Comprehensive Physiology Wiley Online Library

Cellular Regulation of Pancreatic Secretion

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Receptors
1.1 Functional Characterization
1.2 Receptor Binding Characteristics
1.3 Molecular Characterization of Membrane Receptors
1.4 Regulation of Pancreatic Receptors
2 Intracellular Messengers
2.1 Calcium‐Mediated Secretagogues
2.2 Cyclic AMP‐Mediated Secretagogues
2.3 Other Possible Intracellular Messengers
3 Effectors
3.1 Intracellular Receptors for Calcium, Diacylglycerol, and Cyclic AMP
3.2 Protein Phosphorylation as an Effector System
3.3 Exocytosis
Figure 1. Figure 1.

Inhibition of 125I‐CCK‐33 binding by cholecystokinin (CCK) analogues. Pancreatic membrane particles were incubated with 25 pM 125I‐CCK for 120 min in the presence or absence of various CCK analogues. Nonsaturable binding was subtracted from total binding, and saturable binding was expressed as the percent of maximal saturable binding. d‐CCK‐8, unsulfated COOH‐terminal octa‐peptide of CCK; G‐17‐II, sulfated gastrin‐17; G‐17‐I, unsulfated gastrin‐17; CCK‐4, COOH‐terminal tetrapeptide of CCK.

From Steigerwalt and Williams 157
Figure 2. Figure 2.

Electron‐microscopic autoradiograph of rat acini incubated for 1 h with 125I‐CCK‐33 at 37°C. Circles, silver grains overlying 125I‐CCK molecules. Note grains both on basolateral membrane and intracellularly.

Figure 3. Figure 3.

Autoradiograms of somatostatin (A) and CCK (B) cross‐linked to their receptors in pancreatic plasma membranes. A: 125I‐Tyr1 somatostatin was incubated in the presence or absence of 1 μM cyclic somatostatin and then cross‐linked with 0.1 mM n‐hydroxysuccinimide azidobenzoate and exposure to UV light. B: 125I‐CCK‐33 was incubated with mouse pancreatic acini in presence or absence of 0.1 μM CCK‐8 and then cross‐linked with 0.1 mM disuccinimidyl suberate. In both A and B, membranes were treated with 50 mM dithiothreitol (DTT) where specified.

A from Sakamoto et al. 142; B from Sakamoto et al. 140
Figure 4. Figure 4.

Time dependence of decrease in specific [3H]N‐methyl‐scopolamine (NMS) binding to guinea pig pancreatic acini cultured with 0.1 mM carbachol (open circles) or in control media (filled circles). At each indicated time, acini were rinsed and incubated for 60 min with 0.5 nM 3H]NMS.

From Hootman et al. 63
Figure 5. Figure 5.

Effect of Ca2+ removal on basal and caerulein‐stimulated amylase release from mouse pancreatic acini. EGTA, ethylene glycol‐bis(β‐aminoethylether)‐N,N'‐tetraacetic acid.

From Williams 179
Figure 6. Figure 6.

Kinetics of initial changes in [Ca2+] of pancreatic acini measured with quin 2 after stimulation by carbachol. Acini were suspended in medium containing 1.28 mM Ca2+ (A) or in medium containing 0.1 mM EGTA and no added Ca2+ (B). Concentration of carbachol shown was added at the arrow.

From Ochs et al. 108
Figure 7. Figure 7.

Relationship between amount of amylase released from pancreatic acini and [Ca2+]i. Release of amylase and rise in [Ca2+]i of quin 2‐loaded pancreatic acini were measured after addition of various concentrations of either carbachol (–1 μM) or inomycin (–1 μM).

From Ochs et al. 108
Figure 8. Figure 8.

Effect of inositol 1,4,5‐trisphosphate (IP3) on intracellular Ca2+ stores of leaky acinar cells. Calcium in the medium was measured with an ion‐selective electrode. Initial upward trace, fall in medium Ca2+ as it is taken up by acinar organelles; abrupt downward deflection, Ca2+ release induced by IP3.

From Streb et al. 161
Figure 9. Figure 9.

Synergism of amylase release from mouse pancreatic acini induced by the calcium ionophore A23187 2 μM) and the phorbol ester 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA) 10−6 M). Together the two are able to reproduce effect of maximal concentration of carbachol (CCh).

Figure 10. Figure 10.

Ability of secretin, vasoactive intestinal polypeptide (VIP), and peptide histidine isoleucine (PHI) to increase cAMP in dispersed acini from guinea pig pancreas.

From Jensen et al. 76
Figure 11. Figure 11.

Demonstration of separate calmodulin‐ and phospholipid‐dependent, Ca2+‐activated kinase activity in mouse pancreas cytosol. Acinar cytosol was initially treated with phenothiazine coupled to a solid matrix to remove endogenous calmodulin. Cytosol was incubated with [γ‐32P]ATP in the absence (‐) or presence (+) of Ca2+ alone (A), with added calmodulin (B), or added phosphatidylserine (C) and phosphorylated proteins resolved by polyacrylamide gel electrophoresis and autoradiography. Ca2+‐activated kinase activity is present in B and C and shown to act on different endogenous substrates.

From Burnham and Williams 18
Figure 12. Figure 12.

Autoradiographs of polyacrylamide gels of purified zymogen granules incubated with [32P]ATP and phosphatidylserine, in the presence (+) or absence (‐) of Ca2+. A: intact purified granules. B: granules extracted with KCl prior to 32P labeling. C: granules extracted with KCl after 32P labeling.

From Burnham et al. 16
Figure 13. Figure 13.

Ca2+ sensitivity of Ca2+‐activated protein phosphatase activity purified from pancreatic cytosol. [32P]casein was used as a substrate. Phosphatase activity is totally dependent on presence of calmodulin (CaM). TFP, trifluoperazine.

From Burnham 14
Figure 14. Figure 14.

Autoradiographs of soluble proteins obtained from mouse acini that were incubated with [32P]phosphate for 60 min and stimulated with 3 μM carbachol (CCh) for 5 min. Soluble proteins were subjected to 2‐dimensional poly‐acrylamide gel electrophoresis; proteins that undergo an alteration in phosphorylation in response to carbachol are numbered and indicated by arrows. IEF, isoelectric focusing dimension; SDS, sodium dodecyl sulfate.

[From Burnham et al. 15.]
Figure 15. Figure 15.

Schematic diagram of stimulus‐secretion coupling of pancreatic acinar cell protein secretion. ACh, acetylcholine; CAM, calmodulin; CCK, cholecystokinin; DAG, diacylglycerol; Gs, stimulatory guanine nucleotide‐binding protein; G?, unknown guanine nucleotide‐regulated protein; IP3, inositol 1,4,5‐trisphosphate; PIP2, phosphatidylinositol 4,5‐bisphosphate; PK, protein kinase; PK‐A, cAMP‐activated protein kinase; PK‐C, phospholipid‐dependent protein kinase; PLC, phospholipase C; PP, protein phosphatase; VIP, vasoactive intestinal polypeptide.



Figure 1.

