Comprehensive Physiology Wiley Online Library

Fluid and Electrolyte Secretion by Salivary Glands

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Anatomical Nomenclature
2 Two‐Stage Hypothesis
3 Mechanism Of Formation of Primary Fluid
3.1 Secretion Models
3.2 Elements of Secretory Mechanism
3.3 Overview of Secretion Control
4 Ductal Electrolyte Transport
4.1 Elements of Absorptive Mechanism
4.2 Plasticity of Ductal Transport Properties
4.3 Water Permeability
4.4 Control of Ductal Transport
4.5 Overview of Ductal Electrolyte Transport
5 Appendix
5.1 null
Figure 1. Figure 1.

Model showing secretory system dependent on active Na+ transport pump in luminal plasma membrane. In this example, Na+ is actively transported from cytosol across luminal membrane, but a system based on a luminal membrane Cl pump, or even a NaCl pump, is also feasible. Cl is shown moving passively across tight junctions, but it would be equally possible for the passively transported ion to take a transcellular route. Basolateral Na+‐K+‐ATPase, which exchanges 3Na+ for 2K+, can be seen to be working against luminal membrane pump.

Figure 2. Figure 2.

Model showing secretory system dependent on active transport of K+ by basolateral Na+‐K+‐ATPase. Potassium is concentrated in cytosol by Na+‐K+‐ATPase and enters saliva passively across luminal membrane. In this example, K+ is shown entering saliva via a K+‐Cl symport, but it might as readily take a conductive pathway, and Cl could then take either a transcellular or a para‐cellular route. Number 2 on the K+‐Cl symport indicates that 2 molecules of KCl are secreted for each cycle of Na+‐K+‐ATPase.

Figure 3. Figure 3.

Model showing secretory system dependent on active transport of Cl by basolateral Na+‐K+‐2Cl symport. Cl is concentrated in cytosol and enters saliva passively via a conductive pathway in luminal membrane. Na+ enters saliva passively across tight junctions. Circuit is completed by current flow across basolateral membrane, carried by K+ through K+ channels and via electrogenic Na+‐K+‐ATPase. Number 3 on symport indicates that 3 cycles of symport deliver 6Cl into cytosol for each cycle of Na+‐K+‐ATPase.

Figure 4. Figure 4.

Model showing secretory system dependent on active transport of HCO3 by basolateral Na+‐H+ antiport. Protons are expelled from cytosol by antiport leading to intracellular accumulation of OH, which reacts with CO2 to form HCO3. HCO3 enters saliva passively via a conductive pathway in luminal membrane and Na+ enters passively across tight junctions. Circuit is completed by current flow across basolateral membrane, carried by K+ through K+ channels and via electrogenic Na+‐K+‐ATPase. Number 3 on antiport indicates that 3 cycles of antiport generate 3HCO3 in cytosol for each cycle of Na+‐K+‐ATPase.

Figure 5. Figure 5.

Model showing secretory system dependent on active transport of Cl by paired basolateral Na+‐H+ and Cl‐HCO3 antiports. HCO3 is first concentrated in cytosol by Na+‐H+ antiport, and Cl‐HCO3 antiport utilizes the HCO3 gradient energy to concentrate Cl in cytosol. Cl enters saliva passively via a conductive pathway in luminal membrane and Na+ enters passively across tight junctions. Circuit is completed by current flow across basolateral membrane, carried by K+ ions through K+ channels and via electrogenic Na+‐K+‐ATPase. Number 3 on each antiport indicates that 3 cycles of each antiport deliver 3 Cl ions into cytosol for each cycle of Na+‐K+‐ATPase.

Figure 6. Figure 6.

Current‐voltage relation for channel from luminal membrane of cultured cell from continuous mouse mandibular cell line. Recordings are from a cell‐attached patch in which pipette contained K+ 140 mM) and Cl 25 mM). Reversal potential is close to −10 mV and slope conductance is 25 pS. Right, representative channel events at each pipette potential employed.

Data from Cook et al. 26
Figure 7. Figure 7.

Model for electrolyte transport by excretory duct epithelium of rat mandibular gland. Na+ enters cytosol from lumen either via conductive pathway or a nonconductive Na+‐H+ antiport and is expelled to interstitium by Na+ pump. K+ is transported from interstitium to cytosol by Na+ pump and enters saliva via a luminal K+‐H+ antiport. Cl is absorbed across conductive pathways in both plasma membranes, as well as via a Cl‐HCO3 antiport in luminal membrane. HCO3 is concentrated in cytosol by basolateral and luminal Na+‐H+ antiports and can be secreted into lumen by luminal Cl‐HCO3 and K+‐H+ antiports.

Adapted from Knauf et al. 74


Figure 1.

Model showing secretory system dependent on active Na+ transport pump in luminal plasma membrane. In this example, Na+ is actively transported from cytosol across luminal membrane, but a system based on a luminal membrane Cl pump, or even a NaCl pump, is also feasible. Cl is shown moving passively across tight junctions, but it would be equally possible for the passively transported ion to take a transcellular route. Basolateral Na+‐K+‐ATPase, which exchanges 3Na+ for 2K+, can be seen to be working against luminal membrane pump.



Figure 2.

Model showing secretory system dependent on active transport of K+ by basolateral Na+‐K+‐ATPase. Potassium is concentrated in cytosol by Na+‐K+‐ATPase and enters saliva passively across luminal membrane. In this example, K+ is shown entering saliva via a K+‐Cl symport, but it might as readily take a conductive pathway, and Cl could then take either a transcellular or a para‐cellular route. Number 2 on the K+‐Cl symport indicates that 2 molecules of KCl are secreted for each cycle of Na+‐K+‐ATPase.



Figure 3.

Model showing secretory system dependent on active transport of Cl by basolateral Na+‐K+‐2Cl symport. Cl is concentrated in cytosol and enters saliva passively via a conductive pathway in luminal membrane. Na+ enters saliva passively across tight junctions. Circuit is completed by current flow across basolateral membrane, carried by K+ through K+ channels and via electrogenic Na+‐K+‐ATPase. Number 3 on symport indicates that 3 cycles of symport deliver 6Cl into cytosol for each cycle of Na+‐K+‐ATPase.



Figure 4.

