References |
1. |
Al‐Zahid, G.,
J. A. Schafer,
S. L. Troutman, and
T. E. Andreoli.
Effect of antidiuretic hormone on water and solute permeation, and the activation energies for these processes, in mammalian cortical collecting tubules: evidence for parallel diffusion in luminal plasma membranes.
J. Membr. Biol.
31:
103–129,
1977.
|
2. |
Andreoli, T. E.,
J. A. Schafer, and
S. L. Troutman.
Perfusion rate‐dependence of transepithelial osmosis in isolated proximal convoluted tubules: estimation of the hydraulic conductance.
Kidney Int.
14:
263–269,
1978.
|
3. |
Balaban, R. S., and
M. B. Burg.
Osmotically active solutes in the renal inner medulla.
Kidney Int.
31:
562–564,
1987.
|
4. |
Barfuss, D. W., and
J. A. Schafer.
Collection and analysis of absorbate from proximal straight tubules.
Am. J. Physiol.
241
(Renal Fluid Electrolyte Physiol. 10):
F597–F604,
1981.
|
5. |
Bentzel, C. J.,
M. Fromm,
C. E. Palant, and
U. Hegel.
Protamine alters structure and conductance of Necturus gallbladder tight junctions without major electrical effects on the apical cell membrane.
J. Membr. Biol.
95:
9–20,
1987.
|
6. |
Bentzel, C. J.,
B. Parsa, and
D. K. Hare.
Osmotic flow across proximal tubule of Necturus: correlation of physiologic and anatomic studies.
Am. J. Physiol.
217:
570–580,
1969.
|
7. |
Berry, C. A.
Water permeability and pathways in the proximal tubule.
Am. J. Physiol.
245
(Renal Fluid Electrolyte Physiol. 14):
F279–F294,
1983.
|
8. |
Berry, C. A., and
E. L. Boulpaep.
Nonelectrolyte permeability of the paracellular pathway in Necturus proximal tubule.
Am. J. Physiol.
228:
581–595,
1975.
|
9. |
Blom, H., and
H. F. Helander.
Quantitative electron microscopical studies on in vitro incubated rabbit gallbladder epithelium.
J. Membr. Biol.
37:
45–61,
1977.
|
10. |
Boulpaep, E. L.
Ion permeability of the peritubular and luminal membrane of the renal tubule cell. In:
Transport und Funktion Intracellularer Elektrolyte,
edited by F. Kruck,
Munich:
Urban & Schwarzenberg,
1967,
p. 98–107.
|
11. |
Bundgaard, M., and
T. Zeuthen.
Structure of Necturus gallbladder epithelium at low external osmolalities.
J. Membr. Biol.
68:
97–105,
1982.
|
12. |
Carpi‐Medina, P.,
B. Lindemann,
E. Gonzáles, and
G. Whittembury.
The continuous measurement of tubular volume changes in response to step changes in contraluminal osmolality.
Pfluegers Arch.
400:
343–348,
1984.
|
13. |
Chevalier, J., and
P. Pinto da Silva.
Osmotic reversal induces assembly of tight junction strands at the basal pole of toad bladder epithelial cells but does not reverse cell polarity.
J. Membr. Biol.
95:
199–208,
1987.
|
14. |
Curran, P. F., and
J. R. MacIntosh.
A model system for biological water transport.
Nature Lond.
193:
347–348,
1962.
|
15. |
Curran, P. F., and
A. K. Solomon.
Ion and water fluxes in the ileum of rats.
J. Gen. Physiol.
41:
143–168,
1957.
|
16. |
Diamond, J. M.
The reabsorptive function of the gallbladder.
J. Physiol. Lond.
161:
442–473,
1962.
|
17. |
Diamond, J. M.
Transport of salt and water in rabbit and guinea pig gallbladder.
J. Gen. Physiol.
48:
1–14,
1964.
|
18. |
Diamond, J. M.
The mechanism of isotonic water transport.
J. Gen. Physiol.
48:
15–42,
1964.
|
19. |
Diamond, J. M.
Osmotic water flow in leaky epithelia.
J. Membr. Biol.
51:
195–216,
1979.
|
20. |
Diamond, J. M., and
W. H. Bossert.
Standing‐gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia.
J. Gen. Physiol.
50:
2061–2083,
1967.
|
21. |
Di Bona, D. R.