Inhibition of 125I‐CCK‐33 binding by cholecystokinin (CCK) analogues. Pancreatic membrane particles were incubated with 25 pM 125I‐CCK for 120 min in the presence or absence of various CCK analogues. Nonsaturable binding was subtracted from total binding, and saturable binding was expressed as the percent of maximal saturable binding. d‐CCK‐8, unsulfated COOH‐terminal octa‐peptide of CCK; G‐17‐II, sulfated gastrin‐17; G‐17‐I, unsulfated gastrin‐17; CCK‐4, COOH‐terminal tetrapeptide of CCK.

From Steigerwalt and Williams 157


Figure 2.

Electron‐microscopic autoradiograph of rat acini incubated for 1 h with 125I‐CCK‐33 at 37°C. Circles, silver grains overlying 125I‐CCK molecules. Note grains both on basolateral membrane and intracellularly.



Figure 3.

Autoradiograms of somatostatin (A) and CCK (B) cross‐linked to their receptors in pancreatic plasma membranes. A: 125I‐Tyr1 somatostatin was incubated in the presence or absence of 1 μM cyclic somatostatin and then cross‐linked with 0.1 mM n‐hydroxysuccinimide azidobenzoate and exposure to UV light. B: 125I‐CCK‐33 was incubated with mouse pancreatic acini in presence or absence of 0.1 μM CCK‐8 and then cross‐linked with 0.1 mM disuccinimidyl suberate. In both A and B, membranes were treated with 50 mM dithiothreitol (DTT) where specified.

A from Sakamoto et al. 142; B from Sakamoto et al. 140


Figure 4.

Time dependence of decrease in specific [3H]N‐methyl‐scopolamine (NMS) binding to guinea pig pancreatic acini cultured with 0.1 mM carbachol (open circles) or in control media (filled circles). At each indicated time, acini were rinsed and incubated for 60 min with 0.5 nM 3H]NMS.

From Hootman et al. 63


Figure 5.

Effect of Ca2+ removal on basal and caerulein‐stimulated amylase release from mouse pancreatic acini. EGTA, ethylene glycol‐bis(β‐aminoethylether)‐N,N'‐tetraacetic acid.

From Williams 179


Figure 6.

Kinetics of initial changes in [Ca2+] of pancreatic acini measured with quin 2 after stimulation by carbachol. Acini were suspended in medium containing 1.28 mM Ca2+ (A) or in medium containing 0.1 mM EGTA and no added Ca2+ (B). Concentration of carbachol shown was added at the arrow.

From Ochs et al. 108


Figure 7.

Relationship between amount of amylase released from pancreatic acini and [Ca2+]i. Release of amylase and rise in [Ca2+]i of quin 2‐loaded pancreatic acini were measured after addition of various concentrations of either carbachol (–1 μM) or inomycin (–1 μM).

From Ochs et al. 108


Figure 8.

Effect of inositol 1,4,5‐trisphosphate (IP3) on intracellular Ca2+ stores of leaky acinar cells. Calcium in the medium was measured with an ion‐selective electrode. Initial upward trace, fall in medium Ca2+ as it is taken up by acinar organelles; abrupt downward deflection, Ca2+ release induced by IP3.

From Streb et al. 161


Figure 9.

Synergism of amylase release from mouse pancreatic acini induced by the calcium ionophore A23187 2 μM) and the phorbol ester 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA) 10−6 M). Together the two are able to reproduce effect of maximal concentration of carbachol (CCh).



Figure 10.

Ability of secretin, vasoactive intestinal polypeptide (VIP), and peptide histidine isoleucine (PHI) to increase cAMP in dispersed acini from guinea pig pancreas.

From Jensen et al. 76


Figure 11.

Demonstration of separate calmodulin‐ and phospholipid‐dependent, Ca2+‐activated kinase activity in mouse pancreas cytosol. Acinar cytosol was initially treated with phenothiazine coupled to a solid matrix to remove endogenous calmodulin. Cytosol was incubated with [γ‐32P]ATP in the absence (‐) or presence (+) of Ca2+ alone (A), with added calmodulin (B), or added phosphatidylserine (C) and phosphorylated proteins resolved by polyacrylamide gel electrophoresis and autoradiography. Ca2+‐activated kinase activity is present in B and C and shown to act on different endogenous substrates.

From Burnham and Williams 18


Figure 12.

Autoradiographs of polyacrylamide gels of purified zymogen granules incubated with [32P]ATP and phosphatidylserine, in the presence (+) or absence (‐) of Ca2+. A: intact purified granules. B: granules extracted with KCl prior to 32P labeling. C: granules extracted with KCl after 32P labeling.

From Burnham et al. 16


Figure 13.

Ca2+ sensitivity of Ca2+‐activated protein phosphatase activity purified from pancreatic cytosol. [32P]casein was used as a substrate. Phosphatase activity is totally dependent on presence of calmodulin (CaM). TFP, trifluoperazine.

From Burnham 14


Figure 14.

Autoradiographs of soluble proteins obtained from mouse acini that were incubated with [32P]phosphate for 60 min and stimulated with 3 μM carbachol (CCh) for 5 min. Soluble proteins were subjected to 2‐dimensional poly‐acrylamide gel electrophoresis; proteins that undergo an alteration in phosphorylation in response to carbachol are numbered and indicated by arrows. IEF, isoelectric focusing dimension; SDS, sodium dodecyl sulfate.

[From Burnham et al. 15.]


Figure 15.

Schematic diagram of stimulus‐secretion coupling of pancreatic acinar cell protein secretion. ACh, acetylcholine; CAM, calmodulin; CCK, cholecystokinin; DAG, diacylglycerol; Gs, stimulatory guanine nucleotide‐binding protein; G?, unknown guanine nucleotide‐regulated protein; IP3, inositol 1,4,5‐trisphosphate; PIP2, phosphatidylinositol 4,5‐bisphosphate; PK, protein kinase; PK‐A, cAMP‐activated protein kinase; PK‐C, phospholipid‐dependent protein kinase; PLC, phospholipase C; PP, protein phosphatase; VIP, vasoactive intestinal polypeptide.

