Comprehensive Physiology Wiley Online Library

Neurotensin

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Isolation
2 Structure
2.1 Sequencing After Enzymatic Digestion
2.2 Hydrolytic Deamidation: Glu‐ Versus Gln‐Neurotensin
3 Synthesis
4 Structure‐Function Relationships
4.1 Importance of Cooh‐Terminal Fragments for Receptor Binding and Biological Activity
4.2 Substitutions and Iodination of [Tyr11]Neurotensin
5 Receptors
5.1 Guinea Pig Small Intestine
5.2 Rat Fundus
5.3 Molecular Structure of Neurotensin Receptors
6 Radioimmunoassay
6.1 Radioiodination
6.2 Development and Use of Region‐Specific Antisera
6.3 Problems in the Radioimmunoassay of Plasma Neurotensin
6.4 Chromatographic and Immunochemical Identification of Neurotensin in Human and Rat Plasma
7 Neurotensin‐Related Peptides
7.1 Phylogenetic Variants
7.2 Intraspecies Variants
7.3 Tissue Precursors
8 Localization and Distribution of Neurotensin
8.1 Studies With Radioimmunoassay
8.2 Studies With Immunohistochemistry
8.3 Localization of Neurotensin in Tumors
9 Release and Circulation of Neurotensin
9.1 Release With Nutrients
9.2 Biphasic Release
9.3 Neurally Mediated Release
9.4 Peptide‐Stimulated Release
9.5 Somatostatin Inhibition of Release
9.6 In Vitro Models for Studying Release
9.7 Release Associated With Gastrointestinal Surgery
10 Metabolism of Neurotensin
11 Biology
11.1 Smooth Muscle Activity
11.2 Small Intestine Motility
11.3 Large Intestine Motility
11.4 Gastric Acid Secretion
11.5 Intestinal Absorption
11.6 Water and Electrolyte Secretion
11.7 Blood Flow
11.8 Pancreatic Function
12 Summary
Figure 1. Figure 1.

Complete amino acid sequence of neurotensin and alignment of fragments obtained by enzymatic cleavage. PCPase, pyrrolidone carboxyl peptidase; P, papain; P‐1, P‐2, P‐3, papain peptides.

Data from Carraway and Leeman 40
Figure 2. Figure 2.

Proposed model for neurotensin‐receptor interaction.

From Carraway and Leeman 42
Figure 3. Figure 3.

Diagrammatic representation of average binding sites for several region‐specific antisera toward neurotensin.

Courtesy of Robert Carraway.
Figure 4. Figure 4.

Gel‐permeation chromatography of bovine plasma extracts on Sephadex G‐25. Multiples of void volume (V0) and elution position for [3H]neurotensin (NT) are indicated. Aliquots of each fraction were assayed for NT with 3 antisera (PGL‐4, HC‐8, and TG‐1).

From Carraway et al. 37
Figure 5. Figure 5.

Chromatographic profiles of neurotensin‐like immunoreactivity from plasma collected at various time intervals before (0 min) and after 15,30,45,60, and 90 min) ingestion of a mixed meal by a healthy subject. Shaded areas, immunoreactivity obtained with COOH‐terminal‐directed antiserum; solid line, immunoreactivity obtained with NH2‐terminal‐directed antiserum. Arrows, elution position of synthetic neurotensin (NT) and neurotensin metabolite NT(1–8).

Data from Theodorsson‐Norheim and Rosell 184
Figure 6. Figure 6.

Arteriovenous difference in neurotensin (NT) concentration in extracted plasma during perfusion of small intestine with 0.9% NaCl or a micellar solution of oleic acid. Concentration of NT is given as mean ± SE (vertical bar) determined by high‐pressure liquid chromatography and radioimmunoassay (antiserum TG‐1) of extracted plasma samples taken simultaneously from superior mesenteric vein and femoral artery during saline or lipid perfusion (n = 3).

From Ferris et al. 58
Figure 7. Figure 7.

Concentration of neurotensin‐like immunoreactivity (NTLI) in intestinal tissues of representative vertebrates as measured with 3 region‐specific antisera. Average concentration measured in acetic acid extracts of small intestinal tissues as a function of animal class is plotted.

From Carraway et al. 47
Figure 8. Figure 8.

Gel‐permeation chromatography of extracts of mammalian whole brain and small intestine on Sephadex G‐25. Aliquots were assayed by using antisera PGL‐4 (○) and HC‐8 (•). Arrows, elution position for synthetic neurotensin and multiples of the void volume (V0). Number under each peak denotes approximate ratio of the measurements obtained with PGL‐4 to those obtained with HC‐8. Antiserum TG‐1 (data not shown) gave a major peak of immunoreactivity in each case, coincident on and about equal to that seen with HC‐8, peaking at tube 29.

From Carraway et al. 47
Figure 9. Figure 9.

Gel‐permeation chromatography of extracts of rat gastrointestinal tissues on Sephadex G‐25. Ordinate, immunoreactivity as measured with antisera PGL‐4, PGL‐6, and HC‐8. Arrows define lower limits of sensitivity in radioimmunoassay. Abscissa, fraction number, void volume (V0), and elution position for synthetic neurotensin (NT). Samples were acid/acetone extracts of rat tissues. Top, jejunoileum, 150g; bottom, stomach, 30g.

From Carraway and Leeman 43
Figure 10. Figure 10.

Average measurements of neurotensin‐like immunoreactivity (NTLI) at points sampled along small intestine of 4 subjects, determined with antisera HC‐8 (•), TG‐1 (▴), and PGL‐4 (○). Error bars, standard deviation of HC‐8 measurements. Samples consist of mucosa scraped from 12‐cm‐long segments of small intestine at ˜ 30‐cm intervals.

From Hammer et al. 86
Figure 11. Figure 11.

Neurotensin‐immunoreactive endocrine cells in different regions of small intestine of some mammalian species. A: basal portion of villus in dog duodenum. × 624. B: crypts in guinea pig duodenum, × 569. C: crypts in middle portion of human jejunum, × 806. D: villi of rat lower ileum exhibiting a particularly high amount of neurotensin‐immunoreactive cells. × 537.

From Reinecke 149
Figure 12. Figure 12.

Low magnification of ileal N cell of the primate Tupaia belangeri, which stained in adjacent semithin section with antineurotensin. Secretory granules (Sg) are clustered mostly at basal region.

From Helmstaedter et al. 90
Figure 13. Figure 13.

High‐pressure liquid chromatography on circulating metabolites of neurotensin (NT) obtained 2 min after intravenous injection of [3H]NT. Top: NT immunoreactivity expressed as real peptide concentrations by applying cross‐reactions of 20% [NT‐(1–8)], 60% [NT‐(1–11)], 2% [NT‐(19–13)], and 100% (NT). Bottom: 3H‐radioactivity.

From Aronin et al. 13
Figure 14. Figure 14.

Appearance of label in lymph over experimental period. Solid line, data for animals infused with NT (n = 11); dotted line, data for control animals infused with saline (n = 14). Data are expressed as percent of instilled [3H]oleic acid in counts per minute (cpm) recovered in lymph during each 15‐min collection period. Bars, SE.

From Armstrong et al. 11
Figure 15. Figure 15.

Plasma pancreatic polypeptide (PP) during infusions of neurotensin (2.3 ± 0.2 pmol/kg) (filled circles) and in saline controls (n = 5) (open circles).

From Blackburn et al. 26


Figure 1.

Complete amino acid sequence of neurotensin and alignment of fragments obtained by enzymatic cleavage. PCPase, pyrrolidone carboxyl peptidase; P, papain; P‐1, P‐2, P‐3, papain peptides.

Data from Carraway and Leeman 40


Figure 2.

Proposed model for neurotensin‐receptor interaction.

From Carraway and Leeman 42


Figure 3.

Diagrammatic representation of average binding sites for several region‐specific antisera toward neurotensin.

