Comprehensive Physiology Wiley Online Library

Cellular Mechanisms of Hepatic Fluid and Electrolyte Transport

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Microanatomy of the Bile Secretory Unit
2 Cellular Mechanisms of Hepatocyte Electrolyte and Solute Transport
2.1 Membrane Potential
2.2 Sinusoidal‐Lateral Membrane Transport Mechanisms
2.3 Canalicular Membrane Transport Mechanisms
2.4 Organelle Ion‐Transport Mechanisms
3 Canalicular Bile Formation
3.1 Introduction and Definition of Terms
3.2 Pathways of Water and Solute Excretion
3.3 Bile Acid‐Stimulated Canalicular Bile Formation
3.4 Bile Acid‐Independent Bile Formation
3.5 Intracellular Bile Acid Transport and Bile Acid‐Lipid Coupling
3.6 Regulation of Canalicular Water and Solute Secretion
4 Summary
Figure 1. Figure 1.

Schematic illustration of a liver cell plate. Single‐cell‐thick liver plate (top panel) is separated from sinusoidal blood on either side by sinusoidal lining cells. Lining cells have large fenestrations in the cytoplasm, which allow free access of plasma to space of Disse. Each hepatocyte surface membrane consists of 3 distinct areas: the sinusoidal surface, the lateral surface, and the canalicular surface. Bottom panel, enlargement of the hemicanaliculus shown above. Canalicular membranes of adjacent hepatocytes are joined by tight junctions (shown here en face), which seal the canalicular space from the lateral intercellular space and sinusoidal space. Belt desmosomes adjacent to the tight junction help to hold cells together and serve as a site of attachment of pericanalicular microfilaments. Spot desmosomes can be thought of as “spot welds” between adjacent liver cells. They also help to hold cells together and are the sites of insertion of intracellular tonofilaments, which transmit passive forces to the membrane surface. Gap junctions allow direct passage of certain molecules between the cytoplasms of adjacent cells. Golgi complex, microtubules, and microfilaments are characteristically found in the pericanalicular area and may play a role in bile secretion.

From Scharschmidt 189
Figure 2. Figure 2.

Plasma membrane ion‐transport mechanisms thought to be present on hepatocytes. For those transport processes (e.g., Na+‐Ca2+ exchange and Ca2+‐ATPase) that are poorly characterized in liver, the mechanism is depicted as it is known to occur in other cell types.

Figure 3. Figure 3.

Relationships between hepatocyte proton transport and endocytosis. Hepatocyte proton transport, mediated via a primary proton pump or Na+‐H+ exchange, is postulated to play an important role both in biliary HCO3 secretion and bile formation and in endocytosis.

Figure 4. Figure 4.

Schematic representation of components of bile flow. Total bile flow consists of a theoretically constant ductular secretion, a theoretically constant bile acid‐independent canalicular secretion, and a bile‐dependent canalicular secretion that varies directly with bile acid output. In humans these components have been estimated by Boyer and Bloomer 37 to be ∼180 ml/day, 225 ml/day, and 200 ml/day, respectively.

From Scharschmidt 189
Figure 5. Figure 5.

Appearance‐disappearance curves for biliary erythritol 120 Da), sucrose (342 Da), and dextran 70 kDa avg) after their abrupt addition to and removal from perfusate.

From Lake et al. 134


Figure 1.

Schematic illustration of a liver cell plate. Single‐cell‐thick liver plate (top panel) is separated from sinusoidal blood on either side by sinusoidal lining cells. Lining cells have large fenestrations in the cytoplasm, which allow free access of plasma to space of Disse. Each hepatocyte surface membrane consists of 3 distinct areas: the sinusoidal surface, the lateral surface, and the canalicular surface. Bottom panel, enlargement of the hemicanaliculus shown above. Canalicular membranes of adjacent hepatocytes are joined by tight junctions (shown here en face), which seal the canalicular space from the lateral intercellular space and sinusoidal space. Belt desmosomes adjacent to the tight junction help to hold cells together and serve as a site of attachment of pericanalicular microfilaments. Spot desmosomes can be thought of as “spot welds” between adjacent liver cells. They also help to hold cells together and are the sites of insertion of intracellular tonofilaments, which transmit passive forces to the membrane surface. Gap junctions allow direct passage of certain molecules between the cytoplasms of adjacent cells. Golgi complex, microtubules, and microfilaments are characteristically found in the pericanalicular area and may play a role in bile secretion.

From Scharschmidt 189


Figure 2.

Plasma membrane ion‐transport mechanisms thought to be present on hepatocytes. For those transport processes (e.g., Na+‐Ca2+ exchange and Ca2+‐ATPase) that are poorly characterized in liver, the mechanism is depicted as it is known to occur in other cell types.



Figure 3.

Relationships between hepatocyte proton transport and endocytosis. Hepatocyte proton transport, mediated via a primary proton pump or Na+‐H+ exchange, is postulated to play an important role both in biliary HCO3 secretion and bile formation and in endocytosis.



Figure 4.

Schematic representation of components of bile flow. Total bile flow consists of a theoretically constant ductular secretion, a theoretically constant bile acid‐independent canalicular secretion, and a bile‐dependent canalicular secretion that varies directly with bile acid output. In humans these components have been estimated by Boyer and Bloomer 37 to be ∼180 ml/day, 225 ml/day, and 200 ml/day, respectively.

From Scharschmidt 189


Figure 5.

Appearance‐disappearance curves for biliary erythritol 120 Da), sucrose (342 Da), and dextran 70 kDa avg) after their abrupt addition to and removal from perfusate.