References
 1. Abdelmoumene, S., and J. D. Gardner. Cholecystokinin‐induced desensitization of enzyme secretion in dispersed acini from guinea pig pancreas. Am. J. Physiol. 239 (Gastrointest. Liver Physiol. 2): G272–G279, 1980.
 2. Adelson, J. W., and P. E. Miller. Pancreatic secretion by nonparallel exocytosis: potential resolution of a long controversy. Science Wash. DC 228: 993–996, 1985.
 3. Appert, H. E., T. H. Chiu, G. C. Budd, A. J. Leonardi, and J. M. Howard. 3H‐methyl scopolamine binding to dispersed pancreatic acini. Cell Tissue Res. 220: 673–684, 1981.
 4. Asselin, J., L. Larose, and J. Morisset. Short‐term cholinergic desensitization of the rat pancreatic secretory response. Am. J. Physiol. 252 (Gastrointest. Liver Physiol. 15): G392–G397, 1987.
 5. Bayerdörffer, E., H. Streb, L. Eckhardt, W. Haase, and I. Schulz. Characterization of calcium uptake into rough endoplasmic reticulum of rat pancreas. J. Membr. Biol. 81: 69–82, 1984.
 6. Benz, L., B. Eckstein, E. K. Matthews, and J. A. Williams. Control of pancreatic amylase release in vitro: effects of ions, cyclic AMP and colchicine. Br. J. Pharmacol. 46: 66–77, 1972.
 7. Bergeron, J. J. M., R. Rachubinski, N. Searle, R. Sikstrom, D. Borts, P. Bastian, and B. I. Posner. Radioautographic visualization of in vivo insulin binding to the exocrine pancreas. Endocrinology 107: 1069–1080, 1980.
 8. Berridge, M. J. Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyze polyphosphoinositides instead of phosphatidylinositol. Biochem. J. 212: 849–858, 1983.
 9. Berridge, M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem. J. 220: 345–360, 1984.
 10. Bissonnette, B. M., M. J. Collen, H. Adachi, R. T. Jensen, and J. D. Gardner. Receptors for vasoactive intestinal peptide and secretin on rat pancreatic acini. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G710–G717, 1984.
 11. Brostrom, C. O., and D. J. Wolff. Properties and functions of calmodulin. Biochem. Pharmacol. 30: 1395–1405, 1981.
 12. Bruzzone, R., T. Pozzan, and C. B. Wollheim. Caerulein and carbamoylcholine stimulate pancreatic amylase release at resting cytosolic free Ca2+. Biochem. J. 235: 139–143, 1986.
 13. Burgess, G. M., J. S. McKinney, R. F. Irvine, and J. W. Putney, Jr. Inositol 1,4,5‐trisphosphate and inositol 1,3,4‐trisphosphate formation in Ca2+‐mobilizing‐hormone‐activated cells. Biochem. J. 232: 237–243, 1985.
 14. Burnham, D. B. Characterization of Ca2+‐activated protein phosphatase activity in exocrine pancreas. Biochem. J. 231: 335–342, 1985.
 15. Burnham, D. B., P. Munowitz, S. R. Hootman, and J. A. Williams. Regulation of protein phosphorylation in pancreatic acini: distinct effects of Ca2+ ionophore A23187 and 12‐O‐tetradecanoylphorbol 13 acetate. Biochem. J. 235: 125–131, 1986.
 16. Burnham, D. B., P. Munowitz, N. Thorn, and J. A. Williams. Protein kinase activity associated with pancreatic zymogen granules. Biochem. J. 227: 743–751, 1985.
 17. Burnham, D. B., H.‐D. Soling, and J. A. Williams. Evaluation of myosin light chain phosphorylation in isolated pancreatic acini. Am. J. Physiol. 254 (Gastrointest. Liver Physiol. 17): G130–G134, 1988.
 18. Burnham, D. B., and J. A. Williams. Effects of carbachol, cholecystokinin and insulin on protein phosphorylation in isolated pancreatic acini. J. Biol. Chem. 257: 10523–10528, 1982.
 19. Burnham, D. B., and J. A. Williams. Activation of protein kinase activity in pancreatic acini by calcium and cAMP. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G500–G508, 1984.
 20. Case, R. M., and T. Clausen. The relationship between calcium exchange and enzyme secretion in the isolated rat pancreas. J. Physiol. Lond. 235: 75–102, 1973.
 21. Castagna, M., Y. Takai, K. Kaibuchi, K. Sano, V. Kikkawa, and Y. Nishizuka. Direct activation of calcium activated, phospholipid‐dependent protein kinase by tumor‐promoting phorbol ester. J. Biol. Chem. 257: 7847–7851, 1982.
 22. Chandler, D. E., and J. A. Williams. Intracellular divalent cation release in pancreatic acinar cells during stimulus‐secretion coupling. II. Subcellular localization of the fluorescent probe chlorotetracycline. J. Cell Biol. 76: 389–399, 1978.
 23. Chang, R. S. L., V. J. Lotti, R. L. Monaghan, J. Birnbaum, E. O. Stapley, M. A. Goetz, G. Albers‐Schonberg, and A. A. Patchett. A potent nonpeptide cholecystokinin antagonist selective for peripheral tissues isolated from Aspergillus alliaceus. Science Wash. DC 230: 177–180, 1985.
 24. Chauvelot, L., S. Heisler, J. Huet, and D. Gangon. Prostaglandins and enzyme secretion from dispersed rat pancreatic acinar cells. Life Sci. 25: 913–920, 1979.
 25. Christophe, J. P., T. P. Conlon, and J. D. Gardner. Interaction of porcine vasoactive intestinal peptide with dispersed pancreatic acinar cells from the guinea pig. J. Biol. Chem. 251: 4629–4634, 1976.
 26. Christophe, J. P., E. K. Frandsen, T. P. Conlon, G. Krishna, and J. D. Gardner. Action of cholecystokinin, cholinergic agents and A23187 on accumulation of guanosine‐3',5'‐monophosphate in dispersed guinea pig pancreatic acinar cells. J. Biol. Chem. 251: 4640–4645, 1976.
 27. Cohen, P. The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature Lond. 296: 613–620, 1982.
 28. Collins, S. M., S. Abdelmoumene, R. T. Jensen, and J. D. Gardner. Cholecystokinin‐induced persistent stimulation of enzyme secretion from pancreatic acini. Am. J. Physiol. 240 (Gastrointest. Liver Physiol. 3): G459–G465, 1981.
 29. Creutz, C. E., and D. C. Sterner. Calcium dependence of the binding of synexin to isolated chromaffin granules. Biochem. Biophys. Res. Commun. 114: 355–364, 1983.
 30. Dehaye, J. P., J. Winand, P. Poloczek, and J. Christophe. Characterization of muscarinic cholinergic receptors on rat pancreatic acini by N‐[3H]methylscopolamine binding. Their relationship with calcium 45 efflux and amylase secretion. J. Biol. Chem. 259: 294–300, 1984.
 31. De Lisle, R. C., and J. A. Williams. Regulation of membrane fusion in secretory exocytosis. Annu. Rev. Physiol. 48: 225–238, 1986.
 32. Dormer, R. L. Direct demonstration of increases in cytosolic free Ca2+ during stimulation of pancreatic enzyme secretion. Biosci. Rep. 3: 233–240, 1983.
 33. Dormer, R. L. Introduction of calcium chelators into isolated rat pancreatic acini inhibits amylase release in response to carbamylcholine. Biochem. Biophys. Res. Commun. 119: 876–883, 1984.
