References |
1. |
Adler, G.,
T. H. Hupp, and
H. F. Kern.
Course and spontaneous regression of acute pancreatitis in the rat.
Virchows Arch. A Pathol. Anat. Histol.
382:
31–47,
1979.
|
2. |
Adler, G.,
G. Rohr, and
H. F. Kern.
Alterations of membrane fusion as a cause of acute pancreatitis in the rat.
Dig. Dis. Sci.
27:
993–1002,
1982.
|
3. |
Andrews, D. W.,
P. Walter, and
F. P. Ottensmeyer.
Structure of the signal recognition particle by electron microscopy.
Proc. Natl. Acad. Sci. USA
82:
785–789,
1985.
|
4. |
Balch, W. E.,
W. G. Dunphy,
W. A. Braell, and
J. E. Rothman.
Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N‐acetylglucosamine.
Cell
39:
405–416,
1984.
|
5. |
Balch, W. E.,
B. S. Glick, and
J. E. Rothman.
Sequential intermediates in the pathway of intercompartmental transport in a cell‐free system.
Cell
39:
525–536,
1984.
|
6. |
Barr, R.,
K. Safranski,
I. L. Sun,
F. L. Crane, and
D. J. Morre.
An electrogenic proton pump associated with the Golgi apparatus of mouse liver driven by NADH and ATP.
J. Biol. Chem.
259:
14064–14067,
1984.
|
7. |
Bendayan, M.,
J. Roth,
A. Perrelet, and
L. Orci.
Quantitative immunocytochemical localization of pancreatic secretory proteins in subcellular compartments of the rat acinar cell.
J. Histochem. Cytochem.
28:
149–160,
1980.
|
8. |
Bergmann, J. E., and
S. J. Singer.
Immunoelectron microscopic studies of the intracellular transport of the membrane glycoprotein (G) of vesicular stomatitis virus in infected Chinese hamster ovary cells.
J. Cell Biol.
97:
1777–1787,
1983.
|
9. |
Bieger, W.,
A. Martin‐Achard,
M. Bassler, and
H. Kern.
Studies on intracellular transport of secretory proteins in the rat exocrine pancreas. IV. Stimulation by in vivo infusion of caerulein.
Cell Tissue Res.
165:
435–453,
1976.
|
10. |
Bieger, W.,
J. Seybold, and
H. Kern.
Studies on intracellular transport of secretory proteins in the rat exocrine pancreas. V. Kinetic studies on accelerated transport following caerulein infusion in vivo.
Cell Tissue Res.
170:
203–219,
1976.
|
11. |
Blobel, G., and
B. Dobberstein.
Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane‐bound ribosomes of murine myeloma.
J. Cell Biol.
67:
835–851,
1975.
|
12. |
Borgese, N.,
G. Pietrini, and
J. Meldolesi.
Localization and biosynthesis of NADH‐cytochrome b5 reductase, an integral membrane protein in rat liver cells. III. Evidence for the independent insertion and turnover of the enzyme in various subcellular compartments.
J. Cell Biol.
86:
38–45,
1980.
|
13. |
Braell, W. A., and
H. F. Lodish.
The erythrocyte anion transport protein is cotranslationally inserted into microsomes.
Cell
28:
23–31,
1982.
|
14. |
Brown, W. J.,
E. Constantinescu, and
M. G. Farquhar.
Redistribution of mannose‐6‐phosphate receptors induced by tunicamycin and chloroquine.
J. Cell Biol.
99:
320–326,
1984.
|
15. |
Brown, W. J., and
M. G. Farquhar.
The mannose‐6‐phosphate receptor for lysosomal enzymes is concentrated in cis Golgi cisternae.
Cell
36:
295–307,
1984.
|
16. |
Brown, W. J., and
M. G. Farquhar.
Accumulation of coated vesicles bearing mannose 6‐phosphate receptors for lysosomal enzymes in the Golgi region of I‐cell fibroblasts.
Proc. Natl. Acad. Sci. USA
81:
5135–5139,
1984.
|
17. |
Burgess, T. L.,
C. S. Craik, and
R. B. Kelly.
The exocrine protein trypsinogen is targeted into the secretory granules of an endocrine cell line: studies by gene transfer.