From Lake et al. 134
References
 1. Accatino, L., and F. R. Simon. Identification and characterization of a bile acid receptor in isolated liver surface membranes. J. Clin. Invest. 57: 496–508, 1976.
 2. Aldini, R., A. Roda, A. M. Morselli Labate, G. Cappelleri, E. Roda, and L. Barbara. Hepatic bile acid uptake: effect of conjugation, hydroxyl and keto groups, and albumin binding. J. Lipid Res. 23: 1167–1173, 1982.
 3. Alvarado, F., and J. W. Robinson. A kinetic study of the interactions between amino acids and monosaccharides at the intestinal brush‐border membrane. J. Physiol. Lond. 295: 457–475, 1979.
 4. Alvo, M., J. Calamia, and J. Eveloff. Lack of potassium effect on Na‐Cl cotransport in the medullary thick ascending limb. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F34–F39, 1985.
 5. Andersen, O. S., J. E. N. Silveira, and P. R. Steinmetz. Intrinsic characteristics of the proton pump in the luminal membrane of a tight urinary epithelium. The relationship between transport rate and . J. Gen. Physiol. 86: 215–234, 1985.
 6. Anderson, R. G. W., J. R. Falck, J. L. Goldstein, and M. S. Brown. Visualization of acidic organelles in intact cells by electron microscopy. Proc. Natl. Acad. Sci. USA 81: 4838–4842, 1984.
 7. Anwer, M. S., and D. Hegner. Effect of Na+ on bile acid uptake by isolated rat hepatocytes. Hoppe‐Seyler's Z. Physiol. Chem. 359: 181–192, 1978.
 8. Anwer, M. S., and D. Hegner. Role of inorganic electrolytes in bile acid‐independent canalicular bile formation. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G116–G124, 1983.
 9. Anwer, M. S., R. Kroker, D. Hegner, and A. Petter. Cholic acid binding to isolated rat liver plasma membranes. Hoppe‐Seyler's Z. Physiol. Chem. 358: 543–553, 1977.
 10. Apstein, M. D. Inhibition of biliary phospholipid and cholesterol secretion by bilirubin in the Sprague‐Dawley and Gunn rat. Gastroenterology 87: 634–638, 1984.
 11. Arias, I. M., and M. Forgac. The sinusoidal domain of the plasma membrane of rat hepatocytes contains an amiloride‐sensitive Na+/H+ antiport. J. Biol. Chem. 259: 5406–5408, 1984.
 12. Aronson, P. S. Mechanisms of active H+ secretion in the proximal tubule. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F647–, 1983.
 13. Aronson, P. S. Electrochemical driving forces for secondary active transport: energetics and kinetics of Na+‐H+ exchange and Na+‐glucose cotransport. In: Electrogenic Transport: Fundamental Principles and Physiological Implications, edited by M. P. Blaustein and M. Lieberman. New York: Raven, 1984, p. 49–70.
 14. Ashwell, G., and J. Harford. Carbohydrate‐specific receptors of the liver. Annu. Rev. Biochem. 51: 531–554, 1982.
 15. Bachs, O., K. S. Famulski, F. Mirabelli, and E. Carafoli. ATP‐dependent Ca2+ transport in vesicles isolated from the bile canalicular region of the hepatocyte plasma membrane. Eur. J. Biochem. 147: 1–7, 1985.
 16. Baker, A. L., R. A. B. Wood, A. R. Moossa, and J. L. Boyer. Sodium taurocholate modifies the “bile acid independent” fraction of canalicular bile flow in the rhesus monkey. J. Clin. Invest. 64: 312–320, 1979.
 17. Bakker‐Grunwald, T. Potassium permeability and volume control in isolated rat hepatocytes. Biochim. Biophys. Acta 731: 239–242, 1983.
 18. Balabaud, C., K. Kron, and J. J. Gumucio. The assessment of the bile salt‐nondependent fraction of canalicular bile water in the rat. J. Lab. Clin. Med. 89: 393–399, 1977.
 19. Barnhart, J. L., and B. Combes. Erythritol and mannitol clearances with taurocholate and secretin‐induced choleresis. Am. J. Physiol. 234 (Endocrinol. Metab. Gastrointest. Physiol. 3): E146–E156, 1978.
 20. Bear, C. E., C. N. Petrunka, and S. M. Strasberg. Evidence for a channel for the electrogenic transport of chloride ion in the rat hepatocyte. Hepatology Baltimore 5: 383–391, 1985.
 21. Becker, J., and A. Jakob. α‐Adrenergic stimulation of glycolysis and Na+, K+‐transport in perfused rat liver. Eur. J. Biochem. 128: 293–296, 1982.
 22. Bellemann, P. Enhanced amino acid transport in cultured hepatocytes during liver development. J. Biochem. 90: 1821–1824, 1981.
 23. Bellomo, G., F. Mirabelli, P. Richelmi, and S. Orrenius. Critical role of sulfhydryl group(s) in ATP‐dependent Ca2+ sequestration by the plasma membrane fraction from rat liver. FEBS Lett. 163: 136–139, 1983.
 24. Bernstein, J., and G. Santacana. The Na+/Ca2+ exchange system of the liver cell. Res. Commun. Chem. Pathol. Pharmacol. 47: 3–34, 1985.
 25. Berr, F., F. R. Simon, and J. Reichen. Ethynylestradiol impairs bile salt uptake and Na‐K pump function of rat hepatocytes. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G437–G443, 1984.
 26. Berry, C. A. Characteristics of water diffusion in the rabbit proximal convoluted tubule. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F729–F738, 1985.
 27. Berthon, B., A. Binet, J.‐P. Mauger, and M. Claret. Cytosolic free Ca2+ in isolated rat hepatocytes as measured by quin2. FEBS Lett. 167: 19–24, 1984.
 28. Berthon, B., T. Capiod, and M. Claret. Effects of noradrenalin, vasopressin and angiotensin on the Na‐K pump in rat isolated liver cells. Br. J. Pharmacol. 86: 151–161, 1985.
 29. Berthon, B., M. Claret, J. L. Mazet, and J. Poggioli. Volume‐ and temperature‐dependent permeabilities in isolated rat liver cells. J. Physiol. Lond. 305: 267–277, 1980.
 30. Binder, H. J., and J. L. Boyer. Bile salts: a determinant of the bile‐peritoneal electrical potential difference in the rat. Gastroenterology 65: 943–948, 1973.
 31. Blitzer, B. L., and J. L. Boyer. Cytochemical localization of Na+,K+‐ATPase in the rat hepatocyte. J. Clin. Invest. 62: 1104–1108, 1978.
 32. Blitzer, B. L., and J. L. Boyer. Cellular mechanisms of bile formation. Gastroenterology 82: 346–357, 1982.
 33. Blitzer, B. L., and R. L. Bueler. Kinetic and energetic aspects of the inhibition of taurocholate uptake by Na+‐dependent amino acids: studies in rat liver plasma membrane vesicles. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G120–G124, 1985.
 34. Blitzer, B. L., S. L. Ratoosh, and C. B. Donovan. Amino acid inhibition of bile acid uptake by isolated rat hepatocytes: relationship to dissipation of transmembrane Na+ gradient. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G399–G403, 1983.
 35. Blitzer, B. L., S. L. Ratoosh, C. B. Donovan, and J. L. Boyer. Effects of inhibitors of Na+‐coupled ion transport on bile acid uptake by isolated rat hepatocytes. Am. J. Physiol. 243 (Gastrointest. Liver Physiol. 6): G48–G53, 1982.
 36. Boyer, J. L. New concepts of mechanisms of hepatocyte bile formation. Physiol. Rev. 60: 303–326, 1980.