Courtesy of Robert Carraway.


Figure 4.

Gel‐permeation chromatography of bovine plasma extracts on Sephadex G‐25. Multiples of void volume (V0) and elution position for [3H]neurotensin (NT) are indicated. Aliquots of each fraction were assayed for NT with 3 antisera (PGL‐4, HC‐8, and TG‐1).

From Carraway et al. 37


Figure 5.

Chromatographic profiles of neurotensin‐like immunoreactivity from plasma collected at various time intervals before (0 min) and after 15,30,45,60, and 90 min) ingestion of a mixed meal by a healthy subject. Shaded areas, immunoreactivity obtained with COOH‐terminal‐directed antiserum; solid line, immunoreactivity obtained with NH2‐terminal‐directed antiserum. Arrows, elution position of synthetic neurotensin (NT) and neurotensin metabolite NT(1–8).

Data from Theodorsson‐Norheim and Rosell 184


Figure 6.

Arteriovenous difference in neurotensin (NT) concentration in extracted plasma during perfusion of small intestine with 0.9% NaCl or a micellar solution of oleic acid. Concentration of NT is given as mean ± SE (vertical bar) determined by high‐pressure liquid chromatography and radioimmunoassay (antiserum TG‐1) of extracted plasma samples taken simultaneously from superior mesenteric vein and femoral artery during saline or lipid perfusion (n = 3).

From Ferris et al. 58


Figure 7.

Concentration of neurotensin‐like immunoreactivity (NTLI) in intestinal tissues of representative vertebrates as measured with 3 region‐specific antisera. Average concentration measured in acetic acid extracts of small intestinal tissues as a function of animal class is plotted.

From Carraway et al. 47


Figure 8.

Gel‐permeation chromatography of extracts of mammalian whole brain and small intestine on Sephadex G‐25. Aliquots were assayed by using antisera PGL‐4 (○) and HC‐8 (•). Arrows, elution position for synthetic neurotensin and multiples of the void volume (V0). Number under each peak denotes approximate ratio of the measurements obtained with PGL‐4 to those obtained with HC‐8. Antiserum TG‐1 (data not shown) gave a major peak of immunoreactivity in each case, coincident on and about equal to that seen with HC‐8, peaking at tube 29.

From Carraway et al. 47


Figure 9.

Gel‐permeation chromatography of extracts of rat gastrointestinal tissues on Sephadex G‐25. Ordinate, immunoreactivity as measured with antisera PGL‐4, PGL‐6, and HC‐8. Arrows define lower limits of sensitivity in radioimmunoassay. Abscissa, fraction number, void volume (V0), and elution position for synthetic neurotensin (NT). Samples were acid/acetone extracts of rat tissues. Top, jejunoileum, 150g; bottom, stomach, 30g.

From Carraway and Leeman 43


Figure 10.

Average measurements of neurotensin‐like immunoreactivity (NTLI) at points sampled along small intestine of 4 subjects, determined with antisera HC‐8 (•), TG‐1 (▴), and PGL‐4 (○). Error bars, standard deviation of HC‐8 measurements. Samples consist of mucosa scraped from 12‐cm‐long segments of small intestine at ˜ 30‐cm intervals.

From Hammer et al. 86


Figure 11.

Neurotensin‐immunoreactive endocrine cells in different regions of small intestine of some mammalian species. A: basal portion of villus in dog duodenum. × 624. B: crypts in guinea pig duodenum, × 569. C: crypts in middle portion of human jejunum, × 806. D: villi of rat lower ileum exhibiting a particularly high amount of neurotensin‐immunoreactive cells. × 537.

From Reinecke 149


Figure 12.

Low magnification of ileal N cell of the primate Tupaia belangeri, which stained in adjacent semithin section with antineurotensin. Secretory granules (Sg) are clustered mostly at basal region.

From Helmstaedter et al. 90


Figure 13.

High‐pressure liquid chromatography on circulating metabolites of neurotensin (NT) obtained 2 min after intravenous injection of [3H]NT. Top: NT immunoreactivity expressed as real peptide concentrations by applying cross‐reactions of 20% [NT‐(1–8)], 60% [NT‐(1–11)], 2% [NT‐(19–13)], and 100% (NT). Bottom: 3H‐radioactivity.

From Aronin et al. 13


Figure 14.

Appearance of label in lymph over experimental period. Solid line, data for animals infused with NT (n = 11); dotted line, data for control animals infused with saline (n = 14). Data are expressed as percent of instilled [3H]oleic acid in counts per minute (cpm) recovered in lymph during each 15‐min collection period. Bars, SE.

From Armstrong et al. 11


Figure 15.

Plasma pancreatic polypeptide (PP) during infusions of neurotensin (2.3 ± 0.2 pmol/kg) (filled circles) and in saline controls (n = 5) (open circles).