 34. Dormer, R. L., J. H. Poulsen, V. Licko, and J. A. Williams. Calcium fluxes in isolated pancreatic acini: effects of secretagogues. Am. J. Physiol. 240 (Gastrointest. Liver Physiol. 3): G38–G49, 1981.
 35. Dormer, R. L., and J. A. Williams. Secretagogue‐induced changes in subcellular Ca2+ distribution in isolated pancreatic acini. Am. J. Physiol. 240 (Gastrointest. Liver Physiol. 3): G130–G140, 1981.
 36. Douglas, W. W. Stimulus‐secretion coupling: the concept and clues from chromaffin and other cells. Br. J. Pharmacol. 34: 451–474, 1968.
 37. Dupont, J. J. H. H. M., and A. M. M. Fleuren‐Jakobs. Synergistic effect of A23187 and a phorbol ester on amylase secretion from rabbit pancreatic acini. FEBS Lett. 170: 64–68, 1984.
 38. Eimerl, S., N. Savion, O. Heichal, and Z. Selinger. Induction of enzyme secretion in rat pancreatic slices using the ionophore A23187 and calcium. An experimental bypass of the hormone receptor pathway. J. Biol. Chem. 249: 3991–3993, 1974.
 39. Esteve, J. P., C. Susini, N. Vaysse, H. Antoniotti, E. Wunsch, G. Berthon, and A. Ribet. Binding of somatostatin to pancreatic acinar cells. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G62–G69, 1984.
 40. Esteve, J. P., N. Vaysse, C. Susini, J. M. Kunsch, D. Fourmy, L. Pradayrol, E. Wunsch, L. Moroder, and A. Ribet. Bimodal regulation of pancreatic exocrine function in vitro by somatostatin‐28. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G208–G216, 1983.
 41. Farese, R. V., R. E. Larson, and M. A. Sabir. Ca2+‐dependent and Ca2+‐independent effects of pancreatic secretagogues on phosphatidylinositol metabolism. Biochim. Biophys. Acta 710: 391–399, 1982.
 42. Farese, R. V., J. L. Orchard, R. E. Larson, M. A. Sabir, and J. S. Davis. Phosphatidylinositol hydrolysis and phosphatidylinositol 4',5'‐diphosphate hydrolysis are separable responses during secretagogue action in the rat pancreas. Biochim. Biophys. Acta 846: 296–304, 1985.
 43. Freedman, S. D., and J. D. Jamieson. Hormone‐induced protein phosphorylation. I. Relation between secretagogue action and endogenous protein phosphorylation in intact cells from exocrine pancreas and parotid. J. Cell Biol. 95: 903–908, 1982.
 44. Freedman, S. D., and J. D. Jamieson. Hormone‐induced protein phosphorylation. II. Localization to the microsomal fraction from rat exocrine pancreas and parotid of a 29,000‐dalton protein phosphorylated in situ in response to secretagogues. J. Cell Biol. 95: 909–917, 1982.
 45. Gardner, J. D., T. P. Conlon, H. L. Klaeveman, T. D. Adams, and M. A. Ondetti. Action of cholecystokinin and cholinergic agents on calcium transport in isolated pancreatic acinar cells. J. Clin. Invest. 56: 366–375, 1975.
 46. Gardner, J. D., C. L. Costenbader, and E. R. Uhlemann. Effect of extracellular calcium on amylase release from dispersed pancreatic acini. Am. J. Physiol. 236 (Endocrinol. Metab. Gastrointest. Physiol. 5): E754–E762, 1979.
 47. Gardner, J. D., and R. T. Jensen. Regulation of pancreatic enzyme secretion in vitro. In: Physiology of the Digestive Tract (1st ed.), edited by L. R. Johnson. New York: Raven, 1981, p. 831–871.
 48. Gardner, J. D., and R. T. Jensen. Receptors mediating the actions of secretagogues on pancreatic acinar cells. In: The Exocrine Pancreas: Biology, Pathobiology, and Diseases, edited by V. L. W. Go, J. D. Gardner, F. P. Brooks, E. Lebenthal, E. P. DiMagno, and G. A. Scheele. New York: Raven, 1986, p. 109–122.
 49. Gardner, J. D., L. Y. Korman, M. D. Walker, and V. E. Sutliff. Effects of inhibitors of cyclic nucleotide phosphodiesterase on the actions of vasoactive intestinal peptide and secretin on pancreatic acini. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G547–G551, 1982.
 50. Gardner, J. D., and A. J. Rottman. Action of cholera toxin on dispersed acini from guinea pig pancreas. Biochim. Biophys. Acta 585: 250–265, 1979.
 51. Gardner, J. D., and A. J. Rottman. Evidence against cyclic GMP as a mediator of the actions of secretagogues on amylase release from guinea‐pig pancreas. Biochim. Biophys. Acta 627: 230–243, 1980.
 52. Gilman, A. G. Guanine nucleotide‐binding regulatory proteins and dual control of adenylate cyclase. J. Clin. Invest. 73: 1–4, 1984.
 53. Goldfine, I. D., and J. A. Williams. Receptors for insulin and CCK in the acinar pancreas: relationship to hormone action. Int. Rev. Cytol. 85: 1–38, 1983.
 54. Gorelick, F. S., J. A. Cohn, S. D. Freedman, N. G. Delahunt, J. M. Gershoni, and J. D. Jamieson. Calmodulin‐stimulated protein kinase activity from rat pancreas. J. Cell Biol. 97: 1294–1298, 1983.
 55. Grynkiewicz, G., M. Poenie, and R. Y. Tsien. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260: 3440–3450, 1985.
 56. Gunther, G. R., and J. D. Jamieson. Increased cyclic GMP does not correlate with protein discharge from pancreatic acinar cells. Nature Lond. 280: 318–320, 1979.
 57. Haase, W., W. Friese, and K. Heitman. Electron‐microscopic demonstration of the distribution of calcium deposits in the exocrine pancreas of the rat after application of carbachol, atropine, cholecystokinin, and procaine. Cell Tissue Res. 235: 683–690, 1984.
 58. Halenda, S. P., and R. P. Rubin. Phospholipid turnover in isolated rat pancreatic acini. Biochem. J. 208: 713–721, 1982.
 59. Heisler, S. Forskolin potentiates calcium‐dependent amylase secretion from rat pancreatic acinar cells. Can. J. Physiol. Pharmacol. 61: 1168–1176, 1983.
 60. Hokin, L. E. Effects of calcium omission on acetylcholine‐stimulated amylase secretion and phospholipid synthesis in pigeon pancreas slices. Biochim. Biophys. Acta 115; 219–221, 1966.
 61. Hokin, M. R., and L. E. Hokin. Enzyme secretion and the incorporation of P32 into phospholipids of pancreas slices. J. Biol. Chem. 203: 967–977, 1953.
 62. Holian, O., C. T. Bombeck, and L. M. Nyhus. Hormonal stimulation of cyclic AMP‐dependent protein kinase in rat pancreas. Biochem. Biophys. Res. Commun. 95: 553–561, 1980.
 63. Hootman, S. R., M. E. Brown, and J. A. Williams. Phorbol esters and A23187 regulate Na+‐K+ pump activity in pancreatic acinar cells. Am. J. Physiol. 252 (Gastrointest. Liver Physiol. 15): G499–G505, 1987.
 64. Hootman, S. R., M. E. Brown, J. A. Williams, and C. D. Logsdon. Regulation of muscarinic acetylcholine receptors in cultured guinea pig pancreatic acini. Am. J. Physiol. 251 (Gastrointest. Liver Physiol. 14): G75–G83, 1986.