 37. Boyer, J. L., and J. R. Bloomer. Canalicular bile secretion in man: studies utilizing the biliary clearance of 14C‐mannitol. J. Clin. Invest. 54: 773–781, 1974.
 38. Boyer, J. L., E. Elias, and T. J. Layden. The paracellular pathway and bile formation. Yale J. Biol. Med. 52: 61–67, 1979.
 39. Boyer, J. L., M. Itabashi, and Z. Hruban. Formation of pericanalicular vacuoles during sodium dehydrocholate choleresis—a mechanism for bile acid transport. In: The Liver. Quantitative Aspects of Structure and Function, edited by R. Preisig and J. Bircher. Aulendorf, Switzerland: Editio Cantor, 1979, p. 163–178.
 40. Bradley, S. E., and R. Merz. Permselectivity of biliary canalicular membrane in rats: clearance probe analysis. Am. J. Physiol. 235 (Endocrinol. Metab. Gastrointest. Physiol. 4): E570–E576, 1978.
 41. Brown, M. S., R. G. W. Anderson, and J. L. Goldstein. Recycling receptors: the round‐trip itinerary of migrant membrane proteins. Cell 32: 663–667, 1983.
 42. Burgess, G. M., M. Claret, and D. H. Jenkinson. Effects of catecholamines, ATP and ionophore A23187 on potassium and calcium movements in isolated hepatocytes. Nature Lond. 279: 544–546, 1979.
 43. Burgess, G. M., M. Claret, and D. H. Jenkinson. Effects of quinine and apamin on the calcium‐dependent potassium permeability of mammalian hepatocytes and red cells. J. Physiol. Lond. 317: 67–90, 1981.
 44. Burgess, G. M., P. P. Godfrey, J. S. McKinney, M. J. Berridge, R. F. Irvine, and J. W. Putney, Jr. The second messenger linking receptor activation to internal Ca release in liver. Nature Lond. 309: 63–66, 1984.
 45. Canivet, B., M. Fehlmann, and P. Freychet. Glucocorticoid and catecholamine stimulation of amino acid transport in rat hepatocytes. Mol. Cell. Endocrinol. 19: 253–261, 1980.
 46. Carafoli, E. Calcium‐transporting systems of plasma membranes, with special attention to their regulation. Adv. Cyclic Nucleotide Protein Phosphorylation Res. 17: 543–549, 1984.
 47. Chan, K.‐M., and K. D. Junger. Calcium transport and phosphorylated intermediate of (Ca2+ + Mg2+)‐ATPase in plasma membranes of rat liver. J. Biol. Chem. 258: 4404–4410, 1983.
 48. Chenderovitch, J., E. Phocas, and M. Matureau. Effects of hypertonic solutions on bile formation. Am. J. Physiol. 205: 863–867, 1963.
 49. Christensen, H. N. Hypothesis: control of hepatic utilization of alanine by membrane transport or by cellular metabolism? Biosci. Rep. 3: 905–913, 1983.
 50. Christensen, H. N. On the strategy of kinetic discrimination of amino acid transport systems. J. Membr. Biol. 84: 97–103, 1985.
 51. Claret, B., M. Claret, and J. L. Mazet. Ionic transport and membrane potential of rat liver cells in normal and low‐chloride solutions. J. Physiol. Lond. 230: 87–101, 1973.
 52. Claret, M., and J. L. Mazet. Ion fluxes and permeability of cell membranes in rat liver. J. Physiol. Lond. 223: 279–295, 1972.
 53. Claude, P., and D. A. Goodenough. Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia. J. Cell Biol. 58: 390–400, 1975.
 54. Cohen, R. D., R. M. Henderson, R. A. Iles, and J. A. Smith. Metabolic inter‐relationships of intracellular pH measured by double‐barrelled micro‐electrodes in perfused rat liver. J. Physiol. Lond. 330: 69–80, 1982.
 55. Cook, N. S., and D. G. Haylett. Effects of apamine, quinine and neuromuscular blockers on calcium‐activated potassium channels in guinea‐pig hepatocytes. J. Physiol. Lond. 358: 373–394, 1985.
 56. Cummings, S. A., and A. F. Hofmann. Physiologic determinants of biliary calcium secretion in the dog. Gastroenterology 87: 664–673, 1984.
 57. Davis, R. A., F. Kern, Jr., R. Showalter, E. Sutherland, M. Sinensky, and F. R. Simon. Alterations of hepatic Na+,K+‐ATPase and bile flow by estrogen: effects on liver surface membrane lipid structure and function. Proc. Natl. Acad. Sci. USA 75: 4130–4134, 1978.
 58. Dharmsathaphorm, K., K. G. Mandel, H. Masui, and J. A. McRoberts. Vasoactive intestinal polypeptide‐induced chloride secretion by a colonic epithelial cell line. Direct participation of a basolaterally localized Na+, K+, Cl‐ cotransport system. J. Clin. Invest. 75: 462–471, 1985.
 59. Diamond, J. M. Tight and leaky junctions of epithelia: a prospective on kisses in the dark. Federation Proc. 33: 2220–2224, 1974.
 60. Duffy, M. C., B. L. Blitzer, and J. L. Boyer. Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles. J. Clin. Invest. 72: 1470–1481, 1983.
 61. Dumont, M., S. Erlinger, and S. Uchman. Hypercholeresis induced by ursodeoxycholic acid and 7‐ketolithocholic acid in the rat: possible role of bicarbonate transport. Gastroenterology 79: 82–89, 1980.
 62. Edmondson, J. W., and L. Lumeng. Biphasic stimulation of amino acid uptake by glucagon in hepatocytes. Biochem. Biophys. Res. Commun. 96: 61–68, 1980.
 63. Edmondson, J. W., B. A. Miller, and L. Lumeng. Effect of glucagon on hepatic taurocholate uptake: relationship to membrane potential. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G427–G433, 1985.
 64. Elias, E., Z. Hruban, J. B. Wade, and J. L. Boyer. Phalloidin‐induced cholestasis: a microfilament‐mediated change in junctional complex permeability. Proc. Natl. Acad. Sci. USA 77: 2229–2233, 1980.
 65. Epping, R. J., and F. L. Bygrave. A procedure for the rapid isolation from rat liver of plasma membrane vesicles exhibiting Ca2+‐transport and Ca2+‐ATPase activities. Biochem. J. 223: 733–745, 1984.
 66. Fehlmann, M., B. Canivet, and P. Freychet. Epidermal growth factor stimulates monovalent cation transport in isolated rat hepatocytes. Biochem. Biophys. Res. Commun. 100: 254–260, 1981.
 67. Fehlmann, M., and P. Freychet. Insulin and glucagon stimulation of (Na+‐K+)‐ATPase transport activity in isolated rat hepatocytes. J. Biol. Chem. 256: 7449–7453, 1981.
 68. Fehlmann, M., A. Le Cam, P. Kitabgi, J.‐F. Rey, and P. Freychet. Regulation of amino acid transport in the liver. Emergence of a high affinity transport system in isolated hepatocytes from fasting rats. J. Biol. Chem. 254: 401–407, 1979.
 69. Fitz, J. G., and B. F. Scharschmidt. Regulation of transmembrane electrical potential gradient in rat hepatocytes in situ. Am. J. Physiol. 252 (Gastrointest. Liver Physiol. 15): G56–G64, 1987.
 70. Fitz, J. G., and B. F. Scharschmidt. Intracellular chloride activity in intact rat liver: relationship to membrane potential and bile flow. Am. J. Physiol. 252 (Gastrointest. Liver Physiol. 15): G699–G706, 1987.
 71. Forgac, M., L. Cantley, B. Wiedenmann, L. Altstiel, and D. Branton. Clathrin‐coated vesicles contain an ATP‐dependent proton pump. Proc. Natl. Acad. Sci. USA 80: 1300–1303, 1983.
 72. Forker, E. L. Two sites of bile formation as determined by mannitol and erythritol clearance in the guinea pig. J. Clin. Invest. 46: 1189–1195, 1967.
