Comprehensive Physiology Wiley Online Library

Use of Cultured Cell Lines in Studies of Intestinal Cell Differentiation and Function

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Cellular Models
1.1 Cell Lines From Normal Tissues
1.2 Cell Lines From Chemically Induced Tumors
1.3 Human Colon Carcinoma Cell Lines
2 Use of Cultured Cells for Study of Enterocytic Differentiation and Polarization
2.1 Polarized Organization of Enterocytes: Current Knowledge and Limitations
2.2 HT‐29 and Caco‐2 Cells as in Vitro Models: Advantages and Limitations
2.3 What Can We Learn From HT‐29 and Caco‐2 Cells?
3 Use of Cultured Cells for Study of Neurohormonal Receptors
3.1 Expression of Neurohormonal Receptors: Normal Intestine Versus Cell Line
3.2 Receptor Studies
4 Use of Cultured Cells for Study of Intestinal Transport
4.1 Transport Properties of Cultured Intestinal Cells
4.2 Regulation of Intestinal Transport: Effect of Secretagogues
4.3 Comparison With Other Existing Models: Possible Future Developments
5 Use of Cultured Cells for Study of Metabolic Functions
5.1 Colonic Malignant Cells as Models for Study of Glucose Metabolism
5.2 HT‐29 Glucose‐Negative Cells: Model for Study of Gluconeogenesis
6 Potential Use of Cultured Cells for Other Studies
7 Conclusion
Figure 1. Figure 1.

Transmission electron micrograph of Caco‐2 cells (passage 70) in relation to cell growth. Sections of monolayer are perpendicular to bottom of flask. A: exponentially growing cells (day 5). × 3,400. B: postconfluent stationary cells (day 15). × 3,400. Note presence in A of only sparse irregular microvilli on apical side of cells and presence in B of well‐developed apical brush border. However, note that cells are polarized (A and B) with presence of tight junctions. Also note absence in A of distinguishable intercellular spaces that are considerably enlarged in B; these changes in appearance of intercellular junctions most likely depend on growth‐related variations of intracellular accumulation of cAMP, which is higher in exponentially growing than in stationary cells 204.

(Courtesy of G. Chevalier.)
Figure 2. Figure 2.

Higher magnification of brush‐border microvilli of postconfluent Caco‐2 cells (day 15) showing core of microfilaments that extends into cytoplasm and presence of poorly developed glycocalyx and of tight junctions, × 5,500.

(Courtesy of G. Chevalier.)
Figure 3. Figure 3.

Immunofluorescent staining of monolayer of postconfluent Caco‐2 cells (day 10) obtained with rabbit antiserum specific for sucrase‐isomaltase from adult human jejunum. Positive staining corresponds to binding of antibodies to apical brush‐border microvilli. × 430.

(Courtesy of N. Triadou). (Courtesy of E. Dussaulx.)
Figure 4. Figure 4.

Variations of sucrase activity during growth in culture of Caco‐2 cells. Sucrase activity (filled triangles) is measured in brush‐border–enriched fraction at indicated days and is expressed as milliunits per milligrams of cell protein 181, 204. Caco‐2 cells (passage 70) are plated in 25 cm2 plastic flasks (3 × 105 cells per flask) 204; growth curve is expressed as milligrams of cell protein per flask (open triangles). Note that net increase in sucrase activity is concomitant with entry of cells in stationary phase of growth. Similar pattern of growth‐related variations of activity is observed for other hydrolases associated with brush‐border membrane of Caco‐2 cells 181, 204.

(Courtesy of M. Rousset.)
Figure 5. Figure 5.

Transmission electron micrograph of HT‐29 cells (day 30 in culture) in relation to culture conditions. A: cells grown with 25 mM glucose. Section is perpendicular to bottom of flask, and cells are organized into multilayer of unpolarized cells with presence of only sparse irregular microvilli on apical surface of cell layer. × 2,300. B: detail of apical surface of enterocyte‐like differentiated HT‐29 cells grown for 5 passages in glucose‐free medium supplemented with 2.5 mM inosine 248. Note presence of organized brush border and tight junctions. × 13,500.

(Courtesy of G. Chevalier.)
Figure 6. Figure 6.

Isolation of subclones of HT29–18 cells. Starting from culture of undifferentiated cells, differentiated culture can be obtained in media containing galactose; cells must be progressively adapted to decreasing concentrations of glucose and increasing concentrations of galactose to avoid cell death. Cultures were then maintained in 5 mM galactose medium for more than 20 generations and subsequently replated in glucose‐containing media. Cultures then displayed obvious heterogeneity when observed with an inverted microscope. Cells were replated and grown at low density; individual colonies were separated. Each subclone displayed a homogeneous differentiated phenotype (polarized monolayer) in glucose‐containing media. Enhanced differentiation characteristics (brush border or mucous granules) can be seen when cultures are grown in galactose. When transferred to galactose‐containing medium, subclones do not require progressive adaptation to new medium.

Figure 7. Figure 7.

Mucous secretion in HT29–18‐N2 cells. Specific monoclonal antibodies against fetal mucins were used to detect mucous content of this subclone (using immunofluorescence techniques). A: culture was fixed with 3% paraformaldehyde and permeabilized with 0.2% Triton X‐100. Cells loaded with immunoreactive material can be seen. No significant staining is obtained when cells are not permeabilized, thus demonstrating intracellular localization of mucins. B: culture was incubated at 37°C for 30 min with 20 μM carbachol. Long wisps of mucosal secretions are seen without permeabilization of formaldehyde‐fixed cells monolayers, thus demonstrating the exocytosis of granular contents induced by carbachol (bar = 13 μm).

(courtesy of J. Bara) (Courtesy of C. Huet).
Figure 8. Figure 8.

Structure of the mucus‐secreting clonal cell line HT29–16E. A: low‐magnification electron micrograph of vertical section of postconfluent HT29–16E cells showing polarized mucous secretion. B: ultrastructure of mucus‐secreting cell exhibiting features of a typical goblet cell; supranuclear cytoplasm is filled with many vacuoles of variable electron density. C: electron micrograph of section cut parallel to superficial layer of cultured cells. All superficial cells exhibit abundant mucous secretion.

[From Augeron and Laboisse 5].
Figure 9. Figure 9.

Immunological detection of sucrase‐isomaltase in brush‐border–enriched fractions analyzed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis transferred onto nitrocellulose sheet (for details of methods see ref. 256). A: control sucrase‐isomaltase complex from adult jejunum showing high‐molecular‐weight proform of enzyme (top band) and 2 subunits of sucrase and isomaltase (bottom bands). B: Caco‐2 cells (passage 70, day 16). C: colon from a 16‐wk‐old fetus. Note that in B and C, only high‐molecular‐weight band is present and migrates faster than corresponding adult intestinal proform.

(Courtesy of I. Chantret.)
Figure 10. Figure 10.

Immunological detection of villin and actin in HT‐29 cell extracts. Immunoblotting procedures were applied to total cell extracts derived from undifferentiated and differentiated HT29–18 cells. Monoclonal or polyclonal antibodies against villin give identical results. Specific band at 90 kDa (villin) is visualized and strongly enhanced (at least 10 times) in differentiated HT29–18 cells. Polyclonal antibody against actin was applied and detected simultaneously on these immunoblots. No significant increase in amount of actin during HT29–18 cell differentiation can be observed, thus providing an internal control. A: proteins staining. B: immunoreplica. Glu, cells grown in glucose; gal, cells grown in galactose. Molecular‐size markers: myosin heavy chain, 180 kDa; β‐galactosidase, 116 kDa; phosphorylase b, 92 kDa; bovine serum albumin, 62 kDa.

(Courtesy of E. Coudrier and S. Robine.)
Figure 11. Figure 11.

Comparison of development of VIP receptor concentration and sucrase activity during the growth in culture of Caco‐2 cells (passage 70). Assays were performed for both sucrase and VIP receptors with crude plasma membranes prepared as described in reference 45.

(M. Laburthe and M. Rousset, personal communication.)
Figure 12. Figure 12.

Bioassay of VIP, which is highly sensitive 127 and based on VIP‐stimulated accumulation of cAMP in HT‐29 cells 132. Standard VIP (left panel) and plasma from two patients with watery diarrhea syndrome (middle and right panels) are tested either alone (filled symbols) or after previous exposure to a specific anti‐VIP antibody (open symbols).

[From Laburthe et al. 127.]
Figure 13. Figure 13.

Phase‐contrast micrograph of dome formed by monolayer of confluent Caco‐2 cells grown on plastic (day 14) focused on monolayer (A) and focused on top of dome (B).

[From Pinto et al. 181.]
Figure 14. Figure 14.

Measurement of electrical parameters in dome cells. Current‐conveying microelectrode is inserted between monolayer and plastic dish. Second microelectrode is advanced from culture medium (position 1) toward cell, first crossing mucosal membrane (position 2) and then serosal membrane (position 3). Upper right, schematic representation of potential difference recorded in 3 positions. This difference allowed calculation of intracellular potential and mucosal membrane fractional resistance. Mucosal solution is taken as electrical reference

[From Grasset et al. 89.]
Figure 15. Figure 15.

Effect of mucosal addition of 5 μg/ml amphotericin B on short‐circuit current (Isc) in filter‐grown Caco‐2 cells. At initial peak, scale had to be divided by 2 during first few minutes. Application of sodium‐free solution (Na 0) on both sides of tissue abolished Isc. Serosal ouabain (0.1 mM) also abolished Isc within a maximum of 30 min.

[From Grasset et al. 89.]
Figure 16. Figure 16.

Filter‐grown HT29–19A cells: stimulation of short‐circuit current (Isc) by serosal dibutyryl cAMP and inhibition by serosal bumetanide (bipolar current pulses were used to monitor transepithelial electrical resistance).

[From Augeron et al. 6.]
Figure 17. Figure 17.

Time course of effect of VIP (A), Ca2+ ionophore A23187 (B), and VIP plus A23187 (C) on net ion transport and short‐circuit current and Isc across T84 cell monolayers (grown on collagen‐coated monolayers). Open bars, net Cl transport; solid bars, net Na+ transport over 10‐min flux period. Circles and lines, Isc. Hatched bars, open circles, and dashed line (C), predicted additive response from results shown in A and B. Results are means + SE. Values above dashed line represent net secretion and those below the line net absorption. [(From Cartwright et al. 30.]



Figure 1.

Transmission electron micrograph of Caco‐2 cells (passage 70) in relation to cell growth. Sections of monolayer are perpendicular to bottom of flask. A: exponentially growing cells (day 5). × 3,400. B: postconfluent stationary cells (day 15). × 3,400. Note presence in A of only sparse irregular microvilli on apical side of cells and presence in B of well‐developed apical brush border. However, note that cells are polarized (A and B) with presence of tight junctions. Also note absence in A of distinguishable intercellular spaces that are considerably enlarged in B; these changes in appearance of intercellular junctions most likely depend on growth‐related variations of intracellular accumulation of cAMP, which is higher in exponentially growing than in stationary cells 204.