Model showing secretory system dependent on active transport of HCO3 by basolateral Na+‐H+ antiport. Protons are expelled from cytosol by antiport leading to intracellular accumulation of OH, which reacts with CO2 to form HCO3. HCO3 enters saliva passively via a conductive pathway in luminal membrane and Na+ enters passively across tight junctions. Circuit is completed by current flow across basolateral membrane, carried by K+ through K+ channels and via electrogenic Na+‐K+‐ATPase. Number 3 on antiport indicates that 3 cycles of antiport generate 3HCO3 in cytosol for each cycle of Na+‐K+‐ATPase.



Figure 5.

Model showing secretory system dependent on active transport of Cl by paired basolateral Na+‐H+ and Cl‐HCO3 antiports. HCO3 is first concentrated in cytosol by Na+‐H+ antiport, and Cl‐HCO3 antiport utilizes the HCO3 gradient energy to concentrate Cl in cytosol. Cl enters saliva passively via a conductive pathway in luminal membrane and Na+ enters passively across tight junctions. Circuit is completed by current flow across basolateral membrane, carried by K+ ions through K+ channels and via electrogenic Na+‐K+‐ATPase. Number 3 on each antiport indicates that 3 cycles of each antiport deliver 3 Cl ions into cytosol for each cycle of Na+‐K+‐ATPase.



Figure 6.

Current‐voltage relation for channel from luminal membrane of cultured cell from continuous mouse mandibular cell line. Recordings are from a cell‐attached patch in which pipette contained K+ 140 mM) and Cl 25 mM). Reversal potential is close to −10 mV and slope conductance is 25 pS. Right, representative channel events at each pipette potential employed.

Data from Cook et al. 26


Figure 7.

Model for electrolyte transport by excretory duct epithelium of rat mandibular gland. Na+ enters cytosol from lumen either via conductive pathway or a nonconductive Na+‐H+ antiport and is expelled to interstitium by Na+ pump. K+ is transported from interstitium to cytosol by Na+ pump and enters saliva via a luminal K+‐H+ antiport. Cl is absorbed across conductive pathways in both plasma membranes, as well as via a Cl‐HCO3 antiport in luminal membrane. HCO3 is concentrated in cytosol by basolateral and luminal Na+‐H+ antiports and can be secreted into lumen by luminal Cl‐HCO3 and K+‐H+ antiports.