 73. Forker, E. L. Bile formation in guinea pigs: analysis with inert solutes of graded molecular radius. Am. J. Physiol. 215: 56–62, 1968.
 74. Forker, E. L. The effect of estrogen on bile formation in the rat. J. Clin. Invest. 48: 654–663, 1969.
 75. Forker, E. L. Hepatocellular uptake of inulin, sucrose, and mannitol in rats. Am. J. Physiol. 219: 1568–1573, 1970.
 76. Forker, E. L. Mechanisms of hepatic bile formation. Annu. Rev. Physiol. 39: 323–347, 1977.
 77. Friend, D. S., and N. B. Gilula. Variations in tight gap junction in mammalian tissues. J. Cell Biol. 53: 758–776, 1972.
 78. Frizzell, R. A., and M. E. Duffey. Chloride activities in epithelia. Federation Proc. 39: 2860–2864, 1980.
 79. Fromter, E., and J. Diamond. Route of passive ion permeation in epithelia. Nature Lond. 235: 9–13, 1972.
 80. Garberoglio, C. A., H. M. Richter III, A Henarejos, A. R. Moossa, and A. L. Baker. Pharmacological and physiological doses of insulin and determinants of bile flow in dogs. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G157–G163, 1983.
 81. Glickman, J., K. Croen, S. Kelly, and Q. Al‐Awqati. Golgi membranes contain an electrogenic H+ pump in parallel to a chloride conductance. J. Cell Biol. 97: 1303–1308, 1983.
 82. Gluck, S., and Q. Al‐Awqati. An electrogenic proton‐translocating adenosine triphosphatase from bovine kidney medulla. J. Clin. Invest. 73: 1704–1710, 1984.
 83. Gluck, S., C. Cannon, and Q. Al‐Awqati. Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane. Proc. Natl. Acad. Sci. USA 79: 4327–4331, 1982.
 84. Goldstein, J. L., R. G. W. Anderson, and M. S. Brown. Coated pits, coated vesicles, and receptor‐mediated endocytosis. Nature Lond. 279: 679–685, 1979.
 85. Gonzalez‐Calvin, J. L., J. B. Saunders, and R. Williams. Effects of ethanol and acetaldehyde on hepatic plasma membrane ATPases. Biochem. Pharmacol. 32: 1723–1728, 1983.
 86. Goodenough, D. A., and J. P. Revel. A fine structural analysis of intercellular junctions in the mouse liver. J. Cell Biol. 45: 272–290, 1970.
 87. Graf, J., A. Gautam, and J. L. Boyer. Isolated rat hepatocyte couplets: a primary secretory unit for electrophysiologic studies of bile secretory function. Proc. Natl. Acad. Sci. USA 81: 6516–6520, 1984.
 88. Graf, J., R. H. Henderson, B. Krumpholz, and J. L. Boyer. Cell membrane and transepithelial voltages and resistances in isolated rat hepatocyte couplets (IRHC). J. Membr. Biol. 95: 241–254, 1987.
 89. Graf, J., and M. Peterlik. Mechanism of transport of inorganic ions into bile. In: The Hepatobiliary System—Fundamental and Pathological Mechanisms, edited by W. Taylor. New York: Plenum, 1975, p. 43–58.
 90. Graf, J., and O. H. Petersen. Cell membrane potential and resistance in liver. J. Physiol. Lond. 284: 105–126, 1978.
 91. Gregory, D. H., Z. R. Vlahcevic, M. F. Prugh, and L. Swell. Mechanism of secretion of biliary lipids: role of a microtubular system in hepatocellular transport of biliary lipids in the rat. Gastroenterology 74: 93–100, 1978.
 92. Gregory, D. H., Z. R. Vlahcevic, P. Schatzki, and L. Swell. Mechanism of secretion of biliary lipids. I. Role of bile canalicular and microsomal membranes in the synthesis and transport of biliary lecithin and cholesterol. J. Clin. Invest. 55: 105–114, 1975.
 93. Groothuis, G. M. M., J. G. Weitering, M. J. Hardonk, and D. K. F. Meijer. Heterogeneity of rat hepatocytes in transport and hepatic binding of asialoalkaline phosphatase studied after induction of selective acinar damage by N‐hydroxy‐2‐acetylaminofluorene and carbon tetrachloride. Biochem. Pharmacol. 32: 2721–2727, 1983.
 94. Gumucio, J. J., C. Balabaud, D. L. Miller, L. F. Demason, H. D. Appelman, T. J. Stocchu, and D. R. Franzblau. Bile secretion and liver cell heterogeneity in the rat. J. Lab. Clin. Med. 91: 350–362, 1978.
 95. Hardison, W. G. M., S. Bellentani, V. Heasley, and D. Shellhamer. Specificity of an Na+‐dependent taurocholate transport site in isolated rat hepatocytes. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G477–G483, 1984.
 96. Hardison, W. G. M., D. E. Hatoff, K. Miyai, and R. G. Weiner. Nature of bile acid maximum secretory rate in the rat. Am. J. Physiol. 241 (Gastrointest. Liver Physiol. 4): G337–G343, 1981.
 97. Hardison, W. G. M., and C. A. Wood. Importance of bicarbonate in bile salt independent fraction of bile flow. Am. J. Physiol. 235 (Endocrinol. Metab. Gastrointest. Physiol. 4): E158–E164, 1978.
 98. Harikumar, P., and J. P. Reeves. The lysosomal proton pump is electrogenic. J. Biol. Chem. 258: 10403–10410, 1983.
 99. Hayes, J. D., R. C. Strange, and I. W. Percy‐Robb. Cholic acid binding by gluatathione S‐transferase from rat liver cytosol. Biochem. J. 185: 83–87, 1980.
 100. Hess, P., and R. W. Tsien. Mechanism of ion permeation through calcium channels. Nature Lond. 309: 453–456, 1984.
 101. Ihlenfeldt, M. J. A. Stimulation of Rb+ transport by glucagon in isolated rat hepatocytes. J. Biol. Chem. 256: 2213–2218, 1981.
 102. Inoue, M., R. Kinne, T. Trau, and I. M. Arias. Taurocholate transport by rat liver sinusoidal membrane vesicles: evidence of sodium cotransport. Hepatology Baltimore 2: 572–579, 1982.
 103. Inoue, M., R. Kinne, T. Trau, and I. M. Arias. Taurocholate transport by rat liver canalicular membrane vesicles. Evidence for the presence of an Na+‐independent transport system. J. Clin. Invest. 73: 659–663, 1984.
 104. Ismail‐Beigi, F., D. M. Bissell, and I. S. Edelman. Thyroid thermogenesis in primary monolayer culture. J. Gen. Physiol. 73: 369–383, 1979.
 105. Ives, H. E. Na+‐H+ exchange, oncogenes and growth regulation in normal and tumor cells. West. J. Med. 143: 365–370, 1985.
 106. Jakob, A., and S. Diem. Metabolic responses of perfused rat livers to alpha‐ and beta‐adrenergic agonists, glucagon and cyclic AMP. Biochim. Biophys. Acta 404: 57–66, 1975.
 107. Johnson, R. G., M. F. Beers, and A. Scarpa. H+ ATPase of chromaffin granules. J. Biol. Chem. 257: 10701–10707, 1982.
 108. Jones, A. L., D. L. Schmucker, R. H. Renston, and T. Murakami. The architecture of bile secretion. Dig. Dis. Sci. 25: 609–629, 1980.
 109. Joseph, S. K., K. E. Coll, A. P. Thomas, R. Rubin, and J. R. Williamson. The role of extracellular Ca2+ in the response of the hepatocyte to Ca2+‐dependent hormones. J. Biol. Chem. 260: 12508–12515, 1985.
 110. Joseph, S. K., and J. R. Williamson. The origin, quantitation, and kinetics of intracellular calcium mobilization by vasopressin and phenylephrine in hepatocytes. J. Biol. Chem. 258: 10425–10432, 1983.
