Comprehensive Physiology Wiley Online Library

Signaling Transduction in Hormone‐ and Neurotransmitter‐Induced Enzyme Secretion from the Exocrine Pancreas

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 In Vitro Preparations For Studying Cellular Mechanisms
1.1 Isolated Acini and Acinar Cells
1.2 Isolation of Intracellular Organelles
2 Function of Pancreatic Cell Membranes
2.1 Transport Systems in Plasma Membrane
2.2 Role of Plasma Membranes in Hormonal Stimulation of Pancreatic Secretion
3 Role of Intracellular Membranes in Pancreatic Cell Function
3.1 Passive Ion‐Transport Mechanisms in Endoplasmic Reticulum
3.2 Active Ion‐Transport Mechanisms in Endoplasmic Reticulum
4 Ion Transport Involved in Exocytosis
4.1 Is a Chloride Conductance in the Membrane of Pancreatic Zymogen Granules Involved in Exocytosis?
Figure 1. Figure 1.

Schematic representation of primary and secondary active transport processes in the plasma membrane of pancreatic acinar cells and of Ca2+‐transport processes in intracellular organelles. AA, amino acid; ACh, acetylcholine; [Ca2+]cyt, cytosolic free Ca2+ concentration; [Ca2+]ext, external free Ca2+ concentration; CCK‐Pz cholecystokinin‐pancreozymin; DG, diacylglycerol; ER, endoplasmic reticulum; IP3, inositol 1,4,5‐trisphosphate; MIT, mitochondria; N, GTP‐binding protein; PIP2, phosphatidylinositol 4,5‐bisphosphate; PM, plasma membrane; ROC, receptor‐operated Ca2+ channel. Filled circles, primary active transport (MgATP driven); open circles, secondary active transport (electrochemical ion‐gradient driven).

Figure 2. Figure 2.

Model for the mechanism of pancreatic electrolyte and fluid secretion. Na+‐H+ antiport is located at the basal cell side coupled to the Na+ gradient that is maintained by the Na+‐K+‐ATPase. On the luminal cell side either an conductive pathway (1) or a Cl conductive pathway combined with a Cl exchanger (2) is present. Secretin (SN) binds to its receptor (R) and stimulates adenylate cyclase (AC) to produce cAMP that opens up conductive pathways for (1) or Cl (2).

Model based on data from Bungaard et al. 28, Kuijpers et al. 124, Novak 161, and Schulz 196
Figure 3. Figure 3.

Schematic representation for regulation of adenylate cyclase activity. C, catalytic subunit of adenylate cyclase; CT, cholera toxin; Hi, inhibitory ligands of adenylate cyclase; Hs, stimulatory ligands of adenylate cyclase; Ni, inhibitory N protein of adenylate cyclase; Ns, stimulatory N protein of adenylate cyclase; PT, pertussis toxin; Ri, inhibitory receptor; Rs, stimulatory receptor; α,β,γ, α,β,γ‐complex of the respective N protein.

Figure 4. Figure 4.

Major pathways in agonist‐dependent phosphoinositide metabolism and sites of Li+ action. Both phosphatidic acid (PA) and myo‐inositol are synthesized from D‐glucose. Cytidine diphosphodiacylglycerol (CDP‐DG), also named cytidine monophosphorylphosphatidate (CMPPA; CMP‐PA), is formed from phosphatidic acid and CTP in the presence of CTP‐PA cytidyltransferase. Biosynthesis of phosphatidylinositol (PI) from CDP‐DG and myo‐inositol via PI‐synthetase occurs at the plasma membrane. Phosphorylation of PI by ATP in the presence of specific kinases to phosphatidylinositol 4‐phosphate (PIP) and phosphatidylinositol 4,5‐bisphosphate (PIP2) occurs at the plasma membrane. Specific phosphatases in the plasma membrane can dephosphorylate PIP2 to PIP and to PI. Agonists stimulate plasma membrane—bound phospholipase C, which leads to breakdown of phosphoinositides into diacylglycerol (DG) and water‐soluble inositol phosphates. Diacylglycerol is either metabolized via lipases to release arachidonic acid (AA) for eicosanoid biosynthesis or is phosphorylated by ATP in the presence of the plasma membrane enzyme diacylglycerol kinase to regenerate PA. The other product of phospholipase C‐mediated PIP2 hydrolysis, inositol 1,4,5‐trisphosphate [I1,4,5)P3], is degraded via a specific phosphatase to inositol 1,4‐bisphosphate [I1,4)P2] and inositol 1‐phosphate (I1P), and it is also phosphorylated via a specific kinase to inositol 1,3,4,5‐tetrakisphosphate [I1,3,4,5)P4]. Inositol 1,3,4,5‐tetrakisphosphate is dephosphorylated to inositol 1,3,4‐trisphosphate [I1,3,4)P3] and to inositol 3,4‐bisphosphate [I3,4)P2]. Another pathway might involve degradation to inositol 1,3‐bisphosphate [I1,3)P2].

Model partly based on work by Shears et al. 199 and Irvine et al. 96
Figure 5. Figure 5.

Model for coupling of receptor to phospholipase C (PLC). When an agonist binds to its receptor, bound GDP is exchanged for GTP on the α‐subunit of the Np protein. This leads to dissociation of the heterotrimer to α‐ and βγ‐subunits. Dissociation can also occur in the presence of GTPγS or (AlF4) in the absence of an agonist. GDPβS can inhibit subunit dissociation. The dissociated GTP‐αp complex then activates phospholipase C, which catalyzes the hydrolysis of phosphatidylinositol 4,5‐bisphosphate (PIP2) to inositol 1,4,5‐trisphosphate (IP3) and diacylglycerol (DG). IP3 diffuses into the cytosol and releases Ca2+ from the endoplasmic reticulum, while diacylglycerol remains in the plasma membrane and activates protein kinase C. The α‐subunit possesses GTPase activity and so hydrolyzes the bound GTP, thus terminating the activation of phospholipase C. In the presence of GTPγS and (AlF4), inactivation of the α‐subunit does not occur. Phospholipase C possesses a high‐affinity site for Ca2+, which has to be occupied for α‐subunit activation. The minimum Ca2+ requirement is 100 nM, the concentration found in unstimulated cells. However, Ca2+ in the range of 1‐500 μM (depending on cell type and conditions of assay) can also stimulate phospholipase C directly without involving the Np protein. Hp, stimulatory hormone of phospholipase C; Rp, receptor of phospholipase C.

Adapted from Cockcroft 43
Figure 6. Figure 6.

Schematic diagram of the 2 signal‐transduction systems. AC, adenylate cyclase; C‐kinase, protein kinase C; DG, diacylglycerol; I1,4,5)P3, inositol 1,4,5‐trisphosphate; N, GTP‐binding protein; Ni, inhibitory N proteins; Np, N protein of phospholipase C; Ns, stimulatory N proteins; PIP2, phosphatidylinositol 4,5‐bisphosphate; PLC, phospholipase C; R, receptor; Rp, receptor of phospholipase C; Ri, inhibitory receptor of adenylate cyclase; Rs, stimulatory receptor of adenylate cyclase.

Figure 7. Figure 7.

Schematic diagram to explain patch‐clamp experiments, which give evidence for internal messenger‐activated Ca2+ influx into the cell. CCK, cholecystokinin; IP3, inositol 1,4,5‐trisphosphate; IP4, inositol 1,3,4,5‐tetrakisphosphate.

Adapted from Suzuki et al. 214
Figure 8. Figure 8.

Proposed model for coupling of stimulation with secretion of enzymes, NaCl, and fluid in pancreatic acinar cells. ACh, acetylcholine; CCK, cholecystokinin; DG, diacylglycerol; DIDS, 4,4'‐diisothiocyanatostilbene‐2,2'‐disulfonic acid; IP3, inositol 1,4,5‐trisphosphate; PIP2, phosphatidylinositol bisphosphate; PK C, protein kinase C.



Figure 1.

Schematic representation of primary and secondary active transport processes in the plasma membrane of pancreatic acinar cells and of Ca2+‐transport processes in intracellular organelles. AA, amino acid; ACh, acetylcholine; [Ca2+]cyt, cytosolic free Ca2+ concentration; [Ca2+]ext, external free Ca2+ concentration; CCK‐Pz cholecystokinin‐pancreozymin; DG, diacylglycerol; ER, endoplasmic reticulum; IP3, inositol 1,4,5‐trisphosphate; MIT, mitochondria; N, GTP‐binding protein; PIP2, phosphatidylinositol 4,5‐bisphosphate; PM, plasma membrane; ROC, receptor‐operated Ca2+ channel. Filled circles, primary active transport (MgATP driven); open circles, secondary active transport (electrochemical ion‐gradient driven).



Figure 2.

Model for the mechanism of pancreatic electrolyte and fluid secretion. Na+‐H+ antiport is located at the basal cell side coupled to the Na+ gradient that is maintained by the Na+‐K+‐ATPase. On the luminal cell side either an conductive pathway (1) or a Cl conductive pathway combined with a Cl exchanger (2) is present. Secretin (SN) binds to its receptor (R) and stimulates adenylate cyclase (AC) to produce cAMP that opens up conductive pathways for (1) or Cl (2).

Model based on data from Bungaard et al. 28, Kuijpers et al. 124, Novak 161, and Schulz 196


Figure 3.