Adapted from Knauf et al. 74
References
 1. Augustus, J. Evidence for electrogenic sodium pumping in the ductal epithelium of rabbit salivary gland and its relationship with Na‐K‐ATPase. Biochim. Biophys. Acta 419: 63–75, 1976.
 2. Augustus, J., J. Bijman, and C. H. Van Os. Electrical resistance of rabbit submaxillary main duct: a tight epithelium with leaky cell membranes. J. Membr. Biol. 43: 203–226, 1978.
 3. Augustus, J., J. Bijman, C. H. Van Os, and J. F. G. Slegers. High conductance in an epithelial membrane not due to extracellular shunting. Nature Load. 268: 657–658, 1977.
 4. Bijman, J. Transport Parameters of the Main Duct of the Rabbit Mandibular Salivary Gland. Nijmegen, The Netherlands: Univ. of Nijmegen, 1982. PhD thesis.
 5. Bijman, J., D. I. Cook, and C. H. Van Os. Effect of amiloride on electrolyte transport parameters of the main duct of the rabbit mandibular salivary gland. Pfluegers Arch. 398: 96–102, 1983.
 6. Bijman, J., J. F. G. Slegers, and C. H. Van Os. Mechanism for HCO‐3 stimulation of NaCl reabsorption in rabbit submaxillary main duct epithelium. In: Hydrogen Ion Transport in Epithelia, edited by I. Schulz, G. Sachs, J. G. Forte, and K. J. Ullrich. Amsterdam: Elsevier/North‐Holland, 1980, p. 259–264.
 7. Bijman, J., and C. H. Van Os. Temperature dependence of transepithelial potential in isolated rabbit mandibular main duct. In: Electrolyte and Water Transport Across Gastrointestinal Epithelia, edited by R. M. Case, A. Garner, L. A. Turnberg, and J. A. Young. New York: Raven, 1982, p. 173–176.
 8. Bundgaard, M., M. Møller, and J. H. Poulsen. Localization of sodium pump sites in cat salivary glands. J. Physiol. Lond. 273: 339–353, 1977.
 9. Burg, M., L. Stoner, J. Cardinal, and N. Green. Furosemide effect on isolated perfused tubules. Am. J. Physiol. 225: 119–124, 1973.
 10. Burgen, A. S. V. The secretion of potassium in saliva. J. Physiol. Lond. 132: 20–39, 1956.
 11. Burgen, A. S. V. Secretory processes in salivary glands. In: Handbook of Physiology. Alimentary Canal, edited by C. F. Code. Washington, DC: Am. Physiol. Soc., 1967, sect. 6, vol. II, p. 561–579.
 12. Cabantchik, Z. I., P. Knauf, and A. Rothstein. The anion transport system of the red blood cells: the role of membrane protein evaluated by the use of “probes.rdquo; Biochim. Biophys. Acta 515: 239–302, 1978.
 13. Candia, O. A., H. F. Schoen, L. Low, and S. M. Podos. Chloride transport inhibition by piretanide and MK‐196 in bullfrog corneal epithelium. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F25–F29, 1981.
 14. Case, R. M., T. A. Ansah, S. Dho, A. Howorth, and B. E. Argent. Second messenger interactions in pancreas and salivary gland. Biomed. Res. 7, Suppl. 2: 95–103, 1986.
 15. Case, R. M., A. D. Conigrave, E. J. Favaloro, I. Novak, C. H. Thompson, and J. A. Young. The role of buffer anions and protons in secretion by the rabbit mandibular salivary gland. J. Physiol. Lond. 322: 273–286, 1982.
 16. Case, R. M., A. D. Conigrave, I. Novak, and J. A. Young. Electrolytes and protein secretion by the perfused rabbit mandibular gland stimulated with acetylcholine or catecholamines. J. Physiol. Lond. 300: 467–487, 1980.
 17. Case, R. M., and A. Howorth. The influence of forskolin on electrolyte transport processes in the perfused rabbit mandibular salivary gland (Abstract). J. Physiol. Lond. 361:25P, 1985.
 18. Case, R. M., M. Hunter, I. Novak, and J. A. Young. The anionic basis of fluid secretion by the rabbit mandibular gland. J. Physiol. Lond. 349: 619–630, 1984.
 19. Case, R. M., and T. Scratcherd. The secretion of alkali metal ions by the perfused cat pancreas as influenced by the composition and osmolality of the external environment and by inhibitors of metabolism and Na+,K+‐ATPase activity. J. Physiol. Lond. 242: 415–428, 1974.
 20. Chibuzo, G. A., and J. F. Cummings. Motor and sensory centers for the innervation of mandibular and sublingual salivary glands: a horseradish peroxidase study in the dog. Brain Res. 189: 301–313, 1980.
 21. Compton, J., J. R. Martinez, A. M. Martinez, and J. A. Young. Fluid and electrolyte secretion from the isolated, perfused submandibular and sublingual glands of the rat. Arch. Oral Biol. 26: 555–561, 1981.
 22. Compton, J. S., J. Nelson, R. D. Wright, and J. A. Young. A micropuncture investigation of electrolyte transport in the parotid glands of sodium‐replete and sodium‐depleted sheep. J. Physiol. Lond. 309: 429–446, 1980.
 23. Conteas, C. N., A. A. McDonough, T. R. Kozlowski, C. B. Hensley, R. L. Wood, and A. K. Mircheff. Mapping subcellular distribution of Na+‐K+‐ATPase in rat parotid gland. Am. J. Physiol. 250 (Cell Physiol. 19): C430–C441, 1986.
 24. Cook, D. I. A Microperfusion Investigation of the Effects of Calcium and Calcium Mediated Drugs upon Electrolyte Transport by the Isolated Main Excretory Duct of the Rabbit Submaxillary Gland. Sydney, Australia: Univ. of Sydney, 1979. BSc (Med) thesis.
 25. Cook, D. I., J. Bijman, and C. H. Van Os. The action of amiloride on the rabbit mandibular duct perfused in vitro. In: Electrolyte and Water Transport Across Gastrointestinal Epithelia, edited by R. M. Case, A. Garner, L. A. Turnberg, and J. A. Young. New York: Raven, 1982, p. 167–171.
 26. Cook, D. I., S. P. Towner, and J. A. Young. Patch‐clamp studies of cultured salivary cells. Biomed. Res. 7, Suppl. 2: 203–207, 1986.
 27. Cope, I. C., P. W. Kuchel, and J. A. Young. Water permeability of rat mandibular glands measured using 1H NMR spectroscopy (Abstract). Proc. Aust. Physiol. Pharmacol. Soc. 15: 197P, 1984.
 28. Dartt, D. A., M. Møller, and J. H. Poulsen. Lacrimal gland electrolyte and water secretion in the rabbit: localization and role of (Na+ + K+)‐activated ATPase. J. Physiol. Lond. 321: 557–569, 1981.
 29. De Camilli, P., D. Peluchetti, and J. Meldolesi. Dynamic changes of the luminal plasmalemma in stimulated parotid acinar cells. J. Cell Biol. 70: 59–74, 1976.
 30. Degnan, K. J., K. J. Karnaky, Jr., and J. A. Zadunaisky. Active chloride transport in the in vitro opercular skin of a teleost (Fundulus heteroclitus), a gill‐like epithelium rich in chloride cells. J. Physiol. Lond. 251: 155–191, 1977.