 111. Kacich, R. L., R. H. Renston, and A. L. Jones. Effects of cytochalasin D and colchicine on the uptake, translocation, and biliary secretion of horseradish peroxidase and [14C]taurocholate in the rat. Gastroenterology 85: 385–394, 1983.
 112. Kaminski, D. L., W. H. Brown, and Y. G. Deshpande. Effect of glucagon on bile cAMP secretion. Am. J. Physiol. 238 (Gastrointest. Liver Physiol. 1): G119–G123, 1980.
 113. Kaplan, M. R., and R. D. Simoni. Transport of cholesterol from the endoplasmic reticulum to the plasma membrane. J. Cell Biol. 101: 446–453, 1985.
 114. Kaunitz, J. D., R. D. Gunther, and G. Sachs. Characterization of an electrogenic ATP and chloride‐dependent proton translocating pump from rat renal medulla. J. Biol. Chem. 260: 11567–11573, 1985.
 115. Keeffe, E. B., N. M. Blankenship, and B. F. Scharschmidt. Alteration of rat liver plasma membrane fluidity and ATPase activity by chlorpromazine hydrochloride and its metabolites. Gastroenterology 79: 222–231, 1980.
 116. Keeffe, E. B., B. F. Scharschmidt, N. M. Blankenship, and R. K. Ockner. Studies of relationships among bile flow, liver plasma membrane Na,K‐ATPase, and microviscosity in the rat. J. Clin. Invest. 64: 1590–1598, 1979.
 117. Kelley, D. S., H. A. Campbell, and V. R. Potter. Effects of hormones and amino acid depletion on the kinetic parameters of amino acid uptake in monolayer cultures of rat hepatocytes. J. Cell. Physiol. 112: 67–75, 1982.
 118. Kelley, D. S., T. Evanson, and V. R. Potter. Calcium‐dependent hormonal regulation of amino acid transport and cyclic AMP accumulation in rat hepatocyte monolayer cultures. Proc. Natl. Acad. Sci. USA 77: 5953–5957, 1980.
 119. Kilberg, M. S. Amino acid transport in isolated rat hepatocytes. J. Membr. Biol. 69: 1–12, 1982.
 120. Kinne‐Saffran, E., R. Beauwens, and R. Kinne. An ATP‐driven pump in brush‐border membranes from rat renal cortex. J. Membr. Biol. 64: 67–76, 1982.
 121. Koch, K. S., R. Grosse, H. Skelly, and H. L. Leffert. Initiation of cultured rat hepatocyte proliferation does not involve Na+‐dependent plasma membrane Ca2+ fluxes. Cell Biol. Int. Rep. 8: 309–316, 1984.
 122. Koch, K. S., and H. L. Leffert. Growth control of differentiated adult rat hepatocytes in primary culture. Ann. NY Acad. Sci. 349: 111–127, 1980.
 123. Kolb, H. A., C. D. A. Brown, and H. Murer. Identification of voltage‐dependent anion channel in the apical membrane of a Cl‐‐secretory epithelium (MDCK). Pfluegers Arch. 403: 262–265, 1985.
 124. Kramer, W., U. Bickel, H.‐P. Buscher, W. Gerok, and G. Kurz. Bile‐salt‐binding polypeptides in plasma membranes of hepatocytes revealed by photoaffinity labelling. Eur. J. Biochem. 129: 13–24, 1982.
 125. Kraus‐Friedmann, N., J. Biber, H. Murer, and E. Carafoli. Calcium uptake in isolated hepatic plasma‐membrane vesicles. Eur. J. Biochem. 129: 7–12, 1982.
 126. Kristensen, L. O. Energization of alanine transport in isolated rat hepatocytes. J. Biol. Chem. 255: 5236–5243, 1980.
 127. Kristensen, L. O., and M. Folke. Coupling ratio of electrogenic Na+‐alanine cotransport in isolated rat hepatocytes. Biochem. J. 210: 621–624, 1983.
 128. Kristensen, L. O., and M. Folke. Volume‐regulatory K+ efflux during concentrative uptake of alanine in isolated rat hepatocytes. Biochem. J. 221: 265–268, 1984.
 129. Kristensen, L. O., L. Sestoft, and M. Folke. Concentrative uptake of alanine in hepatocytes from fed and fasted rats. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G491–G500, 1983.
 130. Krulwich, T. A. Na+/H+ antiporters. Biochim. Biophys. Acta 726: 245–264, 1983.
 131. Lack, L. Properties and biological significance of the ileal bile salt transport system. Environ. Health Perspect. 33: 79–90, 1979.
 132. Lagarde, S., E. Elias, J. B. Wade, and J. L. Boyer. Structural heterogeneity of hepatocyte “tight” junctions: a qualitative analysis. Hepatology Baltimore 1: 193–203, 1981.
 133. Lake, J., P. George, V. Licko, and B. F. Scharschmidt. Vesicular transport of fluid phase markers (FPM) and ligands by liver: effects of colchicine and chloroquine (Abstract). Clin. Res. 33: 322, 1985.
 134. Lake, J. R., V. Licko, R. W. Van Dyke, and B. F. Scharschmidt. Biliary secretion of fluid‐phase markers by the isolated perfused rat liver: role of transcellular vesicular transport. J. Clin. Invest. 76: 676–684, 1985.
 135. Lake, J. R., R. W. Van Dyke, and B. F. Scharschmidt. Effects of Na+ replacement and amiloride on ursodeoxycholic acid‐stimulated choleresis and biliary bicarbonate secretion. Am. J. Physiol. 252 (Gastrointest. Liver Physiol. 15): G163–G169, 1987.
 136. Latham, P. S., and M. Kashgarian. The ultrastructural localization of transport ATPase in the rat liver at non‐bile canalicular plasma membranes. Gastroenterology 76: 988–996, 1979.
 137. Layden, T. J., E. Elias, and J. L. Boyer. Bile formation in the rat—the role of the paracellular shunt pathway. J. Clin. Invest. 62: 1375–1385, 1978.
 138. Layden, T. J., J. Schwarz, and J. L. Boyer. Scanning electron microscopy of the rat liver: studies of the effect of taurolithocholate and other models of cholestasis. Gastroenterology 69: 724–738, 1975.
 139. Leffert, H. L., and K. S. Koch. Ionic events at the membrane initiate rat liver regeneration. Ann. NY Acad. Sci. 339: 201–215, 1980.
 140. Leffert, H. L., K. S. Koch, M. Fehlman, W. Heiser, P. J. Lad, and H. Skelly. Amiloride blocks cell‐free protein synthesis at levels attained inside cultured rat hepatocytes. Biochem. Biophys. Res. Commun. 108: 738–745, 1982.
 141. Leffert, H. L., D. B. Schenk, J. J. Hubert, H. Skelly, M. Schumacher, R. Ariyasu, M. Ellisman, K. S. Koch, and G. A. Keller. Hepatic (Na+,K+)‐ATPase: a current view of its structure, function and localization in rat liver as revealed by studies with monoclonal antibodies. Hepatology Baltimore 5: 501–507, 1985.
 142. Levine, R. A., and R. C. Hale. Cyclic AMP in secretin choleresis: evidence for a regulatory role in man and baboons but not in dogs. Gastroenterology 70: 537–544, 1976.
 143. Lin, S.‐H. Novel ATP‐dependent calcium transport component from rat liver plasma membranes. J. Biol. Chem. 260: 7850–7856, 1985.
 144. Lin, S.‐H. The rat liver plasma membrane high affinity (Ca2+‐Mg2+)‐ATPase is not a calcium pump. J. Biol. Chem. 260: 10976–10980, 1985.
 145. Lorenzini, P., P. Ilter, P. Meier, and J. L. Boyer. Taurochenodeoxycholic acid stimulates hepatic uptake of 3H‐methoxyinulin (3HMI) into membrane‐bound compartments (Abstract). Hepatology Baltimore 2: 737, 1982.
 146. Lotersztajn, S., J. Hanoune, and F. Pecker. A high affinity calcium‐stimulated magnesium‐dependent ATPase in rat liver plasma membranes. J. Biol. Chem. 256: 11209–11215, 1981.