J. Cell Biol.
101:
639–645,
1985.
|
18. |
Campbell, C. H., and
L. H. Rome.
Coated vesicles from rat liver and calf brain contain lysosomal enzymes bound to mannose‐6‐phosphate receptors.
J. Biol. Chem.
258:
13347–13352,
1983.
|
19. |
Carne, T., and
G. Scheele.
Amino acid sequences of transport peptides associated with canine exocrine pancreatic proteins.
J. Biol. Chem.
257:
4133–4140,
1982.
|
20. |
Carne, T., and
G. Scheele.
The role of presecretory proteins in the secretory process. In:
The Secretory Process,
edited by M. Cantin.
Basel:
Karger,
1983,
p. 73–101.
|
21. |
Connolly, T., and
R. Gilmore.
Formation of functional ribosome‐membrane junction during translocation requires the participation of a GTP‐binding protein.
J. Cell Biol.
103:
2253–2261,
1986.
|
22. |
Czernilofsky, A. P.,
A. D. Levinson,
H. E. Varmus,
J. M. Bishop,
E. Tischer, and
H. M. Goodman.
Nucleotide sequence of an avian sarcoma virus oncogene (src) and proposed amino acid sequence for the gene product.
Nature Lond.
287:
198–203,
1980.
|
23. |
Dagorn, J. C.
Nonparallel enzyme secretion from rat pancreas: in vivo studies.
J. Physiol. Lond.
280:
435–448,
1978.
|
24. |
Dailey, H. A., and
P. Strittmatter.
Orientation of the carboxyl and NH2 termini of the membrane‐binding segment of cytochrome b5 on the same side of phospholipid bilayers.
J. Biol. Chem.
256:
3951–3955,
1981.
|
25. |
Dorfman, A.
Proteoglycan biosynthesis. In:
Cell Biology of Extracellular Matrix,
edited by E. D. Hay.
New York:
Plenum,
1981,
p. 115–138.
|
26. |
Dunphy, W. G.,
R. Brands, and
J. E. Rothman.
Attachment of terminal N‐acetylglucosamine to asparagine‐linked oligosaccharides occurs in central cisternae of the Golgi stack.
Cell
40:
463–472,
1985.
|
27. |
Dunphy, W. G.,
E. Fries,
L. J. Urbani, and
J. E. Rothman.
Early and late functions associated with the Golgi apparatus reside in distinct compartments.
Proc. Natl. Acad. Sci. USA
78:
7453–7457,
1981.
|
28. |
Elhammer, A., and
S. Kornfeld.
Two enzymes involved in the synthesis of O‐linked oligosaccharides are localized on membranes of different densities in mouse lymphoma BW5147 cells.
J. Cell Biol.
99:
327–331,
1984.
|
29. |
Engelman, D. M., and
T. A. Steitz.
The spontaneous insertion of proteins into and across membranes.
Cell
23:
411–422,
1981.
|
30. |
Evans, E. A.,
R. Gilmore, and
G. Blobel.
Purification of microsomal signal peptidase as a complex.
Proc. Natl. Acad. Sci. USA
83:
581–585,
1986.
|
31. |
Farquhar, M. G.
Progress in unraveling pathways of Golgi traffic.
Annu. Rev. Cell. Biol.
1:
447–488,
1985.
|
32. |
Fatemi, S. H.,
R. Haas,
N. Jentoft,
T. L. Rosenberry, and
A. M. Tartakoff.
The glycophospholipid anchor of Thy‐1. Biosynthetic labeling experiments with wild type and class E Thy‐1 negative lymphomas.
J. Biol. Chem.
262:
4728–4732,
1987.
|
33. |
Feracci, H.,
S. Maroux,
J. Bonicel, and
P. Desnuelle.
The amino acid sequence of the hydrophobic anchor of rabbit intestinal brush border aminopeptidase N.
Biochim. Biophys. Acta
684:
133–136,
1982.
|
34. |
Friedlander, M., and
G. Blobel.
Bovine opsin has more than one signal sequence.
Nature Lond.
