References |
1. |
Almers, W., and
E. W. McCleskey.
Non‐selective conductance in calcium channels of frog muscle: calcium selectivity in a single‐file pore.
J. Physiol. Lond.
353:
585–608,
1984.
|
2. |
Almers, W.,
E. W. McCleskey, and
P. T. Palade.
A nonselective cation conductance in frog muscle membrane blocked by micromolar external calcium ions.
J. Physiol. Lond.
353:
565–583,
1984.
|
3. |
Altimirano, A. A., and
J. M. Russell.
Coupled Na/K/Cl efflux: “reverse” unidirectional fluxes in squid giant axons.
J. Gen. Physiol.
89:
669–686,
1987.
|
4. |
Andersen, O. S., and
J. Procopio.
Ion movement through gramicidin A channels: on the importance of the aqueous diffusion resistance and ion‐water interactions.
Acta Physiol. Scand. Suppl.
481:
27–35,
1980.
|
5. |
Andreoli, T. E.,
J. F. Hoffman,
D. D. Fanestil, and
S. G. Schultz.
Physiology of Membrane Disorders.
New York:
Plenum,
1986.
|
6. |
Apell, H.‐J.,
R. Borlinghaus, and
P. Lauger.
Fast charge translocations associated with partial reactions of the Na,K pump. II. Microscopic analysis of transient currents.
J. Membr. Biol.
97:
179–191,
1987.
|
7. |
Aronson, P. S.
Identifying secondary active solute transport in epithelia.
Am. J. Physiol.
240
(Renal Fluid Electrolyte Physiol. 9):
F1–F11,
1981.
|
8. |
Aronson, P. S.
Electrochemical driving forces for secondary active transport: energetics and kinetics of Na+‐H+ exchange and Na+‐glucose cotransport. In:
Electrogenic Transport: Fundamental Principles and Physiological Implications,
edited by M. P. Blaustein and
M. Lieberman.
New York:
Raven,
1984,
p. 49–70.
|
9. |
Aronson, P. S.,
J. Nee, and
M. A. Suhm.
Modifier role of internal H+ in activating the Na+‐H+ exchanger in renal microvillus membrane vesicles.
Nature Lond.
299:
161–163,
1982.
|
10. |
Berg, H. C.
Random Walks in Biology.
Princeton, NJ:
Princeton Univ. Press,
1983.
|
11. |
Bezanilla, F.
Gating of sodium and potassium channels.
J. Membr. Biol.
88:
97–111,
1985.
|
12. |
Bezanilla, F., and
C. M. Armstrong.
Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons.
J. Gen. Physiol.
60:
588–608,
1972.
|
13. |
Bockris, J. O., and
A. K. N. Reddy.
Modern Electrochemistry.
New York:
Plenum,
1970,
vol. 1.
|
14. |
Borlinghaus, R.,
H.‐J. Apell, and
P. Lauger.
Fast charge translocations associated with partial reactions of the Na, K‐pump. I. Current and voltage transients after photochemical release of ATP.
J. Membr. Biol.
97:
161–178,
1987.
|
15. |
Britton, H. G.
Induced uphill and downhill transport: relationship to the Ussing criterion.
Nature Lond.
198:
190–191,
1963.
|
16. |
Britton, H. G.
The Ussing relationship and chemical reactions: possible applications to enzymatic investigations.
Nature Lond.
205:
1323–1324,
1965.
|
17. |
Britton, H. G.
Relationship between the number of interacting particles and flux‐ratio.
Nature Lond.
209:
296,
1966.
|
18. |
Carslaw, H. S., and
J. C. Jaeger.
Conduction of Heat in Solids
(2nd ed.).
Oxford, UK:
Clarendon,
1959.
|
19. |
Colquhoun, D., and
A. G. Hawkes.
The principles of the stochastic interpretation of ion‐channel mechanisms. In:
Single‐Channel Recording,
edited by B. Sakmann and
E. Neher,
New York:
Plenum,
1983,
chapt. 9,
p. 139–175.
|
20. |
Coronado, R.,
R. Rosenberg, and
C. Miller.
Ionic selectivity, saturation, and block in an K+‐selective channel from sacroplasmic reticulum.
J. Gen. Physiol.
76:
425–446,
1980.
|
21. |
Curran, P. F., and
S. G. Schultz.
Transport across membranes: general principles.
Handbook of Physiology. Alimentary Canal.
