References |
1. |
Anderson, C. R., and
C. F. Stevens.
Voltage‐clamp analysis of acetylcholine produced end‐plate current fluctuations of frog neuromuscular junction.
J. Physiol. Lond.
235:
655–691,
1973.
|
2. |
Baker, P. F.
The regulation of intracellular calcium in giant axons of Loligo.and Myxicola.
Ann. NY Acad. Sci.
307:
250–268,
1978.
|
3. |
Berridge, M. J., and
R. F. Irvine.
Inositol trisphosphate, a novel second messenger in cellular signal transduction.
Nature Lond.
312:
315–321,
1984.
|
4. |
Bundgaard, M.,
M. Møller, and
J. H. Poulsen.
Localization of sodium pump sites in cat salivary glands.
J. Physiol. Lond.
273:
339–353,
1977.
|
5. |
Burgen, A. S. V.
The secretion of potassium in saliva.
J. Physiol. Lond.
132:
20–39,
1956.
|
6. |
Burgen, A. S. V., and
N. G. Emmelin.
Physiology of the Salivary Glands.
London:
Arnold,
1961.
|
7. |
Chandler, D. E., and
J. A. Williams.
Intracellular divalent cation release in pancreatic acinar cells during stimulus‐secretion coupling. I. Use of chlorotetracycline as a fluorescent probe.
J. Cell Biol.
76:
371–385,
1978.
|
8. |
Chandler, D. E., and
J. A. Williams.
Intracellular divalent cation release in pancreatic acinar cells during stimulus‐secretion coupling. II. Subcellular localization of the fluorescent probe chlorotetracycline.
J. Cell Biol.
76:
386–399,
1978.
|
9. |
Christensen, H. N.
Organic ion transport during seven decades. The amino acids.
Biochim. Biophys. Acta
779:
255–269,
1984.
|
10. |
Evans, L. A. R.,
D. Pirani,
D. I. Cook, and
J. A. Young.
Intraepithelial current flow in rat pancreatic secretory epithelia.
Pfluegers Arch.
407,
Suppl. 2:
S107–S111,
1986.
|
11. |
Evans, M. G., and
A. Marty.
Calcium‐dependent chloride currents in isolated cells from rat lacrimal glands.
J. Physiol. Lond.
378:
437–460,
1986.
|
12. |
Evans, M. G.,
A. Marty, and
Y. Tan.
Blockage of a Ca‐activated Cl conductance by furosemide in rat lacrimal glands.
Pfluegers Arch.
406:
65–68,
1986.
|
13. |
Fernandez, J. H.,
E. Neher, and
B. D. Gomperts.
Capacitance measurements reveal stepwise fusion events in degranulating mast cells.
Nature Lond.
312:
453–455,
1984.
|
14. |
Findlay, I.
A patch‐clamp study of potassium channels and whole‐cell currents in acinar cells of the mouse lacrimal gland.
J. Physiol. Lond.
350:
179–195,
1984.
|
15. |
Findlay, I.,
M. J. Dunne, and
O. H. Petersen.
ATP‐sensitive inward rectifier and voltage‐ and calcium‐activated K+ channels in cultured pancreatic islet cells.
J. Membr. Biol.
88:
165–172,
1985.
|
16. |
Findlay, I.,
M. J. Dunne,
S. Ullrich,
C. B. Wollheim, and
O. H. Petersen.
Quinine inhibits Ca2+‐independent K+ channels whereas tetraethylammonium inhibits Ca2+‐activated K+ channels in insulin‐secreting cells.
FEBS Lett.
185:
4–8,
1985.
|
17. |
Findlay, I., and
O. H. Petersen.
Acetylcholine‐evoked uncoupling restricts the passage of Lucifer Yellow between pancreatic acinar cells.
Cell Tissue Res.
225:
633–638,
1982.
|
18. |
Findlay, I., and
O. H. Petersen.
The extent of dye‐coupling between exocrine acinar cells of the mouse pancreas.
Cell Tissue Res.