 31. Denniss, A. R., L. H. Schneyer, C. Sucanthapree, and J. A. Young. Action of adrenergic agonists on isolated excretory ducts of submandibular glands. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F548–F556, 1978.
 32. Denniss, A. R., and J. A. Young. The action of neurotransmitter hormones and analogues and cyclic nucleotides and theophylline on electrolyte transport by the excretory duct of the rabbit mandibular gland. Pfluegers Arch. 357: 77–89, 1975.
 33. Denniss, A. R., and J. A. Young. Modification of salivary duct electrolyte transport in rat and rabbit by physalaemin, VIP, GIP, and other enterohormones. Pfluegers Arch. 376: 73–80, 1978.
 34. Dich‐Nielsen, J. O., L. P. Laugesen, and J. H. Poulsen. Submandibular salivary secretion in the cat and associated potassium movements: dependence on temperature and perfusate flow rate. Pfluegers Arch. 403: 440–445, 1985.
 35. Ellory, J. C., P. B. Dunham, P. J. Logue, and G. W. Stewart. Anion‐dependent cation transport in erythrocytes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 299: 483–495, 1982.
 36. Evans, L. A. R., D. P. Pirani, D. I. Cook, and J. A. Young. Intraepithelial current flow in rat pancreatic secretory epithelia. Pfluegers Arch. 407, Suppl. 2: S107–S111, 1986.
 37. Evans, M. G., A. Marty, Y. P. Tan, and A. Trautmann. Blockage of Ca‐activated Cl conductance by furosemide in rat lacrimal glands. Pfluegers Arch. 406: 65–68, 1986.
 38. Eveloff, J., R. Kinne, E. Kinne‐Saffran, H. Murer, P. Silva, F. H. Epstein, J. Stoff, and W. B. Kinter. Coupled sodium and chloride transport into plasma membrane vesicles prepared from dogfish rectal gland. Pfluegers Arch. 378: 87–92, 1978.
 39. Field, M. J., and J. A. Young. Kinetics of Na transport in the rat submaxillary main duct perfused in vitro. Pfluegers Arch. 345: 207–220, 1973.
 40. Findlay, I., and O. H. Petersen. Acetylcholine stimulates a Ca2+‐dependent Cl‐ conductance in mouse lacrimal acinar cells. Pfluegers Arch. 403: 328–330, 1985.
 41. Finn, A. L., and J. Bright. The paracellular pathway in toad urinary bladder: permselectivity and kinetics of opening. J. Membr. Biol. 44: 67–83, 1978.
 42. Forrest, J. N., J. L. Boyer, T. A. Ardito, and H. V. Murdaugh. Structure of tight junctions during Cl secretion in the perfused rectal gland of the dogfish shark. Am. J. Physiol. 242 (Cell Physiol. 11): C388–C392, 1980.
 43. Forrest, J. N., F. Wang, and W. Beyenbach. Perfusion of isolated tubules of the shark rectal gland. Electrical characteristics and response to hormones. J. Clin. Invest. 72: 1163–1167, 1983.
 44. Frizzell, R. A., M. Field, and S. G. Schultz. Sodium‐coupled chloride transport by epithelial tissues. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F1–F8, 1979.
 45. Frömter, E., and J. M. Diamond. Route of passive ion permeation in epithelia. Nature Lond. 235: 9–13, 1972.
 46. Frömter, E., B. Gebler, K. Schopow, and H. Pockrandt‐Hemstedt. Cation and anion permeability of rabbit submaxillary main duct. In: Secretory Mechanisms of Exocrine Glands, edited by N. A. Thorn and O. H. Petersen. Copenhagen: Munksgaard, 1974, p. 496–513.
 47. Gallacher, D. V., Y. Maruyama, and O. H. Petersen. Patch‐clamp study of rubidium and potassium conductances in single cation channels from mammalian exocrine acini. Pfluegers Arch. 401: 361–367, 1984.
 48. Gallacher, D. V., and A. P. Morris. A patch‐clamp study of potassium currents in resting and acetylcholine stimulated mouse submandibular acinar cells. J. Physiol. Lond. 373: 379–395, 1986.
 49. Gallacher, D. V., and O. H. Petersen. Electrophysiology of mouse parotid acini: effects of electrical field stimulation and iontophoresis of neurotransmitters. J. Physiol. Lond. 305: 43–57, 1980.
 50. Gallacher, D. V., and O. H. Petersen. Stimulus‐secretion coupling in mammalian salivary glands. In: Gastrointestinal Physiology IV, edited by J. A. Young, Baltimore, MD: University Park, 1983, vol. 28, p. 1–52. (Int. Rev. Physiol. Ser.).
 51. Gard, G., J. A. Christie, D. I. Cook, and J. A. Young. The action of loop diuretics on the submandibular anion self‐exchange antiport (Abstract). Proc. Aust. Physiol. Pharmacol. Soc. 16: 25P, 1985.
 52. Garrett, J. R., and P. A. Parsons. Movement of horseradish peroxidase in rabbit submandibular glands after ductal injection. Histochem. J. 8: 177–189, 1976.
 53. Geck, P., C. Pietrzyk, B. C. Burckhardt, B. Pfeiffer, and E. Heinz. Electrically silent cotransport of Na, K, Cl in Ehrlich cells. Biochim. Biophys. Acta 600: 432–447, 1980.
 54. Gögelein, H., E. Schlatter, and R. Greger. The “small” conductance chloride channel in the luminal membrane of the rectal gland of the dogfish (Squalus acanthias). Pfluegers Arch. 409: 122–125, 1987.
 55. Greger, R., and E. Schlatter. Cellular mechanisms of the action of loop diuretics on the thick ascending limb of Henle's loop. Klin. Wochenschr. 61: 1019–1027, 1983.
 56. Greger, R., and E. Schlatter. Mechanism of NaCl secretion in rectal gland tubules of spiny dogfish (Squalus acanthias). I. Experiments in isolated in vitro perfused rectal gland tubules. Pfluegers Arch. 402: 63–75, 1984.
 57. Greger, R., and E. Schlatter. Mechanism of NaCl secretion in rectal gland tubules of spiny dogfish (Squalus acanthias). II. Effect of inhibitors. Pfluegers Arch. 402: 364–375, 1984.
 58. Greger, R., E. Schlatter, and H. Gögelein. Cl‐‐channels in the apical cell membrane of the rectal gland “induced” by cAMP. Pfluegers Arch. 406: 446–448, 1985.
 59. Greger, R., E. Schlatter, and H. Gögelein. Chloride channels in the apical membrane of the rectal gland of the dogfish (Squalus acanthias). Properties of the “larger” conductance channel. Pfluegers Arch. 409: 114–121, 1987.
 60. Greger, R., E. Schlatter, F. Wang, and J. N. Forrest. Mechanism of NaCl secretion in rectal gland tubules of spiny dogfish (Squalus acanthias). III. Effect of stimulation of secretion by cyclic AMP. Pfluegers Arch. 402: 376–384, 1984.
 61. Gruber, W. D., H. Knauf, and E. Frömter. The action of aldosterone on Na+ and K+ transport in the rat submaxillary main duct. Pfluegers Arch. 344: 33–49, 1973.