318:
338–343,
1985.
|
35. |
Garoff, H.,
A. Frischauf,
K. Simons,
H. Lehrach, and
H. Delius.
Nucleotide sequence of cDNA coding for Semliki forest virus membrane glycoproteins.
Nature Lond.
288:
236–241,
1980.
|
36. |
Geuze, H. J.,
J. W. Slot,
G. J. A. M. Strous,
H. Lodish, and
A. L. Schwartz.
Intracellular site of asialoglycoprotein receptor‐ligand uncoupling: double‐label immunoelectron microscopy during receptor‐mediated endocytosis.
Cell
32:
277–287,
1983.
|
37. |
Gilmore, R.,
R. Walter, and
G. Blobel.
Protein translocation across the endoplasmic reticulum. Isolation and characterization of the signal recognition particle receptor.
J. Cell Biol.
95:
470–477,
1982.
|
38. |
Glickman, J.,
K. Croen,
S. Kelly, and
Q. Al‐Awqati.
Golgi membranes contain an electrogenic H+ pump in parallel to a chloride conductance.
J. Cell Biol.
97:
1303–1308,
1983.
|
39. |
Goldberg, D. E., and
S. Kornfeld.
Evidence for extensive subcellular organization of asparagine‐linked oligosaccharide processing and lysosomal enzyme phosphorylation.
J. Biol. Chem.
258:
3159–3165,
1983.
|
40. |
Greene, L. J.,
C. H. W. Hirs, and
G. Palade.
On the protein composition of bovine pancreatic zymogen granules.
J. Biol. Chem.
238:
2054–2070,
1963.
|
41. |
Griffiths, G.,
R. Brands,
B. Burke,
D. Louvard, and
G. Warren.
Viral membrane proteins acquire galactose in trans Golgi cisternae during intracellular transport.
J. Cell Biol.
95:
781–792,
1982.
|
42. |
Habener, J. F.,
M. Rosenblatt,
B. Kemper,
H. M. Kronenberg,
A. Rich, and
J. T. Potts.
Pre‐proparathyroid hormone: amino acid sequence, chemical synthesis and some biological studies of the precursor region.
Proc. Natl. Acad. Sci. USA
75:
2616–2620,
1978.
|
43. |
Hauri, H.‐P.,
A. Quaroni, and
K. J. Isselbacher.
Biogenesis of intestinal plasma membrane: posttranslational route and cleavage of sucrase‐isomaltose.
Proc. Natl. Acad. Sci. USA
76:
2616–2620,
1979.
|
44. |
Heidenhain, R.
Beitraege zur Kenntniss des Pankreas.
Pfluegers Arch. Gesamte Physiol. Menschen Tiere
10:
557–632,
1875.
|
45. |
Holt, G. D.,
C. M. Snow,
L. Gerace, and
G. W. Hart.
Localization of glycosylation to the cytosolic faces of the nuclear pore complex (Abstract).
J. Cell Biol.
103:
320a,
1986.
|
46. |
Hortsch, M.,
D. Avossa, and
D. I. Meyer.
Characterization of secretory protein translocation: ribosome‐membrane interaction in endoplasmic reticulum.
J. Cell Biol.
103:
241–253,
1986.
|
47. |
Hubbard, S. C., and
R. J. Ivatt.
Synthesis and processing of asparagine‐linked oligosaccharides.
Annu. Rev. Biochem.
50:
555–583,
1981.
|
48. |
Jamieson, J. D., and
G. E. Palade.
Intracellular transport of secretory proteins in the pancreatic exocrine cell. II. Transport to condensing vacuoles and zymogen granules.
J. Cell Biol.
34:
597–615,
1967.
|
49. |
Jamieson, J. D., and
G. E. Palade.
Production of secretory proteins in animal cells. In:
International Cell Biology, 1976–1977,
edited by B. R. Brinkleyand
K. R. Porter.
New York:
Rockefeller Univ. Press,
1977,
p. 308–317.
|
50. |
Jou, W. M.,
M. Verhoeyen,
R. Devos,
E. Saman,
R. Fang,
D. Huylebroeck,
N. Carey, and
S. Emtage.
Complete structure of the hemagglutinin gene from the human influenza A/Victoria/3/75 (H3N2) strain as determined from cloned DNA.