Cytoplasmic involvement in ADH‐mediated osmosis across toad urinary bladder.
Am. J. Physiol.
245
(Cell Physiol. 14):
C297–C307,
1983.
|
22. |
Di Bona, D. R.,
M. M. Civan, and
A. Leaf.
The cellular specificity of the effect of vasopressin on toad urinary bladder.
J. Membr. Biol.
1:
79–91,
1969.
|
23. |
Di Bona, D. R., and
J. W. Mills.
Distribution of Na+‐pump sites in transporting epithelia.
Federation Proc.
38:
134–143,
1979.
|
24. |
Ericson, A.‐C., and
K. R. Spring.
Volume regulation by Necturus gallbladder: apical Na+‐H+ and Cl−‐HCO−3 exchange.
Am. J. Physiol.
243
(Cell Physiol. 12):
C146–C150,
1982.
|
25. |
Finkelstein, A.
Water Movement Through Lipid Bilayers, Pores, and Plasma Membranes.
New York:
Wiley,
1987.
|
26. |
Frizzell, R., and
S. G. Schultz.
Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences.
J. Gen. Physiol.
59:
318–348,
1972.
|
27. |
Fromm, M.,
J.‐D. Schulzke, and
U. Hegel.
Epithelial and subepithelial contributions to transmural electrical resistance of intact rat jeujunum, in vitro.
Pfluegers Arch.
405:
400–402,
1985.
|
28. |
Fromter, E.
The route of passive ion movement through the epithelium of Necturus gallbladder.
J. Membr. Biol.
8:
259–301,
1972.
|
29. |
Ganote, C. E.,
J. J. Grantham,
H. L. Mores,
M. B. Burg, and
J. Orloff.
Ultrastructural studies of vasopressin effect on isolated perfused renal collecting tubules of the rabbit.
J. Cell Biol.
36:
355–367,
1968.
|
30. |
Goldschmidt, S.
On the mechanism of absorption from the intestine.
Physiol. Rev.
1:
421–453,
1921.
|
31. |
González, E.,
P. Carpi‐Medina,
H. Linares, and
G. Whittembury.
Osmotic water permeability of the apical membrane of proximal straight tubular (PST) cells.
Pfluegers Arch.
402:
337–339,
1984.
|
32. |
González, E.,
P. Carpi‐Medina, and
G. Whittembury.
Cell osmotic water permeability of isolated rabbit proximal straight tubules.
Am. J. Physiol.
242
(Renal Fluid Electrolyte Physiol. 11):
F321–F330,
1982.
|
33. |
Grantham, J. J.,
F. E. Cuppage, and
D. Fanestil.
Direct observation of toad bladder response to vasopressin.
J. Cell Biol.
48:
695–699,
1971.
|
34. |
Green, R., and
G. Giebisch.
Luminal hypotonicity: a driving force for fluid absorption from the proximal tubule.
Am. J. Physiol.
246
(Renal Fluid Electrolyte Physiol. 15):
F167–F174,
1984.
|
35. |
Guggino, W. B.
Functional heterogeneity in the early distal tubule of Amphiuma kidney: evidence for two modes of Cl− and K+ transport across the basolateral cell membrane.
Am. J. Physiol.
250
(Renal Fluid Electrolyte Physiol. 19):
F430–F440,
1986.
|
36. |
Hallback, D.‐A.,
M. Jodal, and
O. Lundgren.
Villous tissue osmolality, water and electrolyte transport in the cat small intestine at varying luminal osmolalities.
Acta Physiol. Scand.
110:
95–100,
1980.
|
37. |
Harris, H. W.,
J. B. Wade, and
J. H. Handler.
Fluorescent markers to study membrane retrieval in antidiuretic hormone‐treated toad urinary bladder.
Am. J. Physiol.
251
(Cell Physiol. 20):
C274–C284,
1986.
|
38. |
Hill, A.
Salt‐water coupling in leaky epithelia.
J. Membr. Biol.
55:
117–182,
1980.
|
39. |
Ikonomov, O.,
M. Simon, and
E. Fromter.
Electrophysiological studies on lateral intercellular spaces of Necturus gallbladder epithelium.
Pfluegers Arch.
403:
301–307,
1985.
|
40. |
Jensen, P. K.,
R. S. Fisher, and
K. R. Spring.
Feedback inhibition of NaCl entry in Necturus gallbladder epithelial cells.