Schematic representation for regulation of adenylate cyclase activity. C, catalytic subunit of adenylate cyclase; CT, cholera toxin; Hi, inhibitory ligands of adenylate cyclase; Hs, stimulatory ligands of adenylate cyclase; Ni, inhibitory N protein of adenylate cyclase; Ns, stimulatory N protein of adenylate cyclase; PT, pertussis toxin; Ri, inhibitory receptor; Rs, stimulatory receptor; α,β,γ, α,β,γ‐complex of the respective N protein.



Figure 4.

Major pathways in agonist‐dependent phosphoinositide metabolism and sites of Li+ action. Both phosphatidic acid (PA) and myo‐inositol are synthesized from D‐glucose. Cytidine diphosphodiacylglycerol (CDP‐DG), also named cytidine monophosphorylphosphatidate (CMPPA; CMP‐PA), is formed from phosphatidic acid and CTP in the presence of CTP‐PA cytidyltransferase. Biosynthesis of phosphatidylinositol (PI) from CDP‐DG and myo‐inositol via PI‐synthetase occurs at the plasma membrane. Phosphorylation of PI by ATP in the presence of specific kinases to phosphatidylinositol 4‐phosphate (PIP) and phosphatidylinositol 4,5‐bisphosphate (PIP2) occurs at the plasma membrane. Specific phosphatases in the plasma membrane can dephosphorylate PIP2 to PIP and to PI. Agonists stimulate plasma membrane—bound phospholipase C, which leads to breakdown of phosphoinositides into diacylglycerol (DG) and water‐soluble inositol phosphates. Diacylglycerol is either metabolized via lipases to release arachidonic acid (AA) for eicosanoid biosynthesis or is phosphorylated by ATP in the presence of the plasma membrane enzyme diacylglycerol kinase to regenerate PA. The other product of phospholipase C‐mediated PIP2 hydrolysis, inositol 1,4,5‐trisphosphate [I1,4,5)P3], is degraded via a specific phosphatase to inositol 1,4‐bisphosphate [I1,4)P2] and inositol 1‐phosphate (I1P), and it is also phosphorylated via a specific kinase to inositol 1,3,4,5‐tetrakisphosphate [I1,3,4,5)P4]. Inositol 1,3,4,5‐tetrakisphosphate is dephosphorylated to inositol 1,3,4‐trisphosphate [I1,3,4)P3] and to inositol 3,4‐bisphosphate [I3,4)P2]. Another pathway might involve degradation to inositol 1,3‐bisphosphate [I1,3)P2].

Model partly based on work by Shears et al. 199 and Irvine et al. 96


Figure 5.

Model for coupling of receptor to phospholipase C (PLC). When an agonist binds to its receptor, bound GDP is exchanged for GTP on the α‐subunit of the Np protein. This leads to dissociation of the heterotrimer to α‐ and βγ‐subunits. Dissociation can also occur in the presence of GTPγS or (AlF4) in the absence of an agonist. GDPβS can inhibit subunit dissociation. The dissociated GTP‐αp complex then activates phospholipase C, which catalyzes the hydrolysis of phosphatidylinositol 4,5‐bisphosphate (PIP2) to inositol 1,4,5‐trisphosphate (IP3) and diacylglycerol (DG). IP3 diffuses into the cytosol and releases Ca2+ from the endoplasmic reticulum, while diacylglycerol remains in the plasma membrane and activates protein kinase C. The α‐subunit possesses GTPase activity and so hydrolyzes the bound GTP, thus terminating the activation of phospholipase C. In the presence of GTPγS and (AlF4), inactivation of the α‐subunit does not occur. Phospholipase C possesses a high‐affinity site for Ca2+, which has to be occupied for α‐subunit activation. The minimum Ca2+ requirement is 100 nM, the concentration found in unstimulated cells. However, Ca2+ in the range of 1‐500 μM (depending on cell type and conditions of assay) can also stimulate phospholipase C directly without involving the Np protein. Hp, stimulatory hormone of phospholipase C; Rp, receptor of phospholipase C.

Adapted from Cockcroft 43


Figure 6.

Schematic diagram of the 2 signal‐transduction systems. AC, adenylate cyclase; C‐kinase, protein kinase C; DG, diacylglycerol; I1,4,5)P3, inositol 1,4,5‐trisphosphate; N, GTP‐binding protein; Ni, inhibitory N proteins; Np, N protein of phospholipase C; Ns, stimulatory N proteins; PIP2, phosphatidylinositol 4,5‐bisphosphate; PLC, phospholipase C; R, receptor; Rp, receptor of phospholipase C; Ri, inhibitory receptor of adenylate cyclase; Rs, stimulatory receptor of adenylate cyclase.



Figure 7.

Schematic diagram to explain patch‐clamp experiments, which give evidence for internal messenger‐activated Ca2+ influx into the cell. CCK, cholecystokinin; IP3, inositol 1,4,5‐trisphosphate; IP4, inositol 1,3,4,5‐tetrakisphosphate.

Adapted from Suzuki et al. 214


Figure 8.

Proposed model for coupling of stimulation with secretion of enzymes, NaCl, and fluid in pancreatic acinar cells. ACh, acetylcholine; CCK, cholecystokinin; DG, diacylglycerol; DIDS, 4,4'‐diisothiocyanatostilbene‐2,2'‐disulfonic acid; IP3, inositol 1,4,5‐trisphosphate; PIP2, phosphatidylinositol bisphosphate; PK C, protein kinase C.

