Comprehensive Physiology Wiley Online Library

Secretion of Bicarbonate by Gastric and Duodenal Mucosa

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Methods of Measurement
1.1 Gastric Bicarbonate Secretion
1.2 Duodenal Bicarbonate Secretion
2 Mechanisms of Gastroduodenal Bicarbonate Secretion
2.1 Origin and Transport of Gastric Bicarbonate
2.2 Contribution of Bicarbonate Leakage
2.3 Duodenal Mucosal Transport of Bicarbonate
2.4 Gradient in Secretion Along the Duodenum
2.5 Biochemical Basis for Duodenal Bicarbonate Secretion
3 Physiological Control of Gastroduodenal Bicarbonate Secretion
3.1 Humoral Control
3.2 Neural Influence
3.3 Control by Mucosal Endogenous Prostaglandins
3.4 Relation to Gastric Acid Secretion and Blood Flow
4 Pharmacological Modulation
4.1 Inhibitors of Gastric Alkaline Secretion
4.2 Stimulation of Gastric Alkaline Secretion by Prostaglandins
4.3 Duodenal Mucosal Alkaline Secretion and cAMP
4.4 Stimulation of Duodenal Secretion by Prostaglandins
4.5 Other Drugs Affecting Duodenal Alkaline Secretion
5 Protective Role of Bicarbonate
5.1 Surface pH Gradient
5.2 Possible Therapeutic Implications
6 Summary and Perspectives
Figure 1. Figure 1.

Surface epithelia secretion of in bullfrog proximal duodenum based on in vitro studies. a, Cl exchange stimulated by glucagon and inhibited by furosemide; b, transport independent of luminal Cl, stimulated by prostaglandins and cAMP but insensitive to furosemide; c, anion carrier that under some conditions displays affinity for Cl; d, passive migration of through shunt pathways sensitive to variations in transmucosal hydrostatic pressure. Similar inhibition of glucagon–stimulated secretion by furosemide occurs in rat duodenum in vivo 51.

From Flemström and Garner 45
Figure 2. Figure 2.

Humoral mediation of rise in secretion in response to luminal acid, based on experiments where isolated amphibian mucosae were mounted in parallel 82. Exposure of fundic mucosa to pH 2 releases agents that simulate secretion in parallel (non‐acid‐exposed) fundus and antrum. Exposure of duodenal mucosa to pH 4 releases agents that stimulate secretion in both duodenum and fundus. Experiments with fundic, antral, and duodenal pouches in conscious dog 109,110 suggest that similar stimulation of mucosa alkaline secretions operates in mammals.

From Heylings et al. 84
Figure 3. Figure 3.

Sham feeding (SH) stimulates gastric secretion in healthy volunteers. Means ± SE; n = 6, where n is number of experiments.

From Forssell et al. 58. Copyright 1985 by The American Gastroenterological Association
Figure 4. Figure 4.

Effects of bilateral vagal stimulation (shaded area, 10 Hz for 10 min) on gastric and duodenal secretion in anesthetized cats with intact (closed circles, n = 5) and cut (open circles, n = 6) splanchnic nerves; n, number of experiments. Note much greater response after splanchnicotomy.

From Fändriks 30
Figure 5. Figure 5.

Brief 10‐min exposures of duodenal segments devoid of Brunner's glands in anesthetized rat to 10 mM hydrochloric acid increase the secretion titrated at neutral luminal pH 7.4. Pretreatment with ganglionic blocking agent hexamethonium 10 mg/kg) or muscarinic antagonist atropine 40 μg/kg) decreases response to luminal acid. Data are means ± SE of normalized secretion; n = 8 in all groups, where n is the number of rats.

Figure 6. Figure 6.

Model for protection of gastric mucosa. Stimulation of the H+ secretory process in the parietal cells increases the amount of available for secretion by surface epithelial cells. Direct stimulation of secretory process by neural stimuli and the subsequent effect of low luminal pH generated by H+ secretion further increase protection.

From Flemström 43. In: Physiology of the Gastrointestinal Tract 2nd ed.), © 1987, Raven Press, New York
Figure 7. Figure 7.

Inhibitory action of various nonsteroidal, anti‐inflammatory drugs on gastric fundic secretion in vitro. Frog tissues were pretreated with a histamine H2‐receptor antagonist, and drugs were added to serosal side (Closed circles, exposed to an anti‐inflammatory agent; open circles, exposed to histamine H2‐receptor antagonist alone.

Adapted from Garner 63; aspirin results), and from Garner et al. 67; fenclofenac and indomethacin results)
Figure 8. Figure 8.

Stimulation of gastric alkaline secretion by 16,16‐dimethyl prostaglandin E2 in frog fundus, rabbit fundus, and canine Heidenhain pouches and by PGE2 in human stomach. Compounds were applied to serosal side of isolated preparations and to luminal side in vivo

Adapted from Garner and Heylings 68; frog data), Rees et al. 133; rabbit data), Kauffman et al. 98; dog data), and Johansson et al. 95; human data)
Figure 9. Figure 9.

In the isolated proximal duodenum, prostaglandin E2 and forskolin (serosal side) show comparable activity as stimulants of secretion, suggesting that prostaglandins act by elevating intracellular cAMP levels. Sensitivity of tissues to a standard agonist (PGE2) was established at the beginning of experiments. Data are means ± SE; n = 8 for both where n is number of experiments.



Figure 1.

Surface epithelia secretion of in bullfrog proximal duodenum based on in vitro studies. a, Cl exchange stimulated by glucagon and inhibited by furosemide; b, transport independent of luminal Cl, stimulated by prostaglandins and cAMP but insensitive to furosemide; c, anion carrier that under some conditions displays affinity for Cl; d, passive migration of through shunt pathways sensitive to variations in transmucosal hydrostatic pressure. Similar inhibition of glucagon–stimulated secretion by furosemide occurs in rat duodenum in vivo 51.

From Flemström and Garner 45


Figure 2.

Humoral mediation of rise in secretion in response to luminal acid, based on experiments where isolated amphibian mucosae were mounted in parallel 82. Exposure of fundic mucosa to pH 2 releases agents that simulate secretion in parallel (non‐acid‐exposed) fundus and antrum. Exposure of duodenal mucosa to pH 4 releases agents that stimulate secretion in both duodenum and fundus. Experiments with fundic, antral, and duodenal pouches in conscious dog 109,110 suggest that similar stimulation of mucosa alkaline secretions operates in mammals.