(Courtesy of G. Chevalier.)


Figure 2.

Higher magnification of brush‐border microvilli of postconfluent Caco‐2 cells (day 15) showing core of microfilaments that extends into cytoplasm and presence of poorly developed glycocalyx and of tight junctions, × 5,500.

(Courtesy of G. Chevalier.)


Figure 3.

Immunofluorescent staining of monolayer of postconfluent Caco‐2 cells (day 10) obtained with rabbit antiserum specific for sucrase‐isomaltase from adult human jejunum. Positive staining corresponds to binding of antibodies to apical brush‐border microvilli. × 430.

(Courtesy of N. Triadou). (Courtesy of E. Dussaulx.)


Figure 4.

Variations of sucrase activity during growth in culture of Caco‐2 cells. Sucrase activity (filled triangles) is measured in brush‐border–enriched fraction at indicated days and is expressed as milliunits per milligrams of cell protein 181, 204. Caco‐2 cells (passage 70) are plated in 25 cm2 plastic flasks (3 × 105 cells per flask) 204; growth curve is expressed as milligrams of cell protein per flask (open triangles). Note that net increase in sucrase activity is concomitant with entry of cells in stationary phase of growth. Similar pattern of growth‐related variations of activity is observed for other hydrolases associated with brush‐border membrane of Caco‐2 cells 181, 204.

(Courtesy of M. Rousset.)


Figure 5.

Transmission electron micrograph of HT‐29 cells (day 30 in culture) in relation to culture conditions. A: cells grown with 25 mM glucose. Section is perpendicular to bottom of flask, and cells are organized into multilayer of unpolarized cells with presence of only sparse irregular microvilli on apical surface of cell layer. × 2,300. B: detail of apical surface of enterocyte‐like differentiated HT‐29 cells grown for 5 passages in glucose‐free medium supplemented with 2.5 mM inosine 248. Note presence of organized brush border and tight junctions. × 13,500.

(Courtesy of G. Chevalier.)


Figure 6.

Isolation of subclones of HT29–18 cells. Starting from culture of undifferentiated cells, differentiated culture can be obtained in media containing galactose; cells must be progressively adapted to decreasing concentrations of glucose and increasing concentrations of galactose to avoid cell death. Cultures were then maintained in 5 mM galactose medium for more than 20 generations and subsequently replated in glucose‐containing media. Cultures then displayed obvious heterogeneity when observed with an inverted microscope. Cells were replated and grown at low density; individual colonies were separated. Each subclone displayed a homogeneous differentiated phenotype (polarized monolayer) in glucose‐containing media. Enhanced differentiation characteristics (brush border or mucous granules) can be seen when cultures are grown in galactose. When transferred to galactose‐containing medium, subclones do not require progressive adaptation to new medium.



Figure 7.

Mucous secretion in HT29–18‐N2 cells. Specific monoclonal antibodies against fetal mucins were used to detect mucous content of this subclone (using immunofluorescence techniques). A: culture was fixed with 3% paraformaldehyde and permeabilized with 0.2% Triton X‐100. Cells loaded with immunoreactive material can be seen. No significant staining is obtained when cells are not permeabilized, thus demonstrating intracellular localization of mucins. B: culture was incubated at 37°C for 30 min with 20 μM carbachol. Long wisps of mucosal secretions are seen without permeabilization of formaldehyde‐fixed cells monolayers, thus demonstrating the exocytosis of granular contents induced by carbachol (bar = 13 μm).

(courtesy of J. Bara) (Courtesy of C. Huet).


Figure 8.

Structure of the mucus‐secreting clonal cell line HT29–16E. A: low‐magnification electron micrograph of vertical section of postconfluent HT29–16E cells showing polarized mucous secretion. B: ultrastructure of mucus‐secreting cell exhibiting features of a typical goblet cell; supranuclear cytoplasm is filled with many vacuoles of variable electron density. C: electron micrograph of section cut parallel to superficial layer of cultured cells. All superficial cells exhibit abundant mucous secretion.

[From Augeron and Laboisse 5].


Figure 9.

Immunological detection of sucrase‐isomaltase in brush‐border–enriched fractions analyzed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis transferred onto nitrocellulose sheet (for details of methods see ref. 256). A: control sucrase‐isomaltase complex from adult jejunum showing high‐molecular‐weight proform of enzyme (top band) and 2 subunits of sucrase and isomaltase (bottom bands). B: Caco‐2 cells (passage 70, day 16). C: colon from a 16‐wk‐old fetus. Note that in B and C, only high‐molecular‐weight band is present and migrates faster than corresponding adult intestinal proform.

(Courtesy of I. Chantret.)


Figure 10.

Immunological detection of villin and actin in HT‐29 cell extracts. Immunoblotting procedures were applied to total cell extracts derived from undifferentiated and differentiated HT29–18 cells. Monoclonal or polyclonal antibodies against villin give identical results. Specific band at 90 kDa (villin) is visualized and strongly enhanced (at least 10 times) in differentiated HT29–18 cells. Polyclonal antibody against actin was applied and detected simultaneously on these immunoblots. No significant increase in amount of actin during HT29–18 cell differentiation can be observed, thus providing an internal control. A: proteins staining. B: immunoreplica. Glu, cells grown in glucose; gal, cells grown in galactose. Molecular‐size markers: myosin heavy chain, 180 kDa; β‐galactosidase, 116 kDa; phosphorylase b, 92 kDa; bovine serum albumin, 62 kDa.

(Courtesy of E. Coudrier and S. Robine.)


Figure 11.

Comparison of development of VIP receptor concentration and sucrase activity during the growth in culture of Caco‐2 cells (passage 70). Assays were performed for both sucrase and VIP receptors with crude plasma membranes prepared as described in reference 45.

(M. Laburthe and M. Rousset, personal communication.)


Figure 12.

Bioassay of VIP, which is highly sensitive 127 and based on VIP‐stimulated accumulation of cAMP in HT‐29 cells 132. Standard VIP (left panel) and plasma from two patients with watery diarrhea syndrome (middle and right panels) are tested either alone (filled symbols) or after previous exposure to a specific anti‐VIP antibody (open symbols).

[From Laburthe et al. 127.]


Figure 13.

Phase‐contrast micrograph of dome formed by monolayer of confluent Caco‐2 cells grown on plastic (day 14) focused on monolayer (A) and focused on top of dome (B).

[From Pinto et al. 181.]


Figure 14.

Measurement of electrical parameters in dome cells. Current‐conveying microelectrode is inserted between monolayer and plastic dish. Second microelectrode is advanced from culture medium (position 1) toward cell, first crossing mucosal membrane (position 2) and then serosal membrane (position 3). Upper right, schematic representation of potential difference recorded in 3 positions. This difference allowed calculation of intracellular potential and mucosal membrane fractional resistance. Mucosal solution is taken as electrical reference

[From Grasset et al. 89.]


Figure 15.

Effect of mucosal addition of 5 μg/ml amphotericin B on short‐circuit current (Isc) in filter‐grown Caco‐2 cells. At initial peak, scale had to be divided by 2 during first few minutes. Application of sodium‐free solution (Na 0) on both sides of tissue abolished Isc. Serosal ouabain (0.1 mM) also abolished Isc within a maximum of 30 min.

[From Grasset et al. 89.]


Figure 16.

Filter‐grown HT29–19A cells: stimulation of short‐circuit current (Isc) by serosal dibutyryl cAMP and inhibition by serosal bumetanide (bipolar current pulses were used to monitor transepithelial electrical resistance).

[From Augeron et al. 6.]


Figure 17.

Time course of effect of VIP (A), Ca2+ ionophore A23187 (B), and VIP plus A23187 (C) on net ion transport and short‐circuit current and Isc across T84 cell monolayers (grown on collagen‐coated monolayers). Open bars, net Cl transport; solid bars, net Na+ transport over 10‐min flux period. Circles and lines, Isc. Hatched bars, open circles, and dashed line (C), predicted additive response from results shown in A and B. Results are means + SE. Values above dashed line represent net secretion and those below the line net absorption. [(From Cartwright et al. 30.]