References
 1. Aktories, K., G. Schultz, and K. H. Jakobs. Somatostatin‐induced stimulation of a high‐affinity GTPase in membranes of S49 lymphoma cyc‐ and H21a variants. Mol. Pharmacol. 24: 183–188, 1983.
 2. Albinus, M., E. L. Blair, R. M. Case, D. H. Coy, A. Gomez‐Pan, B. H. Hirst, J. D. Reed, A. V. Schally, B. Shaw, P. A. Smith, and J. R. Smy. Comparison of the effect of somatostatin on gastrointestinal function in the conscious and anaesthetized cat and on the isolated cat pancreas. J. Physiol. Lond. 269: 77–91, 1977.
 3. Ansah, T.‐A., S. Dho, and R. M. Case. Calcium concentration and amylase secretion in guinea pig pancreatic acini: interactions between carbachol, cholecystokinin octapeptide and the phorbol ester, 12‐O‐tetradecanoylphorbol 13‐acetate. Biochim. Biophys. Acta 889: 326–333, 1986.
 4. Ansah, T.‐A., A. Molla, and S. Katz. Ca2+‐ATPase activity in pancreatic acinar plasma membranes. Regulation by calmodulin and acidic phospholipids. J. Biol. Chem. 259: 13442–13450, 1984.
 5. Bangham, A. D., and R. W. Horne. Action of saponin on biological cell membranes. Nature Lond. 196: 952–953, 1962.
 6. Barrowman, M. M., S. Cockcroft, and B. D. Gomperts. Potentiation and inhibition of secretion from neutrophils by phorbol ester. FEBS Lett. 201: 137–142, 1986.
 7. Batty, I. R., S. R. Nahorski, and R. F. Irvine. Rapid formation of inositol 1,3,4,5‐tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices. Biochem. J. 232: 211–215, 1985.
 8. Bauer, S., and K. H. Jakobs. Phorbol ester treatment impairs hormone‐ but not stable GTP analog‐induced inhibition of adenylate cyclase. FEBS Lett. 198: 43–46, 1986.
 9. Bayerdörffer, E., L. Eckhardt, W. Haase, and I. Schulz. Electrogenic calcium transport in plasma membrane of rat pancreatic acinar cells. J. Membr. Biol. 84: 45–60, 1985.
 10. Bayerdörffer, E., W. Haase, and I. Schulz. Na+/Ca2+ countertransport in plasma membrane of rat pancreatic acinar cells. J. Membr. Biol. 87: 107–119, 1985.
 11. Bayerdörffer, E., H. Streb, L. Eckhardt, W. Haase, and I. Schulz. Characterization of calcium uptake into rough endoplasmic reticulum of rat pancreas. J. Membr. Biol. 81: 69–82, 1984.
 12. Berridge, M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem. J. 220: 345–360, 1984.
 13. Berridge, M. J., J. P. Heslop, R. F. Irvine, and K. D. Brown. Inositol trisphosphate formation and calcium mobilization in Swiss 3T3 cells in response to platelet‐derived growth factor. Biochem. J. 222: 195–201, 1984.
 14. Berridge, M. J., and F. R. Irvine. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature Lond. 312: 315–321, 1984.
 15. Besterman, J. M., W. S. May, Jr., H. LeVine III, E. J. Cragoe, Jr., and P. Cuatrecasas. Amiloride inhibits phorbol ester‐stimulated Na+/H+ exchange and protein kinase C. An amiloride analog selectively inhibits Na+/H+ exchange. J. Biol. Chem. 260: 1155–1159, 1985. Biden, T. J., M. Comte, J. A. Cox, and C. B. Wollheim. Calcium‐calmodulin stimulates inositol 1,4,5‐trisphosphate kinase activity from insulin‐secreting RINm5F cells. J. Biol. Chem. 262: 9437–9440, 1987.
 16. Biden, T. J., and C. B. Wollheim. Ca2+ regulates the inositol Tris/tetrakisphosphate pathway in intact and broken preparations of insulin‐secreting RINm5F cells. J. Biol. Chem. 261: 11931–11934, 1986.
 17. Boden, G., M. C. Sivitz, O. E. Owen, W. Essa‐Koumar, and J. H. Landor. Somatostatin suppresses secretin and pancreatic exocrine secretion. Science Wash. DC 190: 163–165, 1975.
 18. Bokoch, G. M. The presence of free G protein β/γ subunits in human neutrophils results in suppression of adenylate cyclase activity. J. Biol. Chem. 262: 589–594, 1987.
 19. Bonting, S. L., J. J. H. H. M. De Pont, and J. W. C. M. Jansen. The role of sodium ions in pancreatic fluid secretion in the rabbit. J. Physiol. Lond. 309: 533–546, 1980.
 20. Booth, A. G., and A. J. Kenny. A rapid method for the preparation of microvilli from rabbit kidney. Biochem. J. 142: 575–581, 1974.
 21. Bradford, P. G., and R. P. Rubin. Pertussis toxin inhibits chemotactic factor‐induced phospholipase C stimulation and lysosomal enzyme secretion in rabbit neutrophils. FEBS Lett. 183: 317–320, 1985.
 22. Brass, L. F., and S. K. Joseph. A role for inositol trisphosphate in intracellular Ca2+‐mobilization and granule secretion in platelets. J. Biol. Chem. 260: 15172–15179, 1985.
 23. Bravo, R., J. Burckhardt, T. Curran, and R. Müller. Stimulation and inhibition of growth by EGF in different A431 cell clones is accompanied by the rapid induction of c‐fos and c‐myc proto‐oncogenes. EMBO J. 4: 1193–1197, 1985.
 24. Breitwieser, G. E., and G. Szabo. Uncoupling of cardiac muscarinic and β‐adrenergic receptors from ion channels by a guanine nucleotide analogue. Nature Lond. 317: 538–540, 1985.
 25. Brock, T. A., S. E. Rittenhouse, C. W. Powers, L. S. Ekstein, M. A. Gimbrone, Jr., and R. W. Alexander. Phorbol ester and 1‐oleoyl‐2‐acetylglycerol inhibit angiotensin activation of phospholipase C in cultured vascular smooth muscle cells. J. Biol. Chem. 260: 14158–14162, 1985.
 26. Brown, K. D., J. Blay, R. F. Irvine, J. P. Heslop, and M. J. Berridge. Reduction of epidermal growth factor receptor affinity by heterologous ligands: evidence for a mechanism involving the breakdown of phosphoinositides and the activation of protein kinase C. Biochem. Biophys. Res. Commun. 123: 377–384, 1984.
 27. Bruzzone, R., E. R. Trimble, A. Gjinovci, O. Traub, K. Willecke, and P. Meda. Regulation of pancreatic exocrine function. A role for cell‐to‐cell communication? Pancreas 2: 262–271, 1987.
 28. Bundgaard, M., M. Möller, and J. H. Poulsen. Localization of sodium and potassium activated ATPase in the pancreas. J. Physiol. Lond. 313: 405–414, 1981.
 29. Burnham, D. B., P. Munowitz, N. Thorn, and J. A. Williams. Protein kinase activity associated with pancreatic zymogen granules. Biochem. J. 227: 743–751, 1985.
 30. Burnham, D. B., and J. A. Williams. Activation of protein kinase activity in pancreatic acini by calcium and cAMP. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G500–G508, 1984.
 31. Burns, C. P., and E. Rozengurt. Serum, platelet‐derived growth factor, vasopressin and phorbol esters increase intracellular pH in Swiss 3T3 cells. Biochem. Biophys. Res. Commun. 116: 931–938, 1983.
 32. Cala, P. M. Volume regulation by Amphiuma red blood cells. The membrane potential and its implications regarding the nature of the ion‐flux pathways. J. Gen. Physiol. 76: 683–708, 1980.
 33. Carafoli, E. Membrane transport in the messenger function of calcium (Ca). In: Advances in Immunopharmacology 3: Proc. 3rd Int. Conf. Immunopharmacology, Florence, 6–9 May 1985, edited by L. Chedid, J. W. Hadden, F. Spreafico, P. Dukor, and D. Willoughby. Oxford: Pergamon, 1986, p. 101–107.
 34. Carafoli, E., and J. T. Penniston. The calcium signal. Sci. Am. 253: 70–78, 1985.
 35. Case, R. M., A. A. Harper, and T. Scratcherd. Water and electrolyte secretion by the perfused pancreas of the cat. J. Physiol. Lond. 196: 133–149, 1968.
 36. Case, R. M., and T. Scratcherd. The actions of dibutyryl cyclic adenosine 3',5'‐monophosphate and methyl xanthines on pancreatic exocrine secretion. J. Physiol. Lond. 223: 649–667, 1972.
 37. Case, R. M., and T. Scratcherd. Prostaglandin action on pancreatic blood flow and on electrolyte and enzyme secretion by exocrine pancreas in vivo and in vitro. J. Physiol. Lond. 226: 393–405, 1972.
 38. Cassel, D., H. Levkovitz, and Z. Selinger. The regulatory GTPase cycle of turkey erythrocyte adenylate cyclase. J. Cyclic Nucleotide Res. 3: 393–406, 1977.
 39. Cassel, D., and T. Pfeuffer. Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide‐binding protein of the adenylate cyclase system. Proc. Natl. Acad. Sci. USA 75: 2669–2673, 1978.
 40. Cassel, D., and Z. Selinger. Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site. Proc. Natl. Acad. Sci. USA 74: 3307–3311, 1977.
 41. Cochet, C., G. N. Gill, J. Meisenhelder, J. A. Cooper, and T. Hunter. C‐kinase phosphorylates the epidermal growth factor receptor and reduces its epidermal growth factor‐stimulated tyrosine protein kinase activity. J. Biol. Chem. 259: 2553–2558, 1984.
 42. Cockcroft, S. The dependence on Ca2+ of the guanine‐nucleotide‐activated polyphosphoinositide phosphodiesterase in neutrophil plasma membranes. Biochem. J. 240: 503–507, 1986.
 43. Cockcroft, S. Polyphosphoinositide phosphodiesterase: regulation by a novel guanine nucleotide binding protein, Gp. Trends Biochem. Sci. 12: 75–78, 1987.