 62. Hannafin, J., E. Kinne‐Saffran, D. Friedman, and R. Kinne. Presence of a sodium‐potassium chloride cotransport system in the rectal gland of Squalus acanthias. J. Membr. Biol. 785: 73–83, 1983.
 63. Holzgreve, H., J. R. Martinez, and A. Vogel. Micropuncture and histologic study of submaxillary glands of young rats. Pfluegers Arch. Gesamte Physiol. Menchen. Tiere 290: 134–143, 1966.
 64. Hunter, M., and R. M. Case. The role of the sodium gradient in the formation of saliva by the rabbit mandibular gland. J. Physiol. Lond. In press.
 65. Hunter, M., P. A. Smith, and R. M. Case. The dependence of fluid secretion by mandibular salivary gland and pancreas on extracellular calcium. Cell Calcium 4: 307–317, 1983.
 66. Imai, Y. Study of the secretion mechanism of the submaxillary gland of the dog. Part 2. Effect of exchanging ions in the perfusate on salivary secretion and secretory potential, with special reference to the ionic distribution in the gland. J. Physiol. Soc. Jpn. 27: 313–324, 1965.
 67. Iwatsuki, N., Y. Maruyama, O. Matsumoto, and A. Nishiyama. Activation of Ca2+‐dependent Cl‐ and K+ conductances in rat and mouse parotid acinar cells. Jpn. J. Physiol. 35: 933–944, 1985.
 68. Iwatsuki, N., and O. H. Petersen. Action of tetraethylammonium on calcium‐activated potassium channels in pig pancreatic acinar cells studied by patch‐clamp single‐channel and whole‐cell current recording. J. Membr. Biol. 86: 139–144, 1985.
 69. Jack, J. J. B., D. Noble, and R. W. Tsien. Electric Current Flow in Excitable Cells. Oxford, UK: Oxford Univ. Press, 1983, p. 83–97.
 70. Kaladelfos, G., and J. A. Young. Micropuncture and cannulation study of water and electrolyte excretion in the isotonic‐secreting cat sublingual salivary gland. Pfluegers Arch. 341: 143–154, 1973.
 71. Kaladelfos, G., and J. A. Young. Water and electrolyte excretion in the cat submaxillary gland studied using micropuncture and duct cannulation techniques. Aust. J. Exp. Biol. Med. Sci. 52: 67–79, 1974.
 72. Kinne, R., B. Koenig, J. Hannafin, E. Kinne‐Saffran, D. M. Scott, and K. Zierold. The use of membrane vesicles to study the NaCl/KCl cotransporter involved in active transepithelial chloride transport. Pfluegers Arch. 405, Suppl. S101–S105, 1985.
 73. Klyce, S. D., and R. K. Wong. Site and mode of adrenaline action on chloride transport across the rabbit corneal epithelium. J. Physiol. Lond. 266: 777–799, 1977.
 74. Knauf, H. The isolated salivary duct as a model for electrolyte transport studies. Pfluegers Arch. 333: 82–94, 1972.
 75. Knauf, H., and E. Frömter. Studies on the origin of the transepithelial electrical potential difference in salivary duct epithelium. In: Electrophysiology of Epithelial Cells, edited by G. Giebisch. New York: Schattauer, 1971, p. 187–199.
 76. Knauf, H., and R. Lübcke. Evidence for Na+ independent active secretion of K+ and HCO‐3 by rat salivary duct epithelium. Pfluegers Arch. 361: 55–60, 1975.
 77. Knauf, H., R. Lübcke, W. Kreutz, and G. Sachs. Interrelationships of ion transport in rat submaxillary duct epithelium. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F132–F139, 1982.
 78. Knauf, H., K. Pander, and S. Franck. The effect of spironolactone on transport of Na+, K+, and H+. A microperfusion study in rat main submaxillary duct. Eur. J. Clin. Invest. 6: 17–20, 1976.
 79. Knauf, H., P. Röttger, U. Wais, and K. Baumann. On the regulatory handling of Na+, K+, and H+ transport by the rat salivary duct epithelium. Fortschr. Zool. 23: 307–321, 1975.
 80. Knauf, H., U. Wais, R. Lübcke, and G. Albiez. On the mechanism of action of triamterene. Effects on transport of Na+, K+, and H+/HCO‐3 ions. Eur. J. Clin. Invest. 6: 43–50, 1976.
 81. Knickelbein, R., P. S. Aronson, C. M. Schron, J. Seifter, and J. W. Dobbins. Sodium and chloride transport across rabbit ileal brush border. II. Evidence for Cl‐HCO3 exchange and mechanism of coupling. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 18): G236–G245, 1985.
 82. Komabayashi, T., K. Nakano, T. Izawa, T. Nakamura, and M. Tsuboi. Effects of Ca2+ and calmodulin antagonists on the oxygen uptake induced by acetylcholine or substance‐P in rat submandibular gland slices. Jpn. J. Pharmacol. 36: 441–447, 1984.
 83. Larson, M., and K. R. Spring. Bumetanide inhibition of NaCl transport by Necturus gallbladder. J. Membr. Biol. 74: 123–129, 1983.
 84. Lau, K. R., and R. M. Case. Chloride activity in mandibular salivary gland cells during secretion. Biomed. Res. 7, Suppl. 2: 181–184, 1986.
 85. Laugesen, L. P., J. O. D. Nielsen, and J. H. Poulsen. Partial dissociation between salivary secretion and active potassium transport in the perfused cat submandibular gland. Pfluegers Arch. 365: 167–173, 1976.
 86. Lingard, J. M., and J. A. Young. β‐Adrenergic control of exocrine secretion by perfused rat pancreas in vitro. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G690–G696, 1983.
 87. Lundberg, A. Electrophysiology of salivary glands. Physiol. Rev. 38: 21–40, 1958.
 88. Mangos, J. A., R. L. Boyd, G. M. Loughlin, A. Cockrell, and R. Fucci. Secretion of monovalent ions and water in ferret salivary glands: a micropuncture study. J. Dent. Res. 60: 733–737, 1981.
 89. Mangos, J. A., and G. Braun. Excretion of total solute, sodium and potassium in the saliva of the rat parotid gland. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 290: 184–192, 1966.
 90. Mangos, J. A., G. Braun, and K. F. Hamann. Micropuncture study of sodium and potassium excretion in the rat parotid saliva. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 291: 99–106, 1966.
 91. Mangos, J. A., N. Maragos, and N. R. McSherry. Micro‐puncture and microperfusion study of glucose excretion in rat parotid saliva. Am. J. Physiol. 224: 1260–1264, 1973.
 92. Mangos, J. A., and N. R. McSherry. Micropuncture study of sodium and potassium excretion in rat parotid saliva: role of aldosterone. Proc. Soc. Exp. Biol. Med. 132: 797–801, 1969.