References
 1. Adams, J. S. Specific internalization of 1,25‐dihydroxyvitamin D3 by cultured intestinal epithelial cells. J. Steroid Biochem. 20: 857–862, 1984.
 2. Adibi, S. A., and S. K. Young. Peptide absorption and hydrolysis. In: Physiology of the Gastrointestinal Tract, edited by L. R. Johnson. New York: Raven, 1981, p. 1073–1095.
 3. Alderman, E. M., R. R. Lobb, and J. W. Fett. Isolation of tumor‐secreted products from human carcinoma cells maintained in a defined protein‐free medium. Proc. Natl. Acad. Sci. USA 82: 5771–5775, 1985.
 4. Amouric, M., J. Marvaldi, J. Pichon, F. Bellot, and C. Figarella. Effect of lactoferrin on the growth of a human colon adenocarcinoma cell line—comparison with transferrin. In Vitro 20: 543–548, 1984.
 5. Augeron, C., and C. L. Laboisse. Emergence of permanently differentiated cell clones in a human colonic cancer cell line in culture after treatment with sodium butyrate. Cancer Res. 44: 3961–3969, 1984.
 6. Augeron, C., J. J. Maoret, C. L. Laboisse, and E. Grasset. Permanently differentiated cell clones established from the human colonic adenocarcinoma cell line HT‐29: possible models for the study of ion transport and mucus production. In: Ion‐Gradient‐Coupled Transport, edited by F. Alvarado and C. H. Van Os. Amsterdam: Elsevier, 1986, p. 363–366.
 7. Auricchio, S., A. Stellato, and B. Devizia. Development of brush border peptidases in human and rat small intestine during fetal and neonatal life. Pediatr. Res. 15: 991–995, 1981.
 8. Bergeron, J. J. M., R. Rachubinski, N. Searle, D. Ports, R. Sikstrom, and B. I. Posner. Polypeptide hormone receptors “in vivo”: demonstration of insulin binding to adrenal gland and gastrointestinal epithelium by quantitative radioautography. J. Histochem. Cytochem. 28: 824–835, 1980.
 9. Bernabeu, J., M. Pinto, and E. Grasset. Properties of human colon carcinoma Caco‐2 cells: response to secretagogues (Abstract). Gastroenterol. Clin. Biol. 8: 861–862, 1984.
 10. Bernadac, A., J. P. Gorvel, H. Feracci, and S. Maroux. Human blood group A‐like determinants as marker of the intracellular pools of glycoproteins in secretory and absorbing cells of A+ rabbit jejunum. Biol. Cell 50: 31–36, 1984.
 11. Binder, H. J., G. F. Lemp, and J. D. Gardner. Receptors for vasoactive intestinal peptide and secretin on small intestinal epithelial cells. Am. J. Physiol. 238 (Gastrointest. Liver Physiol. 1): G190–G196, 1980.
 12. Blay, J., and K. D. Brown. Characterization of an epithelioid cell line derived from rat small intestine: demonstration of cytokeratin filaments. Cell Biol. Int. Rep. 8: 551–560, 1984.
 13. Blay, J., and K. D. Brown. Functional receptors for epidermal growth factor in an epithelial cell line derived from rat small intestine. Biochem. J. 225: 85–94, 1985.
 14. Bloom, S. R., J. M. Polak, and A. G. E. Pearse. Vasoactive intestinal peptide and watery diarrhea syndrome. Lancet 2: 14–16, 1973.
 15. Boige, N., A. Munck, and M. Laburthe. Adrenergic versus VIPergic control of cyclic AMP in human colonic crypts. Peptides 5: 379–383, 1984.
 16. Boissard, G., G. Hejblum, J. C. Marie, C. Gespach, and G. Rosselin. Désensibilisation au VIP par rétro‐régulation des récepteurs de ce peptide dans les cellules transformées HT‐29 de l'épithélium colique humain en culture. C. R. Seances Acad. Sci. Ser. III Sci. Vie 299: 795–799, 1984.
 17. Borman, L. S., D. C. Swartzendruber, and L. G. Littlefield. Establishment of two parental cell lines and three clonal cell strains from rat colonic carcinoma. Cancer Res. 42: 5074–5083, 1982.
 18. Bouscarel, B., C. Cortinovis, C. Carpene, J. C. Murat, and H. Paris. Alpha2‐adrenoreceptors in the HT‐29 human colon adenocarcinoma cell line: characterization with [3H]clonidine; effects on cyclic AMP accumulation. Eur. J. Pharmacol. 107: 223–231, 1985.
 19. Bouscarel, B., J. C. Murat, and H. Paris. Involvement of guanine nucleotide and sodium in regulation of yohimbine and clonidine binding sites in the HT‐29 human colon adenocarcinoma cell line. Gen. Pharmacol. 16: 641–644, 1985.
 20. Brattain, M. G., D. E. Brattain, W. D. Fine, F. M. Khaled, M. E. Marks, P. M. Kimball, L. A. Arcolano, and B. H. Danbury. Initiation and characterization of cultures of human colonic carcinoma with different biological characteristics utilizing feeder layers of confluent fibroblasts. Oncodev. Biol. Med. 2: 355–366, 1981.
 21. Brattain, M. G., J. Srobel‐Stevens, D. Fine, M. Webb, and A. M. Sarrif. Establishment of mouse colonic carcinoma cell lines with different metastatic properties. Cancer Res. 40: 2142–2146, 1980.
 22. Bretscher, A., and K. Weber. Villin: the major microfilament‐associated protein of the intestinal microvillus. Proc. Natl. Acad. Sci. USA 76: 2321–2325, 1979.
 23. Bretscher, A., and K. Weber. Fimbrin, a new microfilament‐associated protein present in microvilli and other cell surface structures. J. Cell Biol. 86: 335–340, 1980.
 24. Bretscher, A., and K. Weber. Villin is a major protein of the microvillus cytoskeleton which binds both G and F actin in a calcium‐dependent manner. Cell 20: 839–847, 1980.
 25. Brown, W. R., Y. Isobe, and P. K. Nakane. Studies on translocation of immunoglobulins across intestinal epithelium. II. Immunoelectron‐microscopic localization of immunoglobulins and secretory component in human intestinal mucosa. Gastroenterology 71: 985–995, 1976.
 26. Broyart, J. P., C. Dupont, M. Laburthe, and G. Rosselin. Characterization of vasoactive intestinal peptide receptors in human colonic epithelial cells. J. Clin. Endocrinol. Metab. 52: 715–721, 1981.
 27. Bylund, D. B., Heterogeneity of alpha‐2 adrenergic receptors. Pharmacol. Biochem. Behav. 22: 835–843, 1985.
 28. Carpene, C., H. Paris, C. Cortinovis, V. Viallard, and J. C. Murat. Characterization of alpha2‐adrenergic receptors in the human colon adenocarcinoma cell line HT‐29 in culture by [3H]yohimbine binding. Gen. Pharmacol. 14: 701–703, 1983.
 29. Carrel, S., B. Sordat, and C. Merenda. Establishment of a cell line (Co‐115) from a human colon carcinoma transplanted into nude mice. Cancer Res. 36: 3978–3984, 1976.
 30. Cartwright, C. A., J. A. McRoberts, K. G. Mandel, and K. Dharmsathophorn. Synergistic action of cyclic adenosine monophosphate and calcium mediated chloride secretion in a colonic epithelial cell line. J. Clin. Invest. 76: 1837–1842, 1985.
 31. Cereijido, M., E. S. Robbins, W. J. Dolan, C. A. Rotunno, and D. D. Sabatini. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J. Cell Biol. 77: 853–880, 1978.
 32. Cezard, J. P., M. E. Forgue‐Lafitte, M. C. Chamblier, and G. E. Rosselin. Growth‐promoting effect, biological activity and binding of insulin in human intestinal cancer cells in culture. Cancer Res. 41: 1148–1153, 1981.
 33. Chang, E. B., M. Field, and R. J. Miller. α2‐Adrenergic receptor regulation of ion transport in rabbit ileum. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G237–G242, 1982.
 34. Chang, E. B., M. Field, and R. J. Miller. Enterocyte α2‐adrenergic receptors: yohimbine and p‐aminoclonidine binding relative to ion transport. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G76–G82, 1983.
 35. Chantret, I., G. Chevalier, E. Dussaulx, and A. Zweibaum. A and H blood group antigens as markers of sucrase‐isomaltase from the enterocyte‐like differentiated human colon carcinoma cell lines HT‐29 and Caco‐2. Cancer Res. 47: 1426–1433, 1987.
 36. Chastre, E., S. Emami, G. Rosselin, and C. Gespach. Vasoactive intestinal peptide receptor activity and specificity during enterocyte‐like differentiation and retrodifferentiation of the human colonic cancerous subclone HT29‐18. FEBS Lett. 188: 197–204, 1985.
 37. Chopra, D. P., and K. Y. Yeh. Long‐term culture of epithelial cells from the normal rat colon. In Vitro 17: 441–449, 1981.
 38. Chung, Y. S., I. S. Song, R. H. Erickson, M. H. Sleisenger, and Y. S. Kim. Effect of growth and sodium butyrate on brush border membrane‐associated hydrolases in human colorectal cancer cell lines. Cancer Res. 45: 2976–2982, 1985.
 39. Cleveland, P. H., L. G. P. Belnap, F. B. Knotts, S. K. Nayak, S. M. Baird, and Y. H. Pilch. Tumor‐associated antigens of chemically‐induced murine tumors; the emergence of MULV and fetal antigens after serial passage in culture. Int. J. Cancer 23: 380–391, 1979.
 40. Cohen, E., A. Talmon, O. Faff, A. Bacher, and Y. Ben‐Shaul. Formation of tight junctions in epithelial cells. I Induction by proteases in a human colon carcinoma cell line. Exp. Cell Res. 156: 103–116, 1985.
 41. Coudrier, E., H. Reggio, and D. Louvard. Immunolocalization of the 110,000 molecular weight cytoskeletal protein of intestinal microvilli. J. Mol. Biol. 152: 49–66, 1981.
 42. Coudrier, E., H. Reggio, and D. Louvard. Characterization of an integral membrane glycoprotein associated with the microfilaments of pig intestinal microvilli. EMBO J. 2: 469–475, 1983.
 43. Couvineau, A., S. Gammeltoft, and M. Laburthe. Molecular characteristics and peptide specificity of VIP receptors from rat cerebral cortex. J. Neurochem. 47: 1469–1475, 1986.
 44. Couvineau, A., and M. Laburthe. The human vasoactive intestinal peptide receptor: molecular identification by covalent cross‐linking in colonic epithelium. J. Clin. Endocrinol. Metab. 61: 50–55, 1985.