From Heylings et al. 84


Figure 3.

Sham feeding (SH) stimulates gastric secretion in healthy volunteers. Means ± SE; n = 6, where n is number of experiments.

From Forssell et al. 58. Copyright 1985 by The American Gastroenterological Association


Figure 4.

Effects of bilateral vagal stimulation (shaded area, 10 Hz for 10 min) on gastric and duodenal secretion in anesthetized cats with intact (closed circles, n = 5) and cut (open circles, n = 6) splanchnic nerves; n, number of experiments. Note much greater response after splanchnicotomy.

From Fändriks 30


Figure 5.

Brief 10‐min exposures of duodenal segments devoid of Brunner's glands in anesthetized rat to 10 mM hydrochloric acid increase the secretion titrated at neutral luminal pH 7.4. Pretreatment with ganglionic blocking agent hexamethonium 10 mg/kg) or muscarinic antagonist atropine 40 μg/kg) decreases response to luminal acid. Data are means ± SE of normalized secretion; n = 8 in all groups, where n is the number of rats.



Figure 6.

Model for protection of gastric mucosa. Stimulation of the H+ secretory process in the parietal cells increases the amount of available for secretion by surface epithelial cells. Direct stimulation of secretory process by neural stimuli and the subsequent effect of low luminal pH generated by H+ secretion further increase protection.

From Flemström 43. In: Physiology of the Gastrointestinal Tract 2nd ed.), © 1987, Raven Press, New York


Figure 7.

Inhibitory action of various nonsteroidal, anti‐inflammatory drugs on gastric fundic secretion in vitro. Frog tissues were pretreated with a histamine H2‐receptor antagonist, and drugs were added to serosal side (Closed circles, exposed to an anti‐inflammatory agent; open circles, exposed to histamine H2‐receptor antagonist alone.

Adapted from Garner 63; aspirin results), and from Garner et al. 67; fenclofenac and indomethacin results)


Figure 8.

Stimulation of gastric alkaline secretion by 16,16‐dimethyl prostaglandin E2 in frog fundus, rabbit fundus, and canine Heidenhain pouches and by PGE2 in human stomach. Compounds were applied to serosal side of isolated preparations and to luminal side in vivo

Adapted from Garner and Heylings 68; frog data), Rees et al. 133; rabbit data), Kauffman et al. 98; dog data), and Johansson et al. 95; human data)


Figure 9.

In the isolated proximal duodenum, prostaglandin E2 and forskolin (serosal side) show comparable activity as stimulants of secretion, suggesting that prostaglandins act by elevating intracellular cAMP levels. Sensitivity of tissues to a standard agonist (PGE2) was established at the beginning of experiments. Data are means ± SE; n = 8 for both where n is number of experiments.