 44. Cockcroft, S., and B. D. Gomperts. Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase. Nature Lond. 314: 534–536, 1985.
 45. Codina, J., J. D. Hildebrandt, L. Birnbaumer, and R. D. Sekura. Effects of guanine nucleotides and Mg on human erythrocyte Ni and Ns, the regulatory components of adenylyl cyclase. J. Biol. Chem. 259: 11408–11418, 1984.
 46. Cohen, F. S., M. H. Akabas, and A. Finkelstein. Osmotic swelling of phospholipid vesicles causes them to fuse with a planar phospholipid bilayer membrane. Science Wash. DC 217: 458–460, 1982.
 47. Cohen, P. The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature Lond. 296: 613–620, 1982.
 48. Collot, M, S. Wattiaux‐DeConick, and R. Wattiaux. Isopycnic centrifugation of rat liver subcellular particles in sucrose and in metrizamide. In: Biological Separation in Iodinated Density Gradient Media, edited by D. Rickwood. Washington, DC: Information Retrieval Limited, 1976. p. 89–96.
 49. Corvera, S., and J. A. García‐Sáinz. Phorbol esters inhibit alpha1 adrenergic stimulation of glycogenolysis in isolated rat hepatocytes. Biochem. Biophys. Res. Commun. 119: 1128–1133, 1984.
 50. Costa, M. R. C., and W. A. Catterall. Phosphorylation of the α subunit of the sodium channel by protein kinase C. Cell. Mol. Neurobiol. 4: 291–297, 1984.
 51. Creutz, C. E., L. G. Dowlng, J. J. Sandro, C. Villar‐Sando, J. H. Whipple, and W. J. Zaks. Characterization of the chromobindins. J. Biol. Chem. 258: 14664–14674, 1983.
 52. Dawson, A. P. GTP enhances inositol trisphosphate‐stimulated Ca2+ release from rat liver microsomes. FEBS Lett. 185: 147–150, 1985.
 53. Dawson, A. P. The mechanism of action of GTP in promoting inositol 1,4,5 trisphosphate‐stimulated Ca2+ release from rat liver microsomes. In: Table Ronde Roussel UCLAF No. 58, Polyphosphoinositides in Cell Biology, Paris, Feb. 16–17, 1987, p. 17–18.
 54. Dawson, A. P., J. G. Comerford, and D. V. Fulton. The effect of GTP on inositol 1,4,5‐trisphosphate‐stimulated Ca2+ efflux from a rat liver microsomal fraction. Biochem. J. 234: 311–315, 1986.
 55. De Lisle, R. C., and U. Hopfer. Electrolyte permeabilities of pancreatic zymogen granules: implications for pancreatic secretion. Am. J. Physiol. 250 (Gastrointest. Liver Physiol. 13): G489–G496, 1986.
 56. De Lisle, R. C., I. Schulz, T. Tyrakowski, W. Haase, and U. Hopfer. Isolation of stable pancreatic zymogen granules. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G411–G418, 1984.
 57. Della Bianca, V., M. Grzeskowiak, M. A. Cassatella, L. Zeni, and F. Rossi. Phorbol 12,myristate 13,acetate potentiates the respiratory burst while inhibits phosphoinositide hydrolysis and calcium mobilization by formyl‐methionyl‐leucyl‐phenylalanine in human neutrophils. Biochem. Biophys. Res. Commun. 135: 556–565, 1986.
 58. De Pont, J. J. H. H. M., and A. M. M. Fleuren‐Jakobs. Synergistic effect of A23187 and a phorbol ester or amylase secretion from rabbit pancreatic acini. FEBS Lett. 170: 64–68, 1984.
 59. De Torrontegui, G., and J. Berthet. The action of insulin on the incorporation of [32P]phosphate in the phospholipids of rat adipose tissue. Biochim. Biophys. Acta 116: 477–481, 1966.
 60. Dourmashkin, R. R., R. M. Dougherty, and R. J. C. Harris. Electron microscopic observations on Rous sarcoma virus and cell membranes. Nature Lond. 194: 1116–1119, 1962.
 61. Downes, P., and R. H. Michell. Phosphatidylinositol 4‐phosphate and phosphatidylinositol 4,5‐bisphosphate: lipids in search of a function. Cell Calcium 3: 467–502, 1982.
 62. Enomoto, K., and T. Asakawa. Inhibition of catalytic unit of adenylate cyclase and activation of GTPase of Ni protein by βγ‐subunits of GTP‐binding proteins. FEBS Lett. 202: 63–68, 1986.
 63. Ericson, A.‐C., and K. R. Spring. Volume regulation by Necturus gallbladder: apical Na+‐H+ and Cl‐‐HCO3‐ exchange. Am. J. Physiol. 243 (Cell Physiol. 12): C146–C150, 1982.
 64. Esteve, J. P., N. Vaysse, C. Susini, J. M. Kunsch, D. Fourmy, L. Pradayrol, E. Wunsch, L. Moroder, and A. Ribet. Bimodal regulation of pancreatic exocrine function in vitro by somatostatin‐28. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G208–G216, 1983.
 65. Farese, R. V., J. S. Davis, D. E. Barnes, M. L. Standaert, J. S. Babischkin, R. Hock, N. K. Rosic, and R. J. Pollet. The de novo phospholipid effect of insulin is associated with increases in diacylglycerol, but not inositol phosphates or cytosolic Ca2+. Biochem. J. 231: 269–278, 1985.
 66. Farese, R. V., R. E. Larson, and M. A. Sabir. Insulin and its secretagogues activate Ca2+ dependent phosphatidylinositol breakdown and amylase secretion in rat pancreas in vitro. Diabetes 30: 396–401, 1981.
 67. Farese, R. V., J. L. Orchard, R. E. Larson, M. A. Sabir, and J. S. Davis. Phosphatidylinositol hydrolysis and phosphatidylinositol 4',5'‐diphosphate hydrolysis are separable responses during secretagogue action in the rat pancreas. Biochem. Biophys Acta 846: 296–304, 1985. Findley, J., and O. H. Petersen. Acetylcholine stimulates a Ca2+‐dependent Cl‐ conductance in mouse lacrimal acinar cells. Pfluegers Arch. 403: 328–330, 1985.
 68. García‐Sáinz, J. A., and J. N. Fain. Effect of insulin, catecholamines and calcium ions on phospholipid metabolism in isolated white fat‐cells. Biochem. J. 186: 781–789, 1980.
 69. García‐Sáinz, J. A., F. Mendlovic, and M. A. Martinéz‐Olmedo. Effects of phorbol esters on α1‐adrenergic‐mediated and glucagon‐mediated actions in isolated rat hepatocytes. Biochem. J. 228: 277–280, 1985.
 70. Gardner, J. D., and R. T. Jensen. Secretagogue receptors on pancreatic acinar cells. In: Physiology of the Gastrointestinal Tract (2nd ed.), edited by L. R. Johnson. New York: Raven, 1987, vol. 2, p. 1109–1127.
 71. Gardner, J. D., V. E. Sutliff, M. D. Walker, and R. T. Jensen. Effects of inhibitors of cyclic nucleotide phosphodiesterase on actions of cholecystokinin, bombesin, and carbachol on pancreatic acini. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G676–G680, 1983.
 72. Glauert, A. M., J. T. Dingle, and J. A. Lucy. Action of saponin on biological cell membranes. Nature Lond. 196: 953–955, 1962.
 73. Grinstein, S., C. A. Clark, and A. Rothstein. Activation of Na+/H+ exchange in lymphocytes by osmotically induced volume changes and by cytoplasmic acidification. J. Gen. Physiol. 82: 619–638, 1983.
 74. Haslam, R. J., and M. M. L. Davidson. Guanine nucleotides decrease the free [Ca2+] required for secretion of serotonin from permeabilized blood platelets. Evidence of a role for a GTP‐binding protein in platelet activation. FEBS Lett. 174: 90–95, 1984.
 75. Haslam, R. J., and M. M. L. Davidson. Receptor‐induced diacylglycerol formation in permeabilized platelets; possible role for a GTP‐binding protein. J. Recept. Res. 4: 605–629, 1984.
 76. Hauser, H., K. Howell, R. M. C. Dawson, and D. E. Bowyer. Rabbit small intestine brush border membrane preparation and lipid composition. Biochim. Biophys. Acta 602: 567–577, 1980.
 77. Häusler, G., J.‐E. de Peyer, M. Yajima, and G. Schultz. Vascular smooth muscle: availability of calcium through α‐adrenoceptor stimulation. J. Cardiovasc. Pharmacol. 8, Suppl. 8: 107–110, 1986.
 78. Hellmessen, W., A. L. Christian, H. Fasold, and I. Schulz. Coupled Na+‐H+ exchange in isolated acinar cells from rat exocrine pancreas. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G125–G136, 1985.
 79. Henne, V., and H.‐D. Söling. Guanosine 5'‐triphosphate releases calcium from rat liver and guinea pig parotid gland endoplasmic reticulum independently of inositol 1,4,5‐trisphosphate. FEBS Lett. 202: 267–273, 1986.
 80. Hescheler, J., W. Rosenthal, W. Trautwein, and G. Schultz. The GTP‐binding protein, Go, regulates neuronal calcium channels. Nature Lond. 325: 445–447, 1987.
 81. Heuser, J. E. Synaptic vesicle exocytosis revealed in quick‐frozen frog neuromuscular junctions treated with 4‐amino‐pyridine and given a single electrical shock. In: Approaches to the Cell Biology of Neurons, edited by W. M. Cowan and J. A. Ferrendelli. Bethesda, MD: Soc. Neurosci., 1977, p. 215–239. (Soc. Neurosci. Symp. II.).
 82. Heyworth, C. M., S. P. Wilson, D. J. Gawler, and M. D. Houslay. The phorbol ester TPA prevents the expression of both glucagon desensitisation and the glucagon‐mediated block of insulin stimulation of the peripheral plasma membrane cyclic AMP phosphodiesterase in rat hepatocytes. FEBS Lett. 187: 196–200, 1985.
 83. Higashida, H., and D. A. Brown. Membrane current responses to intracellular injections of inositol 1,3,4,5‐tetrakisphosphate and inositol 1,3,4‐trisphosphate in NG108‐15 hybrid cells. FEBS Lett. 208: 283–286, 1986.