 45. Couvineau, A., and M. Laburthe. The rat liver vasoactive intestinal peptide binding sites. Molecular characterization by covalent cross‐linking and evidence for differences from the intestinal receptor. Biochem. J. 225: 473–479, 1985.
 46. Couvineau, A., M. Rousset, and M. Laburthe. Molecular identification and structural requirement of vasoactive intestinal peptide (VIP) receptors in the human colon adenocarcinoma cell line, HT‐29. Biochem. J. 231: 139–143, 1985.
 47. Dahlqvist, A., and T. Lindberg. Development of the intestinal disaccharidases and alkaline phosphatase activities in the human fetus. Clin. Sci. Lond. 30: 517–528, 1966.
 48. Danes, B. S., and E. Sutanto. Epithelial line from normal human colon mucosa. J. Natl. Cancer Inst. 69: 1271–1276, 1982.
 49. Danielsen, E. M., and G. M. Cowell. Biosynthesis of intestinal microvillar proteins. Further characterization of the intracellular processing and transport. FEBS Lett. 166: 28–32, 1984.
 50. Danielsen, E. M., and G. M. Cowell. Biosynthesis of intestinal microvillar proteins. The intracellular transport of aminopeptidase N and sucrase‐isomaltase occurs at different rates pre‐Golgi but at the same rate post‐Golgi. FEBS Lett. 190: 69–72, 1985.
 51. Danielsen, E. M., G. M. Cowell, O. Norén, and H. Sjöstrom. Biosynthesis of microvillar proteins. Biochem. J. 221: 1–14, 1984.
 52. Denis, C., C. Cortinovis, B. Terrain, V. Viallard, H. Paris, and J. C. Murat. Activity of enzymes related to carbohydrate metabolism in the HT‐29 colon adenocarcinoma cell line and tumor. Int. J. Biochem. 16: 87–91, 1984.
 53. Denis, C., V. Mils, J. C. Murat, M. Rousset, M. Pinto, V. Trocheris, A. Zweibaum, and H. Paris. Evidence for development of gluconeogenesis in the HT‐29 human colon adenocarcinoma cell line grown in a glucose‐free medium. IRCS Med. Sci. 13: 898–899, 1985.
 54. Denis, C., J. C. Murat, H. Paris, and V. Trocheris. Influence of fructose‐2,6‐diphosphate on the properties of phosphofructokinase‐1 from the HT‐29 human colon adenocarcinoma cell line. IRCS Med. Sci. 13: 430–431, 1985.
 55. Dexter, D. L., J. A. Barbosa, and P. Calabresi. N,N‐dimethylformamide‐induced alteration of cell culture characteristics and loss of tumorigenicity in cultured human colon carcinoma cells. Cancer Res. 39: 1020–1025, 1979.
 56. Dexter, D. L., G. W. Crabtree, J. D. Stoeckler, T. M. Savarese, L. Y. Ghoda, T. L. Rogler‐Brown, R. E. Parks, Jr., and P. Calabresi. N,N‐dimethylformamide and sodium butyrate modulation of the activities of purine‐metabolizing enzymes in cultured human colon carcinoma cells. Cancer Res. 41: 808–812, 1981.
 57. Dexter, D. L., and J. C. Hager. Maturation‐induction of tumor cells using a human colon carcinoma model. Cancer Phila. 45, Suppl. 5: 1178–1184, 1980.
 58. Dharmsathaphorn, K., K. G. Mandel, H. Masui, and J. A. McRoberts. VIP‐induced chloride secretion by a colonic epithelial cell line: direct participation of a basolaterally localized Na+, K+, Cl− cotransport system. J. Clin. Invest. 75: 462–471, 1985.
 59. Dharmsathaphorn, K., K. G. Mandel, J. A. McRoberts, C. A. Cartwright, and H. Masui. Utilization of a human colonic tumor cell line as a model to study electrolyte transport in the intestine. In: Intestinal Absorption and Secretion, edited by E. Skadhauge and K. Heintze. Lancaster, UK: MTP, 1984, p. 325–333. (Falk Symp. Ser., no. 36.)
 60. Dharmsathaphorn, K., J. A. McRoberts, K. G. Mandel, L. D. Tisdale, and H. Masui. A human colonic tumor cell line that maintains vectorial electrolyte transport. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G204–G208, 1984.
 61. Di Joseph, J. F., J. A. Taylor, and G. N. Mir. Alpha2‐receptors in the gastrointestinal system: a new therapeutic approach. Life Sci. 35: 1031–1042, 1984.
 62. Drewinko, B., M. M. Romsdahl, L. Y. Yang, M. J. Ahearn, and J. M. Trujillo. Establishment of a human carcinoembryonic antigen‐producing colon adenocarcinoma cell line. Cancer Res. 36: 467–475, 1976.
 63. Dudouet, B., S. Robine, C. Huet, C. Sahuquillo‐Merino, L. Blair, E. Coudrier, and D. Louvard. Changes in villin synthesis and subcellular distribution during intestinal differentiation of HT29‐18 clones. J. Cell Biol. 105: 359–370, 1987.
 64. Dupont, C., B. Amiranoff, M. Laburthe, and G. Rosselin. Récepteurs du peptide intestinal vasoactif (VIP) dans les membranes d'adénocarcinome colique humain: liaison spécifique et stimulation de l'adénylate cyclase. C. R. Seances Acad. Sci. Ser. III Sci. Vie 286: 209–212, 1978.
 65. Dupont, C., M. Laburthe, J. P. Broyart, D. Bataille, and G. Rosselin. Cyclic AMP production in isolated colonic epithelial crypts: a highly sensitive model for the evaluation of vasoactive intestinal peptide action in human intestine. Eur. J. Clin. Invest. 10: 67–76, 1980.
 66. Feracci, H., A. Bernadac, J. P. Gorvel, and S. Maroux. Localization by immunofluorescence and histochemical labeling of aminopeptidase N in relation to its biosynthesis in rabbit and pig enterocytes. Gastroenterology 82: 317–324, 1982.
 67. Feracci, H., A. Rigal, and S. Maroux. Biosynthesis and intracellular pool of aminopeptidase N in rabbit enterocytes. J. Membr. Biol. 83: 139–146, 1985.
 68. Fett, J. W., D. J. Strydom, R. R. Lobb, E. M. Alderman, and B. L. Vallee. Lysozyme: a major secretory product of a human colon carcinoma cell line. Biochemistry 24: 965–975, 1985.
 69. Field, M., H. E. Sheerin, A. Henderson, and P. L. Smith. Catecholamine effects on cyclic AMP levels and ion secretion in rabbit ileal mucosa. Am. J. Physiol. 229: 86–92, 1975.
 70. Fogh, J., J. M. Fogh, and T. Orfeo. One hundred and twenty‐seven cultured human tumor cell lines producing tumors in nude mice. J. Natl. Cancer Inst. 59: 221–225, 1977.
 71. Fogh, J., and G. Trempe. New human tumor cell lines. In: Human Tumor Cells In Vitro, edited by J. Fogh. New York: Plenum, 1975, p. 115–141.
 72. Forgue‐Lafitte, M. E., A. Horvat, and G. Rosselin. Insulin binding by a cell line (HT‐29) derived from human colonic cancer. Mol. Cell. Endocrinol. 14: 123–130, 1979.
 73. Forgue‐Lafitte, M. E., M. Laburthe, M. C. Chamblier, A. J. Moody, and G. Rosselin. Demonstration of specific receptors for EGF‐urogastrone in isolated rat intestinal epithelial cells. FEBS Lett. 114: 243–246, 1980.
 74. Forgue‐Lafitte, M. E., M. R. Marescot, M. C. Chamblier, and G. Rosselin. Evidence for the presence of insulin binding sites in isolated rat intestinal epithelial cells. Diabetologia 19: 373–378, 1980.
 75. Forgue‐Lafitte, M. E., G. Rosselin, M. Laburthe, J. P. Cezard, A. Zweibaum, and A. J. Moody. Peptidic regulation of gut epithelium: relationship with specific receptors in normal and cancerous cells. In: Colonic Carcinogenesis, edited by R. A. Malt and R. C. N. Williamson. Lancaster, UK: MTP, 1982, p. 339–352. (Falk Symp. Ser. no. 31.)
 76. Friedman, E., S. Gillin, and M. Lipkin. 12‐O‐tetradeca‐noylphorbol‐13‐acetate stimulaton of DNA synthesis in cultured preneoplastic familial polyposis colonic epithelial cells but not in normal colonic epithelial cells. Cancer Res. 44: 4078–4086, 1984.
 77. Friedman, E. A., P. J. Higgins, M. Lipkin, H. Shinya, and A. Gelb. Tissue culture of human epithelial cells from benign colonic tumors. In Vitro 17: 632–644, 1981.
 78. Friedman, E. A., and M. Steinberg. Disrupted communication between late‐stage premalignant human colon epithelial cells by 12‐O‐tetradecanoylphorbol‐13‐acetate. Cancer Res. 42: 5096–5105, 1982.
 79. Friedman, E., A. Thor, P. Horanhand, and J. Schlom. Surface expression of tumor‐associated antigens in primary cultured human colonic epithelial cells from carcinomas, benign tumors, and normal tissues. Cancer Res. 45: 5648–5665, 1985.
 80. Friedman, E., C. Urmacher, and S. Winawer A model for human colon carcinoma evolution based on the differential response of cultured preneoplastic, premalignant and malignant cells to 12‐O‐tetradecanoylphorbol‐13‐acetate. Can‐cer Res. 44: 1568–1578, 1984.
 81. Friedman, E., M. Verderame, S. Winawer, and R. Pollack. Actin cytoskeletal organization loss in the benign to malignant tumor transition in cultured human colonic epithelial cells. Cancer Res. 44: 3040–3050, 1984.
 82. Fuhrmann, U., E. Bause, and H. Ploegh. Inhibitors of oligosaccharide processing. Biochim. Biophys. Acta 825: 95–110, 1985.
 83. Fujita, M., H. Ohta, K. Kawai, H. Matsui, and M. Nakao. Differential isolation of microvillous and basolateral plasma membrane from intestinal mucosa: mutually exclusive distribution of digestive enzymes and ouabain‐sensitive ATPase. Biochim. Biophys. Acta 274: 336–347, 1972.
 84. Gallo‐Payet, N., and J. S. Hugon. Insulin receptors in isolated adult mouse intestinal cells: studies in vivo and in organ culture. Endocrinology 114: 1885–1892, 1984.
 85. Gallo‐Payet, N., and J. S. Hugon. Epidermal growth factor receptors in isolated adult mouse intestinal cells: studies in vivo and in organ culture. Endocrinology 116: 194–201, 1985.
 86. Girard, A., M. P. Dubois, and B. Pessac. Mise en évidence de neuropeptides dans des lignées de cellules nerveuses et non nerveuses en culture continue. C. R. Seances Acad. Sci. Ser. III Sci. Vie 294: 1051–1055, 1982.
 87. Goodman, M. N. Effect of 3‐mercaptopicolinic acid on gluconeogenesis in the isolated perfused rat liver. Biochem. J. 150: 137–139, 1975.
 88. Gorvel, J. P., J. Sarles, S. Maroux, D. Olive, and C. Mawas. Cellular localization of class I (HLA‐A,B,C) and class II (HLA‐DR and DQ) MHC antigens on the epithelial cells of normal human jejunum. Biol. Cell 52: 249–252, 1984.