 93. Mangos, J. A., N. R. McSherry, and S. N. Arvanitakis. Autonomic regulation of secretion and transductal fluxes of ions in the rat parotid. Am. J. Physiol. 225: 683–688, 1973.
 94. Mangos, J. A., N. R. McSherry, K. Irwin, and R. Hong. Handling of water and electrolytes by rabbit parotid and submaxillary glands. Am. J. Physiol. 225: 450–455, 1973.
 95. Mangos, J. A., N. R. McSherry, S. Nousia‐Arvanitakis, and K. Irwin. Secretion and transductal fluxes of ions in exocrine glands of the mouse. Am. J. Physiol. 225: 18–24, 1973.
 96. Martin, C. J., E. Frömter, E. Gebler, B. Knauf, and J. A. Young. The effects of carbachol on water and electrolyte fluxes and transepithelial electrical potential differences of the rabbit submaxillary main duct perfused in vitro. Pfluegers Arch. 341: 131–142, 1973.
 97. Martin, C. J., and J. A. Young. Electrolyte concentrations in primary and final saliva of the rat sublingual gland studied by micropuncture and catheterization techniques. Pfluegers Arch. 324: 344–360, 1971.
 98. Martin, C. J., and J. A. Young. A microperfusion investigation of the effects of a sympathomimetic and a parasympathomimetic drug on water and electrolyte fluxes in the main duct of the rat submaxillary gland. Pfluegers Arch. 327: 303–323, 1971.
 99. Martin, K. Metabolism of salivary glands. In: Handbook of Physiology. Alimentary Canal, edited by C. G. Code. Washington, DC: Am. Physiol. Soc., 1967, sect. 6, vol. II, p. 581–593.
 100. Martinez, J. R., and N. Cassity. 36Cl fluxes in dispersed rat submandibular acini: effects of acetylcholine and transport inhibitors. Pfluegers Arch. 403: 50–54, 1985.
 101. Martinez, J. R., and N. Cassity. Cl‐ requirement for saliva secretion in the isolated, perfused rat submandibular gland. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 18): G464–G469, 1985.
 102. Martinez, J. R., H. Holzgreve, and A. Frick. Micropuncture study of submaxillary glands of adult rats. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 290: 124–133, 1966.
 103. Martinez, J. R., and A. M. Martinez. Submandibular secretion in the dog after intraluminal injections of amiloride. Arch. Oral Biol. 19: 57–60, 1974.
 104. Martinez, J. R., A. M. Martinez, and C. Cooper. cGMP stimulates active K+ uptake in rat submandibular slices. Experientia 39: 362–364, 1983.
 105. Marty, A., Y. P. Tan, and A. Trautmann. Three types of calcium‐dependent channels in rat lacrimal glands. J. Physiol. Lond. 357: 293–325, 1984.
 106. Maruyama, Y., D. V. Gallacher, and O. H. Petersen. Voltage and Ca+‐activated K+ channel in basolateral acinar cell membranes in mammalian salivary glands. Nature Lond. 302: 827–829, 1983.
 107. Maruyama, Y., A. Nishiyama, T. Izumi, N. Hoshimiya, and O. H. Petersen. Ensemble noise and current relaxation analysis of K+ current in single isolated salivary acinar cells from rat. Pfluegers Arch. 406: 69–72, 1986.
 108. Maruyama, Y., and O. H. Petersen. Single calcium‐dependent cation channels in mouse pancreatic acinar cells. J. Membr. Biol. 81: 83–87, 1984.
 109. Matsuura, S., S. Eto, K. Kato, and Y. Tashiro. Ferritin immunoelectron microscopic localization of 5'‐nucleotidase on rat liver cell surface. J. Cell Biol. 99: 166–173, 1984.
 110. Mazariegos, M. R., and A. R. Hand. Regulation of tight junctional permeability in the rat parotid gland by autonomic agonists. J. Dent. Res. 63: 1102–1107, 1984.
 111. Mori, H., M. Murakami, T. Nakahari, and Y. Imai. Intracellular Cl‐ activity of canine submandibular gland cells: an in vitro observation. Jpn. J. Physiol. 33: 869–873, 1983.
 112. Mori, H., T. Nakahari, and Y. Imai. Intracellular K+ activity in canine submandibular gland cells in resting [sic] and its change during stimulation. Jpn. J. Physiol. 34: 1077–1088, 1984.
 113. Murakami, M. Heat production, blood flow, O2 uptake and CO2 output in the secretory process of the dog submandibular gland. J. Physiol. Soc. Jpn. 43: 135–147, 1981.
 114. Murakami, M., Y. Imai, Y. Seo, T. Morimoto, K. Shiga, and H. Watari. Phosphorus nuclear magnetic resonance of perfused salivary gland. Biochim. Biophys. Acta 762: 19–24, 1983.
 115. Murakami, M., I. Novak, and J. A. Young. Choline evokes fluid secretion by perfused rat mandibular gland without densitization. Am. J. Physiol. 251 (Gastrointest. Liver Physiol. 14): G84–G89, 1986.
 116. Nauntofte, B., and J. H. Poulsen. Chloride transport in rat parotid acini: furosemide‐sensitive uptake and calcium‐dependent release. J. Physiol. Lond. 357: 61P, 1984.
 117. Nishiyama, A., K. Katoh, and S. Saitoh. Effect of neural stimulation on acinar cell membrane potentials in isolated pancreas and salivary gland segments. Membr. Biochem. 3: 49–66, 1980.
 118. Novak, I., C. Dave, and J. A. Young. The anionic basis of secretion by rat and rabbit mandibular glands. In: Secretion: Mechanisms and Control, edited by R. M. Case, J. M. Lingard, and J. A. Young. Manchester, UK: Manchester Univ. Press, 1984, p. 77–80.
 119. Novak, I., and J. A. Young. The effect of transport inhibitors and anion replacement on salivary secretion. In: Secretion: Mechanisms and Control, edited by R. M. Case, J. M. Lingard, and J. A. Young. Manchester, UK: Manchester Univ. Press, 1984, p. 81–87.
 120. Novak, I., and J. A. Young. Two independent anion transport systems in rabbit mandibular salivary glands. Pfluegers Arch. 407: 649–656, 1986.
 121. O'Doherty, J., R. J. Stark, S. J. Crane, and K. L. Brugge. Changes in cytosolic calcium during cholinergic and adrenergic stimulation of the parotid salivary glands. Pfluegers Arch. 398: 241–246, 1983.
 122. O'Doherty, J., S. J. Youmans, W. McD. Armstrong, and R. J. Stark. Calcium regulation during stimulus‐secretion coupling: continuous measurement of intracellular calcium activities. Science Wash. DC 209: 510–513, 1980.
 123. Palfrey, H. C., P. W. Feit, and P. Greengard. cAMP‐stimulated cation cotransport in avian erythrocytes: inhibition by “loop” diuretics. Am. J. Physiol. 238 (Cell Physiol. 7): C139–C148, 1980.
 124. Petersen, O. H. Some factors influencing stimulation induced release of potassium from the cat submandibular gland to fluid perfused through the gland. J. Physiol. Lond. 208: 431–447, 1970.