 65. Hootman, S. R., S. A. Ernst, and J. A. Williams. Secretagogue regulation of Na+‐K+ pump activity in pancreatic acinar cells. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G339–G346, 1983.
 66. Hootman, S. R., D. L. Ochs, and J. A. Williams. Intracellular mediators of Na+‐K+ pump activity in guinea pig pancreatic acinar cells. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G470–G478, 1985.
 67. Hootman, S. R., T. M. Picado‐Leonard, and D. B. Burnham. Muscarinic acetylcholine receptor structure in acinar cells of mammalian exocrine glands. J. Biol. Chem. 260: 4186–4194, 1985.
 68. Hootman, S. R., and J. A. Williams. Stimulus‐secretion coupling in the pancreatic acinus. In: Physiology of the Gastrointestinal Tract (2nd ed.), edited by L. R. Johnson. New York: Raven, 1987, vol. 2, p. 1129–1146.
 69. Ingebritsen, T. S., and P. Cohen. Protein phosphatases: properties and role in cellular regulation. Science Wash. DC 221: 331–338, 1983.
 70. Jahn, R., and H. D. Soling. Phosphorylation of ribosomal protein S6 in response to secretagogues in the guinea pig exocrine pancreas, parotid and lacrimal gland. FEBS Lett. 153: 71–80, 1983.
 71. Jensen, R. T., C. G. Charlton, H. Adachi, S. W. Jones, T. L. O'Donohue, and J. D. Gardner. Use of 125I‐secretin to identify and characterize high‐affinity secretin receptors on pancreatic acini. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G186–G195, 1983.
 72. Jensen, R. T., and J. D. Gardner. Cyclic nucleotide‐dependent protein kinase activity in acinar cells from guinea pig pancreas. Gastroenterology 75: 806–817, 1978.
 73. Jensen, R. T., and J. D. Gardner. Interaction of physalaemin, substance P, and eledoisin with specific membrane receptors on pancreatic acinar cells. Proc. Natl. Acad. Sci. USA 76: 5679–5683, 1979.
 74. Jensen, R. T., S. W. Jones, K. Folkers, and J. D. Gardner. A synthetic peptide that is a bombesin receptor antagonist. Nature Lond. 309: 61–63, 1984.
 75. Jensen, R. T., S. W. Jones, Y. A. Lu, M. C. Xu, K. Folkers, and J. D. Gardner. Interaction of substance P antagonists with substance P receptors on dispersed pancreatic acini. Biochim. Biophys. Acta 804: 181–191, 1984.
 76. Jensen, R. T., G. F. Lemp, and J. D. Gardner. Interaction of cholecystokinin with specific membrane receptors on pancreatic acinar cells. Proc. Natl. Acad. Sci. USA 77: 2079–2083, 1980.
 77. Jensen, R. T., T. Moody, C. Pert, J. E. Rivier, and J. D. Gardner. Interaction of bombesin and litorin with specific membrane receptors on pancreatic acinar cells. Proc. Natl. Acad. Sci. USA 75: 6139–6143, 1978.
 78. Jensen, R. T., K. Tatemoto, V. Mutt, G. F. Lemp, and J. D. Gardner. Actions of a newly isolated intestinal peptide PHI on pancreatic acini. Am. J. Physiol. 241 (Gastrointest. Liver Physiol. 4): G498–G502, 1981.
 79. Kondo, S., and I. Schulz. Calcium ion uptake in isolated pancreas cells induced by secretagogues. Biochim. Biophys. Acta 419: 76–92, 1976.
 80. Korc, M., L. M. Matrisian, and B. E. Magun. Cytosolic calcium regulates epidermal growth factor endocytosis in rat pancreas and cultured fibroblasts. Proc. Natl. Acad. Sci. USA 81: 461–465, 1984.
 81. Korman, L. Y., M. D. Walker, and J. D. Gardner. Action of theophylline on secretagogue‐stimulated amylase release from dispersed pancreatic acini. Am. J. Physiol. 239 (Gastrointest. Liver Physiol. 2): G324–G333, 1980.
 82. Krebs, E. G., and J. A. Beavo. Phosphorylation‐dephosphorylation of enzymes. Annu. Rev. Biochem. 48: 923–959, 1979.
 83. Lambert, M., M. Svoboda, J. Furnelle, and J. Christophe. Solubilization from rat pancreatic plasma membranes of a cholecystokinin (CCK) agonist‐receptor complex interacting with guanine nucleotide regulatory proteins coexisting in the same macromolecular system. Eur. J. Biochem. 147: 611–617, 1985.
 84. Larose, L., Y. Dumont, J. Asselin, J. Morisset, and G. G. Poirier. Muscarinic receptor of rat pancreatic acini: [3H]QNB binding and amylase secretion. Eur. J. Pharmacol. 76: 247–254, 1981.
 85. Larose, L., G. G. Poirier, Y. Dumont, C. Fregeau, L. Blanchard, and J. Morisset. Modulation of rat pancreatic amylase secretion and muscarinic receptor populations by chronic bethanechol treatment. Eur. J. Pharmacol. 95: 213–223, 1983.
 86. Liddle, R. A., I. D. Goldfine, and J. A. Williams. Bioassay of plasma cholecystokinin in rats: effects of food, trypsin inhibitor, and alcohol. Gastroenterology 87: 542–549, 1984.
 87. Logsdon, C. D., and J. A. Williams. Epidermal growth factor binding and biologic effects on mouse pancreatic acini. Gastroenterology 85: 339–345, 1983.
 88. Logsdon, C. D., and J. A. Williams. Intracellular Ca2+ and phorbol esters synergistically inhibit internalization of epidermal growth factor in pancreatic acini. Biochem. J. 223: 893–900, 1984.
 89. Long, B. W., and J. D. Gardner. Effects of cholecystokinin on adenylate cyclase activity in dispersed pancreatic acinar cells. Gastroenterology 73: 1008–1014, 1977.
 90. Louie, D. S., J. A. Williams, and C. Owyang. Action of pancreatic polypeptide on rat pancreatic secretion: in vivo and in vitro. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G489–G495, 1985.
 91. Lucas, M., A. Galvan, P. Solano, and R. Goberna. Compartmentation of calcium in digitonin‐disrupted guinea pig pancreatic acinar cells. Biochim. Biophys. Acta 731: 129–136, 1983.
 92. Macdonald, R. J., and R. A. Ronzio. Phosphorylation of a zymogen granule membrane polypeptide from rat pancreas. FEBS Lett. 40: 203–206, 1974.
 93. Madison, L. D., S. A. Rosenzweig, and J. D. Jamieson. Use of the heterobifunctional cross‐linker m‐maleimidobenzoyl N‐hydroxysuccinimide ester to affinity label cholecystokinin binding proteins on rat pancreatic plasma membranes. J. Biol. Chem. 259: 14818–14823, 1984.
 94. Mangeat, P. H., H. Chahinian, and G. J. Marchis‐Mouren. Characterization of the cyclic AMP‐dependent protein kinase from rat pancreas, further purification of the catalytic subunit, substrate specificity, effect of the pancreatic heat‐stable inhibitor. Biochimie Paris 60: 777–785, 1978.
 95. Marshall, P. J., D. E. Boatman, and L. E. Hokin. Direct demonstration of the formation of prostaglandin E2 due to phosphatidylinositol breakdown associated with stimulation of enzyme secretion in the pancreas. J. Biol. Chem. 256: 844–847, 1981.
 96. Matozaki, T., C. Sakamoto, M. Nagao, and S. Baba. Phorbol ester or diacylglycerol modulates somatostatin binding to its receptors on rat pancreatic acinar cell membranes. J. Biol. Chem. 261: 1414–1420, 1986.