References
 1. Allen, A. Structure and function of gastric mucus. In: Physiology of the Gastrointestinal Tract, edited by L. R. Johnson, J. Christensen, M. I. Grossman, E. D. Jacobson, and S. G. Schultz. New York: Raven, 1981, p. 617–639.
 2. Allison, J. G., and J. J. Cullen. Paracellular back‐diffusion of H+ across bullfrog fundic mucosa resulting from Ca2+ depletion and its effects on taurocholate‐induced mucosal injury. Am. Surg. 52: 226–232, 1986.
 3. Aly, A., and G. Flemström. Alkaline secretion by the stomach and intestine: effects of eicosanoids and anti‐inflammatory drugs. In: Eicosanoids and the Gastrointestinal Tract, edited by K. Hillier. Lancaster, UK: MTP, 1987.
 4. Aly, A., K. Green, and C. Johansson. Acid instillation increases gastric luminal prostaglandin E2 output in man. Acta Med. Scand. 218: 505–510, 1985.
 5. Andrews, C. J. H., and W. H. H. Andrews. Receptors, activated by acid, in the duodenal wall of rabbits. Q. J. Exp. Physiol. Cogn. Med. Sci. 56: 221–230, 1971.
 6. Ashley, S. W., D. I. Soybel, and L. Y. Cheung. Effect of 16,16‐dimethyl prostaglandin E2 on gastric epithelial cell membrane potentials and resistances. Surgery St. Louis 98: 166–173, 1985.
 7. Ashley, S. W., D. I. Soybel, and L. Y. Cheung. Measurements of intracellular pH in Necturus antral mucosa by microelectrode technique. Am. J. Physiol. 250 (Gastrointest. Liver Physiol. 13): G625–G632, 1986.
 8. Bersimbaev, R. I., M. M. Tairov, and R. I. Sagalnik. Biochemical mechanisms of regulation of mucus secretion by prostaglandin E2 in rat gastric mucosa. Eur. J. Pharmacol. 115: 259–266, 1985.
 9. Bloom, S. R., S. J. Mitchell, G. R. Greenberg, N. Christofides, W. Domschke, S. Domschke, P. Mitznegg, and L. Demling. Release of VIP, secretin, and motilin after duodenal acidification in man. Acta Hepato‐Gastroenterol. 25: 365–368, 1978.
 10. Bolton, J. P., and M. M. Cohen. Stimulation of non‐parietal secretion in canine Heidenhain pouches by 16,16‐dimethyl prostaglandin E2. Digestion 17: 291–299, 1978.
 11. Bonting, S. L. Lack of evidence that chloride transport involves an anion ATP‐ase. In: Proc. 30th Congr. Int. Union Physiol. Sci., Vancouver, BC, Canada, July 1986, p. 333.
 12. Boughton‐Smith, N. K., and B. J. R. Whittle. Stimulation and inhibition of prostaglandin formation in the gastric mucosa and ileum in vitro by anti‐inflammatory agents. Br. J. Pharmacol. 78: 173–180, 1983.
 13. Bridén, S., G. Flemström, and E. Kivilaakso. Cysteamine and propionitrile inhibit the rise of duodenal mucosal alkaline secretion in response to luminal acid in rats. Gastroenterology 88: 295–302, 1985.
 14. Brown, C. D. A., and L. A. Turnberg. Mechanisms of anion transport across the apical membrane of duodenal enterocytes (Abstract). J. Physiol. Lond. 382: 49P, 1987.
 15. Bukhave, K., and J. Rask‐Madsen. Saturation kinetics applied to in vitro effects of low prostaglandin E2 and F2α‐concentrations on ion transport across human jejunal mucosa. Gastroenterology 78: 32–42, 1980.
 16. Canfield, S. P., and B. P. Curwain. Measurement of gastric bicarbonate secretion in the presence of acid secretion in the anaesthetized rat (Abstract). J. Physiol. Lond. 374: 2P, 1986.
 17. Canfield, S. P., and J. P. N. White. Duodenal alkalinization in a rat isolated duodenum preparation (Abstract). J. Physiol. Lond. 374: 3P, 1986.
 18. Case, R. M., A. Garner, and K. K. Uddin. Simultaneous determination of duodenal and pancreatic bicarbonate transport: differential effects of secretin and prostaglandin E2 in the cat in vivo (Abstract). J. Physiol. Lond. 340: 36P–37P, 1983.
 19. Cheung, L. Y., and W. T. Newton. Cyclic guanosine monophosphate response to acetylcholine stimulation of gastric alkaline secretion. Surgery St. Louis 86: 156–161, 1979.
 20. Chung, R. S. K., B. S. Sum, H. Goldman, M. Field, and W. Silen. Effects of chelation of calcium on the gastric mucosal barrier. Gastroenterology 59: 200–207, 1970.
 21. Crampton, J. R., L. C. Gibbons, and W. D. W. Rees. The effect of aluminum on bicarbonate secretion by isolated amphibian gastroduodenal mucosa (Abstract). Gut 26: A1111, 1985.
 22. Curci, S., and T. Schettino. Effect of external sodium on intracellular chloride activity in the surface cells of frog gastric mucosa. Pfluegers Arch. 401: 152–159, 1984.
 23. Davenport, H. W. Salicylate damage to the gastric mucosal barrier. N. Engl. J. Med. 276: 1307–1312, 1967.
 24. Dayton, M. T., G. L. Kauffman, J. F. Schlegel, C. F. Code, and J. H. Steinbach. Gastric bicarbonate appearance with ethanol ingestion. Mechanism and significance. Dig. Dis. Sci. 28: 449–455, 1983.
 25. Dayton, M. T., and J. Schlegel. Cimetidine‐induced bicarbonate production in canine gastric pouches. J. Surg. Res. 32: 464–470, 1982.
 26. Dayton, M. T., and J. Schlegel. The effect of secretin on canine gastric mucosal HCO‐3 production. J. Surg. Res. 35: 319–324, 1983.
 27. Demarest, J. R., C. Scheffey, and T. E. Machen. Segregation of gastric Na and Cl transport: a vibrating probe and microelectrode study. Am. J. Physiol. 251 (Cell Physiol. 20): C643–C648, 1986.
 28. Dorricott, N. J., R. G. Fiddian‐Green, and W. Silen. Mechanisms of acid disposal in canine duodenum. Am. J. Physiol. 228: 269–275, 1975.
 29. Engel, E., A. Peskoff, G. L. Kauffman, Jr., and M. I. Grossman. Analysis of hydrogen ion concentration in the gastric gel mucus layer. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G321–G338, 1984.
 30. Fändriks, L. Vagal and splanchnic neural influences on gastric and duodenal bicarbonate secretions. Acta Physiol. Scand. Suppl. 555: 1–39, 1986.