 84. Hildebrandt, J. D., J. Codina, W. Rosenthal, T. Sunyer, R. Iyengar, and L. Birnbaumer. Properties of human erythrocyte Ns and Ni, the regulatory components of adenylate cyclase, as purified without regulatory ligands. Adv. Cyclic Nucleotide Protein Phosphorylation Res. 19: 87–101, 1985.
 85. Hirota, K., T. Hirota, G. Aguilera, and K. J. Catt. Hormone‐induced redistribution of calcium‐activated phospholipid‐dependent protein kinase in pituitary gonadotrophs. J. Biol. Chem. 260: 3243–3246, 1985.
 86. Hokin, M. R., and L. E. Hokin. Enzyme secretion and the incorporation of 32P into phospholipids of pancreas slices. J. Biol. Chem. 203: 967–977, 1953.
 87. Honda, S. I., T. Honglandarom, and G. G. Laties. A new isolation medium for plant organelles. J. Exp. Bot. 17: 460–472, 1966.
 88. Horn, W., and M. L. Karnovsky. Features of the translocation of protein kinase C in neutrophils stimulated with the chemotactic peptide f‐Met‐Leu‐Phe. Biochem. Biophys. Res. Commun. 139: 1169–1175, 1986.
 89. Houslay, M. D., M. J. O. Wakelam, and N. J. Pyne. The mediator is the message: is it part of the answer of insulin's action? Trends Biochem. Sci. 11: 393–394, 1986.
 90. Hubel, K. A. Response of rabbit pancreas in vitro to adrenergic agonists and antagonists. Am. J. Physiol. 219: 1590–1594, 1970.
 91. Hunter, T., and J. A. Cooper. Protein‐tyrosine kinases. Annu. Rev. Biochem. 54: 897–930, 1985.
 92. Imamura, K., and I. Schulz. Phosphorylated intermediate of (Ca2+ + K+)‐stimulated Mg2+‐dependent transport ATPase in endoplasmic reticulum from rat pancreatic acinar cells. J. Biol. Chem. 260: 11339–11347, 1985.
 93. Irvine, R. F., A. J. Letcher, and R. M. C. Dawson. Phosphatidylinositol‐4,5‐bisphosphate phosphodiesterase and phosphomonoesterase activities of rat brain. Some properties and possible control mechanisms. Biochem. J. 218: 177–185, 1984.
 94. Irvine, R. F., A. J. Letcher, J. P. Heslop, and M. J. Berridge. The inositol tris/tetrakisphosphate pathway—demonstration of Ins,4,5)P3 3‐kinase activity in animal tissues. Nature Lond. 320: 631–634, 1986.
 95. Irvine, R. F., A. J. Letcher, D. J. Lander, and M. J. Berridge. Specificity of inositol phosphate‐stimulated Ca2+ mobilization from Swiss‐mouse 3T3 cells. Biochem. J. 240: 301–304, 1986.
 96. Irvine, R. F., A. J. Letcher, D. J. Lander, J. P. Heslop, and M. J. Berridge. Inositol,4)bisphosphate and inositol,3)bisphosphate in GH4 cells—evidence for complex breakdown of inositol,3,4)trisphosphate. Biochem. Biophys. Res. Commun. 143: 353–359, 1987.
 97. Irvine, R. F., and R. M. Moor. Micro‐injection of inositol 1,3,4,5‐tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem. J. 240: 917–920, 1986.
 98. Iwatsuki, N., and O. H. Petersen. Pancreatic acinar cells: acetylcholine‐evoked electrical uncoupling and its ionic dependency. J. Physiol. Lond. 274: 81–96, 1978.
 99. Iwatsuki, N., and O. H. Petersen. Amino acids evoke short‐latency membrane conductance increase in pancreatic acinar cells. Nature Lond. 283: 492–494, 1980.
 100. Iwatsuki, N., and O. H. Petersen. Amino acid‐evoked membrane potential and resistance changes in pancreatic acinar cells. Pfluegers Arch. 386: 153–159, 1980.
 101. Jakobs, K. H., S. Bauer, and Y. Watanabe. Modulation of adenylate cyclase of human platelets by phorbol ester. Impairment of the hormone‐sensitive inhibitory pathway. Eur. J. Biochem. 151: 425–430, 1985.
 102. Jakobs, K. H., and G. Schultz. Occurrence of a hormone‐sensitive inhibitory coupling component of the adenylate cyclase in S49 lymphoma cyc‐ variants. Proc. Natl. Acad. Sci. USA 80: 3899–3902, 1983.
 103. Jauch, P., and P. Läuger. Electrogenic properties of the sodium‐alanine cotransporter in pancreatic acinar cells. II. Comparison with transport models. J. Membr. Biol. 94: 117–127, 1986.
 104. Jauch, P., O. H. Petersen, and P. Läuger. Electrogenic properties of the sodium‐alanine cotransporter in pancreatic acinar cells. I. Tight‐seal whole‐cell recordings. J. Membr. Biol. 94: 99–115, 1986.
 105. Jzutsu, K. T., and D. E. Johnson. Changes in elemental concentrations of rat parotid acinar cells following pilocarpine stimulation. J. Physiol. Lond. 381: 297–309, 1986.
 106. Kaczmarek, L. K. Phorbol esters, protein phosphorylation and the regulation of neuronal ion channels. J. Exp. Biol. 124: 375–392, 1986.
 107. Kanba, S., K. S. Kanba, and E. Richelson. The protein kinase C activator, 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA), inhibits muscarinic (M1) receptor‐mediated inositol phosphate release and cyclic GMP formation in murine neuroblastoma cells (clone N1E‐115). Eur. J. Pharmacol. 125: 155–156, 1986.
 108. Katada, T., G. M. Bokoch, M. D. Smigel, M. Ui, and A. G. Gilman. The inhibitory guanine nucleotide‐binding regulatory component of adenylate cyclase. Subunit dissociation and the inhibition of adenylate cyclase in S49 lymphoma cyc‐ and wild type membranes. J. Biol. Chem. 259: 3586–3595, 1984.
 109. Katada, T., A. G. Gilman, Y. Watanabe, S. Bauer, and K. H. Jakobs. Protein kinase C phosphorylates the inhibitory guanine‐nucleotide‐binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur. J. Biochem. 151: 431–437, 1985.
 110. Katada, T., J. K. Northup, G. M. Bokoch, M. Ui, and A. G. Gilman. The inhibitory guanine nucleotide‐binding regulatory component of adenylate cyclase. Subunit dissociation and guanine nucleotide‐dependent hormonal inhibition J. Biol. Chem. 259: 3578–3585, 1984.
 111. Katada, T., and M. Ui. Direct modification of the membrane adenylate cyclase system by islet‐activating protein due to ADP‐ribosylation of a membrane protein. Proc. Natl. Acad. Sci. USA 79: 3129–3133, 1982.
 112. Kemmer, T. P., E. Bayerdörffer, H. Will, and I. Schulz. Anion dependence of Ca2+ transport and (Ca2+ + K+)‐stimulated Mg2+‐dependent transport ATPase in rat pancreatic endoplasmic reticulum. J. Biol. Chem. 262: 13758–13764, 1987.
 113. Kimura, T., K. Imamura, L. Eckhardt, and I. Schulz. Ca2+‐, phorbol ester‐, and cAMP‐stimulated enzyme secretion from permeabilized rat pancreatic acini. Am. J. Physiol. 250 (Gastrointest. Liver Physiol. 13): G698–G708, 1986.
 114. King, A. C., and P. Cuatrecasas. Resolution of high and low affinity epidermal growth factor receptors. Inhibition of high affinity component by low temperature, cycloheximide, and phorbol esters. J. Biol. Chem. 257: 3053–3060, 1982.
 115. Kirchberger, M. A., M. Tada, and A. M. Katz. Phospholamban: a regulatory protein of the cardiac sarcoplasmic reticulum. In: Recent Advances in Studies on Cardiac Structure and Metabolism, edited by A. Fleckenstein and N. S. Dhalla. Baltimore, MD: University Park Press, 1975, vol. 5, p. 103–115.
 116. Knight, D. E., and P. F. Baker. Calcium‐dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields. J. Membr. Biol. 68: 107–140, 1982.
 117. Knight, D. E., and E. Koh. Ca2+ and cyclic nucleotide dependence of amylase release from isolated rat pancreatic acinar cells rendered permeable by intense electric fields. Cell Calcium 5: 401–418, 1984.
 118. Kojima, I., H. Shibata, and E. Ogata. Phorbol ester inhibits angiotensin‐induced activation of phospholipase C in adrenal glomerulosa cells. Its implication in the sustained action of angiotensin. Biochem. J. 237: 253–258, 1986.
 119. Kondo, S., and I. Schulz. Ca++ uptake in isolated pancreas cells induced by secretagogues. Biochim. Biophys. Acta 419: 76–92, 1976.
 120. Koo, C., R. J. Lefkowitz, and R. Snyderman. Guanine nucleotides modulate the binding affinity of the oligopeptide chemoattractant receptor on human polymorphonuclear leukocytes. J. Clin. Invest. 72: 748–753, 1983.
 121. Korc, M., H. Sankaran, K. Y. Wong, J. A. Williams, and I. D. Goldfine. Insulin receptors in isolated mouse pancreatic acini. Biochem. Biophys. Res. Commun. 84: 293–299, 1978.
 122. Kraft, A. S., and W. B. Anderson. Phorbol esters increase the amount of Ca2+, phospholipid‐dependent protein kinase associated with plasma membrane. Nature Lond. 301: 621–623, 1983.
 123. Kribben, A., T. Tyrakowski, and I. Schulz. Characterization of Mg‐ATP‐dependent Ca2+ transport in cat pancreatic microsomes. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G480–G490, 1983.
 124. Kuijpers, G. A. J., I. G. P. Van Nooy, J. J. H. H. M. De Pont, and S. L. Bonting. The mechanism of fluid secretion in the rabbit pancreas studied by means of various inhibitors. Biochim. Biophys. Acta 778: 324–331, 1984.