 147. Lotersztajn, S., A. Mallat, C. Pavoine, and F. Pecker. The inhibitor of liver plasma membrane (Ca2+‐Mg2+)‐ATPase. J. Biol. Chem. 260: 9692–9698, 1985.
 148. Machen, T. E., E. Erlij, and F. B. P. Wooding. Permeable junctional complexes. The movement of lanthanum across rabbit gallbladder and intestine. J. Cell Biol. 54: 302–312, 1972.
 149. Matter, A., L. Orci, and C. Roviller. A study on the permeability barriers between Disse's space and the bile canaliculus. J. Ultrastruct. Res. Suppl. 11: 5–71, 1969.
 150. Mazer, N. A., and M. C. Carey. Quasi‐elastic light‐scattering studies of aqueous biliary lipid systems. Cholesterol solubilization and precipitation in model bile solutions. Biochemistry 22: 426–442, 1983.
 151. Meier, P. J., R. Knickelbein, R. H. Moseley, J. W. Dobbins, and J. L. Boyer. Evidence for carrier‐mediated chloride/bicarbonate exchange in canalicular rat liver plasma membrane vesicles. J. Clin. Invest. 75: 1256–1263, 1985.
 152. Meier, P. J., A. S. Meier‐Abt, C. Barrett, and J. L. Boyer. Mechanisms of taurocholate transport in canalicular and basolateral rat liver plasma membrane vesicles. Evidence for an electrogenic canalicular organic anion carrier. J. Biol. Chem. 259: 10614–10622, 1984.
 153. Meier, P. J., E. S. Sztul, A. Rueben, and J. L. Boyer. Structural and functional polarity of canalicular and basolateral plasma membrane vesicles isolated in high yield from rat liver. J. Cell Biol. 98: 991–1000, 1984.
 154. Meyers, W. C., J. B. Hanks, and R. S. Jones. Inhibition of basal and meal‐stimulated choleresis by somatostatin. Surgery St. Louis 86: 301–306, 1979.
 155. Miner, P. B., Jr., E. Sutherland, and F. R. Simon. Regulation of hepatic sodium plus potassium‐activated adenosine triphosphatase activity by glucocorticoids in the rat. Gastroenterology 79: 212–221, 1980.
 156. Moseley, R. H., P. J. Meier, P. S. Aronson, and J. L. Boyer. Na+‐H exchange in rat liver basolateral but not canalicular membrane vesicles. Am. J. Physiol. 250 (Gastrointest. Liver Physiol 13): G35–G43, 1986.
 157. Motta, P. A scanning electron microscopic study of the rat liver sinusoid: endothelial and Kupffer cells. Cell Tissue Res. 164: 371–385, 1975.
 158. Motta, P., and K. R. Porter. Structure of rat liver sinusoids and associated tissue spaces as revealed by scanning electron microscopy. Cell Tissue Res. 148: 111–125, 1974.
 159. Mullock, B. M., M. Dobrata, and R. H. Hinton. Sources of the proteins of rat bile. Biochim. Biophys. Acta 543: 497–507, 1978.
 160. Murer, H., K. Sigrist‐Nelson, and U. Hopper. On the mechanism of sugar and amino acid interaction in intestinal transport. J. Biol. Chem. 250: 7392–7396, 1975.
 161. O'Maille, E. R. L. The influence of micelle formation on bile salt secretion. J. Physiol. Lond. 302: 107–120, 1980.
 162. Oshio, C., and M. J. Phillips. Contractility of the bile canaliculi: implication for liver function. Science Wash. DC 212: 1041–1042, 1981.
 163. Palfrey, H. C., and M. C. Rao. Na/K/Cl co‐transport and its regulation. J. Exp. Biol. 106: 43–54, 1983.
 164. Paloheimo, M., J. Linkola, M. Lempinen, and M. Folke. Time‐courses of hepatocellular hyperpolarization and cyclic adenosine 3',5'‐monophosphate accumulation after partial hepatectomy in the rat. Gastroenterology 87: 639–646, 1984.
 165. Pecker, F., and S. Lotersztajn. Fe2+ and other divalent metal ions uncouple Ca2+ transport from (Ca2+‐Mg2+)‐ATPase in rat liver plasma membranes. J. Biol. Chem. 260: 731–735, 1985.
 166. Petersen, O. H. The effect of glucagon on the liver cell membrane potential. J. Physiol. Lond. 239: 647–656, 1974.
 167. Petersen, O. H., and Y. Maruyama. Calcium‐activated potassium channels and their role in secretion. Nature Lond. 307: 693–696, 1984.
 168. Philipson, K. D. Sodium‐calcium exchange in plasma membrane vesicles. Annu. Rev. Physiol. 47: 561–571, 1985.
 169. Pollock, A. S. Intracellular pH of hepatocytes in primary monolayer culture. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F738–F744, 1984.
 170. Prandi, D., S. Erlinger, J.‐C. Glasinovic, and M. Dumont. Canalicular bile production in man. Eur. J. Clin. Invest. 5: 1–6, 1975.
 171. Preisig, P. A., and C. A. Berry. Evidence for transcellular osmotic water flow in rat proximal tubules. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F124–F131, 1985.
 172. Prpic, V., K. C. Green, P. F. Blackmore, and J. H. Exton. Vasopressin‐, angiotensin II‐, and α1‐adrenergic‐induced inhibition of Ca2+ transport by rat liver plasma membrane vesicles. J. Biol. Chem. 259: 1382–1385, 1984.
 173. Rabon, E., J. Cuppoletti, D. Malinowska, A. Smolka, H. F. Helander, J. Mendlein, and G. Sachs. Proton secretion by the gastric parietal cell. J. Exp. Biol. 106: 119–133, 1983.
 174. Rees‐Jones, R., and Q. Al‐Awqati. Proton‐translocating adenosinetriphosphatase in rough and smooth microsomes from rat liver. Biochemistry 23: 2236–2240, 1984.
 175. Reggio, H., D. Bainton, E. Harms, E. Coudrier, and D. Louvard. Antibodies against lysosomal membranes reveal a 100,000‐mol‐wt protein that cross‐reacts with purified H+,K+ ATPase from gastric mucosa. J. Cell Biol. 99: 1511–1526, 1984.
 176. Reichen, J., F. Berr, M. Le, and G. H. Warren. Characterization of calcium deprivation‐induced cholestasis in the perfused rat liver. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G48–G57, 1985.
 177. Reichen, J., and M. Le. Taurocholate, but not taurodehydrocholate, increases biliary permeability to sucrose. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G651–G655, 1983.
 178. Reichen, J., and M. Le. Effect of taurocholate on place and rate of entry of sucrose into the bile canaliculus (Abstract). Gastroenterology 84: 1283, 1983.
 179. Reichen, J., and H. Saegessen. Role of the hepatic artery in bile formation in the rat (Abstract). Hepatology Baltimore 5: 987, 1985.
 180. Renkin, E. M. Filtration, diffusion and molecular sieving through porous membranes. J. Gen. Physiol. 38: 225–243, 1954.
 181. Renner, E. L., J. R. Lake, E. J. Cragoe, Jr., R. W. Van Dyke, and B. F. Scharschmidt. Ursodeoxycholic acid choleresis: relationship to biliary HCO‐3 and effects Na+‐H+ exchange inhibitors. Am. J. Physiol. 254 (Gastrointest. Liver Physiol. 17): G232–G241, 1988.
 182. Renston, R. H., A. L. Jones, W. D. Christiansen, and G. T. Hradek. Evidence for a vesicular transport mechanism in hepatocytes for biliary secretion of immunoglobulin A. Science Wash. DC 208: 1276–1278, 1980.
 183. Ricci, G. L., and J. Fevery. Quantitative aspects of the effect of somatostatin on bile flow in the rat. Biochem. Soc. Trans. 8: 53–54, 1980.
 184. Ricci, R. L., S. S. Crawford, and P. B. Miner, Jr. The effect of ethanol on hepatic sodium plus potassium activated adenosine triphosphatase activity in the rat. Gastroenterology 80: 1445–1450, 1981.