 31. Fändriks, L. Sympatho‐adrenergic inhibition of vagally induced gastric motility and gastroduodenal HCO‐3 secretion in the cat. Acta Physiol. Scand. 128: 555–562, 1986.
 32. Fändriks, L., and L. Stage. Simultaneous measurements of gastric motility and acid‐bicarbonate secretion in the anesthetized cat. Acta Physiol. Scand. 128: 563–573, 1986.
 33. Feldman, M. Gastric H+ and HCO‐3 secretion in response to sham feeding in humans. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G188–G191, 1985.
 34. Feldman, M., and C. C. Barnett. Gastric bicarbonate secretion in humans. Effects of pentagastrin, bethanechol, and 11,16,16‐trimethyl prostaglandin E2. J. Clin. Invest. 72: 295–303, 1983.
 35. Feldman, M., and C. C. Barnett. Gastric bicarbonate secretion in patients with duodenal ulcer. Gastroenterology 88: 1205–1208, 1985.
 36. Feldman, M., and C. C. Barnett. Effect of bethanechol (urecholine) on gastric acid and non‐parietal secretion in normal subjects and duodenal ulcer patients. Gastroenterology 83: 262–266, 1982.
 37. Flemström, G. Active alkalinization by amphibian gastric fundic mucosa in vitro. Am. J. Physiol. 233 (Endocrinol. Metab. Gastrointest. Physiol. 2): E1–E12, 1977.
 38. Flemström, G. Effect of catecholamines, Ca++and gastrin on gastric HCO‐3 secretion. Acta Physiol. Scand. Special Suppl., 81–90, 1978. (Proc. Symp. Gastric Ion Transport, Uppsala, Sweden, July, 1977.).
 39. Flemström, G. Cl‐ dependence of HCO‐3 transport in frog gastric mucosa. Upsala J. Med. Sci. 85: 303–310, 1980.
 40. Flemström, G. Stimulation of HCO‐3 transport in isolated proximal bullfrog duodenum by prostaglandins. Am. J. Physiol. 239 (Gastrointest. Liver Physiol. 2): G198–G203, 1980.
 41. Flemström, G. Properties of hormone and prostaglandin‐stimulated duodenal HCO‐3 transport. In: Electrolyte and Water Transport Across Gastrointestinal Epithelia, edited by R. M. Case, A. Garner, L. A. Turnberg, and J. A. Young. New York: Raven, 1982, p. 85–94.
 42. Flemström, G. Measurement of gastric bicarbonate secretion. Gastroenterology 88: 2000–2002, 1985.
 43. Flemström, G. Gastric and duodenal mucosal bicarbonate secretion. In: Physiology of the Gastrointestinal Tract (2nd ed.), edited by L. R. Johnson, J. Christensen, M. J. Jackson, E. D. Jacobson, and J. H. Walsh. New York: Raven, 1987, vol. 2, p. 1011–1029.
 44. Flemström, G., A. Bergman, and S. Bridén. Stimulation of mucosal bicarbonate secretion in rat duodenum in vivo by BW755C. Acta Physiol. Scand. 121: 39–43, 1984.
 45. Flemström, G., and A. Garner. Gastroduodenal HCO‐3 transport: characteristics and proposed role in acidity regulation and mucosal protection. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G183–G193, 1982.
 46. Flemström, G., A. Garner, O. Nylander, B. C. Hurst, and J. R. Heylings. Surface epithelial HCO‐3 transport by mammalian duodenum in vivo. Am. J. Physiol. 243 (Gastrointest. Liver Physiol. 6): G348–G358, 1982.
 47. Flemström, G., J. R. Heylings, and A. Garner. Gastric and duodenal HCO‐3 transport in vitro: effects of hormones and local transmitters. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G100–G110, 1982.
 48. Flemström, G., G. Jedstedt, and O. Nylander. β‐Endorphin and enkephalins stimulate duodenal mucosal alkaline secretion in the rat in vivo. Gastroenterology 90: 368–372, 1986.
 49. Flemström, G., and E. Kivilaakso. Demonstration of a pH gradient at the luminal surface of rat duodenum in vivo and its dependence on mucosal alkaline secretion. Gastroenterology 84: 787–794, 1983.
 50. Flemström, G., E. Kivilaakso, S. Bridén, O. Nylander, and G. Jedstedt. Gastroduodenal bicarbonate secretion in mucosal protection. Possible role of vasoactive intestinal peptide and opiates. Dig. Dis. Sci. 30, Suppl. 11: 63S–68S, 1985.
 51. Flemström, G., E. Kivilaakso, and A. Garner. Bicarbonate secretion by the duodenal surface epithelium and its protective role. In: Hydrogen Ion Transport in Epitkelia, edited by J. G. Forte, D. G. Warnock, and F. C. Rector. New York: Wiley‐Interscience, 1984, p. 389–398.
 52. Flemström, G., and H. Mattsson. Effects of omeprazole on gastric and duodenal bicarbonate secretion. Scand. J. Gastroenterol. 21, Suppl. 118: 65–67, 1986.
 53. Flemström, G., and G. Sachs. Ion transport by amphibian antrum in vitro. I. General characteristics. Am. J. Physiol. 228: 1188–1198, 1975.
 54. Flemström, G., and L. A. Turnberg. Gastroduodenal defence mechanisms. Clin. Gastroenterol. 13: 327–354, 1984.
 55. Florey, H. W., and H. E. Harding. The functions of Brunner's glands and the pyloric end of the stomach. J. Pathol. Bacteriol. 37: 431–453, 1933.
 56. Forssell, H., and L. Olbe. Continuous computerized determination of gastric bicarbonate secretion in man. Scand. J. Gastroenterol. 20: 767–774, 1985.
 57. Forssell, H., and L. Olbe. Effect of fundic distension on gastric bicarbonate secretion in man. Scand. J. Gastroenterol. 22: 627–633, 1987.
 58. Forssell, H., B. Stenquist, and L. Olbe. Vagal stimulation of human gastric bicarbonate secretion. Gastroenterology 89: 581–586, 1985.
 59. Fromm, D., J. H. Schwartz, R. Robertson, and R. Fuhro. Ion transport across isolated antral mucosa of the rabbit. Am. J. Physiol. 231: 1783–1789, 1976.
 60. Furukawa, T., E. Olender, D. Fromm, and M. Kolis. Effects of cyclic adenosine monophosphate and prostaglandins on Na+‐ and HCO‐3‐induced dissipation of a proton gradient in isolated gastric surface cells of rabbits. Gastroenterology 89: 500–506, 1985.
 61. Gannon, B., J. Browning, and P. O'Brien. The microvascular architecture of the glandular mucosa of the rat stomach. J. Anat. 135: 667–683, 1982.
 62. Gannon, B., J. Browning, P. O'Brien, and P. Rogers. Mucosal microvascular architecture of the fundus and body of human stomach. Gastroenterology 86: 866–875, 1984.