Cell
19:
683–696,
1980.
|
51. |
Keim, V.
Rapid adaptation of pancreatic enzyme secretion in the conscious rat. I. Influence of endogenous and exogenous stimulation.
Ann. Nutr. Metab.
30:
104–112,
1986.
|
52. |
Keim, V.
Rapid adaptation of pancreatic enzyme secretion in the conscious rat. II. Effects of fasting and dietary modulation.
Ann. Nutr. Metab.
30:
113–119,
1986.
|
53. |
Keim, V., and
G. Rohr.
Influence of secretagogues on asynchronous secretion of newly synthesized pancreatic proteins in the conscious rat.
Pancreas
2:
562–567,
1987.
|
54. |
Kerfelec, R.,
A. Puigserver,
K. S. LaForge, and
G. Scheele.
Primary structures of canine pancreatic lipase and phospholipase A2 messenger RNA's.
Pancreas
1:
430–437,
1986.
|
55. |
Kern, H.,
G. Adler, and
G. Scheele.
Structural and biochemical characterization of maximal and supramaximal hormonal stimulation in the rat exocrine pancreas.
Scand. J. Gastroenterol.
20:
20–29,
1985.
|
56. |
Kraehenbuhl, J. P.,
L. Racine, and
J. D. Jamieson.
Immunocytochemical localization of secretory proteins in bovine pancreatic exocrine cells.
J. Cell Biol.
72:
406–423,
1977.
|
57. |
Kreibich, G.,
D. Sabatini, and
M. Adesnick.
Biosynthesis of hepatocyte endoplasmic reticulum proteins.
Methods Enzymol.
96:
530–542,
1983.
|
58. |
Kurzchalia, T. V.,
M. Wiedmann,
A. S. Girshovich,
E. S. Bochkareva,
H. Bielka, and
T. A. Rapoport.
The signal sequence of nascent preprolactin interacts with the 54K polypeptide of the signal recognition particle.
Nature Lond.
320:
634–636,
1986.
|
59. |
Lampel, M., and
H. F. Kern.
Acute interstitial pancreatitis in the rat induced by excessive doses of pancreatic secretagogues.
Virchows Arch. A Pathol. Anat. Histol.
373:
97–117,
1977.
|
60. |
Lauffer, L.,
P. D. Garcia,
R. N. Harkins,
L. Coussens,
A. Ullrich, and
P. Walter.
Topology of signal recognition particle receptor in endoplasmic reticulum membrane.
Nature Lond.
318:
334–338,
1985.
|
61. |
Liscum, L.,
J. Finer‐Moore,
R. M. Stroud,
K. L. Luskey,
M. S. Brown, and
J. L. Goldstein.
Domain structure of 3‐hydroxy‐3‐methylglutaryl coenzyme A reductase, a glycoprotein of the endoplasmic reticulum.
J. Biol. Chem.
260:
522–530,
1985.
|
62. |
Long, L.,
M. Reitman,
J. Tang,
R. M. Roberts, and
S. Kornfeld.
Lysosomal enzyme phosphorylation. Recognition of a protein‐dependent determinant allows specific phosphorylation of oligosaccharides present on lysosomal enzymes.
J. Biol. Chem.
259:
14663–14671,
1984.
|
63. |
Low, M.
Biochemistry of the glycosyl phospholipid inositol membrane protein anchor.
Biochem. J.
244:
1–13,
1987.
|
64. |
MacDonald, R. J.,
S. J. Stary, and
G. H. Swift.
Two similar but nonallelic rat pancreatic trypsinogens. Nucleotide sequences of the cloned cDNAs.
J. Biol. Chem.
257:
9724–9732,
1982.
|
65. |
MacDonald, R. J.,
S. J. Stary, and
G. H. Swift.
Rat pancreatic ribonuclease messenger RNA. The nucleotide sequence of the entire mRNA and the derived amino acid sequence of the pre‐enzyme.
J. Biol. Chem.
257:
14582–14585,
1982.
|
66. |
MacNair, D. C., and
A. J. Kenney.
Proteins of the kidney microvillar membrane. The amphipathic form of dipeptidyl peptidase IV.
Biochem. J.
