., and M. I. Grossman. Inhibition of gastric secretion by secretin and by exogenous acid in the duodenum. Gastroenterology 47: 72–81, 1964.
 199. Yajima, H., H., Ogawa, M. Kubota, T. Tobe, M. Fujimura, K. Henmi, K. Torizuka, H. Adachi, H. Imura, and T. Taminato. Synthesis of the tritetracontapeptide corresponding to the entire amino acid sequence of gastric inhibitory polypeptide. J. Am. Chem. Soc. 97: 5593–5594, 1975.
 200. Yamada, T., A. H., Soll, J. Park, and J. Elashoff. Autonomic regulation of somatostatin release: studies with primary cultures of canine fundic mucosal cells. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G567–G573, 1984.
 201. Yamagishi, T., and H. T. Debas. Gastric inhibitory polypeptide (GIP) is not the primary mediator of the enterogastrone action of fat in the dog. Gastroenterology 78: 931–936, 1980.
 202. Yanaihara, N., T., Mochizuki, C. Yanaihara, N. Sakura, T. Hashimoto, M. Sakagami, T. Kaneko, A. Kanetoh, and J. C. Brown. Synthesis of GIP. In: Gut Hormones, edited by S. R. Bloom. Edinburgh: Churchill Livingstone, 1978, p. 271–176.
 203. Zunz, E., and J. La Barre. Contributions à l'étude des variations physiologiques de la sécrétion interne du pancréas: relations entre les sécrétions externe et interne du pancréas. Arch. Int. Physiol. 31: 20–44, 1929.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

John C Brown, Alison M. J. Buchan, Christopher H. S. McIntosh, Raymond A. Pederson. Gastric Inhibitory Polypeptide. Compr Physiol 2011, Supplement 17: Handbook of Physiology, The Gastrointestinal System, Neural and Endocrine Biology: 403-430. First published in print 1989. doi: 10.1002/cphy.cp060218