 63. Garner, A. Effects of acetylsalicylate on alkalinization, acid secretion and electrogenic properties in the isolated gastric mucosa. Acta Physiol. Scand. 99: 281–291, 1977.
 64. Garner, A. Mechanisms of action of aspirin on the gastric mucosa of the guinea pig. Acta Physiol. Scand. Special Suppl., 101–110, 1978. (Proc. Symp. Gastric Ion Transport, Uppsala, Sweden, July, 1977.).
 65. Garner, A. Future opportunities for drug therapy in peptic ulcer disease. Scand. J. Gastroenterol. Suppl. 125: 203–209, 1986.
 66. Garner, A., and G. Flemström. Gastric HCO‐3 secretion in the guinea pig. Am. J. Physiol. 234 (Endocrinol. Metab. Gastrointest. Physiol. 3): E535–E541, 1978.
 67. Garner, A., G. Flemström, and J. R. Heylings. Effects of anti‐inflammatory agents and prostaglandins on acid and bicarbonate secretions in the amphibian‐isolated gastric mucosa. Gastroenterology 77: 457–461, 1979.
 68. Garner, A., and J. R. Heylings. Stimulation of alkaline secretion in amphibian‐isolated gastric mucosa by 16,16‐dimethyl PGE2 and PGF2α: a proposed explanation for some of the cytoprotective actions of prostaglandins. Gastroenterology 76: 497–503, 1979.
 69. Garner, A., J. R. Heylings, T. J. Peters, and J. M. Wilkes. Adrenergic agonists stimulate HCO‐3 secretion by amphibian duodenum in vitro via an action on β2‐receptors (Abstract). J. Physiol. Lond. 354: 34P, 1984.
 70. Garner, A., J. R. Heylings, and A. M. Stanier. Stimulants of epithelial HCO‐3 transport in isolated proximal duodenum from Rana catesbeiana (Abstract). J. Physiol. Lond. 357: 131P, 1984.
 71. Garner, A., and B. C. Hurst. Alkaline secretion by the canine Heidenhain pouch in response to exogenous acid, some gastrointestinal hormones and prostaglandin. In: Advances in Physiological Sciences. Nutrition, Digestion and Metabolism, edited by T. Gati, L. G. Szollar, and G. Ungvary. Oxford, UK: Pergamon, 1981, vol. 12, p. 215–219.
 72. Garner, A., B. C. Hurst, J. R. Heylings, and G. Flemström. Role of gastroduodenal HCO‐3 transport in acid disposal and mucosal protection. In: Electrolyte and Water Transport Across Gastrointestinal Epithelia, edited by R. M. Case, A. Garner, L. A. Turnberg, and J. A. Young. New York: Raven, 1981, p. 239–252.
 73. Gascoigne, A. D., and B. H. Hirst. Prostaglandins alter the relationship between gastric hydrogen ion concentration and flow: evidence for stimulation of nonparietal secretion in the cat. J. Physiol. Lond. 316: 427–438, 1981.
 74. Granstam, S. O., G. Flemström, and O. Nylander. Bicarbonate secretion by the rabbit duodenal mucosa in vivo: effects of prostaglandins, vagal stimulation and some drugs. Acta Physiol. Scand. 131: 377–385, 1987.
 75. Grossman, M. I. The secretion of the pyloric glands of the dog. Symp. Special Lectures, 21st Int. Congr. Physiol. Sci., Buenos Aires, August, 1959, p. 226–228.
 76. Gunion, M. W., Y. Tache, and G. L. Kauffman. Intrahy‐pothalamic corticotropin releasing factor (CRF) increases gastric bicarbonate content (Abstract). Gastroenterology 88: 1407, 1985.
 77. Guslandi, M. Sucralfate and gastric bicarbonate. Pharmacology Basel 31: 298–300, 1986.
 78. Harmon, J. W., M. Woods, and N. J. Gurll. Different mechanisms of hydrogen ion removal in stomach and duodenum. Am. J. Physiol. 535 (Endocrinol. Metab. Gastrointest. Physiol. 4): E692–E698, 1978.
 79. Hazell, S. L., A. Lee, L., Brady, and W. Hennessy. Campylobacter pyloridis and gastritis: association with intercellular spaces and adaptation to an environment of mucus as important factors in colonization of the gastric epithelium. J. Infect. Dis. 153: 658–663, 1986.
 80. Helander, H. F. The cells of gastric mucosa. Int. Rev. Cytol. 70: 279–351, 1981.
 81. Helander, H. F., and R. P. Durbin. Localization of ouabain‐binding sites in frog gastric mucosa. Am. J. Physiol. 243 (Gastrointest. Liver Physiol. 6): G297–G303, 1982.
 82. Heylings, J. R., A. Garner, and G. Flemström. Regulation of gastroduodenal HCO‐3 transport by luminal acid in the frog in vitro. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G235–G242, 1984.
 83. Heylings, J. R., S. E. Hampson, and A. Garner. Endogenous E‐type prostaglandins in regulation of basal alkaline secretion by amphibian duodenum in vitro. Gastroenterology 88: 290–294, 1985.
 84. Heylings, J. R., B. C. Hurst, and A. Garner. Effect of luminal acid on gastric and duodenal bicarbonate transport. Scand. J. Gastroenterol. Suppl. 92: 59–62, 1984.
 85. Himal, H. S., H. W. Werther, M. L. Chapman, H. D. Janowitz, and J. Rudick. Acid absorption in the canine duodenum. Ann. Surg. 185: 481–487, 1977.
 86. Ho, J., I. Lui, W. M. Hui, M. M. T. Ng, and S. K. Lam. A study on the correlation of duodenal‐ulcer healing with campylobacter‐like organisms. J. Gastroenterol. Hepatol. 1: 69–74, 1986.
 87. Hollander, H. F. The two‐component mucous barrier. Arch. Intern. Med. 92: 107–120, 1954.
 88. Hurst, B. C., J. R. Heylings, O. Nylander, K. K. Uddin, A. Garner, and G. Flemström. Duodenal bicarbonate secretion in response to glucagon and related peptides (Abstract). Regul. Pept. 4: 367, 1982.
 89. Inada, I., H. Satoh, N. Inatomi, H. Nagaya, and Y. Maki. Spizofurone, a new anti‐ulcer agent, increases alkaline secretion in isolated bullfrog duodenal mucosa. Eur. J. Pharmacol. 124: 149–155, 1986.
 90. Isenberg, J. I., G. Flemström, and C. Johansson. Mucosal bicarbonate secretion is significantly greater in the proximal versus distal duodenum in the in vivo rat. In: Mechanism of Mucosal Protection in the Upper Gastrointestinal Tract, edited by A. Allen, G. Flemström, A. Garner, W. Silen, and L. A. Turnberg. New York: Raven, 1983, p. 175–180.