232:
121–127,
1983.
|
19. |
Findlay, I., and
O. H. Petersen.
Acetylcholine stimulates a Ca2+‐dependent Cl‐ conductance in mouse lacrimal acinar cells.
Pfluegers Arch.
403:
328–330,
1985.
|
20. |
Frömter, E., and
J. Diamond.
Route of passive ion permeation in epithelia.
Nat. New Biol.
235:
9–13,
1972.
|
21. |
Gallacher, D. V.,
Y. Maruyama, and
O. H. Petersen.
Patch‐clamp study of rubidium and potassium conductances in single cation channels from mammalian exocrine acini.
Pfluegers Arch.
401:
361–367,
1984.
|
22. |
Gallacher, D. V., and
A. P. Morris.
A patch‐clamp study of K+ currents in resting and acetylcholine stimulated mouse submandibular acinar cells.
J. Physiol. Lond.
373:
379–395,
1986.
|
23. |
Gallacher, D. V., and
O. H. Petersen.
Electrophysiology of parotid acini: effects of electrical field stimulation and ionophoresis of neurotransmitters.
J. Physiol. Lond.
305:
43–57,
1980.
|
24. |
Ginsborg, B. L., and
C. R. House.
Stimulus‐response coupling in gland cells.
Annu. Rev. Biophys. Bioeng.
9:
55–80,
1980.
|
25. |
Ginsborg, B. L.,
C. R. House, and
E. M. Silinsky.
Conductance changes associated with the secretory potential in the cockroach salivary gland.
J. Physiol. Lond.
236:
723–731,
1974.
|
26. |
Graf, J., and
O. H. Petersen.
Cell membrane potential and resistance in liver.
J. Physiol. Lond.
284:
105–126,
1978.
|
27. |
Hamill, O. P.,
A. Marty,
E. Neher,
B. Sakmann, and
F. J. Sigworth.
Improved patch‐clamp technique for high‐resolution current recording from cells and cell‐free membrane patches.
Pfluegers Arch.
391:
85–100,
1981.
|
28. |
Hodgkin, A. L.
The Conduction of the Nervous Impulse.
Liverpool, UK:
Liverpool Univ. Press,
1964.
|
29. |
Hokin, L. E.
Receptors and phosphoinositide‐generated second messengers.
Annu. Rev. Biochem.
54:
205–235,
1985.
|
30. |
Hootman, S. R.,
D. L. Ochs, and
J. A. Williams.
Intracellular mediators of Na+‐K+ pump activity in guinea pig pancreatic acinar cells.
Am. J. Physiol.
249
(Gastrointest. Liver Physiol.12):
G470–G478,
1985.
|
31. |
Horn, R., and
J. B. Patlak.
Single‐channel currents from excised patches of muscle membrane.
Proc. Natl. Acad. Sci. USA
77:
6930–6934,
1980.
|
32. |
Iwatsuki, N., and
O. H. Petersen.
Acetylcholine‐like effects of intracellular calcium application in pancreatic acinar cells.
Nature Lond.
268:
147–149,
1977.
|
33. |
Iwatsuki, N., and
O. H. Petersen.
Pancreatic acinar cells: localization of acetylcholine receptors and the importance of chloride and calcium for acetylcholine‐evoked depolarization.
J. Physiol. Lond.
269:
723–733,
1977.
|
34. |
Iwatsuki, N., and
O. H. Petersen.
Pancreatic acinar cells: the acetylcholine equilibrium potential and its ionic dependency.
J. Physiol. Lond.
269:
735–751,
1977.
|
35. |
Iwatsuki, N., and
O. H. Petersen.
Electrical coupling and uncoupling of exocrine acinar cells.
J. Cell Biol.
79:
533–545,
1978.
|
36. |
Iwatsuki, N., and
O. H. Petersen.
Intracellular Ca2+ injection causes membrane hyperpolarization and conductance increase in lacrimal acinar cells.
Pfluegers Arch.
377:
185–187,
1978.
|
37. |
Iwatsuki, N., and
O. H. Petersen.
In vitro action of bombesin on amylase secretion, membrane potential and membrane resistance in rat and mouse pancreatic acinar cells. A comparison with other secretagogues.