J. Membr. Biol.
82:
95–104,
1984.
|
41. |
Kachadorian, W. A.,
S. Sariban‐Sohraby, and
K. R. Spring.
Regulation of water permeability in toad bladder at two barriers.
Am. J. Physiol.
248
(Renal Fluid Electrolyte Physiol. 17):
F260–F265,
1985.
|
42. |
Kirk, K. L.,
J. A. Schafer, and
D. R. Di Bona.
Quantitative analysis of the structural events associated with antidiuretic hormone‐induced volume reabsorption in the rabbit cortical collecting tubule.
J. Membr. Biol.
79:
53–64,
1984.
|
43. |
Kyte, J.
Immunoferritin determination of the distribution of (Na+ + K+)ATPase over the plasma membranes of renal convoluted tubules. II. Proximal segment.
J. Cell Biol.
68:
304–318,
1976.
|
44. |
Larson, M., and
K. R. Spring.
Bumetanide inhibition of NaCl transport by Necturus gallbladder.
J. Membr. Biol.
74:
123–129,
1983.
|
45. |
Larson, M., and
K. R. Spring.
Volume regulation by Necturus gallbladder: basolateral KCl exit.
J. Membr. Biol.
81:
219–232,
1984.
|
46. |
Lau, K. R.,
R. L. Hudson, and
S. G. Schultz.
Cell swelling increases a barium inhibitable potassium conductance in the basolateral membrane of Necturus small intestine.
Proc. Natl. Acad. Sci. USA
81:
3591–3594,
1984.
|
47. |
Levine, S. D.,
M. Jacoby, and
A. Finkelstein.
The water permeability of toad urinary bladder. I. Permeability of barriers in series with the luminal membrane.
J. Gen. Physiol.
83:
529–541,
1984.
|
48. |
Lohr, J. W., and
J. J. Grantham.
Isovolumetric regulation of isolated S2 proximal tubules in anisotonic media.
J. Clin. Invest.
78:
1165–1172,
1986.
|
49. |
Madara, J. L.,
D. Barenberg, and
S. Carlson.
Effects of cytochalasin D on occluding junctions of intestinal absorptive cells: further evidence that the cytoskeleton may influence paracellular permeability and junctional charge selectivity.
J. Cell Biol.
102:
2125–2136,
1986.
|
50. |
Madara, J. L., and
K. Dharmsathaphorn.
Occluding junction structure‐function relationships in a cultured epithelial monolayer.
J. Cell Biol.
101:
2124–2133,
1985.
|
51. |
McLaughlin, S., and
R. T. Mathias.
Electro‐osmosis and the reabsorption of fluid in renal proximal tubules.
J. Gen. Physiol.
85:
699–728,
1985.
|
52. |
Naftalin, R. J., and
S. Tripathi.
Passive water flows driven across isolated rabbit ileum by osmotic, hydrostatic and electrical gradients.
J. Physiol. Lond.
360:
27–50,
1985.
|
53. |
Pedley, T. J.
Calculation of unstirred layer thickness in membrane transport experiments, a survey.
Q. Rev. Biophys.
16:
115–150,
1983.
|
54. |
Persson, B.‐E., and
K. R. Spring.
Gallbladder epithelial cell hydraulic water permeability and volume regulation.
J. Gen. Physiol.
79:
481–505,
1982.
|
55. |
Persson, B.‐E., and
K. R. Spring.
Permeability properties of the subepithelial tissues of Necturus gallbladder.
Biochim. Biophys. Acta
772:
135–139,
1984.
|
56. |
Pratz, J.,
P. Ripoche, and
B. Corman.
Osmotic water permeability and solute reflection coefficients of rat kidney brushborder membrane vesicles.
Biochim. Biophys. Acta
861:
395–397,
1986.
|
57. |
Preisig, P. A., and
C. A. Berry.
Evidence for transcellular osmotic water flow in rat proximal tubules.
Am. J. Physiol.
249
(Renal Fluid Electrolyte Physiol. 18):
F124–F131,
1985.
|
58. |
Reid, W.
Intestinal absorption of solutes.
J. Physiol. Lond.
28:
241–256,
1902.
|
59. |
Rick, R., and
D. R. Di Bona.
Intracellular solute gradients during osmotic water flow: an electron microprobe analysis.