 91. Isenberg, J. I., D. L. Hogan, M. A. Koss, and J. A. Selling. Human duodenal mucosal bicarbonate secretion. Evidence for basal secretion and stimulation by hydrochloric acid and a synthetic prostaglandin E1 analogue. Gastroenterology 91: 370–378, 1986.
 92. Isenberg, J. I., J. A. Selling, D. L. Hogan, and M. A. Koss. Impaired proximal duodenal mucosal bicarbonate secretion in duodenal ulcer patients. N. Engl. J. Med. 316: 374–379, 1987.
 93. Isenberg, J. I., B. Smedfors, and C. Johansson. Effect of graded doses of intraluminal H+, prostaglandin E2, and inhibition of endogenous prostaglandin synthesis on proximal duodenal bicarbonate secretion in unanesthetized rat. Gastroenterology 88: 303–307, 1985.
 94. Isenberg, J. I., B. Wallin, C. Johansson, B. Smedfors, V. Mutt, K. Takemoto, and S. Emås. Secretin, VIP, and PHI stimulate rat proximal duodenal surface epithelial bicarbonate secretion in vivo. Regul. Pept. 8: 315–320, 1984.
 95. Johansson, C., A. Aly, E. Nilsson, and G. Flemström. Stimulation of gastric bicarbonate secretion by E2 prostaglandins in man. Adv. Prostaglandin Thromboxane Leukotriene Res. 12: 395–401, 1983.
 96. Jönsson, C., and L. Fändriks. Bleeding decreases duodenal HCO‐3 secretion by a nervous mechanism. Acta Physiol. Scand. 127: 273–274, 1986.
 97. Jönsson, C., O. Nylander, G. Flemström, and L. Fändriks. Vagal stimulation of duodenal HCO‐3 secretion in anaesthetized rats. Acta Physiol. Scand. 128: 65–70, 1986.
 98. Kauffman, G. L., Jr., J. J. Reeve, Jr., and M. I. Grossman. Gastric bicarbonate secretion: effect of topical and intravenous 16,16‐dimethyl prostaglandin E2. Am. J. Physiol. 239 (Gastrointest. Liver Physiol. 2): G44–G48, 1980.
 99. Kauffman, G. L., Jr., and J. H. Steinbach. Gastric bicarbonate secretion: effects of pH and topical 16,16‐dimethyl prostaglandin E2. Surgery St. Louis 89: 324–328, 1981.
 100. Keogh, J. P., A. M. Stanier, J. R. Heylings, A. Allen, and A. Garner. Effects of eicosanoids on amphibian duodenal luminal alkaline secretion in vitro (Abstract). Gut 26: A1110, 1985.
 101. Kivilaakso, E. High plasma HCO‐3 protects gastric mucosa against acute ulceration in the rat. Gastroenterology 81: 921–927, 1981.
 102. Kivilaakso, E. Contribution of ambient HCO‐3 to mucosal protection and intracellular pH in isolated amphibian gastric mucosa. Gastroenterology 85: 1284–1289, 1983.
 103. Kivilaakso, E., and G. Flemström. Surface pH gradient in gastroduodenal mucosa. Scand. J. Gastroenterol. Suppl. 105: 50–52, 1984.
 104. Kivilaakso, E., and W. Silen. Pathogenesis of experimental gastric mucosal injury. N. Engl. J. Med. 301: 364–369, 1979.
 105. Knutson, L., G. Flemström, S. Gustavsson, G. Jedstedt, and G. Lönnerholm. HCO‐3 secretion in rat duodenum after treatment with omeprazole and ranitidine. Scand. J. Gastroenterol. 22: 87–90, 1987.
 106. Konturek, S. J., J. Bilski, and J. Tasler. Cephalic phase of gastric and duodenal alkaline secretion in conscious dogs (Abstract). Gastroenterology 90: 1499, 1986.
 107. Konturek, S. J., J. Bilski, J. Tasler, J. W. Konturek, H. Bielanski, and A. Kaminska. Role of endogenous prostaglandins in duodenal alkaline response to luminal hydrochloric acid or arachidonic acid in conscious dogs. Digestion 34: 268–274, 1986.
 108. Konturek, S. J., J. Bilski, J. Tasler, and J. Laskiewicz. Gastroduodenal alkaline response to acid and taurocholate in conscious dogs. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G149–G154, 1984.
 109. Konturek, S. J., J. Bilski, J. Tasler, and J. Laskiewicz. Gut hormones in stimulation of gastroduodenal alkaline secretion in conscious dogs. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G687–G691, 1985.
 110. Konturek, S. J., J. Tasler, J. Bilski, and J. Kania. Prostaglandins and alkaline secretion from oxyntic, antral, and duodenal mucosa of the dog. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G539–G546, 1983.
 111. Kristensen, M. Titration curves for gastric secretion. Scand. J. Gastroenterol. Suppl. 32: 1–149, 1975.
 112. Kuo, Y. J., L. L. Shanbour, and T. A. Miller. Effects of 16,16‐dimethyl prostaglandin E2 on alkaline secretion in isolated canine gastric mucosa. Dig. Dis. Sci. 12: 1121–1126, 1983.
 113. Lacy, E. R., and S. Ito. Rapid epithelial restitution of the rat gastric mucosa after ethanol injury. Lab. Invest. 51: 573–583, 1984.
 114. Leung, F. W., M. Itoh, K. Hirabayashi, and P. H. Guth. Role of blood flow in gastric and duodenal mucosal injury in the rat. Gastroenterology 88: 281–289, 1985.
 115. Lönnerholm, G., Ö. Selking, and P. J. Wistrand. Amount and distribution of carbonic anhydrases CA I and CA II in the gastrointestinal tract. Gastroenterology 88: 1151–1161, 1985.
 116. Machen, T. E., W. L. McLennan, and T. Zeuthen. Electrogenic Cl‐ secretion by resting gastric mucosa: Na‐Cl cotransport model. In: Hydrogen Ion Transport in Epithelia, edited by I. Schultz, G. Sachs, J. G. Forte, and K. J. Ullrich. Amsterdam: Elsevier, 1980, p. 379–390.
 117. Machen, T. E., and A. M. Paradiso. Regulation of intracellular pH in the stomach. Annu. Rev. Physiol. 49: 21–35, 1987.
 118. Masaki, H., and M. Fujimoto. Microelectrode study on pH gradient across gastric mucus gel and intracellular pH of surface epithelial cells. In: Proc. 30th Congr. Int. Union Physiol. Sci., Vancouver, BC, Canada, July 1986, p. 373.
 119. Matsumura, M., H. Wada, and S. Saito. Effect of solution of low pH on releases of β‐endorphin‐like immunoreactivity and ACTH‐like immunoreactivity from human gastric antral mucosa. Gastroenterol. Jpn. 18: 210–215, 1983.