J. Clin. Invest.
61:
41–46,
1978.
|
38. |
Iwatsuki, N., and
O. H. Petersen.
Direct visualization of cell to cell coupling: transfer of fluorescent probes in living mammalian pancreatic acini.
Pfluegers Arch.
380:
277–281,
1979.
|
39. |
Iwatsuki, N., and
O. H. Petersen.
Pancreatic acinar cells: the effect of CO2, NH4Cl and acetylcholine on intercellular communication.
J. Physiol. Lond.
291:
317–326,
1979.
|
40. |
Iwatsuki, N., and
O. H. Petersen.
Amino acid‐evoked membrane potential and resistance changes in pancreatic acinar cells.
Pfluegers Arch.
386:
153–159,
1980.
|
41. |
Iwatsuki, N., and
O. H. Petersen.
Amino acids evoke short‐latency membrane conductance increase in pancreatic acinar cells.
Nature Lond.
283:
492–494,
1980.
|
42. |
Iwatsuki, N., and
O. H. Petersen.
Action of tetraethylammonium on calcium‐activated potassium channels in pig pancreatic acinar cells studied by patch‐clamp single‐channel and whole‐cell current recording.
J. Membr. Biol.
86:
139–144,
1985.
|
43. |
Iwatsuki, N., and
O. H. Petersen.
Inhibition of Ca2+‐activated K+ channels in pig pancreatic acinar cells by Ba2+, Ca2+, quinine and quinidine.
Biochim. Biophys. Acta
819:
249–257,
1985.
|
44. |
Jauch, P.,
Y. Maruyama,
O. H. Petersen,
H. A. Kolb, and
P. Läuger.
Electrophysiological study of the alanine‐sodium cotransporter in pancreatic acinar cells. In:
Ion Gradient‐Coupled Transport,
edited by F. Alvardo and
C. H. Van Os.
Amsterdam:
Elsevier,
1986,
p. 241–244.
(INSERM Symp. Ser., vol. 26.).
|
45. |
Jauch, P.,
O. H. Petersen, and
P. Läuger.
Electrogenic properties of the sodium‐alanine cotransporter in pancreatic acinar cells: I. Tight‐seal whole‐cell recordings.
J. Membr. Biol.
94:
99–115,
1986.
|
46. |
Katz, B., and
R. Miledi.
The statistical nature of the acetylcholine potential and its molecular components.
J. Physiol. Lond.
224:
665–699,
1972.
|
47. |
Kondo, S., and
I. Schulz.
Calcium ion uptake in isolated pancreas cells induced by secretagogues.
Biochim. Biophys. Acta
419:
76–92,
1976.
|
48. |
Kurtzer, R. J., and
M. L. Roberts.
Calcium‐dependent K+ efflux from rat submandibular gland. The effects of trifluoroperazine and quinidine.
Biochim. Biophys. Acta
693:
479–484,
1982.
|
49. |
Laugier, R., and
O. H. Petersen.
Effects of intracellular EGTA injection on stimulant‐evoked membrane potential and resistance changes in pancreatic acinar cells.
Pfluegers Arch.
386:
147–152,
1980.
|
50. |
Laugier, R., and
O. H. Petersen.
Pancreatic acinar cells: electrophysiological evidence for stimulant‐evoked increase in membrane calcium permeability in the mouse.
J. Physiol. Lond.
303:
61–72,
1980.
|
51. |
Laugier, R., and
O. H. Petersen.
Two different types of electrogenic amino acid action on pancreatic acinar cells.
Biochim. Biophys. Acta
641:
216–221,
1981.
|
52. |
Loewenstein, W. R.
Junctional intercellular communication: the cell‐to‐cell membrane channel.
Physiol. Rev.
61:
829–913,
1981.
|
53. |
Lundberg, A.
The electrophysiology of the submaxillary gland of the cat.
Acta Physiol. Scand.
35:
1–25,
1955.
|
54. |
Lundberg, A.
Secretory potentials and secretion in the sublingual gland of the cat.
