Comprehensive Physiology Wiley Online Library

Enterohepatic Circulation of Bile Acids

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Historical Aspects
2 General Features of Enterohepatic Circulation in Vertebrates
2.1 Anatomical Distribution
2.2 Overall Balance
2.3 Description Methods
2.4 Determinants of Composition and Distribution
2.5 Dynamic Aspects of Enterohepatic Circulation in Humans
2.6 Bile Acid Concentrations
2.7 Chemical Constituents
2.8 Bile Acid Biotransformations
2.9 Movements of Bile Acids in Enterohepatic Circulation
3 Application of General Principles in Humans
3.1 Cholic Acid and Deoxycholic Acid
3.2 Chenodeoxycholic Acid and Lithocholic Acid
4 Determinants of Steady‐State Biliary Bile Acid Composition in Humans
4.1 Steroid Moiety
4.2 Amino Acid Moiety
5 Methods For Characterizing Enterohepatic Circulation of Bile Acids
5.1 Bile Acid Pool Size
5.2 Bile Acid Biosynthesis or Input
5.3 Measurement of Bile Acid Fluxes
5.4 Regulation of Enterohepatic Circulation
6 Perturbations of Enterohepatic Circulation
6.1 Alterations in Input
6.2 Alterations in Interorgan Flow
6.3 Alterations in Transport
6.4 Alterations in Biotransformation
7 Epilogue: Comparison of Bile Acids and Conventional Drugs
Figure 1. Figure 1.

Schematic depiction of overall cholesterol metabolism in humans. Enclosed area for cholesterol indicates 2 exchangeable cholesterol pools. Cholesterols, slowly exchangeable pool. Cholesterolr, rapidly exchangeable pool. Numbers are within range of values obtained in healthy adults (g/day). Only the enteral loop of enterohepatic circulation (EHC) of bile acids is shown. In humans, excretion of cholesterol as neutral sterol exceeds acidic sterol excretion (bile acid excretion), whereas in many animals the majority of cholesterol is eliminated as bile acids rather than as cholesterol.

Figure 2. Figure 2.

Representation of EHC of bile acids as linear multicompartmental model. Arrow connecting systemic circulation (space 1) with sinusoidal circulation (space 3) corresponds to hepatic arterial blood flow; arrow connecting systemic circulation to portal circulation (space 2) corresponds to mesenteric circulation. In the pharmacokinetic model that has been developed, each space is further subdivided into 3 compartments that correspond to the glycine conjugate, the taurine conjugate, and the unconjugated species for any bile acid.

From Hofmann et al. 132, by copyright permission of the American Society for Clinical Investigation.
Figure 3. Figure 3.

Schematic depiction of EHC shown as a continuing movement of molecules into bile, then into the intestine, then as reabsorption from the intestine, with spillover past the liver into the systemic circulation. This model can be transformed to that shown in Figure 2 without difficulty; both depict EHC of bile acids as consisting of an enterohepatic circle and a circulatory circle.

Figure 4. Figure 4.

Chemical structure of 5 major bile acids present in human bile. Bile acids are present as their glycine or taurine amidates; in addition, glycine and taurine amidates of lithocholic acid are sulfated. Term chenic is used as a curtailed name for chenodeoxycholic acid (CDCA). Hexagons denote saturated 6‐membered rings of carbon atoms. Solid lines above the juncture of A and B rings and C and D rings correspond to methyl groups, whereas that at the bottom of the A‐B ring juncture indicates a 5β‐hydrogen group and that at the A and B rings are in a cis configuration. R, bile acid (minus its carboxyl group). The 14 bile acids in this figure comprise at least 95% of biliary bile acids in most individuals.

Figure 5. Figure 5.

Major pathways of bacterial bio‐transformation of cholic acid (CA) and CDCA in humans. 12‐Dehydroxylation is believed not to occur. Figure does not show dehydrogenation at the 3 position or 12 position to form 3‐oxo and 12‐oxo bile acids, respectively. Both occur, since 3‐oxo, 7‐oxo, and 12‐oxo bile acids are present in fecal bile acids 224.

Figure 6. Figure 6.

Enterohepatic circulation of steroid moiety of CA and deoxycholic acid (DCA) in humans. Only the enterohepatic circle is shown. Lower arc, unconjugated bile acid that is formed in distal intestine, absorbed, and returned to the liver for reconjugation. CA passing into the colon is completely 7‐dehydroxylated, but only a fraction of the DCA that is formed is reabsorbed from the large intestine. After its reabsorption, DCA is conjugated with glycine or taurine and conjugates then join the EHC of primary bile acids.

Figure 7. Figure 7.

Immunoreactive level of CA conjugates and CDCA conjugates (chenyl conjugates) after 3 equicaloric liquid meals in healthy volunteers. Level of CDCA conjugates rises sooner than that of CA conjugates, reflecting their earlier absorption from proximal small intestine. Delay of 2 h between meal ingestion and peak serum level of CA conjugates reflects transit time required for these bile acids to pass from the duodenum to the terminal ileum, where they are actively absorbed.

Figure 8. Figure 8.

Schematic depiction of hepatic uptake showing greater spillover of CDCA conjugates into systemic circulation as compared with CA conjugates. Unconjugated bile acids have a lower fractional hepatic extraction than their corresponding conjugates, so that systemic circulation is also enriched in unconjugated bile acids, as compared with their corresponding conjugated derivatives.

Figure 9. Figure 9.

Schematic depiction of EHC of CDCA (termed chenic) and lithocholic acid (LCA) in humans. Sulfolithocholyl conjugates are poorly absorbed from the small intestine. Figure does not show a small fraction of the amidated sulfated lithocholates that are fully hydrolyzed during colonic transit, resulting in reabsorption of a small fraction of unconjugated LCA.

Figure 10. Figure 10.

Schematic depiction of major biotransformations in humans that influence biliary bile acid composition. Ursocholic acid, although probably formed to a considerable extent in the large intestine, is so hydrophilic that its proportion in bile is extremely low and usually it is not detectable.

Figure 11. Figure 11.

Schematic depiction of EHC of 4 main bile acids present in human bile. Steady‐state composition of biliary bile acids represents relative balance between input and intestinal conservation for each bile acid.

Figure 12. Figure 12.

Atoms percent excess (unit for stable isotopes that is comparable with specific activity for radioactive isotopes) of biliary bile acids after administration of [24‐13C]chenodeoxycholic acid to a healthy volunteer. LCA and ursodeoxycholic acid (UDCA), which are formed from CDCA, slowly appear in bile in labeled form. Atoms percent excess of CDCA declines exponentially, indicating that CDCA metabolism (as that of CA and DCA) can be described by a single‐pool model.

Figure 13. Figure 13.

Use of biliary recovery marker to measure gallbladder storage and emptying in humans. Indocyanine green, a compound quantitatively secreted into bile, is infused intravenously at a constant rate. Left panel: in absence of gallbladder storage, duodenal output (Od) equals parenteral input (Ip). Center panel: when duodenal output is less than parenteral input, gallbladder storage is occurring. Right panel: when duodenal output exceeds parenteral input, gallbladder emptying is occurring.

From Berge Henegouwen and Hofmann 22
Figure 14. Figure 14.

Plasma disappearance of intravenously administered [14C]CDCA (chenic acid) and plasma appearance of orally administered [3H]CDCA in a healthy volunteer. Area under the curve after oral administration is only 40% of that after intravenous administration, permitting calculation of first‐pass clearance to be ∼60%. Figure has been confirmed by direct venous sampling 72.

Figure 15. Figure 15.

Diurnal levels in serum of conjugates of CA, as determined by radioimmunoassay on samples collected at intervals of 15 to 30 min, except during the night when samples were taken at hourly intervals. Healthy subjects and patients with bile acid (BA) malabsorption because of ileal resection 164 were studied. In patients with bile acid malabsorption, peak of postprandial level declines progressively during the day, indicating progressive depletion of bile acid pool. Increased synthesis occurs throughout the day; during interval between supper and breakfast, increased synthesis restores the pool in part, so that postprandial peak after breakfast is largest of 3 postprandial peaks.

Figure 16. Figure 16.

Comparison of EHC of natural bile acids (left) and a drug that is excreted into bile as its glucuronide (right). In the colon, hydrolysis of glucuronide conjugates can occur and reabsorption of the aglycone can occur but is not shown.



Figure 1.

Schematic depiction of overall cholesterol metabolism in humans. Enclosed area for cholesterol indicates 2 exchangeable cholesterol pools. Cholesterols, slowly exchangeable pool. Cholesterolr, rapidly exchangeable pool. Numbers are within range of values obtained in healthy adults (g/day). Only the enteral loop of enterohepatic circulation (EHC) of bile acids is shown. In humans, excretion of cholesterol as neutral sterol exceeds acidic sterol excretion (bile acid excretion), whereas in many animals the majority of cholesterol is eliminated as bile acids rather than as cholesterol.



Figure 2.

Representation of EHC of bile acids as linear multicompartmental model. Arrow connecting systemic circulation (space 1) with sinusoidal circulation (space 3) corresponds to hepatic arterial blood flow; arrow connecting systemic circulation to portal circulation (space 2) corresponds to mesenteric circulation. In the pharmacokinetic model that has been developed, each space is further subdivided into 3 compartments that correspond to the glycine conjugate, the taurine conjugate, and the unconjugated species for any bile acid.

From Hofmann et al. 132, by copyright permission of the American Society for Clinical Investigation.


Figure 3.

Schematic depiction of EHC shown as a continuing movement of molecules into bile, then into the intestine, then as reabsorption from the intestine, with spillover past the liver into the systemic circulation. This model can be transformed to that shown in Figure 2 without difficulty; both depict EHC of bile acids as consisting of an enterohepatic circle and a circulatory circle.



Figure 4.