 125. Kuno, M., and P. Gardner. Ion channels activated by inositol 1,4,5‐trisphosphate in plasma membrane of human T‐lymphocytes. Nature Lond. 326: 301–304, 1987.
 126. Labarca, R., A. Janowsky, J. Patel, and S. M. Paul. Phorbol esters inhibit agonist‐induced [3H]inositol‐1‐phosphate accumulation in rat hippocampal slices. Biochem. Biophys. Res. Commun. 123: 703–709, 1984.
 127. Lambert, M., M. Svoboda, J. Furnelle, and J. Christophe. Solubilization from rat pancreatic plasma membranes of a cholecystokinin (CCK) agonist‐receptor complex interacting with guanine nucleotide regulatory proteins coexisting in the same macromolecular system. Eur. J. Biochem. 147: 611–617, 1985.
 128. Lassegue, B., and J.‐C. Stoclet. Phorbol ester inhibition of vasopressin‐induced calcium efflux from cultured rat aortic myocytes. FEBS Lett. 205: 251–254, 1986.
 129. Laugier, R., and O. H. Petersen. Two different types of electrogenic amino acid action on pancreatic acinar cells. Biochim. Biophys. Acta 641: 216–221, 1981.
 130. Lee, L.‐S., and I. B. Weinstein. Epidermal growth factor, like phorbol esters, induces plasminogen activator in HeLa cells. Nature Lond. 274: 696–697, 1978.
 131. Leeb‐Lundberg, L. M. F., S. Cotecchia, J. W. Lomasney, J. F. DeBernardis, R. F. Lefkowitz, and M. G. Caron. Phorbol esters promote α1‐adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism. Proc. Natl. Acad. Sci. USA 82: 5651–5655, 1985.
 132. Levitzki, A. Receptor to effector coupling in the receptor‐dependent adenylate cyclase system. J. Recept. Res. 4: 399–409, 1984.
 133. Levitzki, A. Hypothesis. Regulation of adenylate cyclase by hormones and G‐proteins. FEBS Lett. 211: 113–118, 1987.
 134. Limas, C. J., and C. Limas. Phorbol ester‐ and diacylglycerol‐mediated desensitization of cardiac β‐adrenergic receptors. Circ. Res. 57: 443–449, 1985.
 135. Lin, T.‐M., D. C. Evans, C. J. Shaar, and M. A. Root. Action of somatostatin on stomach, pancreas, gastric mucosal blood flow, and hormones. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G40–G45, 1983.
 136. Litosch, I., C. Wallis, and J. N. Fain. 5‐Hydroxytryptamine stimulates inositol phosphate production in a cell‐free system from blowfly salivary glands. Evidence for a role of GTP in coupling receptor activation to phosphoinositide breakdown. J. Biol. Chem. 260: 5464–5471, 1985.
 137. Logsdon, C. D., and J. A. Williams. Epidermal growth factor binding and biologic effects on mouse pancreatic acini. Gastroenterology 85: 339–345, 1983.
 138. Long, B. W., and J. D. Gardner. Effects of cholecystokinin on adenylate cyclase activity in dispersed pancreatic acinar cells. Gastroenterology 73: 1008–1014, 1977.
 139. Lucas, D. O., S. M. Bajjalieh, J. A. Kowalchyk, and T. F. J. Martin. Direct stimulation by thyrotropin‐releasing hormone (TRH) of polyphosphoinositide hydrolysis in GH3 cell membranes by a guanine nucleotide‐modulated mechanism. Biochem. Biophys. Res. Commun. 132: 721–728, 1985.
 140. Lynch, C. J., R. Charest, S. B. Bocckino, J. H. Exton, and P. F. Blackmore. Inhibition of hepatic α1‐adrenergic effects and binding by phorbol myristate acetate. J. Biol. Chem. 260: 2844–2851, 1985.
 141. Machicao, E., and O. H. Wieland. Evidence that the insulin receptor‐associated protein kinase acts as a phosphatidylinositol kinase. FEBS Lett. 175: 113–116, 1984.
 142. Magnaldo, I., H. Talwar, W. B. Anderson, and J. Pouysségur. Evidence for a GTP‐binding protein coupling thrombin receptor to PIP2‐phospholipase C in membranes of hamster fibroblasts. FEBS Lett. 210: 6–10, 1987.
 143. Manchester, K. L. Stimulation by insulin of incorporation of [32P]phosphate and 14C from acetate into lipid and protein of isolated rat diaphragm. Biochim. Biophys. Acta 70: 208–210, 1963.
 144. Maruyama, Y. Ca2+‐induced excess capacitance fluctuation studied by phase‐sensitive detection method in exocrine pancreatic acinar cells. Pfluegers Arch. 407: 561–563, 1986.
 145. Matsumoto, T., T. F. P. Molski, M. Volpi, C. Pelz, Y. Kanaho, E. L. Becker, M. B. Feinstein, P. H. Naccache, and R. I. Sha'afi. Treatment of rabbit neutrophils with phorbol esters results in increased ADP‐ribosylation catalyzed by pertussis toxin and inhibition of the GTPase stimulated by fMet‐Leu‐Phe. FEBS Lett. 198: 295–300, 1986.
 146. McCleskey, E. W., A. P. Fox, D. Feldman, and R. W. Tsien. Different types of calcium channels. J. Exp. Biol. 124: 177–190, 1986.
 147. Meda, P., R. Bruzzone, S. Knodel, and L. Orci. Blockage of cell‐to‐cell communication within pancreatic acini is associated with increased basal release of amylase. J. Cell Biol. 103: 475–483, 1986.
 148. Meldolesi, J., J. D. Jamieson, and G. E. Palade. Composition of cellular membranes in the pancreas of the guinea pig. I. Isolation of membrane fraction J. Cell Biol. 49: 109–129, 171.
 149. Melin, P.‐M., R. Sundler, and G. Jergil. Phospholipase C in rat liver plasma membranes. Phosphoinositide specificity and regulation by guanine nucleotides and calcium. FEBS Lett. 198: 85–88, 1986.
 150. Merrit, J. E., C. W. Taylor, R. P. Rubin, and J. W. Putney. Jr. Evidence suggesting that a novel guanine nucleotide regulatory protein couples receptors to phospholipase C in exocrine pancreas. Biochem. J. 236: 337–343, 1986.
 151. Michell, R. H. Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta 415: 81–147, 1975.
 152. Milutinović, S., G. Sachs, W. Haase, and I. Schulz. Studies on isolated subcellular components of cat pancreas. I. Isolation and enzymatic characterization. J. Membr. Biol. 36: 253–279, 1977.
 153. Moolenaar, W. H., J. Boonstra, P. T. Van der Saag, and S. W. de Laat. Sodium/proton exchange in mouse neuroblastoma cells. J. Biol. Chem. 256: 12883–12887, 1981.
 154. Moolenaar, W. H., L. H. K. Defize, and S. W. de Laat. Ionic signalling by growth factor receptors. J. Exp. Biol. 124: 359–373, 1986.
 155. Moolenaar, W. H., L. G. J. Tertoolen, and S. W. de Laat. Phorbol ester and diacylglycerol mimic growth factors in raising cytoplasmic pH. Nature Lond. 312: 371–374, 1984.
 156. Morris, A. P., D. V. Gallacher, R. F. Irvine, and O. H. Petersen. Synergism of Ins,4,5)P3 with Ins,3,4,5)P4 in activating Ca2+‐dependent K+ channels. Nature Lond. In press.
 157. Muallem, S., M. Schoeffield, S. Pandol, and G. Sachs. Inositol trisphosphate modification of ion transport in rough endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 82: 4433–4437, 1985.
 158. Nakamura, T., and M. Ui. Simultaneous inhibition of inositol phospholipid breakdown, arachidonic acid release, and histamine secretion in mast cells by islet‐activating protein, pertussis toxin. A possible involvement of the toxin‐specific substrate in the Ca2+‐mobilizing receptor‐mediated biosignaling system. J. Biol. Chem. 260: 3584–3593, 1985.
 159. Nakanishi, H., H. Nomura, U. Kikkawa, A. Kishimoto, and Y. Nishizuka. Rat brain and liver soluble phospholipase C: resolution of two forms with different requirements for calcium. Biochem. Biophys. Res. Commun. 132: 582–590, 1985.
 160. Nishikawa, M., H. Hidaka, and R. S. Adelstein. Phosphorylation of smooth muscle heavy meromyosin by calcium‐activated, phospholipid‐dependent protein kinase. The effect on actin‐activated MgATPase activity. J. Biol. Chem. 258: 14069–14072, 1983.
 161. Nishizuka, Y. The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature Lond. 308: 693–698, 1984.
 162. Novak, I. Pancreatic bicarbonate secretion. In: pH Homeostasis: Mechanism and Control, edited by D. Häussinger. London: Academic, 1988, p. 447–470.
 163. Öbrink, B., B. Wärmegård, and H. Pertoft. Specific binding of rat liver plasma membranes by rat liver cells. Biochem. Biophys. Res. Commun. 77: 665–670, 1977.
 164. Ochs, D. L., J. I. Korenbrot, and J. A. Williams. Intracellular free calcium concentrations in isolated pancreatic acini; effects of secretagogues. Biochem. Biophys. Res. Commun. 117: 122–128, 1983.
 165. Okajima, F., T. Katada, and M. Ui. Coupling of guanine nucleotide regulatory protein to chemotactic peptide receptors in neutrophil membranes and its uncoupling by islet‐activating protein, pertussis toxin. A possible role of the toxin substrate in Ca2+‐mobilizing receptor‐mediated signal transduction. J. Biol. Chem. 260: 6761–6768, 1985.
 166. Okajima, F., and M. Ui. ADP‐ribosylation of the specific membrane protein by islet‐activating protein, pertussis toxin, associated with inhibition of a chemotactic peptide‐induced arachidonate release in neutrophils. A possible role of the toxin substrate in Ca2+‐mobilizing biosignaling. J. Biol. Chem. 259: 13863–13871, 1984.