 125. Petersen, O. H. Electrophysiology of mammalian gland cells. Physiol. Rev. 56: 535–577, 1976.
 126. Petersen, O. H. The Electrophysiology of Gland Cells. London: Academic, 1980.
 127. Petersen, O. H., and Y. Maruyama. Calcium‐activated potassium channels and their role in secretion. Nature Lond. 307: 693–696, 1984.
 128. Petersen, O. H., and J. H. Poulsen. The effects of varying the extracellular potassium concentration on the secretory rate and on resting and secretory potentials in perfused cat submandibular gland. Acta Physiol. Scand. 70: 293–298, 1967.
 129. Petersen, O. H., and J. H. Poulsen. Inhibition of salivary secretion and secretory potentials by g‐strophanthin, dinitrophenol, and cyanide. Acta Physiol. Scand. 71: 194–202, 1967.
 130. Petersen, O. H., and J. H. Poulsen. The secretion of sodium and potassium in cat submandibular saliva after start of stimulation. Acta Physiol. Scand. 73: 93–100, 1968.
 131. Pirani, D. C., L. A. R. Evans, D. I. Cook, and J. A. Young. Intracellular pH in the rat mandibular gland: the role of Na‐H and Cl‐HCO3 antiports in secretion. Pfluegers Arch. 408: 178–184, 1987.
 132. Poulsen, J. H., and S. W. Bledsoe. Salivary gland K+ transport: in vivo studies with K+‐specific microelectrodes. Am. J. Physiol. 240 (Endocrinol. Metab. Gastrointest. Physiol. 3): E79–E83, 1978.
 133. Poulsen, J. H., and L. Ø. Kristensen. Is stimulation‐induced uptake of sodium in rat parotid acinar cells mediated by a sodium/chloride co‐transport system? In: Electrolyte and Water Transport Across Gastrointestinal Epithelia, edited by R. M. Case, A. Garner, L. A. Turnberg, and J. A. Young. New York: Raven, 1982, p. 199–208.
 134. Poulsen, J. H., L. P. Laugesen, and J. O. D. Nielsen. Evidence supporting that basolaterally located Na+‐K+‐ATPase and a co‐transport system for sodium and chloride are key elements in secretion of primary saliva. In: Electrolyte and Water Transport Across Gastrointestinal Epithelia, edited by R. M. Case, A. Garner, L. A. Turnberg, and J. A. Young. New York: Raven, 1982, p. 157–159.
 135. Poulsen, J. H., and B. Oakley. Intracellular potassium ion activity in resting and stimulated mouse pancreas and submandibular gland. Proc. R. Soc. Lond. B Biol. Sci. 204: 99–104, 1979.
 136. Rector, F. C., and C. A. Berry. Role of the paracellular pathway in reabsorption of solutes and water by proximal convoluted tubule of the mammalian kidney. In: The Paracellular Pathway, edited by S. E. Bradley and E. F. Purcell. New York: Josiah Macy, Jr., Found., 1982, p. 135–158.
 137. Reuss, L., P. Reinach, S. A. Weinman, and T. P. Grady. Intracellular ion activities and Cl‐ transport mechanisms in bullfrog corneal epithelium. Am. J. Physiol. 244 (Cell Physiol. 13): C336–C347, 1983.
 138. Revis, N. W., and J. P. Durham. Adenylate cyclase activity in the parotid gland of the mouse after isoproterenol stimulation. J. Histochem. Cytochem. 27: 1317–1321, 1979.
 139. Roberts, M. L., N. Iwatsuki, and O. H. Petersen. Parotid acinar cells: ionic dependence of acetylcholine‐evoked membrane potential changes. Pfluegers Arch. 376: 159–167, 1978.
 140. Roberts, M. L., and O. H. Petersen. Membrane potential and resistance changes induced in salivary gland acinar cells by microiontophoretic application of acetylcholine and adrenergic agonists. J. Membr. Biol. 39: 297–312, 1978.
 141. Saito, Y., K. Itoi, K. Horiuchi, and T. Watanabe. Mode of action of furosemide on the chloride‐dependent short‐circuit current across the ciliary body epithelium of toad eyes. J. Membr. Biol. 53: 85–93, 1980.
 142. Saito, Y., T. Ozawa, H. Hayashi, and A. Nishiyama. Acetylcholine‐induced change in intracellular Cl‐ activity of the mouse lacrimal acinar cells. Pfluegers Arch. 405:108–111, 1985.
 143. Sasaki, S., I. Nakagaki, H. Mori, and Y. Imai. Intracellular calcium store and transport of elements in acinar cells of the salivary gland determined by electron probe X‐ray microanalysis. Jpn. J. Physiol. 33: 69–83, 1983.
 144. Sato, K. The physiology, pharmacology and biochemistry of eccrine sweat glands. Rev. Physiol. Biochem. Pharmacol. 79: 51–131, 1977.
 145. Schlatter, E., R. Greger, and C. Weidtke. Effect of “high ceiling” diuretics on active salt transport in the cortical thick ascending limb of Henle's loop of rabbit kidney. Correlation of chemical structure and inhibitory potency. Pfluegers Arch. 396: 210–217, 1983.
 146. Schneyer, L. H. Secretion of potassium by perfused excretory duct of rat submaxillary gland. Am. J. Physiol. 217: 1324–1329, 1969.
 147. Schneyer, L. H. Amiloride inhibition of ion transport in perfused excretory duct of rat submaxillary gland. Am. J. Physiol. 219: 1050–1055, 1970.
 148. Schneyer, L. H. Sympathetic control of Na, K transport in perfused submaxillary main duct of rat. Am. J. Physiol. 230: 341–345, 1976.
 149. Schneyer, L. H. Parasympathetic control of Na, K transport in perfused submaxillary duct of the rat. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F22–F28, 1977.
 150. Schneyer, L. H., and C. A. Schneyer. Electrolyte and inulin spaces of rat salivary glands and pancreas. Am. J. Physiol. 199: 649–652, 1960.
 151. Schneyer, L. H., and C. A. Schneyer. Inorganic composition of saliva. In: Handbook of Physiology. Alimentary Canal, edited by C. F. Code. Washington, DC: Am. Physiol. Soc., 1967, sect. 6, vol II, p. 497–530.
 152. Schneyer, L. H., and T. Thavornthon. Isoproterenol‐induced stimulation of sodium absorption in perfused salivary duct. Am. J. Physiol. 224: 136–139, 1973.
 153. Schwartz, G. J., J. Barasch, and Q. Al‐Awqati. Plasticity of functional epithelial polarity. Nature Lond. 318: 368–371, 1985.
 154. Seow, F. K. T., J. M. Lingard, and J. A. Young. Anionic basis of fluid secretion by rat pancreatic acini in vitro. Am. J. Physiol. 250 (Gastrointest. Liver Physiol. 13): G140–G148, 1986.
 155. Sewell, W., and J. A. Young. Studies on the effects of poly‐L‐lysine on electrolyte transport by rat salivary ducts (Abstract). Proc. Aust. Physiol. Pharmacol. Soc. 4: 80P, 1973.