Chemical structure of 5 major bile acids present in human bile. Bile acids are present as their glycine or taurine amidates; in addition, glycine and taurine amidates of lithocholic acid are sulfated. Term chenic is used as a curtailed name for chenodeoxycholic acid (CDCA). Hexagons denote saturated 6‐membered rings of carbon atoms. Solid lines above the juncture of A and B rings and C and D rings correspond to methyl groups, whereas that at the bottom of the A‐B ring juncture indicates a 5β‐hydrogen group and that at the A and B rings are in a cis configuration. R, bile acid (minus its carboxyl group). The 14 bile acids in this figure comprise at least 95% of biliary bile acids in most individuals.



Figure 5.

Major pathways of bacterial bio‐transformation of cholic acid (CA) and CDCA in humans. 12‐Dehydroxylation is believed not to occur. Figure does not show dehydrogenation at the 3 position or 12 position to form 3‐oxo and 12‐oxo bile acids, respectively. Both occur, since 3‐oxo, 7‐oxo, and 12‐oxo bile acids are present in fecal bile acids 224.



Figure 6.

Enterohepatic circulation of steroid moiety of CA and deoxycholic acid (DCA) in humans. Only the enterohepatic circle is shown. Lower arc, unconjugated bile acid that is formed in distal intestine, absorbed, and returned to the liver for reconjugation. CA passing into the colon is completely 7‐dehydroxylated, but only a fraction of the DCA that is formed is reabsorbed from the large intestine. After its reabsorption, DCA is conjugated with glycine or taurine and conjugates then join the EHC of primary bile acids.



Figure 7.

Immunoreactive level of CA conjugates and CDCA conjugates (chenyl conjugates) after 3 equicaloric liquid meals in healthy volunteers. Level of CDCA conjugates rises sooner than that of CA conjugates, reflecting their earlier absorption from proximal small intestine. Delay of 2 h between meal ingestion and peak serum level of CA conjugates reflects transit time required for these bile acids to pass from the duodenum to the terminal ileum, where they are actively absorbed.



Figure 8.

Schematic depiction of hepatic uptake showing greater spillover of CDCA conjugates into systemic circulation as compared with CA conjugates. Unconjugated bile acids have a lower fractional hepatic extraction than their corresponding conjugates, so that systemic circulation is also enriched in unconjugated bile acids, as compared with their corresponding conjugated derivatives.



Figure 9.

Schematic depiction of EHC of CDCA (termed chenic) and lithocholic acid (LCA) in humans. Sulfolithocholyl conjugates are poorly absorbed from the small intestine. Figure does not show a small fraction of the amidated sulfated lithocholates that are fully hydrolyzed during colonic transit, resulting in reabsorption of a small fraction of unconjugated LCA.



Figure 10.

Schematic depiction of major biotransformations in humans that influence biliary bile acid composition. Ursocholic acid, although probably formed to a considerable extent in the large intestine, is so hydrophilic that its proportion in bile is extremely low and usually it is not detectable.



Figure 11.

Schematic depiction of EHC of 4 main bile acids present in human bile. Steady‐state composition of biliary bile acids represents relative balance between input and intestinal conservation for each bile acid.



Figure 12.

Atoms percent excess (unit for stable isotopes that is comparable with specific activity for radioactive isotopes) of biliary bile acids after administration of [24‐13C]chenodeoxycholic acid to a healthy volunteer. LCA and ursodeoxycholic acid (UDCA), which are formed from CDCA, slowly appear in bile in labeled form. Atoms percent excess of CDCA declines exponentially, indicating that CDCA metabolism (as that of CA and DCA) can be described by a single‐pool model.



Figure 13.

Use of biliary recovery marker to measure gallbladder storage and emptying in humans. Indocyanine green, a compound quantitatively secreted into bile, is infused intravenously at a constant rate. Left panel: in absence of gallbladder storage, duodenal output (Od) equals parenteral input (Ip). Center panel: when duodenal output is less than parenteral input, gallbladder storage is occurring. Right panel: when duodenal output exceeds parenteral input, gallbladder emptying is occurring.

From Berge Henegouwen and Hofmann 22


Figure 14.

Plasma disappearance of intravenously administered [14C]CDCA (chenic acid) and plasma appearance of orally administered [3H]CDCA in a healthy volunteer. Area under the curve after oral administration is only 40% of that after intravenous administration, permitting calculation of first‐pass clearance to be ∼60%. Figure has been confirmed by direct venous sampling 72.



Figure 15.

Diurnal levels in serum of conjugates of CA, as determined by radioimmunoassay on samples collected at intervals of 15 to 30 min, except during the night when samples were taken at hourly intervals. Healthy subjects and patients with bile acid (BA) malabsorption because of ileal resection 164 were studied. In patients with bile acid malabsorption, peak of postprandial level declines progressively during the day, indicating progressive depletion of bile acid pool. Increased synthesis occurs throughout the day; during interval between supper and breakfast, increased synthesis restores the pool in part, so that postprandial peak after breakfast is largest of 3 postprandial peaks.



Figure 16.

Comparison of EHC of natural bile acids (left) and a drug that is excreted into bile as its glucuronide (right). In the colon, hydrolysis of glucuronide conjugates can occur and reabsorption of the aglycone can occur but is not shown.