 89. Gorvel, J. P., A. Wisner‐Provost, and S. Maroux. Identification of glycoprotein bearing human blood group A determinants in rabbit enterocyte plasma membranes. FEBS Lett. 143: 17–20, 1982.
 90. Grasset, E., J. Bernabeu, and M. Pinto. Epithelial properties of human colonic carcinoma cell line Caco‐2: effect of secretagogues. Am. J. Physiol. 248 (Cell Physiol. 17): C410–C418, 1985.
 91. Grasset, E., M. Pinto, E. Dussaulx, A. Zweibaum, and J. F. Desjeux. Epithelial properties of human colonic carcinoma cell line Caco‐2: electrical parameters. Am. J. Physiol. 247 (Cell Physiol. 16): C260–C267, 1984.
 92. Handler, J. S., F. M. Perkins, and J. P. Johnson. Studies of renal cell function using cell culture techniques. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F1–F9, 1980.
 93. Hauri, H. P. Biosynthesis and transport of plasma membrane glycoproteins in the rat intestinal epithelial cell: studies with sucrase‐isomaltase. Ciba Found. Symp. 95: 132–149, 1983.
 94. Hauri, H. P. Use of monoclonal antibodies to investigate the intracellular transport and biogenesis of intestinal brush border proteins. Biochem. Soc. Trans. 14: 161–163, 1986.
 95. Hauri, H. P., A. Quaroni, and K. J. Isselbacher. Biogenesis of intestinal plasma membrane: posttranslational route and cleavage of sucrase‐isomaltase. Proc. Natl. Acad. Sci. USA 76: 5183–5186, 1979.
 96. Hauri, H. P., J. Roth, E. E. Sterchi, and M. J. Lentze. Transport to cell surface of intestinal sucrase‐isomaltase is blocked in the Golgi apparatus in a patient with congenital sucrase‐isomaltase deficiency. Proc. Natl. Acad. Sci. USA 82: 4423–4427, 1985.
 97. Hauri, H. P., E. E. Sterchi, D. Bienz, J. Fransen, and A. Marxer. Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells. J. Cell Biol. 101: 838–851, 1985.
 98. Herz, F., and M. Halwer. Preferential alkaline phosphatase isoenzyme induction by sodium butyrate. Biochim. Biophys. Acta 762: 289–294, 1983.
 99. Herz, F., A. Schermer, M. Halwer, and L. H. Bogard. Alkaline phosphatase in HT‐29, a human colon cancer cell line: influence of sodium butyrate and hyperosmolarity. Arch. Biochem. Biophys. 210: 581–591, 1981.
 100. Hirokawa, N., and J. Heuser. Quick‐freeze, deep‐etch visualization of the cytoskeleton beneath surface differentiations of intestinal epithelial cells. J. Cell Biol. 91: 399–409, 1981.
 101. Hollenberg, M. D., L. J. Hayden, and P. Atkison. Growth factors, transforming factors and their receptors: implications for tumors of the gastrointestinal tract. In: Colonic Carcinogenesis, edited by R. A. Malt and R. C. N. Williamson. Lancaster, UK: MTP, 1982, p. 327–335. (Falk Symp. Ser. no. 31.)
 102. Howe, C. L., M. S. Mooseker, and T. A. Graves. Brush border calmodulin. A major component of the isolated microvillus core. J. Cell Biol. 85: 916–923, 1980.
 103. Hubbard, S. C., and R. J. Ivatt. Synthesis and processing of asparagine‐linked oligosaccharides. Annu. Rev. Biochem. 50: 555–583, 1981.
 104. Huet, C., C. Sahuquillo‐Merino, E. Coudrier, and D. Louvard. Absorptive and mucus‐secreting subclones isolated from a multipotent intestinal cell line (HT‐29) provide new models for cell polarity and terminal differentiation. J. Cell Biol. 105: 345–358, 1987.
 105. Hugon, J. S., D. Maestracci, and D. Menard. Glucose‐6‐phosphatase activity in the intestinal epithelium of the mouse. J. Histochem. Cytochem. 19: 515–521, 1971.
 106. Inui, K. I., A. Quaroni, L. G. Tillotson, and K. J. Isselbacher. Amino acid and hexose transport by cultured crypt cells from rat small intestine. Am. J. Physiol. 239 (Cell Physiol. 8): C190–C196, 1980.
 107. Isselbacher, K. J. Increased uptake of amino acids and 2‐deoxy‐D‐glucose by virus transformed cells in culture. Proc. Natl. Acad. Sci. USA 69: 585–589, 1972.
 108. Kalckar, H. M., D. Ullrey, S. Kijomoto, and S. Hakomori. Carbohydrate catabolism and the enhancement of uptake of galactose in hamster cells transformed by polyoma virus. Proc. Natl. Acad. Sci. USA 70: 839–843, 1973.
 109. Kedinger, M., P. M. Simon‐Assmann, B. Lacroix, A. Marxer, H. P. Hauri, and K. Haffen. Fetal mesenchyme induces differentiation of cultured intestinal endoderm and crypt cells. Dev. Biol. 113: 474–483, 1986.
 110. Kelly, J. J., and D. H. Alpers. Blood group antigenicity of purified human intestinal disaccharidase. J. Biol. Chem. 248: 8216–8221, 1973.
 111. Kenny, A. J., and S. Maroux. Topology of microvillar membrane hydrolases of kidney and intestine. Physiol. Rev. 62: 91–128, 1982.
 112. Kim, Y. S., D. Tsao, A. Morita, and A. Bella, Jr. Effect of sodium butyrate on three human colorectal adenocarcinoma cell lines in culture. In: Colonic Carcinogenesis, edited by R. A. Malt and R. C. N. Williamson. Lancaster, UK: MTP, 1982, p. 317–325. (Falk Symp. Ser. no. 31.)
 113. Kim, Y. S., D. Tsao, B. Siddiqui, J. S. Whitehead, P. Arnstein, J. Bennett, and J. Hicks. Effects of sodium butyrate and dimethyl sulfoxide on biochemical properties of human colon cancer cells. Cancer Phila. 45: 1185–1192, 1980.
 114. Kirby, N. N., and E. L. Parr. The occurrence and distribution of H2 antigens on mouse intestinal epithelial cells. J. Histochem. Cytochem. 27: 1327–1336, 1979.
 115. Kirkland, S. C. Dome formation by a human colonic adenocarcinoma cell line (HCA‐7). Cancer Res. 45: 3790–3795, 1985.
 116. Kitabgi, P., C. Poustis, C. Granier, J. Van Rietschoten, J. Rivier, J. L. Morgat, and P. Freychet. Neurotensin binding to extraneural and neural receptors: comparison with biological activity and structure—activity relationships. Mol. Pharmacol. 18: 11–19, 1980.
 117. Kitabgi, P., C. Poustis, A. Zweibaum, and P. Freychet. Peptide receptors in colonic tumor cells: specific binding of epidermal growth factor to the HT‐29 cell line. In: Hormone Receptors in Digestion and Nutrition, edited by G. Rosselin, P. Fromageot, and S. Bonfils. Amsterdam: Elsevier/North Holland, 1979, p. 255–260.
 118. Knoll, G., and D. Brdiczka. Changes in freeze‐fractured mitochondrial membranes correlated to their energetic state. Biochim. Biophys. Acta 733: 102–110, 1983.
 119. Koldovksy, O. Development of the Functions of the Small Intestine of Mammals and Man. Basel: Karger, 1969.
 120. Krejs, G. J., and J. S. Fordtran. Effect of VIP infusion on water and ion transport in the human jejunum. Gastroenterology 78: 722–727, 1980.
 121. Laburthe, M. The vasoactive intestinal peptide (VIP): an ubiquitous neuropeptide in a structural family of regulatory peptides. Biochimie Paris 67: XI–XVIII, 1985.
 122. Laburthe, M., and B. Amiranoff. Peptide receptors in the intestinal epithelium. In: Handbook of Physiology. Gastrointestinal System. Neural and Endocrine Biology, edited by G. M. Makhlouf. Bethesda, MD: Am. Physiol. Soc., 1989, sect. 6, vol. II, chapt. 11, p. 215–244.
 123. Laburthe, M., B. Amiranoff, and C. Boissard. Alpha‐adrenergic inhibition of cyclic AMP accumulation in epithelial cells isolated from rat small intestine. Biochim. Biophys. Acta 721: 101–108, 1982.
 124. Laburthe, M., C. Augeron, C. Rouyer‐Fessard, E. Grasset, and C. Laboisse. Expression of functional VIP receptors in permanently differentiated clones of the human colon cancer cell line HT‐29 exhibiting ionic transepithelial transport (HT29–19A) and massive mucus secretion (HT29–16E) (Abstract). Can. J. Physiol. Pharmacol. 66: 464, 1988.
 125. Laburthe, M., J. Besson, D. Hui Bon Hoa, and G. Rosselin. Récepteurs du peptide intestinal vasoactif (VIP) dans les entérocytes: liaison spécifique et stimulation de l'AMP cyclique. C. R. Hebd. Seances Acad. Sci. Ser. D Sci. Nat. 284: 2139–2142, 1977.
 126. Laburthe, M., B. Breant, and C. Rouyer‐Fessard. Molecular identification of VIP receptors in rat intestinal epithelium by covalent cross‐linking: evidence for two classes of binding sites with different structural and functional properties. Eur. J. Biochem. 139: 181–187, 1984.
 127. Laburthe, M., B. Chenut, C. Rouyer‐Fessard, K. Tatemoto, A. Couvineau, A. Servin, and B. Amiranoff. Interaction of peptide YY with rat intestinal epithelial plasma membranes: binding of the radioiodinated peptide. Endocrinology 118: 1910–1917, 1986.
 128. Laburthe, M., A. Couvineau, M. Rousset, and C. Rouyer‐Fessard. Cellular expression and molecular identification of peripheral VIP receptors (Abstract). Regul. Pept., Suppl. 3: S4, 1985.
 129. Laburthe, M., and C. Dupont. VIPergic control of intestinal epithelium in health and disease. In: Vasoactive Intestinal Peptide, edited by S. I. Said. New York: Raven, 1982, p. 407–423. (Adv. Pept. Hormone Res. Ser., vol. 1.)
 130. Laburthe, M., C. Dupont, J. Besson, M. Rousset, and G. Rosselin. A new bioassay of VIP: results in watery diarrhea syndrome. Gut 21: 619–625, 1980.
 131. Laburthe, M., P. Mangeat, G. Marchis‐Mouren, and G. Rosselin. Activation of cyclic AMP‐dependent protein kinases by vasoactive intestinal peptide (VIP) in isolated intestinal epithelial cells from rat. Life Sci. 25: 1931–1938, 1979.
 132. Laburthe, M., J. Prieto, B. Amiranoff, C. Dupont, J. Broyart, D. Hui Bon Hoa, Y. Broer, and G. Rosselin. VIP receptors in intestinal epithelial cells. Distribution throughout the intestinal tract. In: Hormone Receptors in Digestion and Nutrition, edited by G. Rosselin, P. Fromageot, and S. Bonfils. Amsterdam: Elsevier/North Holland, 1979, p. 241–254.