 185. Roos, A., and W. F. Boron. Intracellular pH. Physiol. Rev. 61: 296–434, 1981.
 186. Saermark, T., N. Flint, and W. H. Evans. Hepatic endosome fractions contain an ATP‐driven proton pump. Biochem. J. 225: 51–58, 1985.
 187. Samson, M., and M. Fehlmann. Plasma membrane vesicles from isolated hepatocytes retain the increase of amino acid transport induced by dibutyryl cyclic AMP in intact cells. Biochim. Biophys. Acta 687: 35–41, 1982.
 188. Samuels, A. M., and M. C. Carey. Effects of chlorpromazine hydrochloride and its metabolites on Mg2+‐ and Na+,K+‐ATPase activities of canalicular‐enriched rat liver plasma membranes. Gastroenterology 74: 1183–1190, 1978.
 189. Scharschmidt, B. F. Bile formation and cholestasis, metabolism and enterohepatic circulation of bile acid, and gallstone formation. In: Hepatology. A Textbook of Liver Diseases, edited by D. Zakim and T. D. Boyer. Philadelphia, PA: Saunders, 1982, p. 297–351.
 190. Scharschmidt, B. F., E. B. Keeffe, D. A. Vessey, N. M. Blankenship, and R. K. Ockner. In vitro effect of bile salts on rat liver plasma membrane lipid fluidity and ATPase activity. Hepatology Baltimore 1: 137–145, 1981.
 191. Scharschmidt, B. F., J. R. Lake, E. L. Renner, V. Licko, and R. W. Van Dyke. Fluid phase endocytosis by cultured rat hepatocytes and perfused rat liver. Proc. Natl. Acad. Sci. USA 83: 9488–9492, 1986.
 192. Scharschmidt, B. F., and J. F. Stephens. Transport of sodium, chloride and taurocholate by cultured rat hepatocytes. Proc. Natl. Acad. Sci. USA 78: 986–990, 1981.
 193. Scharschmidt, B. F., and R. W. Van Dyke. Mechanisms of hepatic electrolyte transport. Gastroenterology 85: 1199–1214, 1983.
 194. Scharschmidt, B. F., R. W. Van Dyke, and J. E. Stephens. Chloride transport by intact rat liver and cultured rat hepatocytes. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G628–G633, 1982.
 195. Schenk, D. B., J. J. Hubert, and H. L. Leffert. Use of a monoclonal antibody to quantify (Na+,K+)‐ATPase activity and sites in normal and regenerating rat liver. J. Biol. Chem. 259: 14941–14951, 1984.
 196. Schiff, J. M., M. M. Fisher, and B. J. Underdown. Receptor‐mediated biliary transport of immunoglobulin A and asialoglycoprotein; sorting and missorting of ligands revealed by two radiolabeling methods. J. Cell Biol. 98: 79–89, 1984.
 197. Schulz, S. G. Transport across epithelia: some basic principles. Kidney Int. 9: 65–75, 1976.
 198. Schwartz, A. L., G. J. A. M. Strous, J. W. Slot, and H. J. Geuze. Immunoelectron microscopic localization of acidic intracellular compartments in hepatoma cells. EMBO J. 4: 899–904, 1985.
 199. Schwartz, G. J., and Q. Al‐Awqati. Carbon dioxide causes exocytosis of vesicles containing H+ pumps in isolated perfused proximal and collecting tubules. J. Clin. Invest. 75: 1638–1644, 1985.
 200. Sewell, R. B., N. E. Hoffman, R. A. Smallwood, and S. Cockbain. Bile acid structure and bile formation: a comparison of hydroxy and keto bile acids. Am. J. Physiol. 238 (Gastrointest. Liver Physiol. 1): G10–G17, 1980.
 201. Shaw, H. M., and T. J. Heath. Regulation of bile formation in rabbits and guinea pigs. Q. J. Exp. Physiol. Cogn. Med. Sci. 59: 93–102, 1974.
 202. Shorofsky, S. R., M. Field, and H. A. Fozzard. The cellular mechanism of active chloride secretion in vertebrate epithelia: studies in intestine and trachea. Philos. Trans. R. Soc. Lond. B Biol. Sci. 299: 597–607, 1982.
 203. Simon, F. R., E. Sutherland, and L. Accatino. Stimulation of hepatic sodium and potassium‐activated adenosine triphosphatase activity by phenobarbital. J. Clin. Invest. 58: 849–861, 1977.
 204. Simon, F. R., E. M. Sutherland, and M. Gonzalez. Regulation of bile salt transport in rat liver. J. Clin. Invest. 70: 402–411, 1982.
 205. Sips, H. J., and K. Van Dam. Amino acid‐dependent sodium transport in plasma membrane vesicles from rat liver. J. Membr. Biol. 62: 231–237, 1981.
 206. Smith, C. R., C. Osho, M. Miyauri, H. Katz, and M. J. Philips. Coordination of the contractile activity of bile canaliculi: evidence from spontaneous contractions in vitro. Lab. Invest. 53: 270–274, 1985.
 207. Smith, N. D., and J. L. Boyer. Permeability characteristics of bile duct in the rat. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G52–G57, 1982.
 208. Smock, T. K., R. W. Van Dyke, D. M. Bissell, and B. F. Scharschmidt. Membrane potential, membrane resistance, and cation fluxes in cultured rat hepatocytes (Abstract). Gastroenterology 82: 1246, 1982.
 209. Somjen, G. J., and T. Gilat. A non‐micellar mode of cholesterol transport in human bile. FEBS Lett. 156: 265–268, 1983.
 210. Spring, K. R. Fluid transport in gallbladder epithelium. J. Exp. Biol. 106: 181–194, 1983.
 211. Stanton, B. A. Regulation of ion tranpsort in epithelia: role of membrane recruitment from cytoplasmic vesicles. Lab. Invest. 51: 255–257, 1984.
 212. Stolz, A., Y. Sugiyama, J. Kuhlenkamp, and N. Kaplowitz. Identification and purification of a 36 kDa bile acid binding protein in human hepatic cytosol. FEBS Lett. 177: 31–35, 1984.
 213. Stone, B. G., S. K. Erickson, and A. D. Cooper. Regulation of rat biliary cholesterol secretion by agents that alter intrahepatic cholesterol metabolism: evidence for a distinct biliary precursor pool. J. Clin. Invest. 76: 1773–1781, 1985.
 214. Stone, D. K., X.‐S. Xie, and E. Racker. An ATP‐driven proton pump in clathrin‐coated vesicles. J. Biol. Chem. 258: 4059–4062, 1983.
 215. Stone, D. K., X.‐S. Xie, and E. Racker. Inhibition of clathrin‐coated vesicle acidification by duramycin. J. Biol. Chem. 259: 2701–2703, 1984.
 216. Strasberg, S. M., R. G. Ilson, and J. E. Paloheimo. Bile salt‐associated electrolyte secretion and the effect of sodium taurocholate on bile flow. J. Lab. Clin. Med. 101: 317–326, 1983.
 217. Strasberg, S. M., C. N. Petrunka, R. G. Ilson, and J. E. Paloheimo. Characteristics of inert solute clearance by the monkey liver. Gastroenterology 67: 259–266, 1979.
 218. Strous, G. J., A. Du Maine, J. E. Zijderhand‐Bleekemolen, J. W. Slot, and A. L. Schwartz. Effect of lysosomotropic amines on the secretory pathway and on the recycling of the asialoglycoprotein receptor in human hepatoma cells. J. Cell Biol. 101: 531–539, 1985.
 219. Suchy, F. J., S. M. Courchene, and B. L. Blitzer. Taurocholate transport by basolateral plasma membrane vesicles isolated from developing rat liver. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G648–G654, 1985.
 220. Sugiyama, Y., A. Stolz, M. Sugimoto, and N. Kaplowitz. Evidence for a common affinity binding site on glutathione S‐transferase B for lithocholic acid and bilirubin. J. Lipid Res. 25: 1177–1183, 1984.