Nature Lond.
177:
1080–1081,
1956.
|
55. |
Lundberg, A.
Secretory potentials in the sublingual gland of the cat.
Acta Physiol. Scand.
40:
21–34,
1957.
|
56. |
Lundberg, A.
The mechanism of establishment of secretory potentials in sublingual gland cells.
Acta Physiol. Scand.
40:
35–58,
1957.
|
57. |
Lundberg, A.
Anionic dependence of secretion and secretory potentials in sublingual gland cells.
Acta Physiol. Scand.
40:
101–112,
1957.
|
58. |
Lundberg, A.
Electrophysiology of salivary glands.
Physiol. Rev.
38:
21–40,
1958.
|
59. |
Marty, A.,
Y. P. Tan, and
A. Trautmann.
Three types of calcium‐dependent channel in rat lacrimal glands.
J. Physiol. Lond.
357:
293–325,
1984.
|
60. |
Maruyama, Y.
Ca2+‐induced excess capacitance fluctuation studied by phase‐sensitive detection method in exocrine pancreatic acinar cells.
Pfluegers Arch.
407:
561–563,
1986.
|
61. |
Maruyama, Y.,
D. V. Gallacher, and
O. H. Petersen.
Voltage and Ca2+‐activated K+ channel in baso‐lateral acinar cell membranes of mammalian salivary glands.
Nature Lond.
302:
827–829,
1983.
|
62. |
Maruyama, Y.,
A. Nishiyama,
T. Izumi,
N. Hoshimiya, and
O. H. Petersen.
Ensemble noise and current relaxation analysis of K+ current in single isolated salivary acinar cells from rat.
Pfluegers Arch.
406:
69–72,
1986.
|
63. |
Maruyama, Y.,
A. Nishiyama, and
T. Teshima.
Two types of cation channels in the basolateral cell membrane of human salivary gland acinar cells.
Jpn. J. Physiol.
36:
219–223,
1986.
|
64. |
Maruyama, Y., and
O. H. Petersen.
Single‐channel currents in isolated patches of plasma membrane from basal surface of pancreatic acini.
Nature Lond.
299:
159–161,
1982.
|
65. |
Maruyama, Y., and
O. H. Petersen.
Cholecystokinin activation of single‐channel currents is mediated by internal messenger in pancreatic acinar cells.
Nature Lond.
300:
61–63,
1982.
|
66. |
Maruyama, Y., and
O. H. Petersen.
Voltage clamp study of stimulant‐evoked currents in mouse pancreatic acinar cells.
Pfluegers Arch.
399:
54–62,
1983.
|
67. |
Maruyama, Y., and
O. H. Petersen.
Control of K+ conductance by cholecystokinin and Ca2+ in single pancreatic acinar cells studied by the patch‐clamp technique.
J. Membr. Biol.
79:
293–300,
1984.
|
68. |
Maruyama, Y., and
O. H. Petersen.
Single calcium‐dependent cation channels in mouse pancreatic acinar cells.
J. Membr. Biol.
81:
83–87,
1984.
|
69. |
Maruyama, Y.,
O. H. Petersen,
P. Flanagan, and
G. T. Pearson.
Quantification of Ca2+‐activated K+ channels under hormonal control in pig pancreas acinar cells.
Nature Lond.
305:
228–232,
1983.
|
70. |
Matthews, E. K.,
O. H. Petersen, and
J. A. Williams.
Pancreatic acinar cells: acetylcholine‐induced membrane depolarization, calcium efflux and amylase release.
J. Physiol. Load.
234:
689–701,
1973.
|
71. |
Meda, P.,
I. Findlay,
E. Kolod,
L. Orci, and
O. H. Petersen.
Short and reversible uncoupling evokes little change in the gap junctions of pancreatic acinar cells.
J. Ultrastruct. Res.
83:
69–84,
1983.
|
72. |
Muallem, S.,
M. Schoeffield,
S. Pandol, and
G. Sachs.
Inositol trisphosphate modification of ion transport in rough endoplasmic reticulum.