From Blackburn et al. 26
References
 1. Adrian, T. E., A. J., Barnes, R. G. Long, D. J. O'Shaughnessy, M. R. Brown, J. Rivier, W. Vale, A. M. Blackburn, and S. R. Bloom. The effect of somatostatin analogs on secretion of growth, pancreatic, and gastrointestinal hormones in man. J. Clin. Endocrinol. Metab. 53: 675–681, 1981.
 2. Al‐Saffar, A., and S. Rosell. Effects of neurotensin and neurotensin analogues on the migrating myoelectrical complexes in the small intestine of rats. Acta Physiol. Scand. 112: 203–208, 1981.
 3. Al‐Saffar, A. Analysis of the control of intestinal motility in fasted rats, with special reference to neurotensin. Scand. J. Gastroenterol. 19: 422–428, 1984.
 4. Anastasi, A., V., Erspamer, and M. Bucci. Isolation and structure of bombesin and alytesin, two analogous active peptides from the skin of the European amphibians, Bombina and Alytes. Experientia Basel 27: 166–167, 1971.
 5. Andersson, S., D., Chang, K. Folkers, and S. Rosell. Inhibition of gastric acid secretion in dogs by neurotensin. Life Sci. 19: 367–370, 1976.
 6. Andersson, S., S., Rosell, D. Hjelmquist, D. Chang, and K. Folkers. Inhibition of gastric and intestinal motor activity in dogs by (Gln4)‐neurotensin. Acta Physiol. Scand. 100: 231–235, 1977.
 7. Andersson, S., S., Rosell, L. Sjödin, and K. Folkers. Inhibition of acid secretion from vagally innervated and denervated gastric pouches by (Gln4)‐neurotensin. Scand. J. Gastroenterol. 15: 253–256, 1980.
 8. Andrews, N. J., S., Rinno‐Barmada, K. Burdett, and J. B. Elder. Effects of porcine gastric fundic factor, somatostatin, substance P, glucagon, neurotensin, bombesin, VIP, motilin and pentagastrin on jejunal glucose absorption in the rat. Gut 24: 326–332, 1983.
 9. Araki, K., S., Tachibana, Y. Kato, and T. Tajima. Comparative studies of xenopsin and neurotensin on some biological activities. Yakugaku Zasshi 99: 466–470, 1979.
 10. Araki, K., S., Tachibana, M. Uchiyama, T. Nakajima, and T. Yasunara. Isolation and structure of a new active peptide xenopsin on rat stomach strip and some biogenic amines in the skin of Xenopsin Laevis. Chem. Pharm. Bull. Tokyo 23: 3132–3140, 1975.
 11. Armstrong, M. J., C. F., Ferris, and S. E. Leeman. Neurotensin increases the translocation of 3H‐oleic acid from the intestinal lumen into lymph of rats. In: Regulatory Peptides in Digestive, Nervous and Endocrine Systems, edited by M. J. M. Lewin and S. Bonfils. New York: Elsevier, 1985, p. 291–297. (INSERM Symp. Ser. No. 25.)
 12. Aronin, N., R. E., Carraway, M. Difiglia, and S. E. Leeman. Neurotensin. In: Brain Peptides, edited by D. Krieger, M. Brownstein, and J. Martin. New York: Wiley, 1983, p. 753–781.
 13. Aronin, N., R. E., Carraway, C. F. Ferris, R. A. Hammer, and S. E. Leeman. The stability and metabolism of intravenously administered neurotensin in the rat. Peptides Fayetteville 3: 637–642, 1982.
 14. Baca, I., G. E., Feurle, M. Haas, and T. Mernitz. Interaction of neurotensin, cholecystokinin, and secretin in the stimulation of the exocrine pancreas in the dog. Gastroenterology 84: 556–561, 1983.
 15. Baca, I., G. E., Feurle, A. Schwab, U. Mittmann, W. Knauf, and T. Lehnert. Effect of neurotensin on exocrine pancreatic secretion in dogs. Digestion 23: 174–183, 1982.
 16. Baca, I., U., Mittmann, G. E. Feurle, M. Haas, and T. H. Muller. Effect of neurotensin on regional intestinal blood flow in the dog. Res. Exp. Med. 179: 53–58, 1981.
 17. Barber, D. L., A. M. J., Buchan, J. H. Walsh, and A. H. Soll. Isolated canine ileal mucosal cells in short‐term culture: a model for study of neurotensin release. Am. J. Physiol. 250 (Gastrointest. Liver Physiol. 13) G374–G384, 1986.
 18. Bardon, T., and Y. Ruckebusch. Neurotensin‐induced colonic motor responses in dogs: a mediation by prostaglandins. Regul. Pept. 10: 107–114, 1985.
 19. Besterman, H. S., D. L., Sarson, A. M. Blackburn, J. Cleary, T. R. E. Pilkington, and S. R. Bloom. The gut hormone profile in morbid obesity and following jejuno‐ileal bypass. Scand. J. Gastroenterol. 13, Suppl. 49: 15, 1978.
 20. Besterman, H. S., S. R., Bloom, D. L. Sarson, A. M. Blackburn, D. I. Johnston, H. R. Patel, J. S. Stewart, R. Modigliani, S. Guerin, and C. N. Mallison. Gut‐hormone profile in coeliac disease. Lancet 1: 785–788, 1978.
 21. Blackburn, A. M., and S. R. Bloom. A radioimmunoassay for neurotensin in human plasma. J. Endocrinol. 83: 175–181, 1979.
 22. Blackburn, A. M., S. R., Bloom, and A. V. Edwards. Pancreatic endocrine responses to exogenous neurotensin in the conscious calf. J. Physiol. Lond. 314: 11–21, 1981.
 23. Blackburn, A. M., S. R., Bloom, R. G. Long, D. R. Fletcher, N. D. Christofides, M. L. Fitzpatrick, and J. H. Baron. Effect of neurotensin on gastric function in man. Lancet 1: 987–989, 1980.
 24. Blackburn, A. M., M. G., Bryant, T. E. Adrian, and S. R. Bloom. Pancreatic tumours produce neurotensin. J. Clin. Endocrinol. Metab. 52: 820–822, 1981.
 25. Blackburn, A. M., N. D., Christofides, M. A. Ghatei, D. L. Sarson, F. H. Ebeid, D. N. L. Ralphs, and S. R. Bloom. Elevation of plasma neurotensin in the dumping syndrome. Clin. Sci. 59: 237–243, 1980.
 26. Blackburn, A. M., D. R., Fletcher, T. E. Adrian, and S. R. Bloom. Neurotensin infusion in man: pharmacokinetics and effect on gastrointestinal and pituitary hormones. J. Clin. Endocrinol. Metab. 51: 1257–1261, 1980.
 27. Buchler, M., P., Malfertheiner, K. Baczako, W. Krautzberger, and H. G. Beger. A metastatic endocrine‐neurogenic tumor of the ampulla of Vater with multiple endocrine immunoreaction—malignant paraganglioma? Digestion 31: 54–59, 1985.
 28. Calam, J., R., Unwin, and W. S. Peart. Neurotensin stimulates defecation. Lancet 2: 737–738, 1983.
 29. Carraway, R., The Isolation, Chemical and Pharmacological Characterization, and the Synthesis of a New Hypotensive Peptide: Neurotensin. Ann Arbor, Michigan: University Microfilms, 1972. Dissertation.
 30. Carraway, R. E. Neurotensin and related substances. In: Methods of Hormone Radioimmunoassay (2nd ed.), edited by B. M. Jaffe and H. R. Behrman. New York: Academic, 1979, p. 139–168.
 31. Carraway, R. E. A critical analysis of three approaches to radioimmunoassay of peptides: application to the study of the neurotensin family. Ann. NY Acad. Sci. 400: 17–36, 1982.
 32. Carraway, R. E. Rapid proteolytic generation of neurotensin‐related peptide(s) and biologic activity during extraction of rat and chicken gastric tissue. J. Biol. Chem. 259: 10328–10334, 1984.
 33. Carraway, R., and Y. M. Bhatnagar. Immunochemical characterization of neurotensin‐like peptides in chicken. Peptides Fayetteville 1: 159–165, 1980.
 34. Carraway, R., and Y. M. Bhatnagar. Isolation, structure and biological activity of chicken intestinal neurotensin. Peptides Fayetteville 1: 167–174, 1980.