Washington, DC:
Am. Physiol. Soc.,
1968,
sect. 6,
vol. III,
chapt. 65,
p. 1217–1243.
|
22. |
Dani, J. A.
Ion‐channel entrances influence permeation: net charge, size, shape, and binding considerations.
Biophys. J.
49:
607–618,
1986.
|
23. |
Dawson, D. C.
Tracer flux ratios: a phenomenological approach.
J. Membr. Biol.
31:
351–358,
1977.
|
24. |
Dawson, D. C.
Thermodynamic aspects of radiotracer flow. In:
Biological Transport of Radiotracers,
edited by L. G. Colombetti.
Boca Raton, FL:
CRC,
1982,
chapt. 6,
p. 79–95.
|
25. |
Dawson, D. C.
Properties of epithelial potassium channels. In:
Current Topics in Membranes and Transport.
New York:
Academic,
1987,
vol. 28,
p. 41–71.
|
26. |
Denbigh, K.
The Principles of Chemical Equilibrium
(3rd ed).
New York:
Cambridge Univ. Press,
1971.
|
27. |
De Weer, P.
Na,K‐ATPase: reaction mechanisms and ion translocating steps. In:
Current Topics in Membranes and Transport.
New York:
Academic,
1983,
vol. 19,
p. 599–623.
|
28. |
De Weer, P.
Electrogenic pumps: theoretical and practical considerations. In:
Electrogenic Transport: Fundamental Principles and Physiological Implications,
edited by M. P. Blaustein and
M. Lieberman,
New York:
Raven,
1984,
p. 1–15.
|
29. |
De Weer, P., and
R. F. Rakowski.
Current generated by backward‐running electrogenic Na pump in squid giant axons.
Nature Lond.
309:
450–452,
1984.
|
30. |
Einstein, A.
Investigations on the Theory of the Brownian Movement.
New York:
Dover,
1956.
|
31. |
Eisenman, G., and
J. A. Dani.
An introduction to molecular architecture and permeability of ion channels.
Annu. Rev. Biophys. Chem.
16:
205–226,
1987.
|
32. |
Eisenman, G., and
R. Horn.
Ionic selectivity revisited: the role of kinetic and equilibrium processes in ion permeation through channels.
J. Membr. Biol.
76:
197–225,
1983.
|
33. |
Finkelstein, A.
Discussion paper. In:
Carriers and Channels in Biological Systems,
edited by A. E. Shamoo.
New York:
Ann. NY Acad. Sci.
1975,
p. 244–245.
|
34. |
Finkelstein, A.
Water and nonelectrolyte permeability of lipid bilayer membranes.
J. Gen. Physiol.
68:
127–135,
1976.
|
35. |
Finkelstein, A.
Nature of the water permeability increase induced by antidiuretic hormone (ADH) in toad urinary bladder and related tissues.
J. Gen. Physiol.
68:
137–143,
1976.
|
36. |
Finkelstein, A.
Water Movement Through Lipid Bilayers, Pores and Plasma Membranes: Theory and Reality.
New York:
Wiley,
1987.
|
37. |
Finkelstein, A., and
O. S. Andersen.
The gramicidin A channel: a review of its permeability characteristics with special reference to the single‐file aspect of transport.
J. Membr. Biol.
59:
155–171,
1981.
|
38. |
Finkelstein, A., and
A. Mauro.
Equivalent circuits as related to ionic systems.
Biophys. J.
3:
215–237,
1963.
|
39. |
Finkelstein, A., and
A. Mauro.
Physical principles and formalisms of electrical excitability.
Handbook of Physiology. The Nervous System. Cellular Biology of Neurons.
Bethesda, MD:
Am. Physiol. Soc.,
1977,
sect. 1,
vol. I,
pt. 1,
chapt. 6,
p. 161–213.
|
40. |
Finkelstein, A., and
P. A. Rosenberg.
Single‐file transport: implications for ion and water movement through gramicidin A channels. In:
Membrane Transport Processes,
edited by C. F. Stevens and
R. W. Tsien.
New York:
Raven,
1979,
vol. 3,
p. 73–88.
|
41. |
Gadsby, D. C.,
J. Kimura, and
A. Noma.
Voltage dependence of Na/K pump current in isolated heart cells.
Nature Lond.
315:
63–65,
1985.
|
42. |
Goldman, D. E.