References
 1. Admirand, W. H., and D. M. Small. The physiochemical basis of cholesterol gallstone formation in man. J. Clin. Invest. 47: 1043–1052, 1968.
 2. Ahlberg, J., B. Angelin, K. Einarsson, K. Hellström, and B. Leijd. Influence of deoxycholic acid on biliary lipids in man. Clin. Sci. Mol. Med. 53: 249–256, 1977.
 3. Albert, A., and E. P. Serjeant. Ionization Constants of Acids and Bases. London: Methuen, 1962.
 4. Allan, R. N., J. L. Thistle, and A. F. Hofmann. Lithocholate metabolism during chenotherapy for gallstone dissolution. II. Absorption and sulphation. Gut 17: 413–419, 1976.
 5. Alme, B., A. Bremmelgaard, J. Sjövall, and P. Thomassen. Analysis of metabolic profiles of bile acids in urine using a lipophilic anion exchanger and computerized gas‐liquid chromatography‐mass spectrometry. J. Lipid Res. 18: 339–362, 1977.
 6. Almond, H. R., Z. R. Vlahcevic, C. C. Bell, Jr., D. H. Gregory, and L. Swell. Bile acid pools, kinetics and biliary lipid composition before and after cholecystectomy. N. Engl. J. Med. 289: 1213–1216, 1973.
 7. Amidon, G. L., J. H. Kou, R. L. Elliott, and E. N. Lightfoot. Analysis of models for determining intestinal wall permeabilities. J. Pharm. Sci. 69: 1369–1373, 1969.
 8. Angelin, B., I. Björkhem, K. Einarsson, and S. Ewerth. Hepatic uptake of bile acids in man—fasting and postprandial concentrations of individual bile acids in portal venous and systemic serum. J. Clin. Invest. 70: 724–731, 1982.
 9. Angelin, B., and B. Leijd. Effects of cholic acid on the metabolism of endogenous plasma triglyceride and on biliary lipid composition in hyperlipoproteinemia. J. Lipid Res. 21: 1–9, 1980.
 10. Asano, T. Modification of cecal size in germfree rats by long‐term feeding of anion exchange resin. Am. J. Physiol. 217: 911–918, 1969.
 11. Atkins, G. L. Multicompartment Models for Biological Systems. London: Methuen, 1969.
 12. Bachrach, W. H., and A. F. Hofmann. Ursodeoxycholic acid in the treatment of cholesterol cholelithiasis: a review. Dig. Dis. Sci. 27: 737–761, 833–856, 1982.
 13. Back, P., and D. Bowen. Chemical synthesis and characterization of glucuronic acid coupled mono‐, di‐ and tri‐hydroxy bile acids. Hoppe Seylers Z. Physiol. Chem. 357: 219–222, 1976.
 14. Balistreri, W. F., W. M. Belknap, F. J. Suchy, and L. Zimmer‐Nechemias. Immaturity of the enterohepatic circulation of bile acids in early life: factors responsible for increased peripheral serum bile acid concentrations. In: Enterohepatic Circulation of Bile Acids and Sterol Metabolism, edited by G. Paumgartner, A. Stiehl, and W. Gerok. Lancaster, UK: MTP, 1985, p. 87–93.
 15. Barbara, L., R. H. Dowling, A. F. Hofmann, and E. Roda (editors). Bile Acids in Gastroenterology. Lancaster, UK: MTP, 1983.
 16. Barbara, L., R. H. Dowling, A. F. Hofmann, and E. Roda (editors). Recent Advances in Bile Acid Research. New York: Raven, 1985.
 17. Batta, A. K., G. Salen, and S. Shefer. Substrate specificity of cholylglycine hydrolysis of bile acid conjugates. J. Biol. Chem. 259: 15035–15039, 1984.
 18. Baumgartner, U., K. Miyai, and W. G. M. Hardison. Greater taurodeoxycholate biotransformation during backward perfusion of rat liver. Am. J. Physiol. 251 (Gastrointest. Liver Physiol. 14): G431ndash;G435, 1986.
 19. Baumgartner, U., K. Miyai, and W. G. Hardison. Taurolithocholate cholestasis: physiologically and morphologically a canalicular disorder (Abstract). Gastroenterology 90: 1711, 1986.
 20. Benet, L. Z., and N. Massound. Pharmacokinetics. In: Pharmacokinetic Basis for Drug Treatment, edited by L. Z. Benet, N. Massoud, and J. G. Gambertoglio. New York: Raven, 1984, p. 1–28.
 21. Berge Henegouwen, G. P. van, and A. F. Hofmann. Pharmacology of chenodeoxycholic acid. II. Absorption and metabolism. Gastroenterology 73: 300–309, 1977.
 22. Berge Henegouwen, G. P. van, and A. F. Hofmann. Nocturnal gallbladder storage and emptying in gallstone patients and healthy subjects. Gastroenterology 75: 879–885, 1978.
 23. Berge Henegouwen, G. P. van, and A. F. Hofmann. Systemic spill‐over of bile acids. Eur. J. Clin. Invest. 13: 433–437, 1983.
 24. Bergström, S. Metabolism of bile acids. Federation Proc. 20: 121–126, 1961.
 25. Bergström, S., and H. Danielsson. On the regulation of bile acid formation in the rat liver. Acta Physiol. Scand. 43: 1–7, 1958.
 26. Bergström, S., M. Rottenberg, and J. Voltz. The preparation of some carboxyl‐labelled bile acids. Acta Chem. Scand. 7: 481–484, 1953.
 27. Bertolotti, M., N. Carulli, D. Menozzi, F. Zironi, A. Digrisolo, A. Pinetti, and M. Grazia Beldinia. In vivo evaluation of cholesterol 7δ‐hydroxylation in humans: effect of disease and drug treatment. J. Lipid Res. 27: 1278–1286, 1986.
 28. Bischoff, K. B., R. L. Dedrick, D. S. Zaharko, and J. A. Longstreth. Methotrexate pharmacokinetics. J. Pharm. Sci. 60: 1128–1133, 1971.
 29. Björkhem, I. Mechanism of bile acid biosynthesis in mammalian liver. In: Sterols and Bile Acids: New Comprehensive Biochemistry, edited by H. Danielsson and J. Sjövall. Amsterdam: Elsevier, 1985, vol. 12, p. 231–278.
 30. Björkhem, I., and O. Falk. Assay of the major bile acids in serum by isotope dilution‐mass spectrometry. Scand. J. Clin. Lab. Invest. 43: 163–170, 1983.
 31. Björkhem, I., L. Lillequist, K. Nilsell, and K. Einarsson. Oxidoreduction of different hydroxyl groups in bile acids during their enterohepatic circulation. J. Lipid Res. 27: 177–182, 1986.
 32. Blitzer, B. L., C. Terzakis, and K. A. Scott. Hydroxylbile acid exchange: a new mechanism for the uphill transport of cholate by basolateral liver plasma membrane vesicles. J. Biol. Chem. 261: 12042–12046, 1986.
 33. Bloch, K., B. N. Berg, and D. Rittenberg. The biological conversion of cholesterol to cholic acid. J. Biol. Chem. 149: 511–517, 1943.
 34. Bremmelgaard, A., and J. Sjövall. Hydroxylation of cholic, chenodeoxycholic, and deoxycholic acids in patients with intrahepatic cholestasis. J. Lipid Res. 21: 1072–1081, 1980.
 35. Calandra, S., N. Carulli, and G. Salvioli (editors). Liver and Lipid Metabolism. Amsterdam: Excerpta Med., 1984.
 36. Carey, M. C. The enterohepatic circulation. In: The Liver: Biology and Pathobiology, edited by I. Arias, H. Popper, D. Schachter, and D. A. Shafritz. New York: Raven, 1982, p. 429–465.
 37. Carey, M. C. Physico‐chemical properties of bile acids and their salts. In: Sterols and Bile Acids: New Comprehensive Biochemistry, edited by H. Danielsson and J. Sjövall. Amsterdam: Elsevier, 1985, vol. 12, p. 345–403.
 38. Carey, M. C., and D. M. Small. The physical chemistry of cholesterol solubility in bile. J. Clin. Invest. 61: 998–1026, 1978.
 39. Carulli, N., M. Ponz de Leon, P. Loria, R. Iori, A. Rosi, and M. Romani. Effect of the selective expansion of the cholic acid pool on bile lipid composition: possible mechanism of bile acid induced biliary cholesterol desaturation. Gastroenterology 81: 539–546, 1981.
 40. Clayton, L. M., D. Gurantz, L. R. Hagey, C. Schteingart, M. S. Anwer, and A. F. Hofmann. Lack of conjugation greatly increases reflux of dihydroxy bile acids from the hepatocyte (Abstract). Gastroenterology 90: 1786, 1986.
 41. Cohen, B. I., A. F. Hofmann, E. H. Mosbach, R. J. Stenger, M. A. Rothschild, L. R. Hagey, and Y. B. Yoon. Differing effects of nor‐ursodeoxycholic or ursodeoxycholic acid on hepatic histology and bile acid metabolism in the rabbit. Gastroenterology 91: 189–197, 1986.
 42. Cowen, A. E., A. F. Hofmann, D. L. Hachey, P. J. Thomas, D. T. E. Belobaba, P. D. Klein, and L. Tokes. Synthesis of 11,12‐2H2‐ and 11,12‐3H2‐labeled chenodeoxycholic and lithocholic acids. J. Lipid Res. 17: 231–238, 1976.
 43. Cowen, A. E., M. G. Korman, A. F. Hofmann, and O. W. Cass. Metabolism of lithocholate in healthy man. I. Biotransformation and biliary excretion of intravenously administered lithocholate, lithocholylglycine, and their sulfates. Gastroenterology 69: 59–66, 1975.
 44. Cowen, A. E., M. G. Korman, A. F. Hofmann, O. W. Cass, and S. B. Coffin. Metabolism of lithocholate in healthy man. II. Enterohepatic circulation. Gastroenterology 69: 67–76, 1975.
 45. Czuba, B., and D. A. Vessey. The effect of bile acid structure on the activity of bile acid‐CoA‐glycine/taurine‐N‐acyltransferase. J. Biol. Chem. 257: 8761–8765, 1982.
 46. Czuba, B., and D. A. Vessey. Structural characterization of cholyl‐CoA:glycine/taurine N‐acyl‐transferase and a covalent substrate intermediate. J. Biol. Chem. 261: 6260–6263, 1986.
 47. Danielsson, H., and J. Sjövall (editors). Sterols and Bile Acids: New Comprehensive Biochemistry. Amsterdam: Elsevier, 1985, vol. 12.
 48. Danzinger, R. G., A. F. Hofmann, J. L. Thistle, and L. J. Schoenfield. Effect of oral chenodeoxycholic acid on bile acid kinetics and biliary lipid composition in women with cholelithiasis. J. Clin. Invest. 52: 2809–2821, 1973.
 49. Davidson, N. O., H. L. Bradlow, E. H. Ahrens, Jr., R. S. Rosenfeld, and C. S. Schwartz. Bile acid production in human subjects: rate of oxidation of ,25‐3H)cholesterol compared to fecal bile acid excretion. J. Lipid Res. 27: 183–195, 1986.