 35. Carraway, R. E., L. M., Demers, and S. E. Leeman. Hyperglycemic effect of neurotensin, a hypothalamic peptide. Endocrinology 99: 1452–1462, 1976.
 36. Carraway, R. E., and C. F. Ferris. Isolation, biological and chemical characterization, and synthesis of a neurotensin‐related hexapeptide from chicken intestine. J. Biol. Chem. 258: 2475–2479, 1983.
 37. Carraway, R., R. A., Hammer, and S. E. Leeman. Neurotensin in plasma: immunochemical and chromatographic character of acid/acetone‐soluble material. Endocrinology 107: 400–406, 1980.
 38. Carraway, R., P., Kitabgi, and S. E. Leeman. The amino acid sequence of radioimmunoassayable neurotensin from bovine intestine. J. Biol. Chem. 253: 7996–7998, 1978.
 39. Carraway, R., and S. E. Leeman. The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. J. Biol. Chem. 248: 6854–6861, 1973.
 40. Carraway, R., and S. E. Leeman. The amino acid sequence of a hypothalamic peptide, neurotensin. J. Biol. Chem. 250: 1907–1911, 1975.
 41. Carraway, R., and S. E. Leeman. The synthesis of neurotensin. J. Biol. Chem. 250: 1912–1918, 1975.
 42. Carraway, R., and S. E. Leeman. Structural requirements for the biological activity of neurotensin, a new vasoactive peptide. In: Peptides: Chemistry, Structure and Biology, edited by R. Walter and J. Meienhofer. Ann Arbor, MI: Ann Arbor Sci., 1975, p. 679–685.
 43. Carraway, R., and S. E. Leeman. Characterization of radioimmunoassayable neurotensin in the rat. Its differential distribution in the central nervous system, small intestine and stomach. J. Biol. Chem. 251: 7045–7052, 1976.
 44. Carraway, R., and S. E. Leeman. Radioimmunoassay for neurotensin, a hypothalamic peptide. J. Biol. Chem. 251: 7035–7044, 1976.
 45. Carraway, R. E., and M. Reinecke. Neurotensin‐like peptides and a novel model of the evolution of signaling systems. In: Evolution and Tumour Pathology of the Neuroendocrine System, edited by S. Fancmer, R. Håson, and F. Sundler. New York: Elsevier, 1984, p. 245–282.
 46. Carraway, R., S. E., Ruane, G. E. Feurle, and S. Taylor. Amphibian neurotensin (NT) is not xenopsin (XP): dual presence of NT‐like and XP‐like peptides in various amphibia. Endocrinology 110: 1094–1101, 1982.
 47. Carraway, R., S. E., Ruane, and H.‐R. Kim. Distribution and immunochemical character of neurotensin‐like material in representative vertebrates and invertebrates: apparent conservation of the COOH‐terminal region during evolution. Peptides Fayetteville 1: 115–123, 1982.
 48. Chang, M. M., and S. E. Leeman. Isolation of a sialogogic peptide from bovine hypothalamic tissue and its characterization as substance P. J. Biol. Chem. 245: 4784–4790, 1970.
 49. Checler, F., C., Labbe, C. Granier, J. Van Rietschoten, P. Kitabgi, and J.‐P. Vincent. [Trp11]‐neurotensin and xenopsin discriminate between rat and guinea‐pig neurotensin receptors. Life Sci. 31: 1145–1150, 1982.
 50. Collier, N. A., K., Weinbren, S. R. Bloom, Y. C. Lee, H. J. F. Hodgson, and L. H. Blumgart. Neurotensin secretion by fibrolamellar carcinoma of the liver. Lancet 1: 538–540, 1984.
 51. Dolais‐Kitabgi, J., P., Kitabgi, P. Brazeau, and P. Freychet. Effect of neurotensin on insulin, glucagon and somatostatin release from isolated pancreatic islets. Endocrinology 105: 256–260, 1979.
 52. Doyle, H., G. H. Greeley, JR., L. Mate, T. Sakamoto, C. M. Townsend, JR., and J. C. Thompson. Distribution of neurotensin in the canine gastrointestinal tract. Surgery St. Louis 97: 337–341, 1985.
 53. Dupont, A., and Y. Merand. Enzymic inactivation of neurotensin by hypothalamic and brain extracts of the rat. Life Sci. 22: 1623–1630, 1978.
 54. Eaves, E. R., J., Hansky, and M. G. Korman. The effect of atropine and vagal stimulation on the release of neurotensin‐like immunoreactivity in man. Regul. Pept. 11: 1–10, 1985.
 55. Emson, P. C., M., Goedert, P. Horsfield, F. Rioux, and S. St. Pierre. The regional distribution and chromatographic characterization of neurotensin‐like immunoreactivity in the rat central nervous system. J. Neurochem. 38: 992–999, 1982.
 56. Fernstrom, M. H., R. E., Carraway, and S. E. Leeman. Neurotensin. In: Frontiers in Neuroendocrinology, edited by L. Martini and W. F. Ganong. New York: Raven, 1982, p. 103–127, vol. 6.
 57. Ferris, C. F., M. J., Armstrong, J. K. George, C. A. Stevens, R. E. Carraway, and S. E. Leeman. Alcohol and fatty acid stimulation of neurotensin release from rat small intestine. Endocrinology 116: 1133–1138, 1985.
 58. Ferris, C. F., R. E., Carraway, R. A. Hammer, and S. E. Leeman. Release and degradation of neurotensin during perfusion of rat small intestine with lipid. Regul. Pept. 12: 101–111, 1985.
 59. Ferris, C. F., R. A., Hammer, and S. E. Leeman. Elevation of plasma neurotensin during lipid perfusion of rat small intestine. Peptides Fayetteville 2, Suppl. 2: 263–266, 1981.
 60. Ferris, C. F., M. C., Parker, M. J. Armstrong, and S. E. Leeman. Inhibition of neurotensin in release by a cyclic hexapeptide analog of somatostatin. Peptides Fayetteville 6: 5–8, 1985.
 61. Feurle, G. E., I., Baca, and W. Knauf. Atropine depresses release of neurotensin and its effect on the exocrine pancreas. Regul. Pept. 4: 75–82, 1982.
 62. Feurle, G. E., R. E., Carraway, E. Rix, and W. Knauf. Evidence for the presence of xenopsin‐related peptide(s) in the gastric mucosa of mammals. J. Clin. Invest. 76: 156–162, 1985.
 63. Feurle, G. E., V., Helmstaedter, K. Tischbirek, R. Carraway, W. G. Forssmann, D. Grube, and H. D. Roher. A multihormonal tumor of the pancreas producing neurotensin. Dig. Dis. Sci. 26: 1125–1133, 1981.
 64. Feurle, G. E., and M. Reinecke. Neurotensin interacts with carbachol, secretin, and caerulein in the stimulation of the exocrine pancreas of the rat in vitro. Regul. Pept. 7: 137–143, 1983.
 65. Flaten, O., and L. E. Hanssen. Concentration of neurotensin in human plasma after glucose, meals and lipid. Acta. Physiol. Scand. 114: 311–313, 1982.
 66. Flaten, O., L. E., Hanssen, R. Kaaresen, S. Aune, and J. Myren. Glucose induced release of neurotensin after gastric surgery. Digestion 24: 94–97, 1982.
 67. Fletcher, D. R., A. M., Blackburn, T. E. Adrian, V. S. Chadwick, and S. R. Bloom. Effect of neurotensin on pancreatic function in man. Life Sci. 29: 2157–2161, 1981.
 68. Fletcher, D. R., A., Shulkes, P. H. D. Bladin, D. Booth, and K. J. Hardy. Cholinergic inhibition of meal stimulated plasma neurotensin‐like immunoreactivity in man. Life Sci. 33: 863–869, 1983.
 69. Fletcher, D. R., A., Shulkes, P. H. D. Bladin, and K. J. Hardy. The effect of atropine on bombesin and gastrin releasing peptide stimulated gastrin, pancreatic polypeptide and neurotensin release in man. Regul. Pept. 7: 31–40, 1983.