Potential, impedance, and rectificaiton in membranes.
J. Gen. Physiol.
27:
37–60,
1943.
|
43. |
Guggenheim, E. A.
Thermodynamics
(5th ed.).
Amsterdam:
North‐Holland,
1967.
|
44. |
Halm, D. R., and
D. C. Dawson.
Cation activation of the basolateral sodium‐potassium pump in turtle colon.
J. Gen. Physiol.
82:
315–329,
1983.
|
45. |
Hess, P., and
R. W. Tsien.
Mechanism of ion permeation through calcium channels.
Nature Lond.
309:
453–456,
1984.
|
46. |
Hille, B.
Ionic selectivity of Na and K channels of nerve membranes. In:
Membranes. Lipid Bilayers and Biological Membranes: Dynamic Properties,
edited by G. Eisenman,
New York:
Dekker,
1975,
chapt. 4,
p. 255–323.
|
47. |
Hille, B.
Ionic Channels of Excitable Membranes.
Sunderland, MA:
Sinauer,
1984.
|
48. |
Hille, B., and
W. Schwarz.
Potassium channels as multiion single‐file pores.
J. Gen. Physiol.
72:
409–442,
1978.
|
49. |
Hodgkin, A. L., and
A. F. Huxley.
Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo.
J. Physiol. Lond.
116:
449–472,
1952.
|
50. |
Hodgkin, A. L., and
A. F. Huxley.
The components of membrane conductance in the giant axon of Loligo.
J. Physiol. Lond.
116:
473–496,
1952.
|
51. |
Hodgkin, A. L., and
A. F. Huxley.
The dual effect of membrane potential on sodium conductance in giant axon of Loligo.
J. Physiol. Lond.
116:
497–506,
1952.
|
52. |
Hodgkin, A. L., and
A. F. Huxley.
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J. Physiol. Lond.
117:
500–544,
1952.
|
53. |
Hodgkin, A. L., and
A. F. Huxley.
Measurement of current‐voltage relations in the membrane of the giant axon of Loligo.
J. Physiol. Lond.
116:
424–448,
1952.
|
54. |
Horie, M.,
H. Irisawa, and
A. Noma.
Voltage‐dependent magnesium block of adenosine‐triphosphate‐sensitive potassium channel in guinea‐pig ventricular cells.
J. Physiol. Lond.
387:
251–272,
1987.
|
55. |
Hume, J. R.
Component of whole cell Ca current due to electrogenic Na‐Ca exchange in cardiac myocytes.
Am. J. Physiol.
252
(Heart Circ. Physiol. 21):
H666–H670,
1987.
|
56. |
Jack, J. J. B.,
D. Noble, and
R. W. Tsien.
Electric Current Flow in Excitable Cells.
Oxford, UK:
Clarendon,
1975.
|
57. |
Jacquez, J. A.
Application of tracers to the study of membrane transport processes. In:
Physiology of Membrane Disorders,
edited by T. E. Andreoli,
J. F. Hoffman,
D. D. Fanestil, and
S. G. Schultz.
New York:
Plenum,
1986,
chapt. 8,
p. 133–150.
|
58. |
Jauch, P., and
P. Lauger.
Electrogenic properties of the sodium‐alanine cotransporter in pancreatic acinar cells. II. Comparison with transport models.
J. Membr. Biol.
94:
117–127,
1986.
|
59. |
Jauch, P.,
O. H. Petersen, and
P. Lauger.
Electrogenic properties of the sodium‐alanine cotransporter in pancreatic acinar cells. I. Tight‐seal whole‐cell recordings.
J. Membr. Biol.
94:
99–115,
1986.
|
60. |
Kaplan, J. H.
Sodium ions and the sodium pump: transport and enzymatic activity.
Am. J. Physiol.
245
(Gastrointest Liver Physiol. 8):
G327–G333,
1983.
|
61. |
Kaplan, J. H.
Ion movements through the sodium pump.
Annu. Rev. Physiol.
47:
535–544,
1985.
|
62. |
Katchalsky, A., and
P. F. Curran.
Nonequilibrium Thermodynamics in Biophysics.
Cambridge, MA:
Harvard Univ. Press,
1965,
p. 1–248.
|
63. |
Kimmich, G. A., and
J. Randles.
Energetics of sugar transport by isolated intestinal epithelial cells: effects of cytochalasin B.
Am. J. Physiol.