 120. Miller, T. A., J. M. Henagan, L. A. Watkins, and T. M. Loy. Prostaglandin induced bicarbonate secretion in the canine stomach: characteristics and evidence for a cholinergic mechanism. J. Surg. Res. 35: 105–112, 1983.
 121. Miller, T. A., B. B. Kraemer, J. M. Henagan, and C. E. Foucar. Topical 16,16‐dimethyl prostaglandin E2. Effects on gastric morphology, hydrogen ion loss, and bicarbonate secretion. Dig. Dis. Sci. 28: 641–648, 1983.
 122. Morris, G. P., R. K. Harding, and J. L. Wallace. A functional model for extracellular gastric mucus in the rat. Virchows Arch. B Cell Pathol. 46: 239–251, 1984.
 123. Nobuhara, Y., S. Ueki, and K. Takeuchi. Influence of prednisolone on gastric alkaline response in rat stomach. A possible explanation for steroid‐induced gastric lesions. Dig. Dis. Sci. 30: 1166–1173, 1985.
 124. Nylander, O., and G. Flemström. Effects of alpha‐receptor agonists and antagonists on duodenal surface epithelial HCO‐3 secretion in the rat in vivo. Acta Physiol. Scand. 126: 433–441, 1986.
 125. Nylander, O., G. Flemström, D. Delbro, and L. Fändriks. Vagal influence on gastroduodenal HCO‐3 secretion in the cat in vivo. Am. J. Physiol. 252 (Gastrointest. Liver Physiol. 15): G522–G528, 1987.
 126. Ohe, K., Y. Okada, T. Fujiwara, M. Inoue, and A. Miyoshi. Cysteamine‐induced inhibition of acid neutralization and the increase in hydrogen ion back‐diffusion in the duodenal mucosa. Dig. Dis. Sci. 27: 250–256, 1983.
 127. Olender, E. J., D. Fromm, T. Furukawa, and M. Kolis. H+ disposal by rabbit gastric mucosal surface cells. Gastroenterology 86: 698–705, 1984.
 128. Oskosdinossian, E. T., and H. A. El Munshid. Composition of the alkaline component of human gastric juice: effect of swallowed saliva and duodeno‐gastric reflux. Scand. J. Gastroenterol. 12: 945–950, 1977.
 129. Ovesen, L., F. Bendtsen, U. Tage‐Jensen, N. T. Pedersen, B. R. Gram, and S. Rune. Intraluminal pH in the stomach, duodenum, and proximal duodenum in normal subjects and patients with exocrine pancreatic insufficiency. Gastroenterology 90: 958–962, 1986.
 130. Rechkemmer, G., M. Wahl, W. Kuschinsky, and W. von Engelhardt. pH‐microclimate at the luminal surface of intestinal mucosa of guinea pig and rat. Pfluegers Arch. 407: 33–40, 1986.
 131. Rees, W. D. W., D. Botham, and L. A. Turnberg. A demonstration of bicarbonate production by the normal human stomach in vivo. Dig. Dis. Sci. 27: 961–966, 1982.
 132. Rees, W. D. W., A. Garner, L. A. Turnberg, and L. C. Gibbons. Studies of acid and alkaline secretion by rabbit gastric fundus in vitro: effect of low concentrations of sodium taurocholate. Gastroenterology 83: 435–440, 1982.
 133. Rees, W. D. W., L. C. Gibbons, and L. A. Turnberg. Effects of nonsteroidal anti‐inflammatory drugs and prostaglandins on alkali secretion by rabbit gastric fundus in vitro. Gut 24: 784–789, 1983.
 134. Rees, W. D. W., L. C. Gibbons, and L. A. Turnberg. Influence of opiates on alkali secretion by amphibian gastric and duodenal mucosa in vitro. Gastroenterology 90: 323–327, 1986.
 135. Rees, W. D. W., L. C. Gibbons, G. Warhurst, and L. A. Turnberg. Studies of bicarbonate secretion by the normal human stomach in vivo—effect of aspirin, sodium taurocholate and prostaglandin E2. In: Mechanisms of Mucosal Protection in the Upper Gastrointestinal Tract, edited by A. Allen, G. Flemström, A. Garner, W. Silen, and L. A. Turnberg. New York: Raven, 1983, p. 119–124.
 136. Rehm, W. S., C. F. Butler, S. G. Spangler, and S. S. Sanders. A model to explain uphill water transport in the mammalian stomach. J. Theor. Biol. 27: 433–453, 1970.
 137. Reichstein, B. J., and M. M. Cohen. Effect of acetazolamide on rat gastric mucosal protection and stimulated bicarbonate secretion with 16,16‐dimethyl PGE2. J. Lab. Clin. Med. 104: 797–804, 1984.
 138. Ross, I. N., H. M. M. Bahari, and L. A. Turnberg. The pH gradient across mucus adherent to rat fundic mucosa in vivo and the effect of potential damaging agents. Gastroenterology 81: 713–718, 1981.
 139. Rune, S. J. Acid‐base parameters of duodenal contents in man. Gastroenterology 62: 533–539, 1972.
 140. Rune, S. J., and F. W. Henriksen. Carbon dioxide tensions in the proximal part of the canine gastrointestinal tract. Gastroenterology 56: 758–762, 1969.
 141. Rutten, M., D. Rattner, and W. Silen. Transepithelial transport of guinea pig gastric mucous cell monolayers. Am. J. Physiol. 249 (Cell Physiol. 18): C503–C513, 1985.
 142. Säfsten, B., and G. Flemström. Stimulatory effect of pirenzepine on mucosal bicarbonate secretion in rat duodenum in vivo. Acta Physiol. Scand. 127: 267–268, 1986.
 143. Sanders, M. J., A. Ayalon, M. Roll, and A. H. Soll. The apical surface of canine chief cell monolayers resists H+ back diffusion. Nature Land. 313: 52–54, 1985.
 144. Schettino, R., and S. Curci. On the luminal membrane permeability to Cl‐ of Necturus gastric surface cells. Pfluegers Arch. 403: 331–353, 1985.
 145. Schierbeck, N. P. Ueber Kohlensäure im Ventrikel. Skand. Arch. Physiol. 3: 437–474, 1892.
 146. Schiessel, R., J. G. Allison, A. Barzilai, L. A. Fleischer, J. B. Matthews, A. Merhav, J. Simson, and W. Silen. Failure of 16,16‐dimethyl‐prostaglandin E2 to stimulate alkaline secretion in the isolated amphibian mucosa. Gastroenterology 78: 1513–1519, 1980.
 147. Schiessel, R., M. Starlinger, E. Kovats, W. Appel, W. Feil, and A. Simon. Alkaline secretion of rabbit duodenum in vivo: its dependence on acid base balance and mucosal blood flow. In: Mechanisms of Mucosal Protection in the Upper Gastrointestinal Tract, edited by A. Allen, G. Flemström, A. Garner, W. Silen, and L. A. Turnberg. New York: Raven, 1983, p. 267–272.