 70. Fletcher, D. R., A., Shulkes, and K. J. Hardy. The effect of neurotensin and secretin on gastric acid secretion and mucosal blood flow in man. Regul. Pept. 11: 217–226, 1985.
 71. Folkers, K., J. K., Chang, and B. L. Currie. Synthesis and relationship of L‐glutaminyl‐L‐histidyl‐L‐prolinamide to the thyrotropin releasing hormone. Biochem. Biophys. Res. Commun. 39: 110–113, 1970.
 72. Folkers, K., D., Chang, J. Humphries, R. Carraway, S. E. Leeman, and C. Y. Bowers. Synthesis and activities of neurotensin and its acid and amide analogs: possible natural occurrence of (Gln4)‐neurotensin. Proc. Natl. Acad. Sci. USA 73: 3833–3837, 1976.
 73. Fontaine, J., and P. Lebrun. Effects of neurotensin on the isolated mouse distal colon. Eur. J. Pharmacol. 107: 141–147, 1985.
 74. Frigerio, B., M., Ravazzola, S. Ito, R. Buffa, C. Capella, E. Solcia, and L. Orci. Histochemical and ultrastructural identification of neurotensin cells in the dog ileum. Histochemistry 54: 123–131, 1977.
 75. Ghatei, M. A., R. T., Jung, J. C. Stevenson, C. J. Hillyard, T. E. Adrian, Y. C. Lee, N. D. Christofides, D. L. Sarson, K. Mashiter, I. Mcintyre, and S. R. Bloom. Bombesin: action on gut hormones and calcium in man. J. Clin. Endocrinol. Metab. 54: 980–985, 1982.
 76. Gill, S. S., Y. C., Lee, M. A. Ghatei, M. Ghiglione, L. O. Uttenthal, and S. R. Bloom. The use of a rat isolated ileal preparation to investigate the release of neurotensin. Clin. Exp. Pharmacol. Physiol. 11: 457–466, 1984.
 77. Go, V. L. W., and P. Demol. Role of nutrients in the gastrointestinal release of immunoreactive neurotensin. Peptides Fayetteville 2, Suppl. 2: 267–269, 1981.
 78. Goedert, M., J. C., Hunter, and M. Ninkovic. Evidence for neurotensin as a non‐adrenergic, non‐cholinergic neurotransmitter in guinea pig ileum. Nature Land. 311: 59–62, 1984.
 79. Goodfriend, T. L., L., Levine, and G. D. Fasman. Antibodies to bradykinin and angiotensin: A use of carbodiimides in immunology. Science Wash. DC 144: 1344–1346, 1964.
 80. Granier, C., J. Van, Rietschoten, P. Kitabgi, C. Poustis, and P. Freychet. Synthesis and characterization of neurotensin analogues for structure/activity relationship studies. Acetyl neurotensin‐(8–13) is the shortest analogue with full binding and pharmacological activities. Eur. J. Biochem. 124: 117–124, 1982.
 81. Greenberg, G. R., R. F., Mccloy, T. E. Adrian, V. S. Chadwick, J. H. Baron, and S. R. Bloom. Inhibition of pancreas and gallbladder by pancreatic polypeptide. Lancet 2: 1280–1282, 1978.
 82. Greenwood, F. C., W. M., Hunter, and J. S. Glower. The preparation of 131I labelled human growth hormone of high specific activity. Biochem. J. 89: 114–123, 1963.
 83. Grimmelikhuijzen, C. J. P., R. E. Carraway, Å. Rökaeus, and F. Sundler. Neurotensin‐like immunoreactivity in the nervous system of hydra. Histochemistry 72: 199–209, 1981.
 84. Gutniak, M., U., Rosenqvist, L. Grimelius, J. M. Lundberg, T. Hökfelt, Å. Rökaeus, S. Rosell, G. Lundqvist, J. Fahrenkrug, R. Sundblad, and E. Gutniak. Report on a patient with watery diarrhoea syndrome caused by a pancreatic tumour containing neurotensin, enkephalin and calcitonin. Acta Med. Scand. 208: 95–100, 1980.
 85. Hammer, R. A., R. E., Carraway, and S. E. Leeman. Elevation of plasma neurotensin‐like immunoreactivity after a meal. Characterization of the elevated components. J. Clin. Invest. 70: 74–81, 1982.
 86. Hammer, R. A., S. E., Leeman, R. Carraway, and R. H. Williams. Isolation of human intestinal neurotensin. J. Biol. Chem. 255: 2476–2480, 1980.
 87. Harper, S. L., J. A., Barrowman, P. R. Kvietys, and D. N. Granger. Effect of neurotensin on intestinal capillary permeability and blood flow. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G161–G166, 1984.
 88. Hellström, P. M., G., Nylander, and S. Rosell. Effects of neurotensin on the transit of gastrointestinal contents in the rat. Acta Physiol. Scand. 115: 239–243, 1982.
 89. Hellström, P. M., and S. Rosell. Effects of neurotensin, substance P and methionine‐enkephalin on colonic motility. Acta Physiol. Scand. 113: 147–154, 1981.
 90. Helmstaedter, V., G. E., Feurle, and W. G. Forssmann. Ultrastructural identification of a new cell type, the N‐cell as the source of neurotensin in the gut mucosa. Cell Tissue Res. 184: 445–452, 1977.
 91. Helmstaedter, V., G., Mühlmann, G. E. Feurle, and W. G. Forssmann. Immunohistochemical identification of gastrointestinal neurotensin cells in human embryos. Cell Tissue Res. 184: 315–320, 1977.
 92. Hirst, B. H., B., Shaw, and L. Wilson. Neurotensin inhibition of gastric exocrine secretions in the cat. Regul. Pept. 3: 289–301, 1982.
 93. Holahan, K. N., R. F., Murphy, K. D. Buchanan, and D. T. Elmore. Enzymic iodination of polypeptide hormones for radioimmunoassay. Clin. Chim. Acta 45: 153–157, 1973.
 94. Holzer, P., A., Bucsics, A. Saria, and F. Lembeck. A study of the concentrations of substance P and neurotensin in the gastrointestinal tract of various mammals. Neuroscience 7: 2919–2924, 1982.
 95. Huidobro‐Toro, J. P., and E. L. Way. Possible modulatory role of dynorphin on the excitation by neurotensin on the guinea pig myenteric plexus. Neurosci. Lett. 30: 309–314, 1982.
 96. Ito, S., Y., Matsubara, T. Iwasaki, T. Momotsu, A. Shibata, and T. Muto. Enhanced neurotensin‐like immunoreactivity release in total gastrectomized patients after 50 g OGTT. Horm. Metab. Res. 12: 551–552, 1980.
 97. Ito, S., Y., Yamada, M. Hayashi, Y. Iwasaki, Y. Matsubara, and A. Shibata. Neurotensin‐positive and somatostatin‐positive cells in the canine gut. Tohoku J. Exp. Med. 127: 123–131, 1979.
 98. Iwasaki, Y., S., Ito, and A. Shibata. Radioimmunoassay of neurotensin and the distribution and concentration of gut neurotensin in rat and dog. Tohoku J. Exp. Med. 130: 129–137, 1980.
 99. Kaneto, A., T., Kaneko, H. Kajinuma, and K. Kosaka. Effects of substance P and neurotensin infused intrapancreatically on glucagon and insulin secretion. Endocrinology 102: 393–401, 1978.
 100. Kataoka, K., A., Taniguchi, H. Shimizu, K. Soda, S. Okuno, H. Yajima, and K. Kitagawa. Biological activity of neurotensin and its C‐terminal partial sequences. Brain Res. Bull. 3: 555–557, 1978.
 101. Kihl, B., Å. Rökaeus, S. Rosell, and L. Olbe. Fat inhibition of gastric acid secretion in man and plasma concentrations of neurotensin‐like immunoreactivity. Scand. J. Gastroenterol. 16: 513–526, 1981.
 102. Kitabgi, P., R., Carraway, and S. E. Leeman. Isolation of a tridecapeptide from bovine intestinal tissue and its partial characterization as neurotensin. J. Biol. Chem. 251: 7053–7058, 1976.
 103. Kitabgi, P., and P. Freychet. Effects of neurotensin on isolated intestinal smooth muscles. Eur. J. Pharmacol. 50: 349–357, 1978.