 50. Davis, R. A., W. E. Highsmith, M. M. McNeal, J. A. Schexnayder, and J. C. W. Kuan. Bile acid synthesis by cultured hepatocytes. Inhibition by mevinolin, but not by bile acids. J. Biol. Chem. 258: 4079–4082, 1983.
 51. De la Rosa, J., and M. H. Stipanuk. The effect of taurine depletion with guanidinoethanesulfonate on bile acid metabolism in the rat. Life Sci. 36: 1347–1351, 1985.
 52. Demark, B. R., G. T. Everson, P. D. Klein, R. B. Showalter, and F. Kern. A method for the accurate measurement of isotope ratios of chenodeoxycholic and cholic acids in serum. J. Lipid Res. 23: 204–210, 1982.
 53. Dettli, L., and P. Spring. Pharmacokinetics as a basic medical problem. In: Physico‐Chemical Aspects of Drug Action, edited by E. J. Ariens. Oxford, UK: Pergamon, 1968, p. 5–32.
 54. Diamond, J. M., and E. M. Wright. Biological membranes: the physical basis of ion and non‐electrolyte selectivity. Annu. Rev. Physiol. 31: 581–646, 1969.
 55. DiMagno, E. P., V. L. W. Go, and W. H. J. Summerskill. Impaired cholecystokinin‐pancreozymin secretion, intraluminal dilution, and maldigestion of fat in sprue. Gastroenterology 63: 25–32, 1972.
 56. Dowling, R. H. Chenodeoxycholic acid therapy of gallstones. Clin. Gastroenterol. 6: 141–163, 1977.
 57. Dowling, R. H., E. Mack, J. Picott, J. Berger, and D. M. Small. Experimental model for the study of the enterohepatic circulation of bile in the rhesus monkey. J. Lab. Clin. Med. 72: 169–176, 1968.
 58. Dowling, R. H., E. Mack, and D. M. Small. Effects of controlled interruption of the enterhepatic circulation of bile salts by biliary diversion and by ileal resection on bile salt secretion, synthesis, and pool size in the rhesus monkey. J. Clin. Invest. 49: 232–242, 1970.
 59. Dowling, R. H., E. Mack, and D. M. Small. Primate biliary physiology. IV. Biliary lipid secretion and bile composition after acute and chronic interruption of the enterohepatic circulation in the rhesus monkey. J. Clin. Invest. 50: 1917–1926, 1971.
 60. Duane, W. C. Simulation of the defect of bile acid metabolism associated with cholesterol cholelithiasis by sorbitol ingestion in man. J. Lab. Clin. Med. 91: 969–978, 1978.
 61. Duane, W. C., D. E. Holloway, S. W. Hutton, P. J. Corcoran, and N. A. Haas. Comparison of bile acid synthesis determined by isotope dilution versus fecal acidic sterol output in human subjects. Lipids 17: 345–348, 1982.
 62. Dupas, J.‐L., and A. F. Hofmann. Passive jejunal absorption of bile acids in vivo: structure‐activity relationships and rate limiting steps (Abstract). Gastroenterology 86: 1067, 1984.
 63. Einarsson, K., and K. Hellström. The formation of bile acids in patients with three types of hyperlipoproteinemia. Eur. J. Clin. Invest. 2: 225–230, 1972.
 64. Einarsson, K., and K. Hellström. The formation of deoxycholic and chenodeoxycholic acid in man. Clin. Sci. Mol. Med. 46: 183–190, 1974.
 65. Einarsson, K., K. Hellström, and M. Kallner. Feedback and regulation of bile acid formation in man. Metabolism 22: 1477–1483, 1973.
 66. Elliott, W. H. Mass spectra of bile acids. In: Biochemistry of Applied Mass Spectrometry, edited by G. R. Waller and O. C. Dermer. New York: Wiley, 1980, p. 229–253.
 67. Elliott, W. H. Metabolism of bile acids in liver and extrahepatic tissues. In: Sterols and Bile Acids: New Comprehensive Biochemistry, edited by H. Danielsson and J. Sjövall. Amsterdam: Elsevier, 1985, vol. 12, p. 303–329.
 68. Eneroth, P., B. Gordon, R. Ryhage, and J. Sjövall. Identification of some mono‐ and dihydroxy bile acids in human feces by gas‐liquid chromatography and mass spectrometry. J. Lipid Res. 7: 511–523, 1966.
 69. Eneroth, P., B. Gordon, and J. Sjövall. Characterization of trisubstituted cholanoic acids in human feces. J. Lipid Res. 7: 524–530, 1966.
 70. Eriksson, S. Biliary excretion of bile acids and cholesterol in bile fistula rats. Proc. Soc. Exp. Biol. Med. 94: 578–583, 1957.
 71. Everson, G. T., D. Z. Braverman, M. L. Johnson, and F. Kern. A critical evaluation of real‐time ultrasonography for the study of a gallbladder volume and contraction. Gastroenterology 79: 40–46, 1980.
 72. Everson, G. T., M. J. Lawson, C. McKinley, R. Showalter, and F. Kern, Jr. Gallbladder and small intestinal regulation of biliary lipid secretion during intraduodenal infusion of standard stimuli. J. Clin. Invest. 71: 596–603, 1983.
 73. Ewerth, S., B. Angelin, K. Einarsson, K. Nilsell, and I. Björkhem. Serum concentrations of ursodeoxycholic acid in portal venous and systemic venous blood of fasting humans as determined by isotope dilution‐mass spectrometry. Gastroenterology 88: 126–133, 1985.
 74. Ewerth, S., I. Björkhem, K. Einarsson, and L. Ost. Lymphatic transport of bile acids in man. J. Lipid Res. 23: 1183–1186, 1982.
 75. Fieser, L. F., and M. Fieser. Steroids. New York: Reinhold, 1959.
 76. Finkelstein, L., and E. R. Carson. Mathematical Modelling of Dynamic Biological Systems. New York: Wiley, 1985.
 77. Fischer, C. D., N. S. Cooper, M. A. Rothschild, and E. H. Mosbach. Effect of dietary chenodeoxycholic acid and lithocholic acid in the rabbit. Am. J. Dig. Dis. 18: 877–886, 1974.
 78. Fisher, R. L., A. F. Hofmann, S. Rossi, J. L. Converse, and S. P. Lan. Pathogenesis of morphological damage and major serum aminotransferase (AT) elevations in NCGS patients: enhanced liver cell sensitivity—not defective lithocholate metabolism (Abstract). Hepatology Baltimore 6: 1169, 1968.
 79. Forgacs, I. C., M. N. Maisey, G. M. Murphy, and R. H. Dowling. Influence of gallstones and ursodeoxycholic acid therapy on gallbladder emptying. Gastroenterology 87: 299–307, 1984.
 80. Fromm, H., G. L. Carlson, A. F. Hofmann, S. Farivar, and P. Amin. Metabolism in man of 7‐ketolithocholic acid: precursor of cheno‐ and ursodeoxycholic acids. Am. J. Physiol. 239 (Gastrointest. Liver Physiol. 2): G161–G166, 1980.
 81. Fromm, H., and M. Malavolti. Bile acid‐induced diarrhoea. Clin. Gastroenterol. 15: 567–582, 1986.
 82. Garbutt, J. T., K. W. Heaton, L. Lack, and M. P. Tyor. Increased ratio of glycine to taurine‐conjugated bile salts in patients with ileal disorders. Gastroenterology 56: 711–720, 1969.
 83. Garbutt, J. T., and T. J. Kenney. Effect of cholestyramine on bile acid metabolism in normal men. J. Clin. Invest. 51: 2781–2789, 1972.
 84. Giller, J., and S. F. Phillips. The contribution of the colon to electrolyte and water conservation in man. J. Lab. Clin. Med. 81: 733–746, 1973.
 85. Gilmore, I. T., and A. F. Hofmann. Altered drug metabolism and elevated serum bile acids in liver disease: a unified pharmacokinetic explanation. Gastroenterology 78: 177–179, 1980.
 86. Godfrey, K. Compartmental Models and Their Applications. London: Academic, 1983.
 87. Goresky, C. A. Kinetic interpretation of hepatic multipleindicator dilution studies. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G1–G12, 1983.
 88. Goto, J., H. Kato, K. Kaneko, and T. Nambara. Studies on steroids. CLXIII. Synthesis of monosulfates of cholic acid derivatives. Chem. Pharm. Bull. Tokyo 28: 3389–3394, 1980.
 89. Grundy, S. M., E. H. Ahrens, Jr., and T. A. Miettinen. Quantitative isolation and gas‐liquid chromatographic analysis of total fecal bile acids. J. Lipid Res. 6: 397–410, 1965.
 90. Grundy, S. M., E. H. Ahrens, Jr., and G. Salen. Interruption of the enterohepatic circulation of bile acids in man: comparative effects of cholestyramine and ileal exclusion on cholesterol metabolism. J. Lab. Clin. Med. 78: 94–121, 1971.
 91. Grundy, S. M., W. C. Duane, R. D. Adler, J. M. Aron, and A. L. Metzger. Biliary lipid output in young women with cholesterol gallstones. Metabolism 23: 67–73, 1974.
 92. Grundy, S. M., and A. L. Metzger. A physiological method for estimation of hepatic secretion in man. Gastroenterology 62: 1200–1217, 1972.
 93. Gurantz, D., and A. F. Hofmann. Influence of bile acid structure on bile flow and biliary lipid secretion in the hamster. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G736–G748, 1984.
 94. Gustafsson, B. E., and A. Norman. Physical state of bile acids in intestinal contents of germ‐free and conventional rats. Scand. J. Gastroenterol. 3: 625–631, 1968.
 95. Hagey, L. R., J. P. Neoptolemos, S. S. Rossi, H.‐T. Ton‐Nu, A. F. Hofmann, and J. O. Whitney. Deamidation and ester glucuronidation: new side chain biotransformations of bile acids occurring in man (Abstract). Hepatology Baltimore 5: 1023, 1985.
 96. Hardison, W. G. M. Hepatic taurine concentration and dietary taurine as regulators of bile acid conjugation with taurine. Gastroenterology 75: 71–75, 1978.
 97. Hardison, W. G. M. Relation of hepatic taurine pool size to bile‐acid conjugation in man and animals. In: Sulfur Amino Acids: Biochemical and Clinical Aspects, edited by K. Kuriyama, R. J. Huxtable, and H. Iwata. New York: Liss, 1983, p. 407–418.