237
(Cell Physiol. 6):
C56–C63,
1979.
|
64. |
Kimura, J.,
A. Noma, and
H. Irisawa.
Na‐Ca exchange current in mammalian heart cells.
Nature Lond.
319:
596–597,
1986.
|
65. |
Kirk, K. L., and
D. C. Dawson.
Basolateral potassium channel in turtle colon.
J. Gen. Physiol.
82:
297–313,
1983.
|
66. |
Kirk, K. L.,
D. R. Halm, and
D. C. Dawson.
Active sodium transport by turtle colon via an electrogenic Na‐K exchange pump.
Nature Lond.
287:
237–239,
1980.
|
67. |
Koefoed‐Johnsen, V., and
H. H. Ussing.
The nature of the frog skin potential.
Acta Physiol. Scand.
42:
298–308,
1958.
|
68. |
Krasne, S.
Ion selectivity in membrane permeation.
Physiology of Membrane Disorders,
edited by T. E. Andreoli,
J. F. Hoffman, and
D. D. Fanestil.
New York:
Plenum,
1978,
chapt. 12,
p. 217–241.
|
69. |
Krasne, S., and
G. Eisenman.
The molecular basis of ion selectivity. In:
Membranes: Lipid Bilayers and Antibiotics,
edited by G. Eisenman,
New York:
Dekker,
1973,
vol. 2,
p. 277–328.
|
70. |
Latorre, R., and
C. Miller.
Conduction and selectivity in potassium channels.
J. Membr. Biol.
71:
11–30,
1983.
|
71. |
Läuger, P.
Ion transport through pores: a rate‐theory analysis.
Biochim. Biophys. Acta
311:
423–441,
1973.
|
72. |
Läuger, P.
Transport of noninteracting ions through channels. In:
Membrane Transport Processes,
edited by C. F. Stevens and
R. W. Tsien.
New York:
Raven,
1979,
vol. 3,
p. 17–27.
|
73. |
Läuger, P.
Kinetic properties of ion carriers and channels.
J. Membr. Biol.
57:
163–178,
1980.
|
74. |
Läuger, P., and
P. Jauch.
Microscopic description of voltage effects on ion‐driven cotransport systems.
J. Membr. Biol.
91:
275–284,
1986.
|
75. |
Läuger, P., and
B. Neumcke.
Theoretical analysis of ion conductance in lipid bilayer membranes. In:
Membranes: Lipid Bilayers and Antibiotics,
edited by G. Eisenman,
New York:
Dekker,
1973,
vol. 2,
p. 1–59.
|
76. |
Levitt, D. G.
Kinetics of movement in narrow channels. In:
Ion Channels: Molecular and Physiological Aspects,
edited by W. D. Stein.
New York:
Academic.
In press.
|
77. |
Levitt, D. G.
Electrostatic calculations for an ion channel I. Energy and potential profiles and interactions between ions.
Biophys. J.
22:
209–219,
1978.
|
78. |
Levitt, D. C.
Electrostatic calculations for an ion channel II. Kinetic behavior of the gramicidin A channel.
Biophys. J.
22:
221–248,
1978.
|
79. |
Levitt, D. G.
Comparison of Nernst‐Planck and reaction‐rate models for multiply occupied channels.
Biophys. J.
37:
575–587,
1982.
|
80. |
Levitt, D. G.
Interpretation of biological ion channel flux data‐reaction‐rate versus continuum theory.
Annu. Rev. Biophys. Chem.
15:
29–57,
1986.
|
81. |
Macey, R. I.
Mathematical models of membrane transport processes. In:
Physiology of Membranes Disorders,
edited by T. E. Andreoli,
J. E. Hoffman,
D. D. Fanestil, and
S. G. Schultz.
New York:
Plenum,
1986,
chapt. 7,
p. 111–131.
|
82. |
Matsuda, H.,
A. Saigusa, and
H. Irisawa.
Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+.
Nature Lond.
325:
156–159,
1987.
|
83. |
McCleskey, E. W., and
W. Almers.
The Ca channel in skeletal muscle is a large pore.
Proc. Natl. Acad. Sci. USA
82:
7149–7153,
1985.
|
84. |
Mechman, S., and
L. Pott.
Identification of Na‐Ca exchange current in single cardiac myocytes.
Nature Lond.
319:
597–599,
1986.
|
85. |
Miller, C. (editor).
Ion Channel Reconstitution.