 104. Kitabgi, P., and P. Freychet. Neurotensin: contractile activity, specific binding, and lack of effect on cyclic nucleotides in intestinal smooth muscle. Eur. J. Pharmacol. 55: 35–42, 1979.
 105. Kitabgi, P., and P. Freychet. Neurotensin contracts the guinea‐pig longitudinal ileal smooth muscle by inducing acetylcholine release. Eur. J. Pharmacol. 56: 403–406, 1979.
 106. Kitabgi, P., C.‐Y., Kwan, J. E. T. Fox, and J.‐P. Vincent. Characterization of neurotensin binding to rat gastric smooth muscle receptor sites. Peptides Fayetteville 5: 917–923, 1984.
 107. Kitabgi, P., C., Poustis, C. Granier, J. Van Rietschoten, J. Rivier, J. L. Morgat, and P. Freychet. Neurotensin binding to extraneural and neural receptors: comparison with biological activity and structure‐activity relationships. Mol. Pharmacol. 18: 11–19, 1980.
 108. Kitabgi, P., and J.‐P. Vincent. Neurotensin is a potent inhibitor of guinea‐pig colon contractile activity. Eur. J. Pharmacol. 74: 311–318, 1981.
 109. Konturek, S. J., J., Jaworek, M. Cieszkowski, W. Pawlik, J. Kania, and S. R. Bloom. Comparison of effects of neurotensin and fat on pancreatic stimulation in dogs. Am. J. Physiol. 24 (Gastrointest. Liver Physiol. 7): G590–G598, 1983.
 110. Kosaka, T., and R. K. S. Lim. Demonstration of the humoral agent in fat inhibition of gastric secretion. Proc. Soc. Exp. Biol. Med. 27: 890–891, 1930.
 111. Kotler, D. P., D., Sherman, S. R. Bloom, and P. R. Holt. Malnutrition after gastric surgery. Association with exaggerated distal intestinal hormone release. Dig. Dis. Sci. 30: 193–199, 1985.
 112. Kronheim, S., M. C., Sheppard, and J. Miller. A radioimmunoassay for neurotensin. Clin. Endocrinol. 14: 159–164, 1981.
 113. Leander, S., R., Ekman, R. Uddman, F. Sundler, and R. Håkanson. Neuronal cholecystokinin, gastrin‐releasing peptide, neurotensin and β‐endorphin in the intestine of the guinea pig. Distribution and possible motor function. Cell Tissue Res. 235: 521–531, 1984.
 114. Lee, Y. C., J. M., Allen, L. O. Uttenthal, P. M. Roberts, S. S. Gill, and S. R. Bloom. Quantitation and characterization of human plasma neurotensin‐like immunoreactivity in response to a meal. Dig. Dis. Sci. 30: 129–133, 1985.
 115. Lee, Y. C., J. M., Allen, L. O. Uttenthal, M. C. Walker, J. Shemilt, S. S. Gill, and S. R. Bloom. The metabolism of intravenously infused neurotensin in man and its chromatographic characterization in human plasma. J. Clin. Endocrinol. Metab. 59: 45–50, 1984.
 116. Lee, Y. C., A. J., Bacarese‐Hamilton, S. M. Wood, L. H. Blumgart, and S. R. Bloom. Chromatographic characterization of neurotensin‐like immunoreactivity in plasma and tissue extracts from hepatoma patients. Clin. Chim. Acta 149: 29–36, 1985.
 117. Leeman, S. E., N., Aronin, and C. F. Ferris. Substance P and neurotensin. Recent Prog. Horm. Res. 38: 93–131, 1982.
 118. Leeman, S. E., E. A., Mroz, and R. E. Carraway. Substance P and neurotensin. In: Peptides in Neurobiology, edited by H. Gainer. New York: Plenum, 1977, p. 99–144.
 119. Linde, B., S., Rosell, and Å. Rökaeus. Blood flow in human adipose tissue after infusion of (Gln4)‐neurotensin. Acta Physiol. Scand. 115: 311–315, 1982.
 120. Loosen, P. T., C. B., Nemeroff, G. Bissette, G. B. Burnett, A. J. Prange, JR., and M. A. Lipton. Neurotensin‐induced hypothermia in the rat: structure‐activity studies. Neuropharmacology 17: 109–113, 1978.
 121. Lundberg, J. M. Å. Rökaeus, T. Hökfelt, S. Rosell, M. Brown, and M. Goldstein. Neurotensin‐like immunoreactivity in the preganglionic sympathetic nerves and in the adrenal medulla of the cat. Acta Physiol. Scand. 114: 153–155, 1982.
 122. Maeda, K., and L. A. Frohman. Neurotensin release by rat hypothalamic fragments in vitro. Brain Res. 210: 261–269, 1981.
 123. Mangel, A. Potentiation of colonic contractility to cholecystokinin and other peptides. Eur. J. Pharmacol. 100: 285–290, 1984.
 124. Mashford, M. L., G. Nilsson, Å. Rökaeus, and S. Rosell. The effect of food ingestion on circulating neurotensin‐like immunoreactivity (NTLI) in the human. Acta. Physiol. Scand. 104: 244–246, 1978.
 125. Mashford, M. L., G., Nilsson, A. Rökaeus, and S. Rosell. Release of neurotensin‐like immunoreactivity (NTLI) from the gut in anesthetized dogs. Acta. Physiol. Scand. 104: 375–376, 1978.
 126. Matsubara, Y., S., Ito, M. Tsutsui, Y. Tamiya, T. Wanifuchi, M. Osaka, and T. Muto. Relation of plasma neurotensin responses with different gastric operation after 50 g OGTT. Horm. Metab. Res. 13: 62–63, 1981.
 127. Mazella, J., P., Kitabgi, and J.‐P. Vincent. Molecular properties of neurotensin receptors in rat brain. Identification of subunits by covalent labeling. J. Biol. Chem. 260: 508–514, 1985.
 128. Mazella, T., C., Poustis, C. Labbe, F. Checler, P. Kitabgi, C. Granier, J. Van Rietschoten, and J.‐P. Vincent. Monoiodo‐[Trp11] neurotensin, a highly radioactive ligand of neurotensin receptors. Preparation, biological activity, and binding properties to rat brain synaptic membranes. J. Biol. Chem. 258: 3476–3481, 1983.
 129. Mcdonald, T. J., H., Jörnvall, G. Nillson, N. Whene, M. Ghatei, S. R. Bloom, and V. Mutt. Characterization of gastrin releasing peptide from porcine non‐antral tissue. Biochem. Biophys. Res. Commun. 90: 227–233, 1979.
 130. Mckerrow, J. H., and A. B. Robinson. Deamidation of asparaginyl residues as a hazard in experimental protein and peptide procedures. Anal. Biochem. 42: 565–568, 1971.
 131. Minamino, N., K., Kangawa, and H. Matsuo. Neuromedin N: a novel neurotensin‐like peptide identified in porcine spinal cord. Biochem. Biophys. Res. Commun. 122: 542–549, 1984.
 132. Modlin, I. M., B. M., Jaffe, D. Albert, A. Sank, A. Materia, and R. Crochelt. Cholinergic stimulation of pancreatic polypeptide release by a meal, bombesin, neurotensin, tetragastrin, cholecystokinin, and cerulein. J. Surg. Res. 35: 113–118, 1983.
 133. Monier, S., and P. Kitabgi. Substance‐P induced autodensensitization inhibits atropine‐resistant, neurotensin‐stimulated contractions in guinea‐pig ileum. Eur. J. Pharmacol. 65: 461–462, 1980.
 134. El‐Munshid, H. A., R., Håkanson, G. Liedberg, and F. Sundler. Effects of various gastrointestinal peptides on parietal cells and endocrine cells in the oxyntic mucosa of rat stomach. J. Physiol. Lond. 305: 249–265, 1980.
 135. Olsen, P. S., J. H., Pedersen, P. Kirkegaard, H. Been, F. Stadil, J. Fahrenkrug, and J. Christiansen. Neurotensin induced inhibition of gastric acid secretion in duodenal ulcer patients before and after parietal cell vagotomy. Gut 25: 481–484, 1984.
 136. Orci, L., O., Baetens, C. Rufener, M. Brown, M. Vale, and R. Guillemin. Evidence for immunoreactive neurotensin in dog intestinal mucosa. Life Sci. 19: 559–562, 1976.
 137. Pederson, H., F., Stadil, and J. Fahrenkrug. Preparation of 125I‐(Tyr3)‐ and 125I‐(Tyr11)‐ neurotensin for radioimmunoassay. Scand. J. Clin. Lab. Invest. 43: 483–491, 1983.