 221. Sugiyama, Y., T. Yamada, and N. Kaplowitz. Newly identified bile acid binders in rat liver cytosol: purification and comparison with glutathione S‐transferases. J. Biol. Chem. 258: 3602–3607, 1983.
 222. Takemura, S., K. Omori, K. Tanaka, K. Omori, S. Matsuura, and Y. Tashiro. Quantitative immunoferritin localization of [Na+,K+]ATPase on canine hepatocyte cell surface. J. Cell Biol. 99: 1502–1510, 1984.
 223. Tavoloni, N., J. S. Reed, and J. L. Boyer. Hemodynamic effects on determinants of bile secretion in isolated rat liver. Am. J. Physiol. 234 (Endocrinol. Metab. Gastrointest. Physiol. 3): E584–E592, 1978.
 224. Tavoloni, N., H. R. Wyssbrod, and J. T. Jones. Permeability characteristics of the guinea pig biliary apparatus (Abstract). Gastroenterology 88: 1700, 1985.
 225. Thomsen, O. Ø. Mechanism and regulation of hepatic bile production: with special reference to the bile acid‐independent canalicular bile production. Scand. J. Gastroenterol. Suppl. 97: 1–52, 1984.
 226. Tisher, C. C., and W. E. Yarger. Lanthanum permeability of the tight junction (zonula occludens) in the renal tubule of the rat. Kidney Int. 3: 238–250, 1973.
 227. Utili, R., C. O. Abernathy, and H. J. Zimmerman. Inhibition of Na+,K+‐adenosine triphosphatase by endotoxin: a possible mechanism for endotoxin‐induced cholestasis. J. Infect. Dis. 136: 583–587, 1977.
 228. Van Amelsvoort, J. M. M., H. J. Sips, M. E. A. Apitule, and K. Van Dam. Heterogeneous distribution of the sodium‐dependent alanine transport activity in the rat hepatocyte plasma membrane. Biochim. Biophys. Acta 600: 950–960, 1980.
 229. Van Amelsvoort, J. M. M., H. J. Sips, and K. Van Dam. Sodium‐dependent alanine transport in plasma‐membrane vesicles from rat liver. Biochem. J. 174: 1083–1086, 1978.
 230. Van Dyke, R. W. Anion inhibition of the proton pump in rat liver multivesicular bodies. J. Biol. Chem. 261: 15941–15948, 1986.
 231. Van Dyke, R. W., C. A. Hornick, J. Belcher, B. F. Scharschmidt, and R. J. Havel. Identification and characterization of ATP‐dependent proton transport by rat liver multivesicular bodies. J. Biol. Chem. 260: 11021–11026, 1985.
 232. Van Dyke, R. W., and B. F. Scharschmidt. (Na,K)‐ATPase‐mediated cation pumping in cultured rat hepatocytes. J. Biol. Chem. 258: 12912–12919, 1983.
 233. Van Dyke, R. W., and B. F. Scharschmidt. Effects of chlorpromazine on Na+‐K+‐ATPase pumping and solute transport in rat hepatocytes. Am. J. Physiol. 253 (Gastrointest. Liver Physiol. 16): G613–G621, 1987.
 234. Van Dyke, R. W., B. F. Scharschmidt, and C. J. Steer. ATP‐dependent proton transport by isolated brain clathrincoated vesicles. Role of clathrin and other determinants of acidification. Biochim. Biophys. Acta 812: 423–436, 1985.
 235. Van Dyke, R. W., C. J. Steer, and B. F. Scharschmidt. Clathrin‐coated vesicles from rat liver: enzymatic profile and characterization of ATP‐dependent proton transport. Proc. Natl. Acad. Sci. USA 81: 3108–3112, 1984.
 236. Van Dyke, R. W., J. E. Stephens, and B. F. Scharschmidt. Bile acid transport in cultured rat hepatocytes. Am. J. Physiol. 243 (Gastrointest. Liver Physiol. 6): G484–G492, 1982.
 237. Van Dyke, R. W., J. E. Stephens, and B. F. Scharschmidt. Effect of ion substitution on bile acid‐dependent and bile acid‐independent bile formation by the isolated perfused rat liver. J. Clin. Invest. 70: 505–517, 1982.
 238. Van Dippe, P., P. Drain, and D. Levy. Synthesis and transport characteristics of photoaffinity probes for the hepatocyte bile acid transport system. J. Biol. Chem. 258: 8890–8895, 1983.
 239. Van Dippe, P., and D. Levy. Analysis of the transport system for inorganic anions in normal and transformed hepatocytes. J. Biol. Chem. 257: 4381–4385, 1982.
 240. Wall, D. A., and T. Maack. Endocytic uptake, transport, and catabolism of proteins by epithelial cells. Am. J. Physiol. 248 (Cell Physiol. 17): C12–C20, 1985.
 241. Wannagat, R. J., R. D. Adler, and R. K. Ockner. Bile acid‐induced increase in bile acid‐independent flow and plasma membrane NaK‐ATPase activity in rat liver. J. Clin. Invest. 61: 297–307, 1978.
 242. Watanabe, S., C. R. Smith, and M. J. Phillips. Coordination of the contractile activity of bile canaliculi: evidence from calcium microinjection of triplet hepatocytes. Lab. Invest. 53: 275–279, 1985.
 243. Weibel, E. R., W. Stäubli, H. R. Gnägi, and F. A. Hess. Correlated morphometric and biochemical studies on the liver cell. I. Morphometric model, stereologic methods, and normal morphometric data for rat liver. J. Cell Biol. 42: 68–91, 1969.
 244. Wheeler, H. O. Water and electrolytes in bile. In: Handbook of Physiology. Alimentary Canal, edited by C. F. Code. Washington, DC; Am. Physiol. Soc., 1968, sect. 6, vol. V, chapt. 113, p. 2409–2431.
 245. Wheeler, H. O., E. D. Ross, and S. E. Bradley. Canalicular bile production in dogs. Am. J. Physiol. 214: 866–874, 1968.
 246. White, M. F., and H. N. Christensen. Simultaneous regulation of amino acid influx and efflux by system A in the hepatoma cell HTC. J. Biol. Chem. 258: 8028–8038, 1983.
 247. Williams, J. A., C. D. Withrow, and D. M. Woodbury. Effects of nephrectomy and KCl on transmembrane potentials, intracellular electrolytes, and cell pH of rat muscle and liver in vivo. J. Physiol. Lond. 212: 117–128, 1971.
 248. Williamson, J. R., R. H. Cooper, S. K. Joseph, and A. P. Thomas. Inositol trisphosphate and diacylglycerol as intracellular second messengers in liver. Am. J. Physiol. 248 (Cell Physiol. 17): C203–C216, 1985.
 249. Wondergem, R. Insulin depolarization of rat hepatocytes in primary monolayer culture. Am. J. Physiol. 244 (Cell Physiol. 13): C17–C23, 1983.
 250. Wondergem, R., and D. R. Harder. Transmembrane potential and amino acid transport in rat hepatocytes in primary monolayer culture. J. Cell. Physiol. 104: 53–60, 1980.
 251. Yamamoto, K., H. Mayahara, and K. Ogawa. Cytochemical localization of ouabain‐sensitive, K‐dependent p‐nitrophenylphosphatase in the rat hepatocyte. Acta Histochem. Cytochem. 17: 23–35, 1984.
 252. Zouboulis‐Vafiadis, I., M. Dumont, and S. Erlinger. Conjugation is rate limiting in hepatic transport of ursodeoxycholate in the rat. Am. J. Physiol. 243 (Gastrointest. Liver Physiol. 6): G208–G213, 1982.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Rebecca W. Van Dyke, John R. Lake, Bruce F. Scharschmidt. Cellular Mechanisms of Hepatic Fluid and Electrolyte Transport. Compr Physiol 2011, Supplement 18: Handbook of Physiology, The Gastrointestinal System, Salivary, Gastric, Pancreatic, and Hepatobiliary Secretion: 597-619. First published in print 1989. doi: 10.1002/cphy.cp060330