Proc. Natl. Acad. Sci. USA
82:
4433–4437,
1985.
|
73. |
Nagel, W.
Inhibition of potassium conductance by barium in frog skin epithelium.
Biochim. Biophys. Acta
552:
346–357,
1979.
|
74. |
Nauntofte, B., and
J. H. Poulsen.
Effects of Ca2+ and furosemide on Cl‐ transport and O2 uptake in rat parotid acini.
Am. J. Physiol.
251
(Cell Physiol. 20):
C175–C185,
1986.
|
75. |
Neher, E., and
A. Marty.
Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells.
Proc. Natl. Acad. Sci. USA
79:
6712–6716,
1982.
|
76. |
Neher, E., and
B. Sakmann.
Single‐channel currents recorded from membrane of denervated frog muscle fibres.
Nature Lond.
260:
799–802,
1976.
|
77. |
Neyton, J., and
A. Trautmann.
Single‐channel currents of an intercellular junction.
Nature Lond.
317:
331–335,
1985.
|
78. |
Nishiyama, A., and
O. H. Petersen.
Membrane potential and resistance measurement in acinar cells from salivary glands in vitro: effect of acetylcholine.
J. Physiol. Lond.
242:
173–188,
1974.
|
79. |
Ochs, D. L.,
J. I. Korenbrot, and
J. A. Williams.
Relationship between free cytosolic calcium and amylase release by pancreatic acini.
Am. J. Physiol.
249
(Gastrointest. Liver Physiol.12):
G389–G398,
1985.
|
80. |
Palade, G.
Intracellular aspects of the process of protein synthesis.
Science Wash. DC
189:
347–358,
1975.
|
81. |
Pearson, G. T.,
P. M. Flanagan, and
O. H. Petersen.
Neural and hormonal control of membrane conductance in the pig pancreatic acinar cell.
Am. J. Physiol.
247
(Gastrointest. Liver Physiol.10):
G520–G526,
1984.
|
82. |
Pearson, G. T., and
O. H. Petersen.
Nervous control of membrane conductance in mouse lacrimal acinar cells.
Pfluegers Arch.
400:
51–59,
1984.
|
83. |
Pedersen, G. L., and
O. H. Petersen.
Membrane potential measurement in parotid acinar cells.
J. Physiol. Lond.
234:
217–227,
1973.
|
84. |
Petersen, O. H.
Some factors influencing stimulation‐induced release of potassium from the cat submandibular gland to fluid perfused through the gland.
J. Physiol. Lond.
208:
431–447,
1970.
|
85. |
Petersen, O. H.
Formation of saliva and potassium transport in the perfused cat submandibular gland.
J. Physiol. Lond.
216:
129–142,
1971.
|
86. |
Petersen, O. H.
Electrogenic sodium pump in pancreatic acinar cells.
Proc. R. Soc. Lond. B Biol. Sci.
184:
115–119,
1973.
|
87. |
Petersen, O. H.
Electrical coupling between pancreatic acinar cells.
J. Physiol. Lond.
250:
2P–4P,
1975.
|
88. |
Petersen, O. H.
Electrophysiology of mammalian gland cells.
Physiol. Rev.
56:
535–577,
1976.
|
89. |
Petersen, O. H.
Electrophysiology of Gland Cells.
New York:
Academic,
1981.
|
90. |
Petersen, O. H.
Stimulus‐excitation coupling in plasma membranes of pancreatic acinar cells.
Biochim. Biophys. Acta
694:
163–184,
1982.
|
91. |
Petersen, O. H.
Importance of electrical cell‐cell communication in secretory epithelia. In:
Gap Junctions,
edited by M. V. Bennett and
D. C. Spray.
Cold Spring Harbor, NY:
Cold Spring Harbor,
1985,
p. 315–324.
|
92. |
Petersen, O. H.
Potassium channels and fluid secretion.
News Physiol. Sci.
1:
92–95,
1986.
|
93. |
Petersen, O. H.
Calcium‐activated potassium channels and fluid secretion by exocrine glands.
Am. J. Physiol.