 138. Peric‐Golia, L., C. F., Gardner, and M. Peric‐Golia. The effect of neurotensin on the plasma cholesterol levels in the rat. Eur. J. Pharmacol. 55: 407–409, 1979.
 139. Peric‐Golia, L., C. F., Gardner, D. E. Wilson, and M. Peric‐Golia. The effect of neurotensin on the concentration of cholesterol and bile acids in the guinea pig. Lipids 19: 749–755, 1984.
 140. Petras, J. M., and J. F. Cummings. Sympathetic and parasympathetic innervation of the urinary bladder and urethra. Brain Res. 153: 363–369, 1978.
 141. Polak, J. M., and S. R. Bloom. The central and peripheral distribution of neurotensin. Ann. NY Acad. Sci. 400: 75–93, 1982.
 142. Polak, J. M., S. N., Sullivan, S. R. Bloom, A. M. J. Buchan, P. Facer, M. R. Brown, and A. G. E. Pearse. Specific localization of neurotensin to the N‐cell in human intestine by radioimmunoassay and immunocytochemistry. Nature Lond. 270: 183–184, 1977.
 143. Poustis, C., J., Mazella, P. Kitabgi, and J.‐P. Vincent. High‐affinity neurotensin binding sites in differentiated neuroblastoma NIE115 cells. J. Neurochem. 42: 1094–1100, 1984.
 144. Quirion, R., D., Regoli, F. Rioux, and S. St.‐Pierre. The stimulatory effects of neurotensin and related peptides in rat stomach strips and guinea‐pig atria. Br. J. Pharmacol. 68: 83–91, 1980.
 145. Quirion, R., D., Regoli, F. Rioux, and S. St.‐Pierre. Structure‐activity studies with neurotensin: analysis of positions 9, 10 and 11. Br. J. Pharmacol. 69: 689–692, 1980.
 146. Quirion, R., F., Rioux, D. Regoli, and S. St.‐Pierre. Pharmacological studies of neurotensin, several fragments and analogues in the isolated perfused rat heart. Eur. J. Pharmacol. 66: 257–266, 1980.
 147. Quirion, R., F., Rioux, D. Regoli, and S. St.‐Pierre. Selective blockade of neurotensin‐induced coronary vessel constriction in perfused rat hearts by a neurotensin analogue. Eur. J. Pharmacol. 61: 309–312, 1980.
 148. Reasbeck, P. G., G. O., Barbezat, A. Shulkes, and J. Leader. Secretion of neurotensin and its effects on the jejunum in the dog. Gastroenterology 86: 1152–1156, 1984.
 149. Reinecke, M. Neurotensin: immunohistochemical localization in central and peripheral nervous system and in endocrine cells and its functional role as neurotransmitter and endocrine hormone. Prog. Histochem. Cytochem. 16: 1–175, 1985.
 150. Reinecke, M., K., Almasan, R. Carraway, V. Helmstaedter, and W. G. Forssmann. Distribution patterns of neurotensin‐like immunoreactive cells in the gastrointestinal tract of higher vertebrates. Cell Tissue Res. 205: 383–395, 1980.
 151. Reinecke, M., W. G., Forssmann, G. Thiekotter, and J. Triepel. Localization of neurotensin‐immunoreactivity in the spinal cord and peripheral nervous system of the guinea pig. Neurosci. Lett. 37: 37–42, 1983.
 152. Rioux, F., R., Quirion, D. Regoli, M.‐A. Leblanc, and S. St.‐Pierre. Pharmacological characterization of neurotensin receptors in the rat isolated portal vein using analogues and fragments of neurotensin. Eur. J. Pharmacol. 66: 273–279, 1980.
 153. Rivier, J. E., L. H., Lazarus, M. H. Perrin, and M. R. Brown. Neurotensin analogues. Structure‐activity relationships. J. Med. Chem. 20: 1409–1412, 1977.
 154. Rökeaus, Å. Effects of nicotine on fat induced release of neurotensin‐like immunoreactivity in the rat. Acta Physiol. Scand. 120: 147–149, 1984.
 155. Rökaeus, Å. Increase in neurotensin‐like immunoreactivity in rat plasma after administration of calcium, bombesin and fat and its inhibition by somatostatin. Acta Physiol. Scand. 122: 261–267, 1984.
 156. Rökaeus, Å, and A. Al‐Saffar. The importance of bile and pancreatic juices for fat‐induced release of neurotensin‐like immunoreactivity (NTLI) from the small intestine of rat. Acta Physiol. Scand. 119: 33–37, 1983.
 157. Rökaeus, Å., E. Burcher, D. Chang, K. Folkers, and S. Rosell. Action of neurotensin and (Gln4)‐neurotensin on isolated tissues. Acta Pharmacol. Toxicol. 41: 141–147, 1977.
 158. Rökeaus, Å., K. Thor, and S. Rosell. Cigarette smoking potentiates fat‐induced elevation neurotensin‐like immunoreactivity in human plasma. Acta Physiol. Scand. 121: 181–184, 1984.
 159. Rökaeus, Å., N. Yanaihara, and T. J. Mcdonald. Increased concentration of neurotensin‐like immunoreactivity (NTLI) in rat plasma after administration of bombesin and bombesin‐related peptides (porcine and chicken gastrin‐releasing peptides). Acta Physiol. Scand. 114: 605–610, 1982.
 160. Rosell, S. The role of neurotensin in the uptake and distribution of fat. Ann. NY Acad. Sci. 400: 183–197, 1982.
 161. Rosell, S., E., Burcher, D. Chang, and K. Folkers. Cardiovascular and metabolic actions of neurotensin and (Gln4)‐neurotensin. Acta Physiol. Scand. 98: 484–491, 1976.
 162. Rosell, S., and Å. Rökaeus. The effect of ingestion of amino acids, glucose and fat on circulating neurotensin‐like immunoreactivity (NTLI) in the human. Acta Physiol. Scand. 107: 263–267, 1979.
 163. Rosell, S., Å. Rökaeus, D. Chang, and K. Folkers. Indirect vascular actions of (Gln4)‐neurotensin in canine adipose tissue. Acta Physiol. Scand. 102: 143–147, 1978.
 164. Rosell, S., K. Thor, Å. Rökaeus, O. Nyqvist, A. Levenhaupt, L. Kager, and K. Folkers. Plasma concentration of neurotensin‐like immunoreactivity (NTLI) and lower esophageal sphincter (LES) pressure in man following infusion of (Gln4)‐neurotensin. Acta Physiol. Scand. 109: 369–375, 1980.
 165. Sadoul, J.‐L., J., Mazella, S. Amar, P. Kitabgi, and J.‐P. Vincent. Preparation of neurotensin selectively iodinated on the tyrosine 3 residue. Biological activity and binding properties on mammalian neurotensin receptors. Biochem. Biophys. Res. Commun. 120: 812–819, 1984.
 166. Sagor, G. R., M. A., Ghatei, G. P. Mcgregor, P. Mitchenere, R. M. Kirk, and S. R. Bloom. The influence of an intact pylorus on postprandial enteroglucagon and neurotensin release after upper gastric surgery. Br. J. Surg. 68: 190–193, 1981.
 167. St.‐Pierre, S. A., R. Kerouac, R. Quirion, F. B. Jolicoeur, and F. Rioux. Neurotensin. In: Peptide and Protein Reviews, edited by M. T. W. Hearn. New York: Dekker, 1984, vol. 2, p. 83–171.
 168. Sakai, Y., E. E. Daniel, J. Jury, and J. E. T. Fox. Neurotensin inhibition of canine intestinal motility in vivo via α‐adrenoceptors. Can. J. Physiol. Pharmacol. 62: 403–411, 1984.
 169. Sakamoto, T., J., Newman, M. Fujimura, G. H. Greeley, JR., C. M. Townsend, JR., and J. C. Thompson. Role of neurotensin in pancreatic secretion. Surgery St. Louis 96: 146–153, 1984.
 170. Schultzberg, M., T., Hökfelt, G. Nilsson, L. Terenius, J. F. Rehfeld, M. Brown, R. Elde, M. Goldstein, and S. Said. Distribution of peptide‐ and catecholamine‐ containing neurons in the gastro‐intestinal tract of rat and guinea pig: immunohistochemical studies with antisera to substance P, vasoactive intestinal polypeptide, enkephalins, somatostatin, gastrin/cholecystokinin, neurotensin and dopamine‐β‐hydroxylase. Neuroscience 5: 689–744, 1980.