J. Membr. Biol.
96:
85–94,
1987.
|
60. |
Sackin, H., and
E. L. Boulpaep.
Models of coupling salt and water transport.
J. Gen. Physiol.
66:
671–733,
1975.
|
61. |
Schafer, J. A.
Mechanisms coupling the absorption of solutes and water in the proximal nephron.
Kidney Int.
25:
708–716,
1984.
|
62. |
Schafer, J. A.,
C. S. Patlak, and
T. E. Andreoli.
Osmosis in cortical collecting tubules.
J. Gen. Physiol.
64:
201–227,
1974.
|
63. |
Schafer, J. A.,
C. S. Patlak,
S. L. Troutman, and
T. E. Andreoli.
Volume absorption in the pars recta. II. Hydraulic conductivity coefficient.
Am. J. Physiol.
234
(Renal Fluid Electrolyte Physiol. 3):
F340–F348,
1978.
|
64. |
Schafer, J. A.,
S. L. Troutman,
M. L. Watkins, and
T. E. Andreoli.
Flow dependence of fluid transport in the isolated superficial pars recta: evidence that osmotic disequilibrium between external solutions drives isotonic fluid absorption.
Kidney Int.
20:
588–597,
1981.
|
65. |
Schultz, S. G.
Homocellular regulatory mechanisms in sodium‐transporting epithelia: avoidance of extinction by “flush‐through.”
Am. J. Physiol.
241
(Renal Fluid Electrolyte Physiol. 10):
F579–F590,
1981.
|
66. |
Schwartz, G.,
J. Barasch, and
Q. Al‐Awqati.
Plasticity of functional epithelial polarity.
Nature Lond.
318:
368–371,
1985.
|
67. |
Siegenbeek Van Heukelom, J.,
M. D. Van Den Ham,
H. Albus, and
J. A. Groot.
Microscopical determination of the filtration permeability of the mucosal surface of the goldfish intestinal epithelium.
J. Membr. Biol.
63:
31–39,
1981.
|
68. |
Smithson, K. W.,
D. B. Millar,
L. R. Jacobs, and
G. M. Gray.
Intestinal diffusion barrier: unstirred water layer or membrane surface coat?
Science Wash. DC
214:
1241–1244,
1981.
|
69. |
Spring, K. R.
Fluid transport by gallbladder epithelium.
J. Exp. Biol.
106:
181–194,
1983.
|
70. |
Spring, K. R., and
A.‐C. Ericson
Epithelial cell volume modulation and regulation.
J. Membr. Biol.
69:
167–176,
1982.
|
71. |
Spring, K. R., and
A. Hope.
The size and shape of the lateral intercellular spaces in a living epithelium.
Science Wash. DC
200:
54–58,
1978.
|
72. |
Spring, K. R., and
A. Hope.
Fluid transport and the dimensions of cells and interspaces of living Necturus gallbladder.
J. Gen. Physiol.
73:
287–305,
1979.
|
73. |
Strange, K. B., and
K. R. Spring.
Methods for imaging renal tubule cells.
Kidney Int.
30:
P192–P200,
1986.
|
74. |
Strange, K. B., and
K. R. Spring.
Absence of significant cellular dilution during ADH‐stimulated water reabsorption.
Science Wash. DC
235:
1068–1070,
1987.
|
75. |
Strange, K. B., and
K. R. Spring.
Cell membrane water permeability of rabbit cortical collecting duct.
J. Membr. Biol.
96:
27–43,
1987.
|
76. |
Suzuki, K.,
G. Kottra,
L. Kampmann, and
E. Fromter.
Square wave pulse analysis of cellular and paracellular conductance pathways in Necturus gallbladder epithelium.
Pfluegers Arch.
394:
302–312,
1982.
|
77. |
Tai, C.‐Y., and
M. Jackson.
Weak‐acid transport in the small intestine: discrimination in the lamina propria.
J. Membr. Biol.
59:
35–43,
1981.
|
78. |
Tormey, J. M., and
J. M. Diamond.
The ultrastructural route of fluid transport in rabbit gallbladder.
J. Gen. Physiol.
50:
2031–2060,
1967.
|
79. |
Tune, B. M., and
M. B. Burg.
Glucose transport by proximal renal tubules.
Am. J. Physiol.