251
(Gastrointest. Liver Physiol.14):
G1–G13,
1986.
|
94. |
Petersen, O. H.,
I. Findlay,
N. Iwatsuki,
J. Singh,
D. V. Gallacher,
C. M. Fuller,
G. T. Pearson,
M. J. Dunne, and
A. P. Morris.
Human pancreatic acinar cells: studies of stimulus‐secretion coupling.
Gastroenterology
89:
109–117,
1985.
|
95. |
Petersen, O. H., and
Y. Maruyama.
Cholecystokinin and acetylcholine activation of single‐channel currents via second messenger in pancreatic acinar cells. In:
Single‐Channel Recording,
edited by B. Sakmann and
E. Neher.
New York:
Plenum,
1983,
p. 425–435.
|
96. |
Petersen, O. H., and
Y. Maruyama.
What is the mechanism of the calcium influx to pancreatic acinar cells evoked by secretagogues?
Pfluegers Arch.
396:
82–84,
1983.
|
97. |
Petersen, O. H., and
Y. Maruyama.
Calcium‐activated potassium channels and their role in secretion.
Nature Lond.
307:
693–696,
1984.
|
98. |
Petersen, O. H.,
Y. Maruyama,
J. Graf,
R. Laugier,
A. Nishiyama, and
G. T. Pearson.
Ionic currents across pancreatic acinar cell membranes and their role in fluid secretion.
Philos. Trans. R. Soc. Lond. B Biol. Sci.
296:
151–166,
1981.
|
99. |
Petersen, O. H., and
C. C. H. Petersen.
The patch‐clamp technique: recording ionic currents through single pores in the cell membrane.
News Physiol. Sci.
1:
5–8,
1986.
|
100. |
Petersen, O. H., and
H. G. Philpott.
Pancreatic acinar cells: the anion selectivity of the acetylcholine‐opened chloride pathway.
J. Physiol. Lond.
306:
481–492,
1980.
|
101. |
Petersen, O. H., and
J. H. Poulsen.
Secretory potentials, potassium transport and secretion in the cat submandibular gland during perfusion with sulphate Locke's solution.
Experientia
24:
919–920,
1968.
|
102. |
Petersen, O. H., and
J. Singh.
Amino acid‐evoked membrane current in voltage‐clamped mouse pancreatic acini.
J. Physiol. Lond.
319:
99P–100P,
1981.
|
103. |
Petersen, O. H., and
J. Singh.
Acetylcholine‐evoked potassium release in the mouse pancreas.
J. Physiol. Lond.
365:
319–329,
1985.
|
104. |
Petersen, O. H., and
N. Ueda.
Pancreatic acinar cells: the role of calcium in stimulus‐secretion coupling.
J. Physiol. Lond.
254:
583–606,
1976.
|
105. |
Petersen, O. H., and
N. Ueda.
Secretion of fluid and amylase in the perfused rat pancreas.
J. Physiol. Lond.
264:
819–835,
1977.
|
106. |
Poulsen, J. H., and
S. W. Bledsoe.
Salivary gland K+ transport: in vivo studies with K+‐specific microelectrodes.
Am. J. Physiol.
234
(Endocrinol. Metab. Gastrointest. Physiol.3):
E79–E83,
1978.
|
107. |
Poulsen, J. H., and
B. Oakley II.
Intracellular potassium ion activity in resting and stimulated mouse pancreas and submandibular gland.
Proc. R. Soc. Lond. B Biol. Sci.
204:
99–104,
1979.
|
108. |
Roberts, M. L.,
N. Iwatsuki, and
O. H. Petersen.
Parotid acinar cells: ionic dependence of acetylcholine‐evoked membrane potential changes.
Pfluegers Arch.
376:
159–167,
1978.
|
109. |
Roberts, M. L., and
O. H. Petersen.
Membrane potential and resistance changes induced in salivary gland acinar cells by microiontophoretic application of acetylcholine and adrenergic agonists.
J. Membr. Biol.
30:
297–312,
1978.
|
110. |
Saito, Y.,
T. Ozawa,
H. Hayashi, and
A. Nishiyama.
Acetylcholine‐induced change in intracellular Cl‐ activity of the mouse lacrimal acinar cells.