 97. Matthews, E. K., O. H. Petersen, and J. A. Williams. Pancreatic acinar cells: acetylcholine‐induced membrane depolarization, calcium efflux and amylase release. J. Physiol. Lond. 234: 689–701, 1973.
 98. Merritt, J. E., and R. P. Rubin. Pancreatic amylase secretion and cytoplasmic free calcium. Biochem. J. 230: 151–159, 1985.
 99. Merritt, J. E., C. W. Taylor, R. P. Rubin, and J. W. Putney, Jr. Evidence suggesting that a novel guanine nucleotide regulatory protein couples receptors to phospholipase C in exocrine pancreas. Biochem. J. 236: 337–343, 1986.
 100. Michell, R. H. Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta 415: 81–147, 1975.
 101. Michell, R. H., J. N. Hawthorne, R. Coleman, and M. L. Karnovsky. Extraction of polyphosphoinositides with neutral and acidified solvents. Biochim. Biophys. Acta 210: 86–91, 1970.
 102. Mössner, J., C. D. Logsdon, I. D. Goldfine, and J. A. Williams. Regulation of pancreatic acinar cell insulin receptors by insulin. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G155–G160, 1984.
 103. Mössner, J., C. D. Logsdon, N. Potau, J. A. Williams, and I. D. Goldfine. Effect of intracellular Ca2+ on insulin‐like growth factor II internalization into pancreatic acini. Roles of insulin and cholecystokinin. J. Biol. Chem. 259: 12350–12356, 1984.
 104. Mössner, J., E. Roach, I. D. Goldfine, and J. A. Williams. Autoradiographic analysis of 125I‐insulin‐like growth factor II internalization into pancreatic acini. Diabetes Res. Clin. Pract. 2: 75–82, 1986.
 105. Mroz, E. A., and C. Lechene. Pancreatic zymogen granules differ markedly in protein composition. Science Wash. DC 232: 871–873, 1986.
 106. Nairn, A. C., B. Bhagat, and H. C. Palfrey. Identification of calmodulin‐dependent protein kinase III and its major Mr 100,000 substrate in mammalian tissues. Proc. Natl. Acad. Sci. USA 82: 7939–7943, 1985.
 107. Nishizuka, Y. The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature Lond. 308: 693–698, 1984.
 108. Noguchi, M., H. Adachi, J. D. Gardner, and R. T. Jensen. Calcium‐activated, phospholipid‐dependent protein kinase in pancreatic acinar cells. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G692–G701, 1985.
 109. Ochs, D. L., J. I. Korenbrot, and J. A. Williams. Intracellular free calcium concentrations in isolated pancreatic acini; effects of secretagogues. Biochem. Biophys. Res. Commun. 117: 122–128, 1983.
 110. Ochs, D. L., J. I. Korenbrot, and J. A. Williams. Relation between free cytosolic calcium and amylase release by pancreatic acini. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G389–G398, 1985.
 111. O'Doherty, J., and R. J. Stark. Stimulation of pancreatic acinar secretion: increases in cytosolic calcium and sodium. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G513–G521, 1982.
 112. Okumura, K., S. Iwakawa, K. I. Inui, and R. Hori. Specific secretin binding sites in rat pancreas. Biochem. Pharmacol. 32: 2689–2695, 1983.
 113. Orchard, J. L., J. S. Davis, R. E. Larson, and R. V. Farese. Effects of carbachol and pancreozymin (cholecystokinin‐octapeptide) on polyphosphoinositide metabolism in the rat pancreas in vitro. Biochem. J. 217: 281–287, 1984.
 114. Otsuki, M., Y. Okabayashi, A. Ohki, S. R. Hootman, S. Baba, and J. A. Williams. Amylase secretion by isolated pancreatic acini after acute cholecystokinin treatment in vivo. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G419–G425, 1984.
 115. Otsuki, M., and J. A. Williams. Amylase secretion by isolated pancreatic acini after chronic cholecystokinin treatment in vivo. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G683–G688, 1983.
 116. Palade, G. E. Intracellular aspects of protein synthesis. Science Wash. DC 189: 347–358, 1975.
 117. Pan, G. Z., M. J. Collen, and J. D. Gardner. Action of cholera toxin on dispersed acini from rat pancreas. Post‐receptor modulation involving cyclic AMP and calcium. Biochim. Biophys. Acta 720: 338–345, 1982.
 118. Pandol, S. J., M. S. Schoeffield, G. Sachs, and S. Muallem. Role of free cytosolic calcium in secretagogue‐stimulated amylase release from dispersed acini from guinea pig pancreas. J. Biol. Chem. 260: 10081–10086, 1985.
 119. Pandol, S. J., H. Seifert, M. W. Thomas, J. Rivier, and W. Vale. Growth hormone‐releasing factor stimulates pancreatic enzyme secretion. Science Wash. DC 225: 326–328, 1984.
 120. Pandol, S. J., M. W. Thomas, M. S. Schoeffield, G. Sachs, and S. Muallem. Role of calcium in cholecystokinin‐stimulated phosphoinositide breakdown in exocrine pancreas. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G551–G560, 1985.
 121. Petrini, M., D. L. Emerson, and R. M. Galbraith. Linkage between surface immunoglobulin and cytoskeleton of B lymphocytes may involve Gc protein. Nature Lond. 306: 73–74, 1983.
 122. Plattner, H., C. Westphal, and R. Tiggemann. Cytoskeleton‐secretory vesicle interactions during the docking of secretory vesicles at the cell membrane in Paramecium tetraurelia cells. J. Cell Biol. 92: 368–377, 1982.
 123. Ponappa, B. C., and J. A. Williams. Effects of ionophore A23187 on calcium flux and amylase release in isolated mouse pancreatic acini. Cell Calcium 1: 267–278, 1980.
 124. Poulsen, J. H., and J. A. Williams. Effect of extracellular K+ concentration on resting potential, caerulein‐induced depolarization and amylase release from mouse pancreatic acinar cells. Pfluegers Arch. 370: 173–177, 1977.
 125. Powers, R. E., P. C. Johnson, M. J. Houlihan, A. K. Saluja, and M. L. Steer. Intracellular Ca2+ levels and amylase secretion in Quin 2‐loaded mouse pancreatic acini. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 17): C535–C541, 1985.
 126. Preissler, M., and J. A. Williams. Localization of ATP‐dependent calcium transport activity in mouse pancreatic microsomes. J. Membr. Biol. 73: 137–144, 1983.
 127. Putney, J. W., Jr. Formation and actions of calcium‐mobilizing messenger, inositol 1,4,5‐trisphosphate. Am. J. Physiol. 252 (Gastrointest. Liver Physiol. 15): G149–G157, 1987.
 128. Putney, J. W., Jr., G. M. Burgess, S. P. Halenda, J. S. McKinney, and R. P. Rubin. Effects of secretagogues on [32P]phosphatidylinositol 4,5‐biphosphate metabolism in the exocrine pancreas. Biochem. J. 212: 483–488, 1983.
 129. Rasmussen, H., and P. Q. Barrett. Calcium messenger system: an integrated view. Physiol. Rev. 64: 938–984, 1984.