 167. Owens, J. R., L. T. Frame, M. Ui, and D. M. F. Cooper. Cholera toxin ADP‐ribosylates the islet‐activating protein substrate in adipocyte membranes and alters its function. J. Biol. Chem. 260: 15946–15952, 1985.
 168. Palmer, S., P. T. Hawkins, R. H. Michell, and C. J. Kirk. The labelling of polyphosphoinositides with [32P]Pi and the accumulation of inositol phosphates in vasopressin‐stimulated hepatocytes. Biochem. J. 238: 491–499, 1986.
 169. Pandol, S. J., and M. S. Schoeffield. 1,2‐Diacylglycerol, protein kinase C, and pancreatic enzyme secretion. J. Biol. Chem. 261: 4438–4444, 1986.
 170. Parsegian, V. A. Considerations in determining the mode of influence of calcium on vesicle‐membrane interaction In: Approaches to the Cell Biology of Neurons, edited by W. M. Cowan and J. A. Ferrendelli. Bethesda, MD: Soc. Neurosci., 1977, p. 161–171. (Soc. Neurosci. Symp. II.).
 171. Pazoles, C. J., and H. B. Pollard. Evidence for stimulation of anion transport in ATP‐evoked transmitter release from isolated secretory vesicles. J. Biol. Chem. 253: 3962–3969, 1978.
 172. Pennington, S. R., and B. R. Martin. Insulin‐stimulated phosphoinositide metabolism in isolated fat cells. J. Biol. Chem. 260: 11039–11045, 1985.
 173. Petersen, O. H. Electrophysiology of acinar cells. In: The Exocrine Pancreas: Biology, Pathobiology, and Diseases, edited by V. L. W. Go, J. D. Gardner, F. P. Brooks, E. Lebenthal, E. P. DiMagno, and G. A. Scheele. New York: Raven, 1986, p. 141–161.
 174. Petersen, O. H., and C. Bear. Two glucagon transducing systems. Nature Lond. 323: 18, 1986.
 175. Petersen, O. H., and N. Iwatsuki. Hormonal control of cell to cell coupling in the exocrine pancreas. In: Hormone Receptors in Digestion and Nutrition, edited by G. Rosselin, P. Fromageot, and S. Bonfils. Amsterdam: Elsevier/North‐Holland, 1979, p. 191–202.
 176. Petersen, O. H., and Y. Maruyama. What is the mechanism of the calcium influx to pancreatic acinar cells evoked by secretagogues? Pfluegers Arch. 396: 82–84, 1983.
 177. Petersen, O. H., and Y. Maruyama. Calcium‐activated potassium channels and their role in secretion. Nature Lond. 307: 693–696, 1984.
 178. Petersen, O. H., Y. Maruyama, J. Graf, R. Laugier, A. Nishiyama, and G. T. Pearson. Ionic currents across pancreatic acinar cell membranes and their role in fluid secretion. Philos. Trans. R. Soc. Lond. B Biol. Sci. 296: 151–166, 1981.
 179. Petersen, O. H., and J. Singh. Amino acid‐evoked membrane current in voltage clamped mouse pancreatic acini. J. Physiol. Lond. 319: 99P–100P, 1981.
 180. Pfeilschifter, J. Tumour promotor 12‐O‐tetradecanoyl‐phorbol 13‐acetate inhibits angiotensin II‐induced inositol phosphate production and cytosolic Ca2+ rise in rat renal mesangial cells. FEBS Lett. 203: 262–266, 1986.
 181. Pfeuffer, E., R.‐M. Dreher, H. Metzger, and T. Pfeuffer. Catalytic unit of adenylate cyclase: purification and identification by affinity crosslinking. Proc. Natl. Acad. Sci. USA 82: 3086–3090, 1985.
 182. Pollard, H. B., C. J. Pazoles, C. E. Creutz, A. Ramu, C. A. Strott, P. Ray, E. M. Brown, G. D. Aurbach, K. M. Tack‐Goldman, and N. R. Shulman. A role for anion transport in the regulation of release from chromaffin granules and exocytosis from cells. J. Supramol. Struct. 7: 277–285, 1977.
 183. Pollard, H. B., C. J. Pazoles, C. E. Creutz, and O. Zinder. The chromaffin granule and possible mechanisms of exocytosis. Int. Rev. Cytol. 58: 159–197, 1979.
 184. Renckens, B. A. M., S. E. Van Emst‐de Vries, J. J. H. H. M. De Pont, and S. L. Bonting. Rat pancreas adenylate cyclase. VII. Effect of extracellular calcium on pancreozymin‐induced cyclic AMP formation. Biochim. Biophys. Acta 630: 511–518, 1980.
 185. Reuter, H., S. Kokubun, and B. Prod'hom. Properties and modulation of cardiac calcium channels. J. Exp. Biol. 124: 191–201, 1986.
 186. Robberecht, P., M. Deschodt‐Lanckman, P. De Neef, and J. Christophe. Effects of somatostatin on pancreatic exocrine function. Interaction with secretin. Biochem. Biophys. Res. Commun. 67: 315–323, 1975.
 187. Robberecht, P., M. Deschodt‐Lanckman, M. Lammens, P. De Neef, and J. Christophe. “In vitro” effects of secretin and vasoactive intestinal polypeptide on hydrolase secretion and cyclic AMP levels in the pancreas of five animal species. A comparison with caerulein. Gastroenterol. Clin. Biol. 1: 519–525, 1977.
 188. Rodbell, M., L. Birnbaumer, S. L. Pohl, and H. M. J. Krans. The glucagon‐sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanyl nucleotides in glucagon action. J. Biol. Chem. 246: 1877–1882, 1971.
 189. Rutten, W. J., J. J. H. H. M. De Pont, and S. L. Bonting. Adenylate cyclase in the rat pancreas. Properties and stimulation by hormones. Biochim. Biophys. Acta 274: 201–213, 1972.
 190. Sakamoto, C., I. D. Goldfine, and J. A. Willams. The somatostatin receptor on isolated acinar cell plasma membranes. J. Biol. Chem. 259: 9623–9627, 1984.
 191. Saltiel, A. R., and P. Cuatrecasas. Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid. Proc. Natl. Acad. Sci. USA 83: 5793–5797, 1986.
 192. Saltiel, A. R., J. A. Fox, P. Sherline, and P. Cuatrecasas. Insulin‐stimulated hydrolysis of a novel glycolipid generates modulators of cAMP phosphodiesterase. Science Wash. DC 233: 967–972, 1986.
 193. Sawyer, S. T., and S. Cohen. Enhancement of calcium uptake and phosphatidylinositol turnover by EGF in A431 cells. Biochemistry 20: 6280–6286, 1981.
 194. Schultz, G., and W. Rosenthal. Prinzipien der transmembranären Signalumsetzung bei der Wirkung von Hormonen und Neurotransmittern. Arzneim.‐Forsch. 35(II) 12a: 1879–1885, 1985.
 195. Schulz, I. Influence of bicarbonate CO2‐ and glycodiazine buffer on the secretion of the isolated cat pancreas. Pfluegers Arch. 329: 283–306, 1971.
 196. Schulz, I. Electrolyte and fluid secretion in the exocrine pancreas. In: Physiology of the Gastrointestinal Tract (2nd ed.), edited by L. R. Johnson. New York: Raven, 1987, vol. 2, p. 1147–1171. Schulz, I., S. Schnefel, H. Banfíc, and L. Eckhardt. Ca2+ signalling in exocrine glands in comparison to that in vascular smooth muscle cells. In: Membrane Pathology, edited by G. Bianchi, E. Carafoli, and A. Scarpa. New York: NY Acad. Sci., 1986, vol. 488, p. 240–251.
 197. Schulz, I., H. Streb, E. Bayerdörffer, and K. Imamura. Hormonal and neurotransmitter regulation of Ca2+ movements in pancreatic acinar cells. In: Hormones and Cell Regulation, edited by J. E. Dumont, B. Hamprecht, and J. Nunez. Amsterdam: Elsevier, 1985, vol. 9, p. 325–342.
 198. Schulz, I., F. Ströver, and K. J. Ullrich. Lipid soluble weak organic acid buffer as “substrate” for pancreatic secretion. Pfluegers Arch. 323: 121–140, 1971.
 199. Schulz, I., F. Thévenod, T. P. Kemmer, and H. P. Streb. Proton‐dependent Ca2+ uptake into inositol 1,4,5‐trisphosphate‐sensitive endoplasmic reticulum from red salivary glands. In: Molecular Mechanisms in Secretion, edited by N. A. Thorn, M. Treiman, O. H. Petersen, and J. H. Thaysen. Copenhagen: Munksgaard, in press. (Alfred Benzon Symp. 25.).
 200. Shears, S. B., D. J. Storey, A. J. Morris, A. B. Cubitt, J. B. Parry, R. H. Michell, and C. J. Kirk. Dephosphorylation of myo‐inositol 1,4,5‐trisphosphate and myo‐inositol 1,3,4‐trisphosphate. Biochem. J. 242: 393–402, 1987.
 201. Siffert, W., G. Siffert, and P. Scheid. Activation of Na+/H+ exchange in human platelets stimulated by thrombin and a phorbol ester. Biochem. J. 241: 301–303, 1987.
 202. Simon, M.‐F., H. Chap, and L. Douste‐Blazy. Activation of phospholipase C in thrombin‐stimulated platelets does not depend on cytoplasmic free calcium concentration. FEBS Lett. 170: 43–48, 1984.
 203. Singh, J. Mechanism of action of insulin on acetylcholine‐evoked amylase secretion in the mouse pancreas. J. Physiol. Lond. 358: 469–482, 1985.
 204. Sokolovsky, M., D. Gurwitz, and R. Galron. Muscarinic receptor binding in mouse brain: regulation by guanine nucleotides. Biochem. Biophys. Res. Commun. 94: 487–492, 1980.
 205. Söling, H.‐D., U. Padel, R. Jahn, G. Thiel, P. Kricke, and W. Fest. Regulation of protein kinases in exocrine secretory cells during agonist‐induced exocytosis. In: Advances in Enzyme Regulation, edited by G. Weber. Oxford: Pergamon, 1985, vol. 23, p. 141–156.
 206. Somlyo, A. P., A. V. Somlyo, H. Shuman, A. Scarpa, M. Endo, and G. Inesi. Mitochondria do not accumulate significant Ca concentrations in normal cells. In: Calcium and Phosphate Transport Across Biomembranes, edited by F. Bronner and M. Peterlik. New York: Academic, 1981, p. 87–98.