 133. Laburthe, M., J. C. Prieto, B. Amiranoff, C. Dupont, D. Hui Bon Hoa, and G. Rosselin. Interaction of vasoactive intestinal peptide with isolated intestinal epithelial cells from rat. 2. Characterization and structural requirements of the stimulatory effect of vasoactive intestinal peptide on production of adenosine 3:5‐monophosphate. Eur. J. Biochem. 96: 239–248, 1979.
 134. Laburthe, M., G. Rosselin, M. Rousset, A. Zweibaum, M. Korner, Z. Selinger, and M. Schramm. Transfer of the hormone receptor for vaso‐intestinal peptide to an adenylate cyclase system in another cell. FEBS Lett. 98: 237–239, 1979.
 135. Laburthe, M., M. Rousset, C. Boissard, G. Chevalier, A. Zweibaum, and G. Rosselin. Vasoactive intestinal peptide: a potent stimulator of adenosine 3′:5′‐cyclic monophosphate accumulation in gut carcinoma cell lines in culture. Proc. Natl. Acad. Sci. USA 75: 2772–2775, 1978.
 136. Laburthe, M., M. Rousset, G. Chevalier, C. Boissard, C. Dupont, A. Zweibaum, and G. Rosselin. Vasoactive intestinal peptide control of cyclic adenosine 3′:5′‐monophosphate in seven human colorectal adenocarcinoma cell lines in culture. Cancer Res. 40: 2529–2533, 1980.
 137. Laburthe, M., M. Rousset, C. Rouyer‐Fessard, A. Couvineau, I. Chantret, G. Chevalier, and A. Zweibaum. Development of vasoactive intestinal peptide‐responsive adenylate cyclase during enterocytic differentiation of Caco‐2 cells in culture: evidence for an increased receptor level. J. Biol. Chem. 262: 10180–10184, 1987.
 138. Lacroix, B., M. Kedinger, P. Simon‐Assmann, M. Rousset, A. Zweibaum, and K. Haffen. Developmental pattern of brush border enzymes in the human fetal colon. Correlation with some morphogenetic events. Early Hum. Dev. 9: 95–103, 1984.
 139. Langer, S. Z. Presynaptic regulation of catecholamine release. Biochem. Pharmacol. 23: 1793–1800, 1974.
 140. Leibovitz, A., J. C. Stinson, W. B. McCombs III, C. E. McCoy, K. C. Mazur, and N. D. Mabry. Classification of human colorectal adenocarcinoma cell lines. Cancer Res. 36: 4562–4569, 1976.
 141. Leighton, J., Z. Brada, L. W. Estes, and G. Justh. Secretory activity and oncogenicity of a cell line (MDCK) derived from canine kidney. Science Wash. DC 163: 472–473, 1969.
 142. Lev, R., and D. Orlic. Histochemical and radioautographic studies of normal human fetal colon. Histochemistry 39: 301–311, 1974.
 143. Lombes, M., M. Claire, M. Pinto, A. Michaud, and M. E. Rafestin‐Oblin. Aldosterone binding in the human colon carcinoma cell line HT‐29: correlation with cell differentiation. J. Steroid Biochem. 20: 329–334, 1984.
 144. Louvard, D., M. Arpin, E. Coudrier, C. Huet, E. Pringault, S. Robine, and C. Sahuquillo‐Merino. Experimental manipulation of intestinal cell differentiation using a human adenocarcinoma cell line (HT‐29) (Abstract). J. Cell Biol. 99: 6a, 1984.
 145. Madara, J. L., and K. Dharmsathaphorn. Occluding junction structure‐function relationships in a cultured epithelial monolayer. J. Cell Biol. 101: 2124–2133, 1985.
 146. Mandel, K. G., K. Dharmsathaphorn, and J. A. McRoberts. Characterization of a cyclic AMP‐activated Cl− transport pathway in the apical membrane of a human colonic epithelial cell line. J. Biol. Chem. 261: 704–712, 1986.
 147. Mandel, K. G., J. A. McRoberts, G. Beuerlein, E. S. Foster, and K. Dharmsathaphorn. Ba2+ inhibition of VIP‐ and A23187‐stimulated Cl− secretion by T84 cell monolayers. Am. J. Physiol. 250 (Cell Physiol. 19): C486–C494, 1986.
 148. Mangeat, P., J. Marvaldi, O. A. Ahmed, and G. Marchis‐Mouren. Parallel activation of cyclic AMP phosphodiesterase and cyclic AMP‐dependent protein kinase in two human gut adenocarcinoma cells (HT‐29 and HRT‐18) in culture, by vasoactive intestinal peptide (VIP) and other effectors activating the cyclic AMP system. Regul. Pept. 1: 397–414, 1981.
 149. Marie, J. C., D. Hui Bon Hoa, G. Hejblum, and G. Rosselin. Cycle of VIP in the human transformed colonic epithelial cells (HT‐29) in culture (Abstract). Regul. Pept., Suppl. 3: S33, 1985.
 150. Marie, J. C., D. Hui Bon Hoa, R. Jackson, G. Hejblum, and G. Rosselin. The biological relevance of HPLC‐purified vasoactive intestinal polypeptide monoiodinated at tyrosine 10 or tyrosine 22. Regul. Pept. 12: 113–123, 1985.
 151. Martin, F., S. Knobel, M. Martin, and M. Bordes. A carcinofetal antigen located on the membrane of cells from rat intestinal carcinoma in culture. Cancer Res. 35: 333–336, 1975.
 152. Marvaldi, J., P. Mangeat, O. A. Ahmed, C. Coeroli, and G. Marchis‐Mouren. Activation of cyclic AMP‐dependent protein kinases in human gut adenocarcinoma (HT‐29) cells in culture. Biochim. Biophys. Acta 588: 12–19, 1979.
 153. Matsudaira, P. T., and D. R. Burgess. Identification and organization of the components in the isolated microvillus cytoskeleton. J. Cell Biol. 83: 667–673, 1979.
 154. May, R. J., A. Quaroni, K. Kirsch, and K. J. Isselbacher. A villous cell‐derived inhibitor of intestinal cell proliferation. Am. J. Physiol. 241 (Gastrointest. Liver Physiol. 4): G520–G527, 1981.
 155. McBain, J. A., J. L. Weese, L. F. Meisner, W. H. Wolberg, and J. K. V. Willson. Establishment and characterization of human colorectal cancer cell lines. Cancer Res. 44: 5813–5821, 1984.
 156. McRoberts, J. A., G. Beuerlein, and K. Dharmsathaphorn. Cyclic AMP and Ca2+ ‐activated K+ transport in a human colonic epithelial cell line. J. Biol. Chem. 260: 14163–14172, 1985.
 157. Misfelt, D. S., S. J. Hamamoto, and D. R. Pitelka. Transepithelial transport in cell culture. Proc. Natl. Acad. Sci. USA 73: 1212–1216, 1976.
 158. Misfelt, D. S., and M. J. Sanders. Transepithelial transport by a pig kidney cell line (LLC‐PK1). J. Membr. Biol. 59: 13–18, 1981.
 159. Mohrmann, I., M. Mohrmann, J. Biber, and H. Murer. Sodium‐dependent transport of Pi by an established intestinal epithelial cell line (CaCo‐2). Am. J. Physiol. 250 (Gastrointest. Liver Physiol. 13): G323–G330, 1986.
 160. Moktari, S., H. Feracci, J. P. Gorvel, Z. Mishal, A. Rigal, and S. Maroux. Subcellular fractionation and subcellular localization of aminopeptidase N in the rabbit enterocytes. J. Membr. Biol. 89: 53–63, 1986.
 161. Mooseker, M. S., and L. G. Tilney. The organization of an actin filament‐membrane complex: filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J. Cell Biol. 67: 725–743, 1975.
 162. Morita, A., D. Tsao, and Y. S. Kim. Effect of sodium butyrate on alkaline phosphatase in HRT‐18, a human rectal cancer cell line. Cancer Res. 42: 4540–4545, 1982.
 163. Mostov, K. E., and G. Blobel. A transmembrane precursor of secretory component. The receptor for transcellular transport of polymeric immunoglobulins. J. Biol. Chem. 257: 11816–11821, 1982.
 164. Mountjoy, K. G., I. M. Holdaway, and G. J. Finlay. Insulin receptor regulation in cultured human tumor cells. Cancer Res. 43: 4537–4542, 1983.
 165. Moyer, M. P., and J. B. Aust. Human colon cells: culture and in vitro transformation. Science Wash. DC 224: 1445–1447, 1984.
 166. Muller, J. M., A. El Battari, E. Ah‐Kye, J. Luis, F. Ducret, J. Pichon, and J. Marvaldi. Internalization of the vasoactive intestinal peptide (VIP) in a human adenocarcinoma cell line (HT‐29). Eur. J. Biochem. 152: 107–114, 1985.
 167. Muller, J. M., J. Luis, J. Fantini, B. Abadie, F. Giannellini, J. Marvaldi, and J. Pichon. Covalent cross‐linking of vasoactive intestinal peptide (VIP) to its receptor in intact colonic adenocarcinoma cells in culture (HT‐29). Eur. J. Biochem. 151: 411–417, 1985.
 168. Murakami, H., and H. Masui. Hormonal control of human colon carcinoma cell growth in serum‐free medium. Proc. Natl. Acad. Sci. USA 77: 3464–3468, 1980.
 169. Nagura, H., P. Nakane, and W. R. Brown. Translocation of dimeric IgA through neoplastic colon cells “in vitro.” J. Immunol. 123: 2359–2368, 1979.
 170. Nakaki, T., T. Nakadate, S. Yamamoto, and R. Kato. α2‐Adrenergic receptor in intestinal epithelial cells. Identification by [3H]yohimbine and failure to inhibit cyclic AMP accumulation. Mol. Pharmacol. 23: 228–234, 1983.
 171. Namba, N., K. Miyamoto, F. Hyodoh, T. Iwama, J. Utsunomiya, F. Fukushima, and T. Kimoto. Establishment and characterization of a human colon carcinoma cell line (KMS‐4) from a patient with hereditary adenomatosis of the colon and rectum. Int. J. Cancer 32: 697–702, 1983.
 172. Negrel, R., P. Rampal, J. L. Nano, C. Cavenel, and G. Ailhaud. Establishment and characterization of an epithelial intestinal cell line from rat fetus. Exp. Cell Res. 143: 427–437, 1983.
 173. Neutra, M. R., L. J. O'Malley, and R. D. Specian. Regulation of intestinal goblet cell secretion. II. A survey of potential secretagogues. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G380–G387, 1982.
 174. Newson, B., A. Ahlman, D. Dahlström, T. K. Dasgupta, and L. M. Nyhus. On the innervation of the ileal mucosa in the rat—a synapse. Acta Physiol. Scand. 105: 387–389, 1979.
 175. Noguchi, P., R. Wallace, J. Johnson, E. M. Earley, S. O'Brien, S. Ferrone, M. A. Pellegrino, J. Milstien, C. Needy, W. Browne, and J. Petricciani. Characterization of WiDr: a human colon carcinoma cell line. In Vitro 15: 401–408, 1979.
 176. O'Donnell, R. W., and G. L. Cockerell. Establishment and biological properties of a guinea pig colonic adenocarcinoma cell line induced by N‐methyl‐N‐nitrosourea. Cancer Res. 41: 2372–2377, 1981.