 130. Renckens, B. A. M., J. J. Schrijen, H. G. P. Swarts, J. J. H. H. M. DePont, and S. L. Bonting. Role of calcium in exocrine pancreatic secretion. IV. Calcium movements in isolated acinar cells of rabbit pancreas. Biochim. Biophys. Acta 544: 338–350, 1978.
 131. Robberecht, P., T. P. Conlon, and J. D. Gardner. Interaction of porcine vasoactive intestinal peptide with dispersed pancreatic acinar cells from guinea pig. J. Biol. Chem. 251: 4635–4639, 1976.
 132. Robberecht, P., M. Deschodt‐Lanckman, M. Lammens, P. DeNeef, and J. Christophe. In vitro effects of secretin and vasoactive intestinal peptide on hydrolase secretion and cyclic AMP levels in the pancreas of five animal species. A comparison with caerulein. Gastroenterol. Clin. Biol. 1: 519–525, 1977.
 133. Robberecht, P., M. Waelbroeck, M. Noyer, P. Chatelain, P. DeNeef, W. Konig, and J. Christophe. Characterization of secretin and vasoactive intestinal peptide receptors in rat pancreatic plasma membranes using the native peptides, secretin‐– and five secretin analogues. Digestion 23: 201–210, 1982.
 134. Roberts, M. L., and F. R. Butcher. The involvement of protein phosphorylation in stimulus‐secretion coupling in mouse exocrine pancreas. Biochem. J. 210: 353–359, 1983.
 135. Rosenzweig, S. A., L. D. Madison, and J. D. Jamieson. Analysis of cholecystokinin‐binding proteins using endo‐β‐N‐acetylglucosaminidase F. J. Cell Biol. 99: 1110–1116, 1984.
 136. Rosenzweig, S. A., L. J. Miller, and J. D. Jamieson. Identification and localization of cholecystokinin‐binding sites on rat pancreatic plasma membranes and acinar cells: a biochemical and autoradiographic study. J. Cell Biol. 96: 1288–1297, 1983.
 137. Rothman, S. S. The digestive enzymes of the pancreas: a mixture of inconstant proportions. Annu. Rev. Physiol. 39: 373–389, 1977.
 138. Rothman, S. S. Passage of proteins through membranes—old assumptions and new perspectives. Am. J. Physiol. 238 (Gastrointest. Liver Physiol. 1): G391–G402, 1980.
 139. Rubin, R. P., P. P. Godfrey, D. A Chapman, and J. W. Putney, Jr. Secretagogue‐induced formation of inositol phosphates in rat exocrine pancreas: implications for a messenger role for inositol trisphosphate. Biochem. J. 219: 655–659, 1984.
 140. Rubin, R. P., K. L. Kelly, S. P. Halenda, and S. G. Laychock. Arachidonic acid metabolism in rat pancreatic acinar cells: calcium‐mediated stimulation of the lipoxygenase system. Prostaglandins 24: 179–193, 1982.
 141. Rutten, W. J., J. J. H. H. M. DePont, and S. L. Bonting. Adenylate cyclase in the rat pancreas. Properties and stimulation by hormones. Biochim. Biophys. Acta 274: 201–213, 1972.
 142. Sakamoto, C., I. D. Goldfine, and J. A. Williams. Characterization of cholecystokinin receptor subunits on pancreatic plasma membranes. J. Biol. Chem. 258: 12707–12711, 1983.
 143. Sakamoto, C., I. D. Goldfine, and J. A. Williams. Pancreatic CCK receptors: characterization of covalently labeled subunits. Biochem. Biophys. Res. Commun. 118: 623–628, 1984.
 144. Sakamoto, C., I. D. Goldfine, and J. A. Williams. The somatostatin receptor on isolated pancreatic acinar cell plasma membranes. J. Biol. Chem. 259: 9623–9627, 1984.
 145. Sakamoto, C., J. A. Williams, E. Roach, and I. D. Goldfine. In vivo localization of insulin binding to cells of the rat pancreas. Proc. Soc. Exp. Biol. Med. 175: 497–502, 1984.
 146. Sankaran, H., C. W. Deveney, I. D. Goldfine, and J. A. Williams. Preparation of biologically active radioiodinated cholecystokinin for radioreceptor assay and radioimmunoassay. J. Biol. Chem. 254: 9349–9351, 1979.
 147. Sankaran, H., I. D. Goldfine, A. Bailey, V. Licko, and J. A. Williams. Relationship of cholecystokinin receptor binding to regulation of biological functions in pancreatic acini. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G250–G257, 1982.
 148. Sankaran, H., I. D. Goldfine, C. W. Deveney, K. Y. Wong, and J. A. Williams. Binding of cholecystokinin to high affinity receptors on isolated rat pancreatic acini. J. Biol. Chem. 255: 1849–1853, 1980.
 149. Scheele, G., and A. Haymovits. Cholinergic and peptide‐stimulated discharge of secretory protein in guinea pig pancreatic lobules. J. Biol. Chem. 254: 10346–10353, 1979.
 150. Schulman, H., J. Kuret, A. B. Jefferson, P. S. Nose, and K. H. Spitzer. Ca2+/calmodulin‐dependent microtubule‐associated protein 2 kinase: broad substrate specificity and multifunctional potential in diverse tissues. Biochemistry 24: 5320–5326, 1985.
 151. Singh, J. Phorbol ester (TPA) potentiates noradrenaline and acetylcholine‐evoked amylase secretion in the rat pancreas. FEBS Lett. 180: 191–195, 1985.
 152. Singh, M. Effect of somatostatin on amylase secretion from in vivo and in vitro rat pancreas. Dig. Dis. Sci. 31: 506–512, 1986.
 153. Sjödin, L. Binding and internalization of 125I‐Bolton‐Hunter‐substance‐P by pancreatic acinar cells. Biochem. Biophys. Res. Commun. 124: 578–584, 1984.
 154. Sjödin, L. Cholecystokinin inhibits binding of substance P to pancreatic acinar cells. Acta Physiol. Scand. 124: 471–474, 1985.
 155. Smith, C. D., C. C. Cox, and R. Snyderman. Receptor‐coupled activation of phosphoinositide‐specific phospholipase C by an N protein. Science Wash. DC 232: 97–100, 1986.
 156. Smith, J. B., L. Smith, and B. L. Higgins. Temperature and nucleotide dependence of calcium release by myo‐inositol 1,4,5‐trisphosphate in cultured vascular smooth muscle cells. J. Biol. Chem. 260: 14413–14416, 1985.
 157. Spät, A., P. G. Bradford, J. S. McKinney, R. P. Rubin, and J. W. Putney, Jr. A saturable receptor for 32P‐inositol‐1,4,5‐trisphosphate in hepatocytes and neutrophils. Nature Lond. 319: 514–516, 1986.
 158. Srikant, C. B., and Y. C. Patel. Somatostatin receptors on rat pancreatic acinar cells. J. Biol. Chem. 261: 7690–7696, 1986.
 159. Steigerwalt, R. W., and J. A. Williams. Characterization of cholecystokinin receptors on rat pancreatic membranes. Endocrinology 109: 1746–1753, 1981.
 160. Stenson, W. F., and E. Lobos. Metabolism of arachidonic acid by pancreatic acini: relation to amylase secretion. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G493–G497, 1982.
 161. Stolze, H., and I. Schulz. Effect of atropine, ouabain, antimycin A, and A23187 on “trigger Ca2+ pool” in exocrine pancreas. Am. J. Physiol. 238 (Gastrointest. Liver Physiol. 1): G338–G348, 1980.