 207. Srikant, C. B., and Y. C. Patel. Somatostatin receptors on rat pancreatic acinar cells. Pharmacological and structural characterization and demonstration of down‐regulation in streptozotocin diabetes. J. Biol. Chem. 261: 7690–7696, 1986.
 208. Stanley, E. F., and G. Ehrenstein. A model for exocytosis based on the opening of calcium‐activated potassium channels in vesicles. Life Sci. 37: 1985–1995, 1985.
 209. Stein, J. M., and C. N. Hales. The effect of insulin on 32Pi incorporation into rat fat cell phospholipids. Biochim. Biophys. Acta 337: 41–49, 1974.
 210. Streb, H., E. Bayerdörffer, W. Haase, R. F. Irvine, and I. Schulz. Effect of inositol‐1,4,5‐trisphosphate on isolated subcellular fractions of rat pancreas. J. Membr. Biol. 81: 241–253, 1984.
 211. Streb, H., J. P. Heslop, R. F. Irvine, I. Schulz, and M. J. Berridge. Relationship between secretagogue‐induced Ca2+ release and inositol polyphosphate production in permeabilized pancreatic acinar cells. J. Biol. Chem. 260: 7309–7315, 1985.
 212. Streb, H., R. F. Irvine, M. J. Berridge, and I. Schulz. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol‐1,4,5‐trisphosphate. Nature Lond. 306: 67–69, 1983.
 213. Streb, H., and I. Schulz. Regulation of cytosolic free Ca2+ concentration in acinar cells of rat pancreas. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G347–G357, 1983.
 214. Sutherland, E. W., G. A. Robison, and R. W. Butcher. Some aspects of the biological role of adenosine 3',5'‐monophosphate (cyclic AMP). Circulation 37: 279–306, 1968.
 215. Suzuki, K., C. C. H. Petersen, and O. H. Petersen. Hormonal activation of single K+ channels via internal messenger in isolated pancreatic acinar cells. FEBS Lett. 192: 307–312, 1985.
 216. Svoboda, M., J. Furnelle, F. Eckstein, and J. Christophe. Guanosine 5'‐O−2‐thiodiphosphate) as a competitive inhibitor of GTP in hormone or cholera toxin‐stimulated pancreatic adenylate cyclase. FEBS Lett. 109: 275–279, 1980.
 217. Svoboda, M., M. Lambert, and J. Christophe. Distinct effects of the C‐terminal octapeptide of cholecystokinin and of a cholera toxin pretreatment on the kinetics of rat pancreatic adenylate cyclase activity. Biochim. Biophys. Acta 675: 46–61, 1981.
 218. Takai, Y., A. Kishimoto, Y. Iwasa, Y. Kawahara, T. Mori, and Y. Nishizuka. Calcium‐dependent activation of a multifunctional protein kinase by membrane phospholipids. J. Biol. Chem. 254: 3692–3695, 1979.
 219. Taparel, D., J. P. Esteve, C. Susini, N. Vaysse, D. Balas, G. Berthon, E. Wunsch, and A. Ribet. Binding of somatostatin to guinea‐pig pancreatic membranes: regulation by ions. Biochem. Biophys. Res. Commun. 115: 827–833, 1983.
 220. Tartakoff, A. M., and J. D. Jamieson. Subcellular fractionation of the pancreas. Methods Enzymol. 31: 41–59, 1974.
 221. Thomas, A. P. Modulation by GTP of the inositol 1,4,5‐trisphosphate‐activated calcium channel. In: Inositol Lipids in Cellular Signaling. Current Communications in Molecular Biology, edited by R. H. Michell and J. W. Putney, Jr. New York: Cold Spring Harbor, 1987, p. 133–139.
 222. Trimble, E. R., R. Bruzzone, T. J. Biden, and R. V. Farese. Secretin induces rapid increases in inositol trisphosphate, cytosolic Ca2+ and diacylglycerol as well as cyclic AMP in rat pancreatic acini. Biochem. J. 239: 257–261, 1986.
 223. Trimble, E. R., R. Bruzzone, T. J. Biden, C. J. Meehan, D. Andreu, and R. B. Merrifield. Secretin stimulates cyclic AMP and inositol trisphosphate production in rat pancreatic acinar tissue by two fully independent mechanisms. Proc. Natl. Acad. Sci. USA 84: 3146–3150, 1987.
 224. Tsuda, T., K. Kaibuchi, B. West, and Y. Takai. Involvement of Ca2+ in platelet‐derived growth factor‐induced expression of c‐myc oncogene in Swiss 3T3 fibroblasts. FEBS Lett. 187: 43–46, 1985.
 225. Tyrakowski, T., S. Milutinović, and I. Schulz. Studies on isolated subcellular components of cat pancreas. III. Alanine‐sodium cotransport in isolated plasma membrane vesicles. J. Membr. Biol. 38: 333–346, 1978.
 226. Ueda, T., S. H. Church, M. W. Noel, and D. L. Gill. Influence of inositol 1,4,5‐trisphosphate and guanine nucleotides on intracellular calcium release within the N1E‐115 neuronal cell line. J. Biol. Chem. 261: 3184–3192, 1986.
 227. Uhing, R. J., H. Jiang, V. Prpic, and J. H. Exton. Regulation of a liver plasma membrane phosphoinositide phosphodiesterase by guanine nucleotides and calcium. FEBS Lett. 188: 317–320, 1985.
 228. Verghese, M. W., C. D. Smith, and R. Snyderman. Potential role for a guanine nucleotide regulatory protein in chemo‐attractant receptor mediated polyphosphoinositide metabolism, Ca++ mobilization and cellular responses by leukocytes. Biochem. Biophys. Res. Commun. 127: 450–457, 1985.
 229. Verghese, M., R. J. Uhing, and R. Snyderman. A pertussis/choleratoxin‐sensitive N protein may mediate chemo‐attractant receptor signal transduction. Biochem. Biophys. Res. Commun. 138: 887–894, 1986.
 230. Vigne, P., C. Frelin, and M. Lazdunski. The amiloride‐sensitive Na+/H+ exchange system in skeletal muscle cells in culture. J. Biol. Chem. 257: 9394–9400, 1982.
 231. von Tscharner, V., B. Prod'hom, M. Baggiolini, and H. Reuter. Ion channels in human neutrophils activated by a rise in free cytosolic calcium concentration. Nature Lond. 324: 369–372, 1986.
 232. Wakelam, M. J. O., G. J. Murphy, V. J. Hruby, and M. D. Houslay. Activation of two signal‐transduction systems in hepatocytes by glucagon. Nature Lond. 323: 68–71, 1986.
 233. Walder, I. A., and J. B. Lunseth. A technic for separation of the cells of the gastric mucosa. Proc. Soc. Exp. Biol. Med. 112: 494–496, 1963.
 234. Watson, S. P., and E. G. Lapetina. 1,2‐Diacylglycerol and phorbol ester inhibit agonist‐induced formation of inositol phosphates in human platelets: possible implications for negative feedback regulation of inositol phospholipid hydrolysis. Proc. Natl. Acad. Sci. USA 82: 2623–2626, 1985.
 235. Willems, P. H. G. M., A. M. M. Fleuren‐Jakobs, J. J. H. H. M. De Pont, and S. L. Bonting. Potentiating role of cyclic AMP in pancreatic enzyme secretion, demonstrated by means of forskolin. Biochim. Biophys. Acta 802: 209–214, 1984.
 236. Willems, P. H. G. M., R. H. J. Tilly, and J. J. H. H. M. De Pont. Pertussis toxin stimulates cholecystokinin‐induced cyclic AMP formation but is without effect on secretagogue‐induced calcium mobilization in exocrine pancreas. Biochim. Biophys. Acta 928: 179–185, 1987.
 237. Williams, J. A., and I. D. Goldfine. The insulin‐pancreatic acinar axis. Diabetes 34: 980–986, 1985.
 238. Wolf, M., H. LeVine, III, W. S. May, Jr., P. Cuatrecasas, and N. Sahyoun. A model for intracellular translocation of protein kinase C involving synergism between Ca2+ and phorbol esters. Nature Lond. 317: 546–549, 1985.
 239. Wollheim, C. B., and T. J. Biden. Signal transduction in insulin secretion: comparison between fuel stimuli and receptor agonists. Ann. NY Acad. Sci. 488: 317–333, 1986.
 240. Wrenn, R. W. Phosphorylation of a pancreatic zymogen membrane protein by endogenous calcium/phospholipid‐dependent protein kinase. Biochim. Biophys. Acta 775: 1–6, 1984.
 241. Zavoico, G. B., S. P. Halenda, R. I. Sha'afi, and M. B. Feinstein. Phorbol myristate acetate inhibits thrombin‐stimulated Ca2+ mobilization and phosphatidylinositol 4,5‐bisphosphate hydrolysis in human platelets. Proc. Natl. Acad. Sci. USA 82: 3859–3862, 1985.
 242. Zimmerberg, J., F. S. Cohen, and A. Finkelstein. Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. I. Discharge of vesicular contents across the planar membrane. J. Gen. Physiol. 75: 241–250, 1980.
 243. Zimmerberg, J., F. S. Cohen, and A. Finkelstein. Micro‐molecular Ca2+ stimulates fusion of lipid vesicles with planar bilayers containing a calcium‐binding protein. Nature Lond. 210: 906–908, 1980.
 244. Zimmerberg, J., M. Curran, F. S. Cohen, and M. Brodwick. Simultaneous electrical and optical measurements show that membrane fusion precedes secretory granule swelling during exocytosis of beige mouse mast cells. Proc. Natl. Acad. Sci. USA 84: 1585–1589, 1987.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Irene Schulz. Signaling Transduction in Hormone‐ and Neurotransmitter‐Induced Enzyme Secretion from the Exocrine Pancreas. Compr Physiol 2011, Supplement 18: Handbook of Physiology, The Gastrointestinal System, Salivary, Gastric, Pancreatic, and Hepatobiliary Secretion: 443-463. First published in print 1989. doi: 10.1002/cphy.cp060322