 98. Hardison, W. G. M., S. Bellantani, V. Heasley, and D. Shellhamer. Specificity of an Na+‐dependent taurocholate transport site in isolated rat hepatocytes. Am. J. Physiol. 246 (Gastrointest Liver Physiol. 9): G477–G483, 1984.
 99. Hardison, W. G. M., and S. M. Grundy. Effect of bile acid conjugation pattern on bile acid metabolism in normal humans. Gastroenterology 84: 617–620, 1983.
 100. Hardison, W. G. M., and H. I. Rosenberg. The effect of neomycin on bile salt metabolism and fat digestion in man. J. Lab. Clin. Med. 74: 564–573, 1969.
 101. Hardison, W. G. M., N. Tomaszewski, and S. M. Grundy. Effect of acute alterations in small bowel transit time upon the biliary excretion rate of bile acids. Gastroenterology 76: 568–574, 1979.
 102. Haslewood, G. A. D. The Biological Importance of Bile Salts. Amsterdam: North‐Holland, 1978.
 103. Heaton, K. W. Bitter humour: the development of ideas about bile salts. J. R. Coll. Phys. 6: 281–286, 1971.
 104. Heaton, K. W. Bile Salts in Health and Disease. Edinburgh: Churchill Livingstone, 1972.
 105. Hepner, G. W., A. F. Hofmann, J.‐R. Malagelada, P. A. Szczepanik, and P. D. Klein. Increased bacterial degradation of bile acids in cholecystectomized patients. Gastroenterology 66: 556–564, 1974.
 106. Hepner, G. W., A. F. Hofmann, and P. J. Thomas. Metabolism of steroid and amino acid moieties of conjugated bile acids in man. I. Cholylglycine. J. Clin. Invest. 51: 1889–1897, 1972.
 107. Hepner, G. W., A. F. Hofmann, and P. J. Thomas. Metabolism of steroid and amino acid moieties of conjugated bile acids in man. II. Glycine‐conjugated dihydroxy bile acids. J. Clin. Invest. 51: 1898–1905, 1972.
 108. Hepner, G. W., J. A. Sturman, A. F. Hofmann, and P. J. Thomas. Metabolism of steroid and amino acid moieties of conjugated bile acids in man. III. Cholyltaurine (taurocholic acid). J. Clin. Invest. 52: 433–440, 1973.
 109. Heubi, J. E., W. F. Balistreri, J. D. Fondacaro, J. C. Partin, and W. K. Schubert. Primary bile acid malabsorption: defective in vitro ileal active bile acid transport. Gastroenterology 83: 804–811, 1982.
 110. Heuman, D. M., C. R. Hernandez, W. M. Kubaska, M. D. Law, P. B. Hylemon, and Z. R. Vlahcevic. Failure of tauroursodeoxycholate (TUDCA) to suppress rat bile acid synthesis in vivo (Abstract). Hepatology Baltimore 5: 1047, 1985.
 111. Heuman, D. M., M. D. Law, C. Hartmen, W. M. Kubaska, P. B. Hylemon, and Z. R. Vlahcevic. Effect of taurocholate infusion (TCI) on bile acid synthesis (BAS) and cholesterol 7α‐hydroxylase (C7αH) activity (Abstract). Gastroenterology 90: 1734, 1986.
 112. Himmelstein, K. J., and R. J. Lutz. A review of the applications of physiologically based pharmacokinetic modeling. J. Pharmacokinet. Biopharm. 7: 127–145, 1979.
 113. Hislop, I. G. The absorption and entero‐hepatic circulation of bile salts. An historical review. Med. J. Aust. 1: 1223–1226, 1970.
 114. Ho, N. F. H., H. P. Merkle, and W. I. Higuchi. Quantitative, mechanistic and physiologically realistic approach to the biopharmaceutical design of oral drug delivery system. Drug Dev. Ind. Pharm. 9: 1111–1184, 1983.
 115. Hoffman, N. E., D. E. Donald, and A. F. Hofmann. Increased bile acid synthesis after interruption of the enterohepatic circulation: evidence against hormonal mediation. Proc. Soc. Exp. Biol. Med. 154: 45–52, 1977.
 116. Hoffman, N. E., and A. F. Hofmann. Metabolism of steroid and amino acid moieties of conjugated bile acids in man. IV. Description and validation of a multicompartmental model. Gastroenterology 67: 887–897, 1974.
 117. Hoffman, N. E., and A. F. Hofmann. Metabolism of steroid and amino acid moieties of conjugated bile acids in man. V. Equations for the perturbed enterohepatic circulation and their application. Gastroenterology 72: 141–148, 1977.
 118. Hoffman, N. E., N. F. LaRusso, and A. F. Hofmann. Sampling intestinal content with a sequestering capsule: a noninvasive technique for determining bile acid kinetics in man. Mayo Clin. Proc. 51: 171–175, 1976.
 119. Hofmann, A. F. Bile acids, diarrhea, and antibiotics: data, speculation and a unifying hypothesis. J. Infect. Dis. 135: S126–S132, 1977.
 120. Hofmann, A. F. Biliary lipid secretion in man. In: Liver and Bile, edited by L. Bianchi, W. Gerok, and K. Sickinger. Lancaster, UK: MTP, 1977, p. 101–118.
 121. Hofmann, A. F. The enterohepatic circulation of bile acids in man. Clin. Gastroenterol. 6: 3–24, 1977.
 122. Hofmann, A. F. The enterohepatic circulation of bile acids in health and disease. In: Gastrointestinal Disease: Pathophysiology, Diagnosis, Management (3rd ed.), edited by M. H. Sleisenger and J. S. Fordtran. Philadelphia, PA: Saunders, 1983, p. 115–131.
 123. Hofmann, A. F. Chemistry and enterohepatic circulation of bile acids. Hepatology Baltimore 4: 4S–14S, 1984.
 124. Hofmann, A. F. (editor). Hepatology Baltimore 4, Suppl.: 1984. (Kroc Workshop Proc.).
 125. Hofmann, A. F. (editor). The physical chemistry of bile in health and disease. Hepatology Baltimore 4: 1S–252S, 1984.
 126. Hofmann, A. F. Targeting drugs to the enterohepatic circulation: lessons from bile acids and other endobiotics. J. Control. Rel. 2: 2–11, 1985.
 127. Hofmann, A. F., V. Bokkenheuser, R. L. Hirsch, and E. H. Mosbach. Experimental cholelithiasis in the rabbit induced by cholestanol feeding: effect of neomycin treatment on bile composition and gallstone formation. J. Lipid Res. 9: 244–253, 1968.
 128. Hofmann, A. F., C. Cravetto, G. Molino, G. Belforte, and B. Bona. Simulation of the metabolism and enterohepatic circulation of endogenous deoxycholic acid in man using a physiological pharmacokinetic model for bile acid metabolism. Gastroenterology. In press.
 129. Hofmann, A. F., and S. A. Cummings. Measurement of bile acid and cholesterol kinetics in man by isotope dilution: principles and applications. In: Bile Acids in Gastroenterology, edited by L. Barbara, R. H. Dowling, A. F. Hofmann, and E. Roda. Lancaster, UK: MTP, 1983, p. 75–117.
 130. Hofmann, A. F., S. M. Grundy, J. M. Lachin, S.‐P. Lan, R. A. Baum, R. F. Hanson, T. Hersh, N. C. Hightower, Jr., J. W. Marks, H. Mekhjian, R. A. Shaefer, R. D. Soloway, J. L. Thistle, F. B. Thomas, M. P. Tyor, and the National Cooperative Gallstone Study Group. Pretreatment biliary lipid composition in white patients with radiolucent gallstones in the National Cooperative Gallstone Study. Gastroenterology 83: 738–752, 1982.
 131. Hofmann, A. F., and N. E. Hoffman. Measurement of bile acid kinetics by isotope dilution in man. Gastroenterology 67: 314–323, 1974.
 132. Hofmann, A. F., and P. D. Klein. Characterization of bile acid metabolism in man using bile acids labeled with stable isotopes. In: Stable Isotopes, edited by T. A. Baillie. Baltimore, MD: University Park, 1978, p. 189–204.
 133. Hofmann, A. F., G. Molino, M. Milanese, and G. Belforte. Description and simulation of a physiological pharmacokinetic model for the metabolism and enterohepatic circulation of bile acids in man. Cholic acid in healthy man. J. Clin. Invest. 71: 1003–1022, 1983.
 134. Hofmann, A. F., K. R. Palmer, Y. B. Yoon, L. R. Hagey, D. Gurantz, S. Huijghebaert, J. L. Converse, S. Cecchetti, and E. Michelotti. The biological utility of bile acid conjugation with glycine or taurine. In: Advances in Glucuronide Conjugation, edited by S. Matern, K. W. Bock, and W. Gerok. Lancaster, UK: MTP, 1985, p. 245–264.
 135. Hofmann, A. F., and J. R. Poley. Role of bile acid malabsorption in pathogenesis of diarrhea and steatorrhea in patients with ileal resection. I. Response to cholestyramine or replacement of dietary long chain triglyceride by medium chain triglyceride. Gastroenterology 62: 918–934, 1972.
 136. Hofmann, A. F., and A. Roda. Physicochemical properties of bile acids and their relationship to biological properties: an overview of the problem. J. Lipid Res. 25: 1477–1489, 1984.
 137. Hofmann, A. F., and D. M. Small. Detergent properties of bile salts: correlation with physiological function. Annu. Rev. Med. 18: 333–376, 1967.
 138. Hofmann, A. F., P. A. Szczepanik, and P. D. Klein. Rapid preparation of tritium labeled bile acids by enolic exchange on basic alumina containing tritiated water. J. Lipid Res. 9: 707–713, 1968.
 139. Hofmann, A. F., J. L. Thistle, P. D. Klein, P. A. Szczepanik, and P. Y. S. Yu. Chenotherapy for gallstones. II. Induced changes in bile composition and gallstone response. J. Am. Med. Assoc. 239: 1138–1144, 1978.
 140. Hopman, P. M., F. M. Brouwer, G. Rosenbusch, J. B. M. J. Jansen, and C. B. H. W. Lamers. A computerized method for rapid quantification of gallbladder volume from real‐time sonograms. Radiology 154: 236–237, 1985.
 141. Hoshita, T. Bile alcohols and primitive bile acids. In: Sterols and Bile Acids: New Comprehensive Biochemistry, edited by H. Danielsson and J. Sjövall. Amsterdam: Elsevier, 1985, vol. 12, p. 279–302.
 142. Huijghebaert, S. M., and A. F. Hofmann. Influence of amino acid moiety on deconjugation of bile acid amidates by cholylglycine hydrolase or human fecal cultures. J. Lipid Res. 27: 742–752, 1986.