Pfluegers Arch.
405:
108–111,
1985.
|
111. |
Schulz, I.
Electrolyte and fluid secretion in the exocrine pancreas. In:
Physiology of the Gastrointestinal Tract.
(2nd ed.),
edited by L. R. Johnson.
New York:
Raven,
1987,
p. 1147–1171.
|
112. |
Schulz, I., and
H. H. Stolze.
The exocrine pancreas: the role of secretagogues, cyclic nucleotides and calcium in enzyme secretion.
Annu. Rev. Physiol.
42:
127–156,
1980.
|
113. |
Sigworth, F. J.
The variance of sodium current fluctuations at the node of Ranvier.
J. Physiol. Lond.
307:
97–129,
1980.
|
114. |
Silva, P.,
J. Stoff,
M. Field,
L. Fine,
J. N. Forrest, and
F. H. Epstein.
Mechanism of active chloride secretion by shark rectal gland: role of Na‐K‐ATPase in chloride transport.
Am. J. Physiol.
233
(Renal Fluid Electrolyte Physiol.2):
F298–F306,
1977.
|
115. |
Singh, J., and
O. H. Petersen.
The effects of l‐alanine and acetylcholine on membrane potential, 45Ca2+ and 86Rb+ efflux and amylase secretion in the isolated mouse pancreas.
Q. J. Exp. Physiol. Cogn. Med. Sci.
69:
531–540,
1984.
|
116. |
Stanley, E. F., and
G. Ehrenstein.
A model for exocytosis based on the opening of calcium‐activated potassium channels in vesicles.
Life Sci.
37:
1985–1995,
1985.
|
117. |
Streb, H.,
E. Bayerdorffer,
W. Haase,
R. F. Irvine, and
I. Schulz.
Effect of inositol‐1,4,5‐trisphosphate on isolated subcellular fractions of rat pancreas.
J. Membr. Biol.
81:
241–253,
1984.
|
118. |
Suzuki, K.,
C. C. H. Petersen, and
O. H. Petersen.
Hormonal activation of single K+ channels via internal messenger in isolated pancreatic acinar cells.
FEBS Lett.
192:
307–312,
1985.
|
119. |
Suzuki, K., and
O. H. Petersen.
The effects of Na+ and Cl‐ removal and of loop diuretics on acetylcholine‐evoked membrane potential changes in mouse lacrimal acinar cells.
Q. J. Exp. Physiol. Cogn. Med. Sci.
70:
437–445,
1985.
|
120. |
Suzuki, K., and
O. H. Petersen.
Patch‐clamp studies of K+ channels in guinea‐pig pancreatic acinar cells (Abstract).
J. Physiol. Lond.
378:
62P,
1986.
|
121. |
Trautmann, A., and
A. Marty.
Activation of Ca‐dependent K channels by carbamoylcholine in rat lacrimal glands.
Proc. Natl. Acad. Sci. USA
81:
611–615,
1984.
|
122. |
Tyrakowski, T.,
S. Milutinovic, and
I. Schulz.
Studies on isolated subcellular components of cat pancreas. III. Alanine‐sodium co‐transport in isolated plasma membrane vesicles.
J. Membr. Biol.
38:
333–346,
1978.
|
123. |
Ueda, N., and
O. H. Petersen.
The dependence of caerulein‐evoked pancreatic fluid secretion on the extracellular calcium concentration.
Pfluegers Arch.
370:
179–183,
1977.
|
124. |
Welsh, M. J.
Barium inhibition of basolateral membrane potassium conductance in tracheal epithelium.
Am. J. Physiol.
244
(Renal Fluid Electrolyte Physiol.13):
F639–F645,
1983.
|
125. |
Young, J. A., and
E. W. Van Lennep.
Transport in salivary and salt glands. In:
Membrane Transport in Biology. Transport Organs,
edited by G. Giebisch.
Berlin:
Springer‐Verlag,
1979,
p. 563–692.
|