 177. Oriol, R., M. Rousset, A. Zweibaum, A. M. Dalix, G. Chevalier, E. Dussaulx, and G. Strecker. Radioimmunoassay of the WZ polymorphic antigens of normal human colon and their relationship with ABH antigenic determinants. Immunology 32: 131–137, 1977.
 178. Orly, J., and M. Schramm. Coupling of catecholamine receptor from one cell with adenylate cyclase from another cell by cell fusion. Proc. Natl. Acad. Sci. USA 73: 4410–4414, 1976.
 179. Owens, R. B., H. S. Smith, W. A. Nelson‐Rees, and E. L. Springer. Epithelial cell cultures from normal and cancerous human tissues. J. Natl. Cancer Inst. 56: 843–849, 1976.
 180. Paris, H., B. Bouscarel, C. Cortinovis, and J. C. Murat. Growth‐related variation of alpha2‐adrenergic receptivity in the HT‐29 adenocarcinoma cell line from human colon. FEBS Lett. 184: 82–86, 1985.
 181. Paris, H., M. Rousset, A. Zweibaum, and J. C. Murat. Variations of glycogen levels and α‐glucosidases activities in human adenocarcinoma cell lines in culture. Int. J. Biochem. 14: 141–145, 1982.
 182. Paris, H., B. Terrain, V. Viallard, M. Rousset, A. Zweibaum, and J. C. Murat. Activities of glycogen metabolizing enzymes in glucose‐deprived HT‐29 adenocarcinoma cell line. Biochem. Biophys. Res. Commun. 110: 371–377, 1983.
 183. Pichon, J., M. Hirn, J. M. Muller, P. Mangeat, and J. Marvaldi. Anticell surface monoclonal antibodies which antagonize the action of VIP in a human adenocarcinoma cell line (HT‐29). EMBO J. 2: 1017–1022, 1983.
 184. Pinto, M., M. D. Appay, P. Simon‐Assmann, G. Chevalier, N. Dracopoli, J. Fogh, and A. Zweibaum. Enterocytic differentiation of cultured human colon cancer cells by replacement of glucose by galactose in the medium. Biol. Cell 44: 193–196, 1982.
 185. Pinto, M., S. Robine‐Leon, M. D. Appay, M. Kedinger, N. Triadou, E. Dussaulx, B. Lacroix, P. Simon‐Assmann, K. Haffen, J. Fogh, and A. Zweibaum. Enterocyte‐like differentiation and polarization of the human colon carcinoma cell line Caco‐2 in culture. Biol. Cell 47: 323–330, 1983.
 186. Polak‐Charcon, S., J. Shoham, and Y. Ben Shaul. Junction formation in trypsinized cells of human adenocarcinoma cell line. Exp. Cell Res. 116: 1–13, 1978.
 187. Prieto, J. C., M. Laburthe, D. Hui Bon Hoa, and G. Rosselin. Quantitative studies of vasoactive intestinal peptide (VIP) binding sites and VIP‐induced adenosine 3′:5′‐monophosphate production in epithelial cells from duodenum, jejunum, ileum, caecum, colon and rectum in the rat. Acta Endocrinol. 96: 100–106, 1981.
 188. Prieto, J. C., M. Laburthe, and G. Rosselin. Interaction of vasoactive intestinal peptide with isolated intestinal epithelial cells from rat. I. Characterization, quantitative aspects and structural requirement of binding sites. Eur. J. Biochem. 96: 229–237, 1979.
 189. Pringault, E., M. Arpin, A. Garcia, J. Finidori, and D. Louvard. A human villin cDNA clone to investigate the differentiation of intestinal and kidney cells in vivo and in culture. EMBO J. 5: 3119–3124, 1986.
 190. Quaroni, A. Expression of YBB 3/10 antigen in human tumor colon cell lines and its induction by N,N‐dimethylformamide. J. Natl. Cancer Inst. 74: 591–602, 1985.
 191. Quaroni, A. Crypt cell antigen expression in human tumor colonic cell lines. Analysis with a panel of monoclonal antibodies to Caco‐2 luminal components. J. Natl. Cancer Inst. 76: 571–586, 1986.
 192. Quaroni, A., and K. J. Isselbacher. Cytotoxic effects and metabolism of benzo[a]pyrene and 7,12‐dimethyl‐benz[a]anthracene in duodenal and ileal epithelial cell cultures. J. Natl. Cancer Inst. 67: 1353–1362, 1981.
 193. Quaroni, A., and R. J. May. Establishment and characterization of intestinal epithelial cell cultures. In: Methods in Cell Biology, edited by G. C. Harris, B. F. Trump, and G. D. Stoner. New York: Academic, 1980, vol. 21B, p. 403–427.
 194. Quaroni, A., J. Wands, R. L. Trelstad, and K. J. Isselbacher. Epithelial cell cultures from rat small intestine. Characterization by morphologic and immunologic criteria. J. Cell Biol. 80: 248–265, 1979.
 195. Quinn, L. A., G. E. Moore, R. T. Morgan, and L. K. Woods. Cell lines from human colon carcinoma with unusual cell products, double minutes, and homogeneously staining regions. Cancer Res. 39: 4914–4924, 1979.
 196. Rabito, C. A. Localization of the Na+ ‐sugar cotransport system in a kidney epithelial cell line (LLC‐PK1). Biochim. Biophys. Acta 649: 286–296, 1981.
 197. Rabito, C. A., R. Tchao, J. Valentich, and J. Leighton. Distribution and characteristics of the occluding junctions in a monolayer of a cell line (MDCK) derived from canine kidney. J. Membr. Biol. 43: 351–365, 1978.
 198. Rafestin‐Oblin, M. E., M. Lombes, J. B. Michel, A. Michaud, and M. Claire. Mineralocorticoid receptors in the epithelial cells of human colon and ileum. J. Steroid Biochem. 20: 311–315, 1984.
 199. Ramond, M. J., M. Martinot‐Peignoux, and S. Erlinger. Dome formation in the human colon carcinoma cell line Caco‐2 in culture. Influence of ouabain and permeable supports. Biol. Cell 54: 89–95, 1985.
 200. Reggio, H., E. Coudrier, and D. Louvard. Surface and cytoplasmic domains in polarized epithelial cells. In: Membranes in Growth and Development, edited by J. F. Hoffman and G. H. Giebisch. New York: Liss, 1982, p. 89–105.
 201. Robine, S., C. Huet, R. Moll, C. Sahuquillo‐Merino, E. Coudrier, A. Zweibaum, and D. Louvard. Can villin be used to identify malignant and undifferentiated normal digestive epithelial cells? Proc. Natl. Acad. Sci. USA 82: 8488–8492, 1985.
 202. Roomi, N., M. Laburthe, N. Fleming, R. Crowther, and J. Forstner. Cholera‐induced mucin secretion from rat intestine: lack of effect of cAMP, cycloheximide, VIP, and colchicine. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G140–G148, 1984.
 203. Rosenthal, K. L., W. A. F. Tompkins, G. L. Frank, P. McCulloch, and W. E. Rawls. Variants of a human colon adenocarcinoma cell line which differ in morphology and carcinoembryonic antigen production. Cancer Res. 37: 4024–4030, 1977.
 204. Rousset, M., G. Chevalier, J. P. Rousset, E. Dussaulx, and A. Zweibaum. Presence and cell growth‐related variations of glycogen in human colorectal adenocarcinoma cell lines in culture. Cancer Res. 39: 531–534, 1979.
 205. Rousset, M., E. Dussaulx, G. Chevalier, and A. Zweibaum. Expression phénotypique des antigènes coliques polymorphes (WZ) dans les adénocarcinomes du côlon humain. C. R. Seances Acad. Sci. Ser. D Sci. Nat. 286: 659–662, 1978.
 206. Rousset, M., E. Dussaulx, G. Chevalier, and A. Zweibaum. Growth‐related glycogen levels of human intestine carcinoma cell lines grown in vitro and in vivo in nude mice. J. Natl. Cancer Inst. 65: 885–889, 1980.
 207. Rousset, M., M. Laburthe, G. Chevalier, C. Boissard, G. Rosselin, and A. Zweibaum. Vasoactive intestinal peptide (VIP) control of glycogenolysis in the human colon carcinoma cell line HT‐29 in culture. FEBS Lett. 126: 38–40, 1981.
 208. Rousset, M., M. Laburthe, M. Pinto, G. Chevalier, C. Rouyer‐Fessard, E. Dussaulx, G. Trugnan, N. Boige, J. L. Brun, and A. Zweibaum. Enterocytic differentiation and glucose utilization in the human colon tumor cell line Caco‐2: modulation by forskolin. J. Cell. Physiol. 123: 377–385, 1985.
 209. Rousset, M., H. Paris, G. Chevalier, B. Terrain, J. C. Murat, and A. Zweibaum. Growth‐related enzymatic control of glycogen metabolism in cultured human tumor cells. Cancer Res. 44: 154–160, 1984.
 210. Rousset, M., S. Robine‐Leon, E. Dussaulx, G. Chevalier, and A. Zweibaum. Glycogen storage in foetal and malignant epithelial cells of the human colon. Front. Gastrointest. Res. 4: 80–85, 1979.
 211. Rousset, M., A. Zweibaum, and J. Fogh. Presence of glycogen and growth‐related variations in 58 cultured human tumor cell lines of various tissue origins. Cancer Res. 41: 1165–1170, 1981.
 212. Sabol, S. L., and M. Nirenberg. Regulation of adenylate cyclase of neuroblastoma x glioma hybrid cells by alpha‐adrenergic receptors. I. Inhibition of adenylate cyclase mediated by alpha‐receptor. J. Biol. Chem. 254: 1913–1920, 1979.
 213. Said, S. I. (editor). Vasoactive Intestinal Peptide. New York: Raven, 1982, p. 512. (Adv. Pept. Horm. Res. Ser.)
 214. Said, S. I., and G. R. Faloona. Elevated plasma and tissue levels of vasoactive intestinal peptide in the watery diarrhea syndrome. N. Engl. J. Med. 293: 155–160, 1975.
 215. Sasak, W., R. K. Montgomery, and R. J. Grand. Role of attachment factors in attachment and differentiation of the epithelial cell line Caco‐2 (Abstract). J. Cell Biol. 101: 465a, 1985.
 216. Scemama, J. L., C. Ruellan, P. Clerc, F. Clemente, and A. Ribet. Dopamine receptors in a human colonic cancer cell line (HT‐29). Some receptor‐related biological effects of dopamine. Int. J. Cancer 34: 675–680, 1984.
 217. Schachter, H., and S. Roseman. Mammalian glycosyltransferases: their role in the synthesis and function of complex carbohydrates and glycolipids. In: The Biochemistry of Glycoproteins and Proteoglycans, edited by W. J. Lennarz. New York: Plenum, 1980, p. 85–160.
 218. Schmidt, U. M., B. Eddy, C. M. Fraser, J. C. Venter, and G. Semenza. Isolation of a subunit of the Na+/D‐glucose co‐transporter(s) of rabbit intestinal brush border membranes using monoclonal antibodies. FEBS Lett. 161: 279–283, 1983.
 219. Schramm, M., J. Orly, S. Eimerl, and M. Korner. Coupling of hormone receptors to adenylate cyclase of different cells by cell fusion. Nature Lond. 268: 310–313, 1977.