New York:
Plenum,
1986.
|
86. |
Miller, C.
Trapping single ions inside single ion channels.
Biophys. J.
52:
123–126,
1987.
|
87. |
Moczydlowski, E.
Single‐channel enzymology. In:
Ion Channel Reconstitution,
edited by C. Miller,
New York:
Plenum,
1986,
chapt. 4,
p. 75–113.
|
88. |
Nakao, M., and
D. C. Gadsby.
Voltage dependence of Na translocation by the Na/K pump.
Nature Lond.
323:
628–630,
1986.
|
89. |
Orbach, E., and
A. Finkelstein.
The nonelectrolyte permeability of planar lipid bilayer membranes.
J. Gen. Physiol.
75:
427–436,
1980.
|
90. |
Pappone, P. A., and
M. D. Cahalan.
Ion permeation in cell membranes. In:
Physiology of Membrane Disorders,
edited by T. E. Andreoli,
J. F. Hoffman,
D. D. Fanestil, and
S. G. Schultz.
New York:
Plenum,
1986,
chapt. 15,
p. 249–272.
|
91. |
Parsegian, V. A.
Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems.
Nature Lond.
221:
844–846,
1969.
|
92. |
Parsegian, V. A.
Ion‐membrane interactions as structural forces.
Ann. NY Acad. Sci.
264:
161–174,
1975.
|
93. |
Rashin, A. A., and
B. Honig.
Reevaluation of the Born model for ion hydration.
J. Phys. Chem.
89:
5588–5593,
1985.
|
94. |
Robinson, R. A., and
R. H. Stokes.
Electrolyte Solutions.
London:
Butterworths,
1959.
|
95. |
Sakmann, B., and
E. Neher (editors).
Single‐Channel Recording.
New York:
Plenum,
1983.
|
96. |
Schultz, S. G.
Basic Principles of Membrane Transport.
Cambridge, MA:
Cambridge Univ. Press,
1980.
|
97. |
Schultz, S. G., and
R. A. Frizzell.
Ionic permeability of epithelial tissues.
Biochim. Biophys. Acta
443:
181–189,
1976.
|
98. |
Sten‐Knudsen, O.
Passive transport processes. In:
Membrane Transport in Biology,
edited by G. Giebisch,
D. C. Tosteson, and
H. H. Ussing.
New York:
Springer‐Verlag,
1978,
vol. I,
chapt. 2,
p. 5–113.
|
99. |
Tanford, C.
The Hydro‐Phobic Effect: Formation of Micelles of Biological Membranes
(2nd ed.).
New York:
Wiley,
1980.
|
100. |
Teorell, T.
Transport processes and electrical phenomena in ionic membranes.
Progr. Biophys. Chem.
3:
305–369,
1953.
|
101. |
Thompson, S. M.
Relations between chord and slope conductances and equivalent electromotive forces.
Am. J. Physiol.
250
(Cell Physiol. 19):
C333–C339,
1986.
|
102. |
Ussing, H. H.
The distinction by means of tracers between active transport and diffusion.
Acta Physiol. Scand.
19:
43–56,
1949.
|
103. |
Ussing, H. H.
Some aspects of the application of tracers in permeability studies.
Adv. Enzymol.
13:
21–65,
1952.
|
104. |
Ussing, H. H.
Interpretation of tracer fluxes. In:
Membrane Transport in Biology,
edited by G. Giebisch,
D. C. Tosteson, and
H. H. Ussing.
New York:
Springer‐Verlag,
1978,
chapt. 3,
p. 115–140.
|
105. |
Ussing, H. H., and
K. Zerahn.
Active transport of sodium as the source of electric current in the short circuited isolated frog skin.
Acta Physiol. Scand.
23:
110–127,
1951.
|
106. |
Vandenberg, C. A.
Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions.
Proc. Natl. Acad. Sci. USA
84:
2560–2564,
1987.
|
107. |
Woodbury, J. W.
Eyring rate theory model of the current‐voltage relationships of ion channels in excitable membranes. In:
Chemical Dynamics: Papers in Honor of Henry Eyring,
edited by J. Hirschfelder,
New York:
Wiley,
1971,
p. 601–617.
|
108. |
Zimmerberg, J., and
V. A. Parsegian.
Polymer inaccessible volume changes during opening and closing of a voltage‐dependent ion channel.
Nature Lond.
323:
36–39,
1986.
|