 171. Segawa, T., M., Hosokawa, K. Kitagawa, and H. Yajima. Contractile activity of synthetic neurotensin and related polypeptides on guinea‐pig ileum. J. Pharm. Pharmacol. 29: 57–58, 1977.
 172. Shaw, C., and K. D. Buchanan. Intact neurotensin (NT) in human plasma: response to oral feeding. Regul. Pept. 7: 145–153, 1983.
 173. Shulkes, A., R., Boden, O. Cook, N. Gallagher, and J. B. Furness. Characterization of a pancreatic tumor containing vasoactive intestinal peptide, neurotensin and pancreatic polypeptide. J. Clin. Endocrinol. Metab. 58: 41–48, 1984.
 174. Shulkes, A., P., Chick, H. Wong, and J. H. Walsh. A radioimmunoassay for neurotensin in human plasma. Clin. Chim. Acta 125: 49–58, 1982.
 175. Shulkes, A., D. R., Fletcher, and K. J. Hardy. Organ and plasma metabolism of neurotensin in sheep. Am. J. Physiol. 245 (Endocrinol. Metab. 8): E457–E462, 1983.
 176. Sirinek, K. R., T. M., O'Dorisio, B. Howe, and A. S. Mcfee. Neurotensin, vasoactive intestinal peptide, and Roux‐en‐Y gastrojejunostomy. Their role in dumping syndrome. Arch. Surg. 120: 605–609, 1985.
 177. Sundler, F., J., Alumets, R. Håkanson, R. Carraway, and S. E. Leeman. Ultrastructure of the gut neurotensin cell. Histochemistry 53: 25–34, 1977.
 178. Sundler, F., R., Håkanson, R. A. Hammer, J. Alumets, R. Carraway, S. E. Leeman, and E. A. Zimmerman. Immuno‐histochemical localization of neurotensin in endocrine cells of the gut. Cell Tissue Res. 178: 313–321, 1977.
 179. Sundler, F., R., Håkanson, S. Leander, and R. Uddman. Light and electron microscopic localization of neurotensin in the gastrointestinal tract. Ann. NY Acad. Sci. 400: 94–104, 1982.
 180. Tange, A. Distribution of peptide‐containing endocrine cells and neurons in the gastrointestinal tract of the dog: immunohistochemical studies using antisera to somatostatin, substance P, vasoactive intestinal polypeptide, met‐enkephalin and neurotensin. Biomed. Res. 4: 9–24, 1983.
 181. Taugner, C., V., Helmstaedter, G. Mühlmann, G. E. Feurle, and W. G. Forssmann. Lokalisation von Neurotensin in endokrinen Zellen des GEP‐Systems. Verh. Anat. Ges. 72: 603–605, 1978.
 182. Theodorsson‐Norheim, E. Evidence that (Glu4)‐neurotensin is the naturally occurring neurotensin is plasma. Peptides Fayetteville 4: 543–547, 1983.
 183. Theodorsson‐Norheim, E., K., Oberg, S. Rosell, and H. Boström. Neurotensin‐like immunoreactivity in plasma and tumour tissue from patients with endocrine tumors of the pancreas and gut. Gastroenterology 85: 881–889, 1983.
 184. Theodorsson‐Norheim, E., and S. Rosell. Characterization of human plasma neurotensin‐like immunoreactivity after fat ingestion. Regul. Pept. 6: 207–218, 1983.
 185. Theodorsson‐Norheim, E., and S. Rosell. The effect of duodenal administration of fatty acids, triolein, liquid paraffin and lecithin on plasma neurotensin‐like immunoreactivity (p‐NTLI) in the rat. Acta Physiol. Scand. 117: 439–443, 1983.
 186. Theodorsson‐Norheim, E., K., Thor, and S. Rosell. Relation between lower esophageal sphincter (LES) pressure and the plasma concentration of neurotensin during intravenous infusion of neurotensin(1–13) and (Gln4)neurotensin(1–13) in man. Acta Physiol. Scand. Suppl. 515: 29–35, 1983.
 187. Thor, K., and Å. Rökaeus. Antroduodenal motor response induced by (Gln4)‐neurotensin in man. Acta Physiol. Scand. 118: 369–372, 1983.
 188. Thor, K., and Å. Rökaeus. Studies on the mechanisms by which (Gln4)‐neurotensin reduces lower esophageal sphincter (LES) pressure in man. Acta Physiol. Scand. 118: 373–377, 1983.
 189. Thor, K., S. Rosell, Å. Rökaeus, and L. Kager. (Gln4)‐neurotensin changes the motility pattern of the duodenum and proximal jejunum from a fasting‐type to a fed‐type. Gastroenterology 83: 569–574, 1982.
 190. Thorell, J. I., and B. G. Johansson. Enzymatic iodination of polypeptides with 125I to high specific activity. Biochim. Biophys. Acta 251: 363–369, 1971.
 191. Veber, D. F., R., Saperstein, R. F. Nutt, R. M. Freidinger, S. F. Brady, P. Curley, D. S. Perlow, W. J. Paleveda, C. D. Colton, A. G. Zacchei, D. J. Tocco, D. R. Hoff, R. L. Vandlen, J. E. Gerich, L. Hall, L. Mandarino, E. H. Cordes, P. S. Anderson, and R. Hirschmann. A super active cyclic hexapeptide analog of somatostatin. Life Sci. 34: 1371–1378, 1984.
 192. Walker, J. P., T., Khalil, J. Wiener, C. J. Fagan, C. M. Townsend, JR., G. H. Greeley, JR., and J. C. Thompson. The role of neurotensin in human gallbladder motility. Ann. Surg. 201: 678–682, 1985.
 193. Wiklund, B., L., Liljeqvist, and Å. Rökaeus. Neurotensin increases net fluid secretion and transit rate in the small intestine of man. Regul. Pept. 8: 33–39, 1984.
 194. Wilen, T., S., Gustavsson, and B. Jung. Effects of neurotensin on small bowel propulsion in intact and vagotomized rats. Regul. Pept. 4: 191–201, 1982.
 195. Wood, S. M., R. T., Jung, J. D. Webster, M. A. Ghatei, T. E. Adrian, N. Yanaihara, C. Yanaihara, and S. R. Bloom. The effect of the mammalian neuropeptide, gastrin‐releasing peptide (GRP), on gastrointestinal and pancreatic hormone secretion in man. Clin. Sci. 65: 365–371, 1983.
 196. Yanaihara, N., H., Sato, A. Inoue, N. Sakura, M. Sakagami, T. Mochizuki, H. Nakamura, and C. Yanaihara. Comparative study on distribution of bombesin‐, neurotensin‐ and α‐endorphin‐like immunoreactivities in canine tissues. Adv. Exp. Med. Biol. 120A: 29–37, 1979.
 197. Yau, W. M., P. R., Verdaun, and M. L. Youther. Neurotensin: a modulator of enteric cholinergic neurons in the guinea‐pig small intestine. Eur. J. Pharmacol. 95: 253–258, 1983.
 198. Yuang‐Xiang, Z., J. P., Huidobro‐Toro, N. M. Lee, H. H. Loh, and E. L. Way. Interaction of dynorphin with neurotensin on the guinea pig ileum myenteric plexus. Life Sci. 31: 1825–1828, 1982.
 199. Zetler, G. Antagonism of the gut‐contracting effects of bombesin and neurotensin by opioid peptides, morphine, atropine or tetrodotoxin. Pharmacology 21: 384–354, 1980.
 200. Zhu, Y. ‐X., J. P., Huidobro‐Toro, N. M. Lee, H. H. Loh, and E. L. Way. Interaction of dynorphin with neurotensin on the guinea pig ileum myenteric plexus. Life Sci. 31: 1825–1828, 1982.
 201. Zinner, M. J., F., Kasher, I. M. Modlin, and B. M. Jaffe. Effect of xenopsin on blood flow, hormone release and acid secretion. Am. J. Physiol. (Gastrointest. Liver Physiol. 6) 243: G195–G199, 1982.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Craig F. Ferris. Neurotensin. Compr Physiol 2011, Supplement 17: Handbook of Physiology, The Gastrointestinal System, Neural and Endocrine Biology: 559-586. First published in print 1989. doi: 10.1002/cphy.cp060223