 162. Streb, H., E. Bayerdörffer, W. Haase, R. F. Irvine, and I. Shulz. Effect of inositol‐1,4,5‐trisphosphate on isolated subcellular fractions of rat pancreas. J. Membr. Biol. 81: 241–253, 1984.
 163. Streb, H., R. F. Irvine, M. J. Berridge, and I. Schulz. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol‐1,4,5‐trisphosphate. Nature Lond. 306: 67–69, 1983.
 164. Südhof, T. C. Calelectrins are a ubiquitous family of Ca2+‐binding proteins purified by Ca2+‐dependent hydrophobic affinity chromatography by a mechanism distinct from that of calmodulin. Biochem. Biophys. Res. Commun. 123: 100–107, 1984.
 165. Summers, T. A., and C. E. Creutz. Phosphorylation of a chromaffin granule binding protein by protein kinase C. J. Biol. Chem. 260: 2437–2443, 1985.
 166. Sung, C. K., and J. A. Williams. The role of calcium in pancreatic acinar cell secretion. Miner. Electrolyte Meta. 14: 71–77, 1988.
 167. Susini, C., A. Bailey, J. Szecowka, and J. A. Williams. Characterization of covalently crosslinked pancreatic somatostatin receptors. J. Biol. Chem. 261: 16738–16743, 1986.
 168. Svoboda, M., M. Lambert, J. Furnelle, and J. Christophe. Specific photoaffinity crosslinking of [125I]cholecystokinin to pancreatic plasma membranes. Evidence for a disulfide‐linked Mr 76,000 peptide in cholecystokinin receptors. Regul. Pept. 4: 163–172, 1982.
 169. Szecowka, J., I. D. Goldfine, and J. A. Williams. Solubilization and characterization of CCK receptors from mouse pancreas. Regul. Pept. 10: 71–83, 1985.
 170. Takai, Y., K. Kaibuchi, T. Tsuda, and M. Hoshijima. Role of protein kinase C in transmembrane signaling. J. Cell. Biochem. 29: 143–155, 1985.
 171. Tsien, R. Y., T. Pozzan, and T. J. Rink. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new intracellular trapped fluorescent indicator. J. Cell Biol. 94: 325–334, 1981.
 172. Ullrich, A., J. R. Bell, E. Y. Chen, R. Herrera, L. M. Petruzelli, T. J. Dull, A. Gray, L. Coussens, Y. C. Liao, M. Tsubokawa, A. Mason, P. H. Seeburg, C. Grunfeld, O. M. Rosen, and J. Ramachandran. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature Lond. 313: 756–761, 1985.
 173. Ullrich, A., L. Coussens, J. S. Hayflick, T. J. Dull, A. Gray, A. W. Tam, J. Lee, Y. Yarden, T. A. Libermann, J. Schlessinger, J. Downward, E. L. V. Mayes, N. Whittle, M. D. Waterfield, and P. H. Seeburg. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature Lond. 309: 418–425, 1984.
 174. Vandermeers, A., M. C. Vandermeers‐Piret, J. Rathe, and J. Christophe. A calcium‐dependent protein activator of guanosine‐3',5'‐monophosphate phosphodiesterase in bovine and rat pancreas. Eur. J. Biochem. 81: 377–386, 1977.
 175. Van Eldik, L. J., J. G. Zendegui, D. R. Marshak, and D. M. Watterson. Calcium‐binding proteins and the molecular basis of calcium action. Int. Rev. Cytol. 77: 1–61, 1982.
 176. Van Leemput‐Coutrez, M., J. Camus, and J. Christophe. Cyclic nucleotide‐dependent protein kinases of the rat pancreas. Biochem. Biophys. Res. Commun. 54: 182–190, 1973.
 177. Viguerie, J. P., J. P. Estève, C. Susini, N. Vaysse, and A. Ribet. Processing of receptor‐bound somatostatin: internalization and degradation by pancreatic acini. Am. J. Physiol. 252 (Gastrointest. Liver Physiol. 15): G535–G542, 1987.
 178. Wakasugi, H., T. Kimura, W. Haase, A. Kribben, R. Kaufmann, and I. Schulz. Calcium uptake into acini from rat pancreas: evidence for intracellular ATP‐dependent calcium sequestration. J. Membr. Biol. 65: 205–220, 1982.
 179. Whooten, M. W., A. E. Nel, P. J. Goldschmidt‐Clermont, R. M. Galbraith, and R. W. Wrenn. Identification of the major endogenous substrate for the phospholipid/Ca2+‐dependent protein kinase in pancreatic acini as Gc (vitamin‐D‐binding protein). FEBS Lett. 191: 97–101, 1985.
 180. Whooten, M. W., and R. W. Wrenn. Redistribution of phospholipid/calcium‐dependent protein kinase and altered phosphorylation of its soluble and particulate substrated proteins in phorbol ester‐treated rat pancreatic acini. Cancer Res. 45: 3912–3917, 1985.
 181. Williams, J. A. Regulation of pancreatic acinar cell function by intracellular calcium. Am. J. Physiol. 238 (Gastrointest. Liver Physiol. 1): G269–G279, 1980.
 182. Williams, J. A. Multiple effect of Na+ removal on pancreatic secretion in vitro. Cell Tissue Res. 210: 295–303, 1980.
 183. Williams, J. A. Regulatory mechanisms in pancreas and salivary acini. Annu. Rev. Physiol. 46: 361–375, 1984.
 184. Williams, J. A., and D. Chandler. Ca2+ and pancreatic amylase release. Am. J. Physiol. 228: 1729–1732, 1975.
 185. Williams, J. A., and I. D. Goldfine. The insulin‐pancreatic acinar axis. Diabetes 34: 980–986, 1985.
 186. Williams, J. A., and S. R. Hootman. Stimulus‐secretion coupling in pancreatic acinar cells. In: The Exocrine Pancreas: Biology, Pathobiology, and Diseases, edited by V. L. W. Go, J. D. Gardner, F. P. Brooks, E. Lebenthal, E. P. DiMagno, and G. A. Scheele. New York: Raven, 1986, p. 123–139.
 187. Williams, J. A., and M. Lee. Pancreatic acinar cells: use of a calcium ionophore to separate enzyme release from the earlier steps in stimulus‐secretion coupling. Biochem. Biophys. Res. Commun. 60: 542–548, 1974.
 188. Williams, J. A., J. H. Poulsen, and M. Lee. Effects of membrane stabilizers on pancreatic amylase release. J. Membr. Biol. 33: 185–195, 1977.
 189. Williams, J. A., H. Sankaran, E. Roach, and I. D. Goldfine. Quantitative electron microscope autoradiographs of 125I‐cholecystokinin in pancreatic acini. Am. J. Physiol. 243 (Gastrointest. Liver Physiol. 6): G291–G296, 1982.
 190. Wrenn, R. W. Phospholipid‐sensitive calcium‐dependent protein kinase and its endogenous substrate proteins in rat pancreatic acinar cells. Life Sci. 32: 2385–2392, 1983.
 191. Wrenn, R. W. Phosphorylation of a pancreatic zymogen granule membrane protein by endogenous calcium/phospholipid‐dependent protein kinase. Biochim. Biophys. Acta 775: 1–6, 1984.
 192. Zajic, G., and J. Schacht. Cytochemical demonstration of adenylate cyclase with strontium chloride in the rat pancreas. J. Histochem. Cytochem. 31: 25–28, 1983.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

John A. Williams, Daniel B. Burnham, Seth R. Hootman. Cellular Regulation of Pancreatic Secretion. Compr Physiol 2011, Supplement 18: Handbook of Physiology, The Gastrointestinal System, Salivary, Gastric, Pancreatic, and Hepatobiliary Secretion: 419-441. First published in print 1989. doi: 10.1002/cphy.cp060321