179:
379–395,
1979.
|
67. |
Malaisse‐Lagae, F.,
M. Ravazzola,
P. Robberecht,
A. Vandermeers,
W. J. Malaisse, and
L. Orci.
Exocrine pancreas: evidence for topographic partition of secretory function.
Science Wash. DC
190:
795–797,
1975.
|
68. |
Malkin, L. I., and
A. Rich.
Partial resistance of nascent chains to proteolytic digestion due to ribosomal shielding.
J. Mol. Biol.
26:
329–346,
1967.
|
69. |
Matlin, K. S., and
K. Simons.
Sorting of an apical plasma membrane glycoprotein occurs before it reaches the cell surface in cultured epithelial cells.
J. Cell Biol.
99:
2131–2139,
1984.
|
70. |
Mercier, J. C.,
G. Haze,
P. Gaye, and
D. Hue.
Amino terminal sequence of the precursor of ovine β‐lactoglobulin.
Biochem. Biophys. Res. Commun.
82:
1236–1245,
1978.
|
71. |
Meyer, D. I.
Signal recognition particle (SRP) does not mediate a translational arrest of nascent secretory proteins in mammalian cell‐free systems.
EMBO J.
4:
2031–2033,
1985.
|
72. |
Meyer, D. I., and
B. Dobberstein.
Identification and characterization of a membrane component essential for the translocation of nascent proteins across the membrane of the en‐ doplasmic reticulum.
J. Cell Biol.
87:
503–508,
1980.
|
73. |
Meyer, D. I.,
E. Krause, and
B. Dobberstein.
Secretory protein translocation across membranes. The role of the “docking protein.rdquo;
Nature Lond.
297:
647–650,
1982.
|
74. |
Mihara, K.,
R. Sato,
R. Sakakibara, and
H. Wada.
Reduced nicotinamide adenine dinucleotide‐cytochrome b5 reductase: location of the hydrophobic membrane binding region at the carboxy‐terminal end and the masked amino terminus.
Biochemistry
17:
2829–2834,
1978.
|
75. |
Mills, E. N. C.,
N. Lambert, and
R. B. Freedman.
Identification of protein disulphide‐isomerase as a major acidic polypeptide in rat liver microsomal membranes.
Biochem. J.
213:
245–248,
1983.
|
76. |
Milstein, C.,
G. G. Brownlee,
T. M. Harrison, and
M. B. Mathews.
A possible precursor of immunoglobulin light chains.
Nature New Biol.
239:
117–120,
1972.
|
77. |
Moore, H.‐P.,
B. Gumbiner, and
R. B. Kelly.
Chloroquine diverts ACTH from a regulated to a constitutive secretory pathway in AtT‐20 cells.
Nature Lond.
302:
434–436,
1983.
|
78. |
Munro, S., and
H. B. R. Pelham.
A C‐terminal signal prevents secretion of luminal ER proteins.
Cell
48:
899–907,
1987.
|
79. |
Novikoff, A. B.,
E. Essner,
S. Goldfischer, and
M. Haus.
Nucleosidephosphate activities of cytomembranes. In:
The Interpretation of Ultrastructure,
edited by R. J. C. Harris.
New York:
Academic,
1962,
p. 149–192.
|
80. |
Okada, Y.,
A. B. Frey,
T. M. Guenther,
F. Oesch,
D. D. Sabatini, and
G. Kreibich.
Studies on the biosynthesis of microsomal membrane proteins. Site of synthesis and mode of insertion of cytochrome b5, cytochrome b5 reductase, cytochrome P‐450 and epoxide hydratase.
Eur. J. Biochem.
122:
393–402,
1982.
|
81. |
Orci, L.,
R. Montesano,
P. Meda,
F. Malaisse‐Lagae,
D. Brown,
A. Perrelet, and
P. Vassalli.
Heterogenous distribution of filipin‐cholesterol complexes across the cisternae of the Golgi apparatus.
Proc. Natl. Acad. Sci. USA
78:
293–297,
1981.
|
82. |
Orci, L.,
M. Ravazzola, and
R. G. W. Anderson.
The condensing vacuole of exocrine cells is more acidic than the mature secretory vesicle.