 148. Selling, J. A., D. L. Hogan, A. Aly, M. A. Koss, and J. I. Isenberg. Indomethacin inhibits duodenal mucosal bicarbonate secretion and endogenous prostaglandin output in human subjects. Ann. Intern. Med. 106: 368–371, 1987.
 149. Shiau, Y.‐F., P. Fernandez, M. J. Jackson, and S. McMonagle. Mechanisms maintaining a low‐pH microclimate in the intestine. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G608–G617, 1985.
 150. Silen, W., and S. Ito. Mechanism for rapid re‐epithelialization of the gastric mucosal surface. Annu. Rev. Physiol. 47: 217–229, 1985.
 151. Simon, B., and H. Kather. PGI2‐sensitive human adenylate cyclase in biopsy specimens of corpus, antral and duodenal mucosa. Digestion 20: 111–114, 1980.
 152. Simson, J. N. L., A. Merhav, and W. Silen. Alkaline secretion by amphibian duodenum. I. General characteristics. Am. J. Physiol. 240 (Gastrointest. Liver Physiol. 3): G401–G408, 1981.
 153. Simson, J. N. L., A. Merhav, and W. Silen. Alkaline secretion by amphibian duodenum. II. Short‐circuit current and Na+ and Cl‐ fluxes. Am. J. Physiol. 240 (Gastrointest. Liver Physiol. 3): G472–G479, 1981.
 154. Simson, J. N. L., A. Merhav, and W. Silen. Alkaline secretion by amphibian duodenum. III. Effects of DBcAMP, theophylline, and prostaglandins. Am. J. Physiol. 241 (Gastrointest. Liver Physiol. 4): G528–G536, 1981.
 155. Smeaton, L. A., B. H. Hirst, A. Allen, and A. Garner. Gastric and duodenal HCO‐3 transport in vivo: influence of prostaglandins. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G751–G759, 1983.
 156. Spenney, J. G., G. Flemström, R. L. Shoemaker, and G. Sachs. Quantitation of conductance pathways in antral gastric mucosa. J. Gen. Physiol. 65: 645–662, 1975.
 157. Spenney, J. G., R. L. Shoemaker, and G. Sachs. Conductance properties of gastric fundic mucosa. J. Membr. Biol. 19: 105–128, 1974.
 158. Stiel, D., D. J. Murray, and T. J. Peters. Activities and subcellular localizations of enzymes implicated in gastroduodenal bicarbonate secretion. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G133–G139, 1984.
 159. Sugai, N., and S. Ito. Carbonic anhydrase, ultrastructural localization in the mouse gastric mucosa and improvements in the technique. J. Histochem. Cytochem. 6: 511–525, 1980.
 160. Sung, C. P., V. D. Wiebelhaus, B. C. Jenkins, P. Adlercreutz, B. I. Hirschowitz, and G. Sachs. Heterogeneity of 3',5'‐phosphodiesterase of gastric mucosa. Am. J. Physiol. 223: 648–650, 1972.
 161. Suzuki, S., and N. Ozaki. Mg2+‐HCO‐2‐ATPase and carbonic anhydrase in rat intestinal mucosa. Experientia Basel 39: 872–873, 1983.
 162. Swierczek, J. S., and S. J. Konturek. Gastric alkaline response to mucosa‐damaging agents: effect of 16,16‐dimethyl prostaglandin E2. Am. J. Physiol. 241 (Gastrointest. Liver Physiol. 4): G509–G515, 1981.
 163. Tabata, K., E. D. Jacoeson, M. H. Chen, R. F. Murphy, and S. N. Joffe. Decrease in alkaline secretion during duodenal ulceration induced by mepirizole. Gastroenterology 87: 396–401, 1984.
 164. Takeuchi, K., O. Furukawa, H. Tanaka, and S. Okabe. Determination of acid‐neutralizing capacity in rat duodenum. Influences of 16,16‐dimethyl prostaglandin E2 and nonsteroidal antiinflammatory drugs. Dig. Dis. Sci. 31: 631–637, 1986.
 165. Takeuchi, K., O. Furukawa, H. Tanaka, and S. Okabe. A new model of duodenal ulcers induced in rats by indomethacin plus histamine. Gastroenterology 90: 636–645, 1986.
 166. Takeuchi, K., D. Magee, J. Critchlow, J. Matthews, and W. Silen. Studies of the pH gradient and thickness of frog gastric mucus gel. Gastroenterology 84: 331–340, 1983.
 167. Takeuchi, K., A. Merhav, and W. Silen. Mechanism of luminal alkalinization by bullfrog fundic mucose. Am. J. Physiol. 243 (Gastrointest. Liver Physiol. 6): G377–G388, 1982.
 168. Takeuchi, K., and S. Okabe. Role of luminal alkalinization in repair process of ethanol‐induced mucosal damage in rat stomach. Dig. Dis. Sci. 28: 993–1000, 1983.
 169. Tanaka, H., Y. Kuwahara, and S. Okabe. Augmentation of cysteamine and mepirizole‐induced lesions in the rat duodenum by histamine or indomethacin. Jpn. J. Pharmacol. 41: 545–549, 1986.
 170. Thomas, F. J., D. L. Hogan, G. J. Krejs, M. Algazi, J. W. Sackman, and J. I. Isenberg. The effect of secretin and VIP on duodenal bicarbonate secretion in humans (Abstract). Gastroenterology 90: 1663, 1986.
 171. Turnberg, L. A. pH gradients in the gastroduodenal mucous gel. Gastroenterol. Clin. Biol. 9: 13–15, 1985.
 172. von Kleist, D., H. Bechtel, H. D. Janisch, F. E. Bauer, and K. E. Hampel. Effects of secretin on gastric pH and alkali secretion. Innere Med. 12: 133–135, 1985.
 173. Whittle, B. J. R., G. L. Kauffman, and N. G. Boughton‐Smith. Stimulation of gastric alkaline secretion by stable prostacyclin analogues in rat and dog. Eur. J. Pharmacol. 100: 277–283, 1984.
 174. Wilkes, J. M., A. Garner, and T. J. Peters. Studies on the localization and properties of rat duodenal HCO‐3 ATPase with special relation to alkaline phosphatase. Biochim. Biophys. Acta 924: 159–166, 1987.
 175. Williams, S. E., and L. A. Turnberg. Demonstration of a pH gradient across mucus adherent to rabbit gastric mucosa: evidence for a “mucus‐bicarbonate” barrier. Gut 22: 94–96, 1981.
 176. Zhou, L., and W. Y. Chey. Electric acupuncture stimulates nonparietal cell secretion in dog. Life Sci. 34: 2233–2238, 1982.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Gunnar Flemström, Andrew Garner. Secretion of Bicarbonate by Gastric and Duodenal Mucosa. Compr Physiol 2011, Supplement 18: Handbook of Physiology, The Gastrointestinal System, Salivary, Gastric, Pancreatic, and Hepatobiliary Secretion: 309-326. First published in print 1989. doi: 10.1002/cphy.cp060316