 143. Javitt, N. B. Cholestasis in rats induced by taurolithocholate. Nature Lond. 210: 1262–1263, 1966.
 144. Josephson, B. The circulation of the bile acids in connection with their production, conjugation and excretion. Physiol. Rev. 21: 463–486, 1941.
 145. Kibe, A., C. Wake, T. Kuramoto, and T. Hoshita. Effect of dietary taurine on bile acid metabolism in guinea pigs. Lipids 15: 224–229, 1979.
 146. Killenberg, P. G. Measurement and subcellular distribution of cholyl‐CoA synthetase and bile acid‐CoA:amino acid N‐acyltransferase activities in rat liver. J. Lipid Res. 19: 24–31, 1978.
 147. Killenberg, P. G., and J. T. Jordan. Purification and characterization of bile acid‐CoA:amino acid N‐acyltransferase from rat liver. J. Biol. Chem. 253: 1005–1009, 1978.
 148. King, J. E., and L. J. Schoenfield. Cholestasis induced by sodium taurolithocholate in isolated hamster liver. J. Clin. Invest. 50: 2305–2312, 1971.
 149. Kirkpatrick, R. B., M. D. Green, L. R. Hagey, A. F. Hofmann, and T. R. Tephly. Effect of side chain length on bile acid conjugation: glucuronidation, sulfation, and CoA formation of nor‐bile acids and their natural C24 homologues by human rat liver fractions. Hepatology Baltimore. In press.
 150. Kitani, K., and S. Kanai. Ursodeoxycholate‐induced choleresis in taurine‐deprived and taurine‐supplemented rats. Jpn. J. Physiol. 35: 443–462, 1985.
 151. Krag, E., and S. F. Phillips. Active and passive bile acid absorption in man. Perfusion studies of the ileum and jejunum. J. Clin. Invest. 53: 1686–1694, 1974.
 152. Krishnamurthy, G. I. Radionuclide ejection fraction: a new technique for quantitative analysis of motor function of the human gallbladder. Gastroenterology 80: 482–490, 1981.
 153. Kubaska, W. M., E. C. Gurley, P. B. Hylemon, P. S. Guzelian, and Z. R. Vlahcevic. Absence of negative feedback control of bile acid biosynthesis in cultured rat hepatocytes. J. Biol. Chem. 260: 13459–13463, 1985.
 154. Kuipers, F., R. Havinga, H. Bosschieter, G. P. Toorop, F. R. Hindriks, and R. J. Vonk. Enterohepatic circulation in the rat. Gastroenterology 88: 403–411, 1985.
 155. Lack, L., F. O. Darrity, T. Walker, and G. D. Singletary. Synthesis of conjugated bile acids by means of a coupling agent. J. Lipid Res. 14: 367–370, 1973.
 156. La Du, B. N., H. G. Mandel, and E. L. Way (editors). Fundamentals of Drug Metabolism and Drug Disposition. Baltimore, MD: Williams & Wilkins, 1971.
 157. Lanzini, A., R. P. Jazrawi, and T. C. Northfield. Simultaneous quantitative measurements of hepatic secretion and of absolute gallbladder storage and emptying during fasting and eating in man. Gastroenterology 92: 852–861, 1987.
 158. LaRusso, N. F., N. E. Hoffman, and A. F. Hofmann. Dynamics of the enterohepatic circulation of bile acids. N. Engl. J. Med. 291: 689–692, 1974.
 159. LaRusso, N. F., N. E. Hoffman, A. F. Hofmann, T. C. Northfield, and J. L. Thistle. Effect of primary bile acid ingestion on bile acid metabolism and biliary lipid secretion in gallstone patients. Gastroenterology 69: 1301–1314, 1975.
 160. LaRusso, N. F., N. E. Hoffman, M. G. Korman, A. F. Hofmann, and A. E. Cowen. Determinants of fasting and postprandial serum bile acid levels in healthy man. Am. J. Dig. Dis. 23: 385–391, 1978.
 161. LaRusso, N. F., P. A. Szczepanik, A. F. Hofmann, and S. B. Coffin. Effect of deoxycholic acid ingestion on bile acid metabolism and biliary lipid secretion in normal subjects. Gastroenterology 72: 132–140, 1977.
 162. Lassen, N. A., and W. Perl. Tracer Kinetic Methods in Medical Physiology. New York: Raven, 1979.
 163. Legrand‐Defretin, V., C. Juste, T. Corring, and A. Rerat. Enterohepatic circulation of bile acids in pigs: diurnal pattern and effect of a reentrant biliary fistula. Am. J. Physiol. 250 (Gastrointest. Liver Physiol. 13): G295–G301, 1986.
 164. Lindstedt, S. The turnover of cholic acid in man. Acta Physiol. Scand. 40: 1–9, 1957.
 165. Low‐Beer, T. S., K. W. Heaton, E. W. Pomare, and A. E. Read. The effect of coeliac disease upon bile salts. Gut 14: 204–208, 1973.
 166. Luxon, B. A., P. D. King, and E. L. Forker. How to measure first‐order hepatic transfer coefficients by distributed modeling of a recirculating rat liver perfusion system. Am. J. Physiol. 243 (Gastrointest. Liver Physiol. 6): G518–G531, 1982.
 167. Macdonald, I. A., V. D. Bokkenheuser, J. Winter, A. M. McLernon, and E. H. Mosbach. Degradation of steroids in the human gut. J. Lipid Res. 24: 675–700, 1983.
 168. Makino, I., H. Hashimoto, K. Shinozaki, K. Yoshino, and S. Malagawa. Sulfated and nonsulfated bile acids in urine, serum and bile of patients with hepatobiliary diseases. Gastroenterology 68: 545–553, 1975.
 169. Makino, I., K. Shinozaki, K. Yoshino, and S. Nakagawa. Dissolution of cholesterol gallstones by ursodeoxycholic acid. Jpn. J. Gastroenterol. 72: 690–702, 1975.
 170. Malavolti, M., H. Fromm, B. Cohen, and S. Ceryak. Isolation and identification of Δ6‐lithocholenic acid α‐hydroxy‐5β‐6‐cholen‐24‐oic acid) as an intestinal bacterial metabolite of chenodeoxycholic acid in man. J. Biol. Chem. 260: 11011–11015, 1985.
 171. Marcus, S. N., and K. W. Heaton. Intestinal transit, deoxycholic acid and the cholesterol saturation in bile—three interrelated factors. Gut 27: 550–558, 1986.
 172. Matern, S., and W. Gerok. Pathophysiology of the enterohepatic circulation of bile acids. Rev. Physiol. Biochem. Pharmacol. 85: 126–159, 1979.
 173. Matern, S., J. Hackenschmidt, P. Back, and W. Gerok (editors). Advances in Bile Acid Research. Stuttgart, FRG: Schattauer Verlag, 1975.
 174. Matern, S., H. Matern, E. H. Farthmann, and W. Gerok. Hepatic and extrahepatic glucuronidation of bile acids in man. Characterization of bile acid uridine 5'‐diphosphate‐glucuronosyl transferase in hepatic, renal, and intestinal microsomes. J. Clin. Invest. 74: 402–410, 1984.
 175. McCloy, R. F., R. G. Greenberg, and J. H. Baron. Duodenal pH in health and duodenal ulcer disease: effect of a meal. Gut 25: 386–392, 1984.
 176. McJunkin, B., H. Fromm, R. P. Sarva, and P. Amin. Factors in the mechanism of diarrhea in bile acid malabsorption: fecal pH—a key determinant. Gastroenterology 80: 1454–1464, 1981.
 177. Mekhjian, H. S., S. F. Phillips, and A. F. Hofmann. Colonic absorption of unconjugated bile acids: perfusion studies in man. Dig. Dis. Sci. 24: 545–550, 1979.
 178. Miyai, K., A. L. Richardson, W. Lmayr, and N. B. Javitt. Subcellular pathology of rat liver in cholestasis and choleresis induced by bile salts. I. Effects of lithocholic, 3β‐hydroxy‐5‐cholenoic, cholic, and dehydrocholic acids. Lab. Invest. 36: 249–258, 1977.
 179. Molino, G., A. F. Hofmann, C. Cravetto, G. Belforte, and B. Bona. Simulation of the metabolism and enterohepatic circulation of endogenous chenodeoxycholic acid in man using a physiological pharmacokinetic model. Eur. J. Clin. Invest. 16: 397–414, 1986.
 180. Morrissey, K. P., C. K. McSherry, R. L. Swarm, W. H. Nieman, and J. E. Deitrick. Toxicity of chenodeoxycholic acid in the nonhuman primate. Surgery St. Louis 77: 851–860, 1975.
 181. Mosbach, E. H. Hepatic synthesis of bile acids. Biochemical steps and mechanism of rate control. Arch. Intern. Med. 130: 478–487, 1972.
 182. Nair, P. P., and D. Kritchevsky (editors). The Bile Acids: Chemistry, Physiology, and Metabolism. Chemistry. New York: Plenum, 1971, vol. 1.
 183. Nair, P. P., and D. Kritchevsky (editors). The Bile Acids: Chemistry, Physiology, and Metabolism. Physiology and Metabolism. New York: Plenum, 1973, vol. 2.
 184. Nair, P. P., and D. Kritchevsky (editors). The Bile Acids: Chemistry, Physiology, and Metabolism. Pathophysiology. New York: Plenum, 1976, vol. 3.
 185. Nakagaki, M., R. G. Danzinger, A. F. Hofmann, and R. A. Dipietro. Biliary secretion and hepatic metabolism of taurine conjugated 7α‐hydroxy and 7β‐hydroxy bile acids in the dog: defective hepatic transport and bile hyposecretion. Gastroenterology 87: 647–659, 1984.
 186. Nakagaki, M., R. G. Danzinger, A. F. Hofmann, and A. Roda. Hepatic biotransformation of two hydroxy‐7‐oxotaurine‐conjugated bile acids in the dog. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G411–G417, 1983.
 187. Neoptolemos, J. P., N. Marassi, D. Gurantz, L. R. Hagey, and A. F. Hofmann. The unusual physiological properties and unique hepatic biotransformation of nor‐deoxycholate (Abstract). Gastroenterology 88: 1682, 1985.
 188. Ng, P. Y., and A. F. Hofmann. Tissue distribution of [114C] cholylglycine in rats and hamsters with a bile fistula or bile duct ligation. Proc. Soc. Exp. Biol. Med. 154: 134–137, 1977.
 189. Nilsell, K., B. Angelin, B. Leijd, and K. Einarsson. Comparative effects of ursodeoxycholic acid and chenodeoxycholic acid on bile acid kinetics and biliary lipid secretion in humans. Evidence for different modes of action on bile acid synthesis. Gastroenterology 85: 1248–1256, 1983.
 190. Nilsson, L. O., T. A. Stein, G. P. Burns, G. Orangio, and L. Wise. The effects of ileal resection with cholecystectomy on bile salt metabolism in the prairie dog. J. Surg. Res. 37: 304–308, 1984.