Nature Lond.
326:
77–79,
1987.
|
83. |
Palade, G. E.
Functional changes in the structure of cell components. In:
Subcellular Particles,
edited by T. Hayashi.
New York:
Ronald,
1959,
p. 64–83.
|
84. |
Palade, G.
Intracellular aspects of the process of protein synthesis.
Science Wash. DC
189:
347–358,
1975.
|
85. |
Palmiter, R.,
D. J. Gagnon, and
K. A. Walsh.
Ovalbumin: a secreted protein without a transient hydrophobic leader sequence.
Proc. Natl. Acad. Sci. USA
75:
94–98,
1978.
|
86. |
Pinsky, S.,
S. LaForge,
V. Luc, and
G. Scheele.
Identification of cDNA clones encoding specific secretory isoenzyme forms: determination of the primary structure of dog pancreatic prechymotrypsinogen 2 mRNA.
Proc. Natl. Acad. Sci. USA
80:
7486–7490,
1983.
|
87. |
Pinsky, S.,
S. LaForge, and
G. Scheele.
Differential regulation of trypsinogen mRNA translation: full‐length mRNA sequences encoding two oppositely charged trypsinogen isoenzymes in the dog pancreas.
Mol. Cell. Biol.
5:
2669–2676,
1985.
|
88. |
Pleogh, H. L.,
H. T. Orr, and
J. L. Strominger.
Molecular cloning of a human histocompatibility antigen cDNA fragment.
Proc. Natl. Acad. Sci. USA
77:
6081–6085,
1980.
|
89. |
Quinto, C.,
M. Quiroga,
W. F. Swain,
W. C. Nikovits,
D. N. Standring,
R. L. Pictet,
P. Venezuela, and
W. J. Rutter.
Rat preprocarboxypeptidase A: cDNA sequence and preliminary characterization of the gene.
Proc. Natl. Acad. Sci. USA
79:
31–35,
1982.
|
90. |
Reggio, H., and
J. C. Dagorn.
Packaging of pancreas secretory proteins in the condensing vacuoles of the Golgi complex. In:
Biology of Normal and Cancerous Exocrine Pancreatic Cells,
edited by A. Ribet,
I. Pradayrol, and
C. Susini.
New York:
Elsevier/North‐Holland,
1980,
p. 229–244.
(INSERM Symp. 15.).
|
91. |
Rinderknecht, H.,
I. G. Renner, and
H. H. Koyama.
Lysosomal enzymes in pure pancreatic juice from normal healthy volunteers and chronic alcoholics.
Dig. Dis. Sci.
24:
180–186,
1979.
|
92. |
Rogers, J.,
P. Early,
C. Carter,
K. Calame,
M. Bond,
L. Hood, and
R. Wall.
Two mRNAs with different 3' ends encode membrane‐bound and secreted forms of immunoglobulin μ; chain.
Cell
22:
303–312,
1980.
|
93. |
Rose, J.,
W. Welch,
B. Sefton,
F. Esch, and
N. Ling.
Vesicular stomatitis virus glycoprotein is anchored in the viral membrane by a hydrophobic domain near the COOH terminus.
Proc. Natl. Acad. Sci. USA
77:
3884–3888,
1980.
|
94. |
Rosenfeld, M. G.,
E. E. Marcantonio,
J. Hakimi,
V. M. Ort,
P. H. Atkinson,
D. D. Sabatini, and
G. Kreibich.
Biosynthesis and processing of ribophorins in the endoplasmic reticulum.
J. Cell Biol.
99:
1076–1082,
1984.
|
95. |
Roth, J.,
J. M. Lucocq,
E. G. Berger,
J. C. Paulson, and
W. M. Watkins.
Terminal glycosylation is compartmentalized in the Golgi apparatus (Abstract).
J. Cell Biol.
99:
229a,
1984.
|
96. |
Rothman, J. E., and
S. L. Schmid.
Enzymatic recycling of clathrin from coated vesicles.
Cell
46:
5–9,
1986.
|
97. |
Rothman, S. S.
Enzyme secretion in the absence of zymogen granules.
Am. J. Physiol.