221:
580–585,
1971.
|
80. |
Van Os, C. H.,
G. Wiedner, and
E. M. Wright.
Volume flows across gallbladder epithelium induced by small hydrostatic and osmotic gradients.
J. Membr. Biol.
49:
1–20,
1979.
|
81. |
Verkman, A. S., and
H. E. Ives.
Water permeability and fluidity of renal basolateral membranes.
Am. J. Physiol.
250
(Renal Fluid Electrolyte Physiol. 19):
F633–F643,
1986.
|
82. |
Weinstein, A. M.
Convective paracellular solute flux.
J. Gen. Physiol.
89:
501–518,
1987.
|
83. |
Weinstein, A. M., and
J. L. Stephenson.
Coupled water transport in standing gradient models of the lateral intercellular space.
Biophys. J.
35:
167–191,
1981.
|
84. |
Weinstein, A. M., and
J. L. Stephenson.
Models of coupled salt and water transport across leaky epithelia.
J. Membr. Biol.
60:
1–20,
1981.
|
85. |
Weinstein, A. M.,
J. L. Stephenson, and
K. R. Spring.
The coupled transport of water. In:
New Comprehensive Biochemistry. Membrane Transport,
edited by S. L. Bonting and
J. J. H. H. M. de Pont.
Amsterdam:
Elsevier,
1981,
vol. 2,
p. 311–351.
|
86. |
Welling, L. W., and
J. J. Grantham.
Physical properties of isolated perfused renal tubules and tubular basement membranes.
J. Clin. Invest.
51:
1063–1075,
1972.
|
87. |
Welling, L. W., and
D. J. Welling.
Surface areas of brush border and lateral cell walls in the rabbit proximal nephron.
Kidney Int.
9:
385–394,
1975.
|
88. |
Welling, L. W.,
D. J. Welling, and
T. J. Ochs.
Video measurement of basolateral membrane hydraulic conductivity in the proximal tubule.
Am. J. Physiol.
245
(Renal Fluid Electrolyte Physiol. 14):
F123–F129,
1983.
|
89. |
Whitlock, R. T., and
H. O. Wheeler.
Coupled transport of solute and water across rabbit gallbladder epithelium.
J. Clin. Invest.
48:
2249–2265,
1964.
|
90. |
Whittembury, G.,
P. Carpi‐Medina,
E. González, and
H. Linares.
Effect of para‐chloromercuribenzenesulfonic acid and temperature on cell water osmotic permeability of proximal straight tubules.
Biochim. Biophys. Acta
775:
365–373,
1984.
|
91. |
Whittembury, G.,
A. Paz‐Aliaga,
A. Biondi,
P. Carpi‐Medina,
E. González, and
H. Linares.
Pathways for volume flow and volume regulation in leaky epithelia.
Pfluegers Arch.
405,
Suppl. 1:
S17–S22,
1985.
|
92. |
Whittembury, G.,
C. Verde‐Martinez,
H. Linares, and
A. Paz‐Aliaga.
Solvent drag of large solutes indicates paracellular water flow in leaky epithelia.
Proc. R. Soc. Lond. B Biol. Sci.
211:
63–81,
1980.
|
93. |
Wiedner, G.
Method to detect volume flows in the nanoliter range.
Rev. Sci. Instrum.
47:
775–776,
1976.
|
94. |
Williams, J. C., Jr.,
D. W. Barfuss, and
J. A. Schafer.
Transport of solute in proximal tubules is modified by changes in medium osmolality.
Am. J. Physiol.
250
(Renal Fluid Electrolyte Physiol. 19):
F246–F255,
1986.
|
95. |
Windhager, E. E.,
G. Whittembury,
D. E. Oken,
H. J. Schatzmann, and
A. K. Solomon.
Single proximal tubules of Necturus kidney. III. Dependence of H2O movement on NaCl concentration.
Am. J. Physiol.
197:
313–318,
1959.
|
96. |
Wright, E. M.,
A. P. Smulders, and
J. M. Tormey.
The role of the lateral intercellular spaces and solute polarization effects on the passive flow of water across the rabbit gallbladder.
J. Membr. Biol.
7:
198–219,
1972.
|
97. |
Zeuthen, T.
Ion activities in the lateral intercellular spaces of gallbladder epithelium transporting at low external osmolalities.
J. Membr. Biol.
76:
113–122,
1983.
|