 156. Sharkey, K. A., and D. Templeton. Substance P in the rat parotid gland: evidence for a dual origin from the otic and trigeminal ganglia. Brain Res. 304: 392–396, 1984.
 157. Shorofsky, S. R., M. Field, and H. A. Fozzard. Mechanism of Cl secretion in canine trachea: changes in intracellular chloride activity with secretion. J. Membr. Biol. 81: 1–8, 1984.
 158. Silva, P., J. Stoff, M. Field, L. Fine, J. N. Forrest, and F. H. Epstein. Mechanism of active chloride secretion by shark rectal gland: role of Na‐K‐ATPase in chloride transport. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F298–F306, 1977.
 159. Slegers, J. F. G., W. M. Moons, P. P. Idzerda, and W. M. Standhouders. The contribution of a Cl‐shunt to the transmucosal potential of the rabbit submaxillary duct. J. Membr. Biol. 25: 213–236, 1975.
 160. Smaje, L. H., J. H. Poulsen, and H. H. Ussing. Evidence from O2 uptake measurements for Na+‐K+‐2Cl‐ cotransport in the rabbit submandibular gland. Pfluegers Arch. 406: 492–496, 1986.
 161. Spring, K. R., and A. Hope. Size and shape of the lateral intercellular spaces in a living epithelium. Science Wash. DC 200: 54–58, 1978.
 162. Spring, K. R., and A. Hope. Fluid transport and the dimensions of cells and interspaces of living Necturus gallbladder. J. Gen. Physiol. 73: 287–305, 1979.
 163. Stewart, D. J., M. Laansoo, and A. K. Sen. Release of 86Rb from rat submandibular gland slices: relation to sodium pump activity. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G484–G491, 1984.
 164. Stokes, J. B. Sodium chloride absorption by the urinary bladder of the winter flounder. A thiazide‐sensitive, electrically neutral transport system. J. Clin. Invest. 74: 7–16, 1984.
 165. Suzuki, K., and O. H. Petersen. The effect of Na+ and Cl‐ removal and of loop diuretics on acetylcholine‐evoked membrane potential changes in mouse lacrimal acinar cells. Q. J. Exp. Physiol. 70: 437–446, 1985.
 166. Thaysen, J. H. Handling of alkali metals by exocrine glands other than the kidney. In: Handbook of Experimental Pharmacology. The Alkali Metal Ions in Biology, edited by H. H. Ussing, P. Kruhöffer, J. H. Thaysen, and N. A. Thorn. Berlin: Springer‐Verlag, 1960, vol. 13, p. 424–463.
 167. Thaysen, J. H., N. A. Thorn, and I. L. Schwartz. Excretion of sodium, potassium, chloride and carbon dioxide in human parotid saliva. Am. J. Physiol. 178: 155–159, 1954.
 168. Trautmann, A., and A. Marty. Activation of Ca‐dependent K channels by carbamylcholine in rat lacrimal glands. Proc. Natl. Acad. Sci. USA 81: 611–615, 1984.
 169. Van Os, C. H., G. Wiedner, J. F. G. Slegers, J. Bijman, and E. M. Wright. Hydraulic and electrical conductivities of rabbit gallbladder and submaxillary main duct epithelium. In: Water Transport Across Epithelia Barriers, Gradients and Mechanisms, edited by H. H. Ussing, N. Bindslev, N. A. Lassen, and O. Sten‐Knudsen. Copenhagen: Munksgaard, 1981, p. 178–189.
 170. Wakui, M., and A. Nishiyama. Ionic dependence of acetylcholine equilibrium potential of acinar cells in mouse submaxillary gland. Pfluegers Arch. 386: 261–267, 1980.
 171. Welsh, M. J. Inhibition of chloride secretion by furosemide in canine tracheal epithelium. J. Membr. Biol. 71: 219–226, 1983.
 172. Welsh, M. J. Anthracene‐9‐carboxylic acid inhibits an apical membrane chloride conductance in canine tracheal epithelium. J. Membr. Biol. 78: 61–71, 1984.
 173. Welsh, M. J. Single apical membrane anion channels in primary cultures of canine tracheal epithelium. Pfluegers Arch. 407, Suppl. 2: S116–S122, 1986.
 174. Young, J. A. Salivary secretion of inorganic electrolytes. In: Gastrointestinal Physiology III, edited by R. K. Crane. Baltimore, MD: University Park, 1979, vol. 19, p. 1–58. (Int. Rev. Physiol. Ser.).
 175. Young, J. A., R. M. Case, A. D. Conigrave, and I. Novak. Transport of bicarbonate and other anions in salivary secretion. Ann. NY Acad. Sci. 341: 172–190, 1980.
 176. Young, J. A., B. E. Chapman, D. I. Cook, A. P. Healey, P. W. Kuchel, J. M. Lingard, M. Nicol, I. Novak, and F. Seow. Salivary secretory mechanism: recent advances and concepts. In: Fluid and Electrolyte Transport in Exocrine Glands in Cystic Fibrosis, edited by P. M. Quinton, J. R. Martinez, and U. Hopfer. San Francisco, CA: San Francisco Press, 1982, p. 102–124.
 177. Young, J. A., D. I. Cook, E. W. Van Lennep, and M. Roberts. Secretion by the major salivary glands. In: Physiology of the Gastrointestinal Tract (2nd ed.), edited by L. R. Johnson. New York: Raven, 1987.
 178. Young, J. A., E. Frömter, E. Schögel, and K. F. Hamann. A microperfusion investigation of sodium resorption and potassium secretion by the main secretory duct of the rat submaxillary gland. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 295: 157–172, 1967.
 179. Young, J. A., and C. J. Martin. The effect of a sympatho‐and a parasympathomimetic drug on the electrolyte concentrations of primary and final saliva of the rat submaxillary gland. Pfluegers Arch. 327: 285–302, 1971.
 180. Young, J. A., C. J. Martin, M. Asz, and F. D. Weber. A microperfusion investigation of bicarbonate secretion by the rat submaxillary gland. The action of a parasympathomimetic drug on electrolyte transport. Pfluegers Arch. 319: 185–199, 1970.
 181. Young, J. A., and E. Schögel. Micropuncture investigation of sodium and potassium excretion in rat submaxillary saliva. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 291: 85–98, 1966.
 182. Young, J. A., and E. W. Van Lennep. The Morphology of Salivary Glands. London: Academic, 1978.
 183. Young, J. A., and E. W. Van Lennep. Transport in salivary and salt glands. I: Salivary glands. In: Membrane Transport in Biology. Transport Organs, edited by G. Giebisch, D. C. Tosteson, and H. H. Ussing. Berlin: Springer‐Verlag, 1979, vol. 4B, p. 563–674.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

D. I. Cook, J. A. Young. Fluid and Electrolyte Secretion by Salivary Glands. Compr Physiol 2011, Supplement 18: Handbook of Physiology, The Gastrointestinal System, Salivary, Gastric, Pancreatic, and Hepatobiliary Secretion: 1-23. First published in print 1989. doi: 10.1002/cphy.cp060301