228:
1828–1834,
1975.
|
98. |
Rothman, S. S., and
L. D. Isenman.
Secretion of digestive enzyme derived from two parallel intracellular pools.
Am. J. Physiol.
226:
1082–1087,
1974.
|
99. |
Schecter, I.,
Y. Burnstein,
R. Zemell,
E. Ziv,
F. Kantor, and
D. Papermaster.
Messenger RNA of opsin from bovine retina: isolation and partial sequence of the in vitro translation product.
Proc. Natl. Acad. Sci. USA
76:
2654–2658,
1979.
|
100. |
Scheele, G. A.
Two dimensional gel analysis of soluble proteins; characterization of guinea pig exocrine pancreatic proteins.
J. Biol. Chem.
250:
5375–5385,
1975.
|
101. |
Scheele, G.
Biosynthesis, segregation, and secretion of exportable proteins by the exocrine pancreas.
Am. J. Physiol.
238
(Gastrointest. Liver Physiol. 1):
G467–G477,
1980.
|
102. |
Scheele, G.
Pancreatic zymogen granules. In:
The Secretory Granule,
edited by A. M. Poisnerand
J. M. Trifaro.
New York:
Elsevier,
1982,
p. 213–246.
|
103. |
Scheele, G.
Methods for the study of protein translocation across the RER membrane using the reticulocyte lysate translation system and canine pancreatic microsomal membranes.
Methods Enzymol.
96:
94–111,
1983.
|
104. |
Scheele, G.
Pancreatic lobules in the in vivo study of pancreatic acinar cell function.
Methods Enzymol.
98:
17–28,
1983.
|
105. |
Scheele, G.
Cellular processing of proteins in the exocrine pancreas. In:
The Exocrine Pancreas: Biology, Pathobiology, and Diseases,
edited by V. L. W. Go,
J. D. Gardner,
F. P. Brooks,
E. Lebenthal,
E. P. DiMagno, and
G. A. Scheele.
New York:
Raven,
1986,
p. 69–85.
|
106. |
Scheele, G. A.,
G. Adler, and
H. F. Kern.
Exocytosis occurs at the lateral plasma membrane of the pancreatic acinar cell during supramaximal secretagogue stimulation.
Gastroenterology
92:
245–253,
1987.
|
107. |
Scheele, G., and
P. Blackburn.
Role of the mammalian ribonuclease inhibitor in cell‐free protein synthesis.
Proc. Natl. Acad. Sci. USA
76:
4898–4902,
1979.
|
108. |
Scheele, G., and
R. Jacoby.
Conformational changes associated with proteolytic processing of presecretory proteins allow glutathione‐catalyzed formation of native disulfide bonds.
J. Biol. Chem.
257:
12277–12282,
1982.
|
109. |
Scheele, G., and
R. Jacoby.
Proteolytic processing of presecretory proteins is required for development of biological activities in pancreatic exocrine proteins.
J. Biol. Chem.
258:
2005–2009,
1982.
|
110. |
Scheele, G.,
R. Jacoby, and
T. Carne.
Mechanism of compartmentation of secretory proteins. Transport of exocrine pancreatic proteins across the microsomal membrane.
J. Cell Biol.
87:
611–628,
1980.
|
111. |
Scheele, G., and
G. Palade.
Studies on the pancreas of the guinea pig. Parallel discharge of exocrine enzyme activities.
J. Biol. Chem.
250:
2660–2670,
1975.
|
112. |
Scheele, G. A.,
G. E. Palade, and
A. M. Tartakoff.
Cell fractionation studies on the guinea pig pancreas. Redistribution of exocrine proteins during tissue homogenization.
J. Cell Biol.
78:
110–130,
1978.
|
113. |
Scheele, G., and
T. Tartakoff.
Exit of nonglycosylated secretory proteins from the RER is asynchronous in the exocrine pancreas.
J. Biol. Chem.
260:
926–931,
1985.
|
114. |
Seeburg, P. H.,
J. Shine,
J. A. Martial,
J. D. Baxter, and
H. M. Goodman.
Nucleotide sequence and amplification of structural gene for rat growth hormone.
Nature Lond.