 220. Seamon, K. B., W. Padgett, and J. W. Daly. Forskolin: a unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc. Natl. Acad. Sci. USA 78: 3363–3367, 1981.
 221. Semenza, G. Intestinal oligo‐ and disaccharidases. In: Carbohydrate Metabolism and its Disorders, edited by P. J. Randle, D. F. Steiner, and W. J. Whelan. London: Academic, 1981, vol. 3, p. 425–479.
 222. Semenza, G. Anchoring and biosynthesis of stalked brush border membrane proteins: glycosidases and peptidases of enterocytes and of renal tubuli. Annu. Rev. Cell Biol. 2: 255–313, 1986.
 223. Semple, T. U., L. A. Quinn, L. K. Woods, and G. E. Moore. Tumor and lymphoid cell lines from a patient with carcinoma of the colon for a cytotoxicity model. Cancer Res. 38: 1345–1355, 1978.
 224. Sibley, D. R., and R. J. Lefkowitz. Molecular mechanisms of receptor desensitization using the β‐adrenergic receptor‐coupled adenylate cyclase system as a model. Nature Lond. 317: 124–129, 1985.
 225. Simons, K., and S. D. Fuller. Cell surface polarity in epithelia. Annu. Rev. Cell Biol. 1: 243–288, 1985.
 226. Sjöström, H., O. Norén, and E. M. Danielsen. The enzymatic activity of high mannose glycosylated form of intestinal microvillar hydrolases. J. Pediatr. Gastroenterol. Nutr. 4: 980–983, 1985.
 227. Tan, M. H., E. D. Holyoke, and M. H. Goldrosen. Murine colon adenocarcinomas: methods for selective culture in vitro. J. Natl. Cancer Inst. 56: 871–873, 1976.
 228. Tapper, E. J., A. S. Bloom, and D. L. Lewand. Endogenous norepinephrine release induced by tyramine modulates intestinal ion transport. Am. J. Physiol. 241 (Gastrointest. Liver Physiol. 4): G264–G269, 1981.
 229. Thompson, S. M., Y. Susuki, and S. G. Schultz. The electrophysiology of rabbit descending colon. I. Instantaneous transepithelial current‐voltage relations and the current‐voltage relations of the Na‐entry mechanism. J. Membr. Biol. 66: 41–54, 1982.
 230. Tilney, L. G., and M. S. Mooseker. Actin in the brush border of epithelial cells of the chicken intestine. Proc. Natl. Acad. Sci. USA 68: 2611–2615, 1971.
 231. Tolkovsky, A. M., and B. R. Martin. The glucagon receptor from liver can be functionally fused to caudate nucleus adenylate cyclase. FEBS Lett. 150: 337–342, 1982.
 232. Tom, B. H., L. P. Rutzky, M. M. Jakstys, R. Oyasu, C. I. Kaye, and B. D. Kahan. Human colonic adenocarcinoma cells. I. Establishment and description of a new line. In Vitro 12: 180–191, 1976.
 233. Tompkins, W. A. F., A. M. Watrach, J. D. Schmale, R. M. Schultz, and J. A. Harris. Cultural and antigenic properties of newly established cell strains derived from adenocarcinomas of the human colon and rectum. J. Natl. Cancer Inst. 52: 1101–1110, 1974.
 234. Triadou, N., E. Audran, M. Rousset, A. Zweibaum, and R. Oriol. Relationship between the secretor status and the expression of ABH blood group antigenic determinants in human intestinal brush border membrane hydrolases. Biochim. Biophys. Acta 761: 231–236, 1983.
 235. Triadou, N., and A. Zweibaum. Maturation of sucrase‐isomaltase complex in human fetal small and large intestine during gestation. Pediatr. Res. 19: 136–138, 1985.
 236. Trugnan, G., M. Rousset, I. Chantret, A. Barbat, and A. Zweibaum. The post‐translational processing of sucrase‐isomaltase in HT‐29 cells is a function of their state of enterocytic differentiation. J. Cell Biol. 104: 1199–1205, 1987.
 237. Trugnan, G., M. Rousset, and A. Zweibaum. Castanospermine: a potent inhibitor of sucrase from the human enterocyte‐like cell line Caco‐2. FEBS Lett. 195: 28–32, 1986.
 238. Tsai, B. S., R. G. Conway, and R. F. Bauer. Identification and regulation of alpha2‐adrenergic receptors in rabbit ileal mucosa. Biochem. Pharmacol. 34: 3867–3873, 1985.
 239. Tsao, D., A. Morita, A. Bella, Jr., P. Luu, and Y. S. Kim. Differential effects of sodium butyrate, dimethyl sulfoxide, and retinoic acid on membrane‐associated antigen, enzymes, and glycoproteins of human rectal adenoma cells. Cancer Res. 42: 1052–1058, 1982.
 240. Tsuchiya, W., and Y. Okada. Membrane potential changes associated with differentiation of enterocytes in the rat intestinal villi in culture. Dev. Biol. 94: 284–290, 1982.
 241. Tsuchiya, W., Y. Okada, and A. Inouye. Membrane potential measurements in cultured intestinal villi. Membr. Biochem. 3: 147–153, 1980.
 242. Turner, J. T., C. Ray‐Prenger, and D. B. Bylund. Alpha2‐adrenergic receptors in the human cell line, HT‐29. Characterization with the full agonist radioligand [3H] UK‐14, 304 and inhibition of adenylate cyclase. Mol. Pharmacol. 28: 422–430, 1985.
 243. Verner, J. V., and A. B. Morrison. Islet cell tumor and a syndrome of refractory diarrhea and hypokalemia. Am. J. Med. 25: 373–380, 1958.
 244. Vincent, M. L., R. M. Russell, and V. Sasak. Folic acid uptake characteristics of a human colon carcinoma cell line, Caco‐2. A newly‐described cellular model for small intestinal epithelium. Hum. Nutr. Clin. Nutr. 39: 355–360, 1985.
 245. Warburg, O. (editor). The Metabolism of Tumours. London: Constable, 1930.
 246. Weiler, U., I. Riesinger, G. Knoll, and D. Brdiczka. The regulation of mitochondrial bound hexokinases in the liver. Biochem. Med. 33: 223–236, 1985.
 247. Weinhouse, S. Changing perceptions of carbohydrate metabolism in tumor. In: Molecular Interrelations of Nutrition and Cancer, edited by M. S. Arnott, J. van Eys, and Y. M. Wang. New York: Raven, 1982, p. 167–181.
 248. Welsh, M. J., P. L. Smith, and R. A. Frizzell. Chloride secretion by canine tracheal epithelium. III. Membrane resistances and electromotive forces. J. Membr. Biol. 71: 209–218, 1983.
 249. Welsh, M. J., P. L. Smith, M. Fromm, and R. A. Frizzell. Crypts are the site of intestinal fluid and electrolyte secretion. Science Wash. DC 218: 1219–1221, 1982.
 250. Weymer, A., P. Huott, W. Liu, J. A. McRoberts, and K. Dharmsathaphorn. Chloride secretory mechanism induced by prostaglandin E1 in a colonic epithelial cell line. J. Clin. Invest. 76: 1828–1836, 1985.
 251. White, M. K., M. E. Bramwell, and H. Harris. Hexose transport in hybrids between malignant and normal cells. Nature Lond. 294: 232–235, 1981.
 252. Whitehead, R. H., F. A. Macrae, D. J. B. St. John, and J. Ma. A colon cancer cell line (LIM 1215) derived from a patient with inherited nonpolyposis colorectal cancer. J. Natl. Cancer Inst. 74: 759–765, 1985.
 253. Wice, B. M., G. Trugnan, M. Pinto, M. Rousset, G. Chevalier, E. Dussaulx, B. Lacroix, and A. Zweibaum. The intracellular accumulation of UDP‐N‐acetylhexosamines is concomitant with the inability of human colon cancer cells to differentiate. J. Biol. Chem. 260: 139–146, 1985.
 254. Wood, C. L., and M. S. O'Dorisio. Covalent cross‐linking of vasoactive intestinal polypeptide to its receptors on intact human lymphoblasts. J. Biol. Chem. 260: 1243–1247, 1985.
 255. Yada, T., and Y. Okada. Electrical activity of an intestinal epithelial cell line: hyperpolarizing responses to intestinal secretagogues. J. Membr. Biol. 77: 33–44, 1984.
 256. Yeh, K. Y., and D. P. Chopra. Epithelial cell cultures from the colon of the suckling rat. In Vitro 16: 976–986, 1980.
 257. Zweibaum, A. Enterocytic differentiation of cultured human colon cancer cell lines: negative modulation by D‐glucose. In: Ion Gradient‐Coupled Transport, edited by F. Alvarado and C. H. van Os. Amsterdam: Elsevier, 1986, p. 345–353.
 258. Zweibaum, A., and E. Bouhou. Studies on digestive groups. I. The A alloantigen‐alloantibody system in rabbits. Transplantation Baltimore 15: 291–293, 1973.
 259. Zweibaum, A., H. P. Hauri, E. Sterchi, I. Chantret, K. Haffen, J. Bamat, and B. Sordat. Immunohistological evidence obtained with monoclonal antibodies of small intestinal brush border hydrolases in human colon cancers and foetal colons. Int. J. Cancer 34: 591–598, 1984.
 260. Zweibaum, A., R. Oriol, J. Dausset, A. Marcelli‐Barge, C. Ropartz, and S. Lanset. Definition in man of a polymorphic system of the normal colonic secretions. Tissue Antigens 6: 121–128, 1975.
 261. Zweibaum, A., M. Pinto, G. Chevalier, E. Dussaulx, N. Triadou, B. Lacroix, K. Haffen, J. L. Brun, and M. Rousset. Enterocytic differentiation of a subpopulation of the human colon tumor cell line HT‐29 selected for growth in sugar‐free medium and its inhibition by glucose. J. Cell. Physiol. 122: 21–29, 1985.
 262. Zweibaum, A., M. Rousset, M. Pinto, G. Chevalier, E. Dussaulx, and J. L. Brun. Mucus glycoprotein differentiation by serum deprivation of the human colon carcinoma cell line HT‐29 in culture (Abstract). Biol. Cell 45: 91, 1982.
 263. Zweibaum, A., and V. Steudler. Natural iso‐antibodies specific for tissular group antigens of the colon in dog and rabbit. Nature Lond. 223: 84–86, 1969.
 264. Zweibaum, A., N. Triadou, M. Kedinger, C. Augeron, S. Robine‐Leon, M. Pinto, M. Rousset, and K. Haffen. Sucrase‐isomaltase: a marker of foetal and malignant epithelial cells of the human colon. Int. J. Cancer 32: 407–412, 1983.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Alain Zweibaum, Marc Laburthe, Etienne Grasset, Daniel Louvard. Use of Cultured Cell Lines in Studies of Intestinal Cell Differentiation and Function. Compr Physiol 2011, Supplement 19: Handbook of Physiology, The Gastrointestinal System, Intestinal Absorption and Secretion: 223-255. First published in print 1991. doi: 10.1002/cphy.cp060407