 191. Norman, A. Preparation of conjugated bile acids using mixed carboxylic acid anhydrides. Ark. Kemi 8: 331–342, 1955.
 192. Norman, A. Metabolism of glycocholic acid in man. Scand. J. Gastroenterol. 5: 231–236, 1970.
 193. Northfield, T. C., B. S. Drasar, and J. T. Wright. Value of small intestinal bile acid analysis in the diagnosis of the stagnant loop syndrome. Gut 14: 341–347, 1973.
 194. Northfield, T. C., and A. F. Hofmann. Biliary lipid output during three meals and an overnight fast. I. Relationship to bile acid pool size and cholesterol saturation of bile in gallstone and control subjects. Gut 16: 1–11, 1975.
 195. Northfield, T. C., and I. McColl. Postprandial concentrations of free and conjugated bile acids down the length of the normal human small intestine. Gut 14: 513–518, 1973.
 196. Okhuysen‐Young, C., and T. F. Kellogg. The effect of cecectomy on fecal bile acid and neutral steroid excretion of the rat. Comp. Biochem. Physiol. B Comp. Biochem. 70B: 345–347, 1981.
 197. O'Maille, E. R. L., and A. F. Hofmann. Relatively high biliary secretory maximum for non‐micelle‐forming bile acid: possible significance for mechanism of secretion. Q. J. Exp. Physiol. 71: 475–482, 1986.
 198. O'Maille, E. R. L., T. G. Richards, and A. H. Short. Acute taurine depletion and maximal rates of hepatic conjugation and secretion of cholic acid in the dog. J. Physiol. Lond. 180: 67–79, 1965.
 199. Owen, R. W. Biotransformation of bile acids by clostridia. J. Med. Microbiol. 20: 233–238, 1985.
 200. Owen, R. W., M. J. Hill, and R. F. Bilton. Biotransformation of chenodeoxycholic acid by Pseudomonas species NCIB 10590 under anaerobic conditions. J. Lipid Res. 24: 1109–1118, 1983.
 201. Palmer, K. R., D. Gurantz, A. F. Hofmann, L. M. Clayton, L. R. Hagey, and S. Cecchetti. Hypercholeresis induced by norchenodeoxycholate in biliary fistula rodent. Am. J. Physiol. 252 (Gastrointest Liver Physiol. 15): G219–G228, 1987.
 202. Palmer, R. H., and M. G. Bolt. Bile acid sulfates. I. Synthesis of lithocholic acid sulfates and their identification in human bile. J. Lipid Res. 12: 671–679, 1971.
 203. Pang, K. S., and J. A. Terrell. Retrograde perfusion to probe the heterogenous distributions of hepatic drug metabolizing enzymes in rats. J. Pharmacol. Exp. Ther. 2216: 339–346, 1981.
 204. Parmentier, G., and H. Eyssen. Synthesis and characteristics of the specific monosulfates of chenodeoxycholate, deoxycholate, and their taurine or glycine conjugates. Steroids 30: 583–590, 1977.
 205. Paumgartner, G., and A. Stiehl (editors). Bile Acid Metabolism in Health and Disease. Lancaster, UK: MTP, 1977.
 206. Paumgartner, G., A. Stiehl, and W. Gerok (editors). Biological Effects of Bile Acids. Lancaster, UK: MTP, 1979.
 207. Paumgartner, G., A. Stiehl, and W. Gerok (editors). Bile Acids and Lipids. Lancaster, UK: MTP, 1981.
 208. Paumgartner, G., A. Stiehl, and W. Gerok (editors). Bile Acids and Cholesterol in Health and Disease. Lancaster, UK: MTP, 1983.
 209. Pomare, E. W., and K. W. Heaton. The effect of cholecystectomy on bile salt metabolism. Gut 14: 753–762, 1973.
 210. Pomare, E. W., K. W. Heaton, T. S. Low‐Beer, and H. J. Espiner. The effect of wheat bran upon bile salt metabolism and upon the lipid composition of bile in gallstone patients. Am. J. Dig. Dis. 21: 521–526, 1976.
 211. Pooler, P., and W. Duane. Effects of bile acid administration on bile acid synthesis and its circadian rhythm in man (Abstract). Gastroenterology 92: 1765, 1987.
 212. Pries, J. M., C. A. Sherman, G. C. Williams, and R. F. Hanson. Hepatic extraction of bile salts in conscious dogs. Am. J. Physiol. 236 (Endocrinol. Metab. Gastrointest. Physiol. 5): E191–E197, 1979.
 213. Reuben, A., P. N. Maton, G. M. Murphy, and R. H. Dowling. Bile lipid secretion in obese and non‐obese individuals with and without gallstones. Clin. Sci. Lond. 69: 71–79, 1985.
 214. Robertson, J. S. Compartmental Distribution of Radiotracers. Boca Raton, FL: CRC, 1983.
 215. Roda, A. Sensitive methods for serum bile acid analysis. In: Bile Acids in Gastroenterology, edited by L. Barbara, R. H. Dowling, A. F. Hofmann, and E. Roda. Lancaster, UK: MTP, 1983, p. 57–68.
 216. Roda, A., G. Cappelleri, R. Aldini, E. Roda, and L. Barbara. Quantitative aspects of the interaction of bile acids with human serum albumin. J. Lipid Res. 23: 490–495, 1982.
 217. Roda, A., S. Girotti, G. Carrea, L. J. Kricka, M. Deluca, and A. F. Hofmann. Luminometric methods. In: Methods of Enzymatic Analysis. Metabolites 3: Lipids, Amino Acids and Related Compounds, edited by H. U. Bergmeyer, J. Bergmeyer, and M. Grassl. Weinheim, FRG: VCH, 1985, vol. VIII, p. 304–316.
 218. Roda, A., A. F. Hofmann, and K. J. Mysels. The influence of bile salt structure on self‐association in aqueous solutions. J. Biol. Chem. 258: 6362–6370, 1983.
 219. Rowland, M., and T. N. Tozer. Clinical Pharmacokinetics: Concepts and Applications. Philadelphia, PA: Lea & Febiger, 1980.
 220. Sacquet, E., M. Parquet, M. Riottot, A. Raizman, P. Jarrige, C. Huguet, and R. Infante. Intestinal absorption, excretion, and biotransformation of hyodeoxycholic acid in man. J. Lipid Res. 24: 604–613, 1983.
 221. Sarva, R. P., H. Fromm, S. Farivar, R. F. Sembrat, H. Mendelow, H. Shinozuka, and S. K. Wolfson. Comparison of the effects between ursodeoxycholic and chenodeoxycholic acid on liver function and structure and on bile acid composition in the rhesus monkey. Gastroenterology 79: 629–636, 1980.
 222. Schiff, E. R., N. C. Small, and J. M. Dietschy. Characterization of the kinetics of the passive and active transport mechanisms for bile acid absorption in the small intestine and colon of the rat. J. Clin. Invest. 51: 1351–1362, 1972.
 223. Schiff, M. Gallenbildung, abhangig von der Aufsaugung der Gallenstoffe. Pflueger Arch. Gesamte Physiol. Menschen Tiere 3: 598–613, 1870.
 224. Schmidt, C. R., and A. C. Ivy. The general function of the gallbladder. Do species lacking a gallbladder possess its functional equivalent? J. Cell Comp. Physiol. 10: 365–383, 1937.
 225. Setchell, K. D. R., A. M. Lawson, E. J. Blackstock, and G. M. Murphy. Diurnal changes in serum unconjugated bile acids in normal man. Gut 23: 637–642, 1983.
 226. Setchell, K. D. R., A. M. Lawson, N. Tanida, and J. Sjövall. General methods for the analysis of metabolic profiles of bile acids and related compounds in feces. J. Lipid Res. 24: 1085–1100, 1983.
 227. Setchell, K. D. R., J. M. Street, and J. Sjövall. Fecal bile acids. In: The Bile Acids. Methods and Applications, edited by K. D. R. Setchell, D. Kritchevsky, and P. P. Nair. New York: Plenum, vol. 4, in press.
 228. Shaffer, E. A., and D. M. Small. Biliary lipid secretion in cholesterol gallstone disease. The effect of cholecystectomy and obesity. J. Clin. Invest. 59: 828–840, 1977.
 229. Shefer, S., S. Hauser, V. Lapar, and E. H. Mosbach. Regulatory effects of sterols and bile acids on hepatic 3‐hydroxy‐3‐methylglutaryl CoA reductase and cholesterol 7α‐hydroxylase in the rat. J. Lipid Res. 14: 573–580, 1973.
 230. Shefer, S., G. Salen, S. Hauser, B. Dayal, and A. K. Batta. Metabolism of iso‐bile acids in the rat. J. Biol. Chem. 257: 1401–1406, 1982.
 231. Shipley, R. A., and R. E. Clark. Tracer Methods for In Vivo Kinetics. Theory and Applications. New York: Academic, 1972.
 232. Sidhu, G. S., and D. G. Oakenfull. A new mechanism for the hypocholesterolaemic of saponins. Br. J. Nutr. 55: 643–649, 1986.
 233. Simon, G. L., and S. H. Gorbach. Intestinal flora in health and disease. In: Physiology of the Gastrointestinal Tract, edited by L. R. Johnson. New York: Raven, 1981, p. 1361–1380.
 234. Sjövall, J. Dietary glycine and taurine on bile acid conjugation in man. Proc. Soc. Exp. Biol. Med. 100: 676–678, 1959.
 235. Sjövall, J. Separation and determination of bile acids. In: Methods of Biochemical Analysis, edited by D. Glick. New York: Wiley, 1964, vol. 12, p. 97–141.
 236. Sjövall, J. Gas chromatography‐mass spectrometry in studies of steroids, bile acids and bile alcohols. Proc. Jpn. Soc. Med. Mass Spec. 8: 29–46, 1983.
 237. Small, D. M. The physical chemistry of the cholanic acids. In: The Bile Acids: Chemistry, Physiology, and Metabolism. Chemistry, edited by P. P. Nair and D. Kritchevsky. New York: Plenum, 1971, vol. 1, p. 249–356.
 238. Small, D. M., R. H. Dowling, and R. N. Redinger. The enterohepatic circulation of bile salts. Arch. Intern. Med. 130: 552–573, 1972.
 239. Soloway, R. D., H. C. Carlson, and L. J. Schoenfield. A balloon‐occludable T‐tube for cholangiography and quantitative collection and reinfusion of bile in man. J. Lab. Clin. Med. 79: 500–504, 1972.
 240. Spady, D. K., E. F. Stange, L. E. Bilhartz, and J. M. Dietschy. Bile acids regulate hepatic low density lipoprotein receptor activity in the hamster by altering cholesterol flux across the liver. Proc. Natl. Acad. Sci. USA 83: 1916–1920, 1986.