240:
486–494,
1977.
|
115. |
Siegel, V., and
P. Walter.
Removal of the Alu structural domain from signal recognition particle leaves its protein translocation activity intact.
Nature Lond.
320:
81–84,
1986.
|
116. |
Straus, A. W.,
C. D. Bennett,
A. M. Donohue,
J. A. Rodkey, and
A. W. Alberts.
Rat liver preproalbumin. Complete amino acid sequence of the prepiece. Analysis of the direct translation product of albumin messenger RNA.
J. Biol. Chem.
252:
6846–6855,
1977.
|
117. |
Steer, M. L., and
G. Glazer.
Parallel secretion of digestive enzymes by the in vitro rabbit pancreas.
Am. J. Physiol.
231:
1860–1865,
1976.
|
118. |
Steer, M. L., and
T. Manabe.
Cholecystokinin‐pancreozymin induces the parallel discharge of digestive enzymes from the in vitro rabbit pancreas.
J. Biol. Chem.
254:
7228–7229,
1979.
|
119. |
Struck, D. K., and
W. J. Lennarz. In:
The Biochemistry of Glycoproteins and Proteoglycans,
edited by W. J. Lennarz.
New York:
Plenum,
1980,
p. 35–83.
|
120. |
Swift, G.,
C. Craik,
S. Stary,
C. Quinto,
R. Lahaie,
W. Rutter, and
R. MacDonald.
Structure of the two related elastase genes expressed in the rat pancreas.
J. Biol. Chem.
259:
14271–14278,
1984.
|
121. |
Tanaka, Y.,
P. DeCamilli, and
J. Meldolesi.
Membrane interactions between secretion granules and plasmalemma in three exocrine glands.
J. Cell Biol.
84:
438–453,
1980.
|
122. |
Tanford, C.
The Hydrophobic Effect: Formation of Micelles and Biological Membranes
(2nd ed.).
New York:
Wiley,
1980.
|
123. |
Tartakoff, A.
Perturbation of vesicular traffic with the carboxylic ionophore monensin.
Cell
32:
1026–1028,
1983.
|
124. |
Tartakoff, A. M., and
P. Vassalli.
Lectin binding sites as markers of Golgi subcompartments: proximal to distal maturation of oligosaccharides.
J. Cell Biol.
97:
1243–1248,
1983.
|
125. |
Tomita, M., and
V. T. Marchesi.
Amino acid sequences and oligosaccharide attachment sites of human erythrocyte glycophorin.
Proc. Natl. Acad. Sci. USA
72:
2964–2968,
1975.
|
126. |
Waheed, A.,
A. Haslik, and
K. von Figura.
UDP‐N‐ace‐tylglucosamine: lysosomal enzyme precursor N‐acetylglucosamine‐1‐phosphotransferase. Partial purification and characterization of the rat liver Golgi enzyme.
J. Biol. Chem.
257:
12322–12331,
1982.
|
127. |
Walter, P., and
P. Blobel.
Purification of a membrane‐associated protein complex required for protein translocation across the endoplasmic reticulum.
Proc. Natl. Acad. Sci. USA
77:
7112–7116,
1980.
|
128. |
Walter, P., and
G. Blobel.
Translocation of proteins across the endoplasmic reticulum. III. Signal recognition protein (SRP) causes signal sequence‐dependent and site‐specific arrest of chain elongation that is released by microsomal membranes.
J. Cell Biol.
91:
557–561,
1981.
|
129. |
Walter, P., and
G. Blobel.
Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum.
Nature Lond.
299:
691–698,
1982.
|
130. |
Warren, G., and
B. Dobberstein.
Protein transfer across microsomal membranes reassembled from separated membrane components.
Nature Lond.
273:
569–571,
1978.
|
131. |
Watanabe, O.,
F. M. Baccino,
M. L. Steer, and
J. Meldolesi.
Supramaximal caerulein stimulation and ultrastructure of rat pancreatic acinar cell: early morphological changes during development of experimental pancreatitis.
Am. J. Physiol.
246
(Gastrointest. Liver Physiol. 9):
G457–G467,
1984.
|
132. |
Wold, F.
In vivo chemical modification of proteins (posttranslational modification).
Annu. Rev. Biochem.
50:
783–814,
1981.
|