 241. Stein, W. D. Transport and Diffusion Across Cell Membranes. Orlando, FL: Academic, 1986.
 242. Stellaard, F., P. D. Klein, A. F. Hofmann, and J. M. Lachin. Mass spectrometry identification of biliary bile acids in bile from gallstone patients before and during treatment with chenodeoxycholic acid. An ancillary study of the National Cooperative Gallstone Study (NCGS). J. Lab. Clin. Med. 105: 504–513, 1985.
 243. Stellaard, F., M. Sackmann, T. Sauerbruch, and G. Paumgartner. Simultaneous determination of cholic acid and chenodeoxycholic acid pool sizes and fractional turnover rates in human serum using 13C‐labeled bile acids. J. Lipid Res. 23: 1313–1319, 1984.
 244. Stiehl, A. Disturbances of bile acid metabolism in cholestasis. Clin. Gastroenterol. 6: 45–67, 1977.
 245. Stiehl, A., R. Raedsch, G. Rudolph, U. Gundert‐Remy, and M. Senn. Biliary and urinary excretion of sulfated, glucuronidated and tetrahydroxylated bile acid in cirrhotic patients. Hepatology Baltimore 5: 492–495, 1985.
 246. Street, J. M., D. J. H. Trafford, and H. L. J. Makin. The quantitative estimation of bile acids and their conjugates in human biological fluids. J. Lipid Res. 24: 491–511, 1983.
 247. Stremmel, W., G. Strohmeyer, and P. D. Berk. Hepatocellular uptake of oleate is energy dependent, sodium linked, and inhibited by an antibody to a hepatocyte plasma membrane fatty acid binding protein. Proc. Natl. Acad. Sci. USA 83: 3584–3588, 1986.
 248. Sturman, J. A., G. W. Hepner, A. F. Hofmann, and P. J. Thomas. Metabolism of 35S taurine in man. J. Nutr. 105: 1206–1214, 1975.
 249. Suwelack, D., and H. Weber. Assessment of enterohepatic circulation of radioactivity following a single dose of [14C]‐nimodipine in the rat. Eur. J. Drug Metab. Pharmacokinet. 10: 231–239, 1985.
 250. Tabaqchali, S. The pathophysiological role of small intestinal bacterial flora. Scand. J. Gastroenterol. Suppl. 6: 139–163, 1970.
 251. Takikawa, H., H. Otsuka, T. Beppu, Y. Seyama, and T. Yamakawa. Quantitative determination of bile acid glucuronides in serum by mass fragmentography. J. Biochem. Tokyo 92: 985–998, 1982.
 252. Takikawa, H., H. Otsuka, T. Beppu, Y. Seyama, and T. Yamakawa. Serum concentrations of bile acid glucuronides in hepatobiliary diseases. Digestion 27: 189–195, 1983.
 253. Takikawa, H., Y. Seyama, Y. Sugiyama, and S. Nagase. Bile acid profiles in analbuminemia rats. J. Biochem. Tokyo 97: 199–203, 1985.
 254. Takikawa, H., A. Stolz, and N. Kaplowitz. Redox cycling of bile acids (BA) catalyzed by 3α‐hydroxysteroid dehydrogenase αHSD) (Abstract). Hepatology Baltimore 6: 1225, 1986.
 255. Tandon, R., M. Axelson, and J. Sjövall. Selective liquid chromatographic isolation and gas chromatographic‐mass spectrometric analysis of ketonic bile acids in faeces. J. Chromatogr. 302: 1–14, 1984.
 256. Tanida, N., Y. Hikasa, T. Shimoyama, and K. D. R. Setchell. Comparison of faecal bile acid profiles between patients with adenomatous polyps of the large bowel and healthy subjects in Japan. Gut 25: 824–832, 1984.
 257. Tappeiner, A. J. F. H. Ueber die Aufsaugung der Gallensaeuren alkalien im Dunndarme. Wien. Akad. Sitzber. 77: 281–304, 1878.
 258. Thistle, J. L., and A. F. Hofmann. Efficacy and specificity of chenodeoxycholic acid therapy for dissolving gallstones. N. Engl. J. Med. 289: 655–659, 1973.
 259. Thistle, J. L., and L. J. Schoenfield. Induced alterations in composition of bile of persons having cholelithiasis. Gastroenterology 61: 488–496, 1971.
 260. Thomas, G. P., M. Nakagaki, A. F. Hofmann, and S. Mundlos. A systemic marker for the rapid detection of experimental bacterial overgrowth: the ureolysis breath test (Abstract). Gastroenterology 82: 1197, 1982.
 261. Thomson, A. B. R., and J. M. Dietschy. Intestinal kinetic parameters: effects of unstirred layers and transport preparation. Am. J. Physiol. 239 (Gastrointest. Liver Physiol. 2): G372–G377, 1980.
 262. Thureborn, E. Human hepatic bile. Acta Chir. Scand. Suppl. 303: 7–63, 1962.
 263. Tse, F. L. S., F. Ballard, and J. Skinn. Estimating the fraction reabsorbed in drugs undergoing enterohepatic circulation. J. Pharmacokinet. Biopharm. 10: 455–461, 1982.
 264. Tserng, K.‐Y., D. L. Hachey, and P. D. Klein. An improved synthesis of 24‐13C‐labeled bile acids using formyl esters and modified lead tetra‐acetate procedure. J. Lipid Res. 18: 400–403, 1977.
 265. Tserng, K.‐Y., D. L. Hachey, and P. D. Klein. An improved procedure for the synthesis of glycine and taurine conjugates of bile acids. J. Lipid Res. 18: 404–407, 1977.
 266. Tserng, K.‐Y., and P. D. Klein. Bile acid sulfates. III. Synthesis of 7‐ and 12‐monosulfates of bile acids and their conjugates using a sulfur trioxide‐triethylamine complex. Steroids 33: 167–182, 1979.
 267. Vadnere, M., and S. Lindenbaum. Distribution of bile salts between 1‐octanol and aqueous buffer. J. Pharm. Sci. 71: 875–881, 1982.
 268. Van der Werf, S. D. J., A. W. M. Huijbregts, H. L. M. Lamers, G. P. Van Berge Henegouwen, and J. H. M. Van Tongeren. Age dependent differences in human bile acid metabolism and 7α‐dehydroxylation. Eur. J. Clin. Invest. 11: 425–431, 1981.
 269. Van Dyke, R. W., J. E. Stephens, and B. F. Scharschmidt. Bile acid transport in cultured rat hepatocytes. Am. J. Physiol. 243 (Gastrointest. Liver Physiol. 6): G484–G492, 1982.
 270. Vantrappen, G., P. Rutgeerts, and Y. Ghoos. A new method for the measurement of bile acid turnover and pool size by a double‐label, single intubation technique. J. Lipid Res. 22: 528–531, 1981.
 271. Vessey, D. A. The biochemical basis for the conjugation of bile acids with either glycine or taurine. Biochem. J. 174: 621–626, 1978.
 272. Vessey, D. A. The co‐purification and common identity of cholyl CoA:glycine‐ and cholyl CoA:taurine‐N‐acyltransferase activities from bovine liver. J. Biol. Chem. 254: 2059–2063, 1979.
 273. Vessey, D. A., M. H. Crissey, and D. Zakim. Kinetic studies on the enzymes conjugating bile acids with taurine and glycine in bovine liver. Biochem. J. 163: 181–183, 1977.
 274. Vlahcevic, Z. R., C. C. Bell, Jr., I. Buhac, J. T. Farrar, and L. Swell. Diminished bile acid pool size in patients with gallstones. Gastroenterology 59: 165–173, 1970.
 275. Vlahcevic, Z. R., P. Juttijudata, C. C. Bell, Jr., and L. Swell. Bile acid metabolism in patients with cirrhosis. II. Cholic and chenodeoxycholic acid metabolism. Gastroenterology 62: 1174–1181, 1972.
 276. Vlahcevic, Z. R., M. F. Prugh, D. H. Gregory, and L. Swell. Disturbances of bile acid metabolism in parenchymal liver cell disease. Clin. Gastroenterol. 6: 25–43, 1977.
 277. Walker, S., A. Stiehl, R. Raedsch, P. Kloters, and B. Kommerell. Absorption of ursodeoxycholic and chenodeoxycholic acid and their taurine and glycine conjugates in rat jejunum, ileum, and colon. Digestion 32: 47–52, 1985.
 278. Waterhous, D. V., S. Barnes, and D. D. Muccio. Nuclear magnetic resonance spectroscopy of bile acids. Development of two‐dimensional NMR methods for the elucidation of proton resonance assignments for five common hydroxylated bile acids, and their parent bile acid, 5β‐cholanoic acid. J. Lipid Res. 26: 1068–1078, 1985.
 279. Webster, K. H., M. C. Lancaster, A. F. Hofmann, D. F. Wease, and A. H. Baggenstoss. Influence on primary bile acid feeding on cholesterol metabolism and hepatic function in the rhesus monkey. Mayo Clin. Proc. 50: 134–138, 1975.
 280. Weinberg, S. L., G. Burckhardt, and F. A. Wilson. Taurocholate transport by rat intestinal basolateral membrane vesicles. Evidence for the presence of an anion exchange transport system. J. Clin. Invest. 78: 44–50, 1986.
 281. Weiner, I. M., and L. Lack. Bile salt absorption: enterohepatic circulation. In: Handbook of Physiology. Alimentary Canal, edited by C. F. Code. Washington, DC: Am. Physiol. Soc., 1968, sect. 6, vol. III, chapt. 73, p. 1439–1455.
 282. Westergaard, H., K. H. Holtermüller, and J. M. Dietschy. Measurement of resistance of barriers to solute transport in vivo in rat jejunum. Am. J. Physiol. 250 (Gastrointest. Liver Physiol. 13): G727–G735, 1986.
 283. Wilson, F. A. Intestinal transport of bile acids. Am. J. Physiol. 241 (Gastrointest. Liver Physiol. 4): G83–G92, 1981.
 284. Yahiro, K., T. Setoguchi, and T. Katsuki. Effect of cecum and appendix on 7α‐dehydroxylation and 7β‐epimerization of chenodeoxycholic acid in the rabbit. J. Lipid Res. 21: 215–222, 1980.
 285. Yoon, Y. B., L. R. Hagey, A. F. Hofmann, D. Gurantz, E. L. Michelotti, and J. H. Steinbach. Effect of side‐chain shortening on the physiological properties of bile acids: hepatic transport and effect on biliary secretion of 23‐nor‐ursodeoxycholate in rodents. Gastroenterology 90: 837–852, 1986.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Alan F. Hofmann. Enterohepatic Circulation of Bile Acids. Compr Physiol 2011, Supplement 18: Handbook of Physiology, The Gastrointestinal System, Salivary, Gastric, Pancreatic, and Hepatobiliary Secretion: 567-596. First published in print 1989. doi: 10.1002/cphy.cp060329