Comprehensive Physiology Wiley Online Library

Ion Transport Across the Large Intestine

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Active Transport Processes
2 Active Ion Absorption
2.1 Electrogenic Sodium Absorption
2.2 Coupled Sodium Chloride Absorption
2.3 Potassium Absorption
3 Active Ion Secretion
3.1 Chloride Secretion
3.2 Potassium Secretion
4 Diffusional Transepithelial Ion Flow
5 Relation of Transport Function to Epithelial Morphology
6 Regulation of Ion Transport
6.1 Modulation of Absorption and Secretion
6.2 Corticosteroid Hormones
7 Segmental Differences in Transport
8 Integration of Intestinal Function
Figure 1. Figure 1.

Model for electrogenic Na+ absorption. Schematic shows epithelium separating mucosal solution from serosal solution.

Figure 2. Figure 2.

Electrical equivalent circuit for electrogenic Na+ absorption or Cl secretion. Ea, apical equilibrium potential; Eb, basolateral equilibrium potential; Ep, paracellular equilibrium potential; Ra, apical resistance; Rb, basolateral resistance; Rp, paracellular resistance.

Figure 3. Figure 3.

Model for coupled NaCl absorption.

Figure 4. Figure 4.

Model for K+ absorption.

Figure 5. Figure 5.

Model for electrogenic Cl secretion.



Figure 1.

Model for electrogenic Na+ absorption. Schematic shows epithelium separating mucosal solution from serosal solution.



Figure 2.

Electrical equivalent circuit for electrogenic Na+ absorption or Cl secretion. Ea, apical equilibrium potential; Eb, basolateral equilibrium potential; Ep, paracellular equilibrium potential; Ra, apical resistance; Rb, basolateral resistance; Rp, paracellular resistance.



Figure 3.

Model for coupled NaCl absorption.



Figure 4.

Model for K+ absorption.



Figure 5.

Model for electrogenic Cl secretion.

References
 1. Ahn, J., E. B. Chang, and M. Field. Phorbol ester inhibition of Na‐H exchange in rabbit proximal colon. Am. J. Physiol. 249 (Cell Physiol. 18): C527–C530, 1985.
 2. Albin, D., and Y. Gutman. Tritiated‐ouabain binding and dissociation in rabbit colon: effect of ions and drugs. Biochem. Pharmacol. 28: 3181–3188, 1979.
 3. Andres, H., R. Bock, R. J. Bridges, W. Rummell, and J. Schreiner. Submucosal plexus and electrolyte transport across rat colonic mucosa. J. Physiol. Lond. 364: 301–312, 1985.
 4. Bastl, C. P., H. J. Binder, and J. P. Hayslett. Role of glucocorticoids and aldosterone in maintenance of colonic cation transport. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F181–F186, 1980.
 5. Batt, E. R., and D. Schachter. Developmental pattern of some intestinal transport mechanisms in newborn rats and mice. Am. J. Physiol. 216: 1064–1068, 1969.
 6. Benos, D. J. Amiloride: a molecular probe of sodium transport in tissues and cells. Am. J. Physiol. 242 (Cell Physiol. 11): C131–C145, 1982.
 7. Berridge, M. S. Inositol trisphosphate and diacylglycerol as second messengers. Biochem. J. 220: 345–360, 1984.
 8. Binder, H. J. Sodium and chloride transport across colonic mucosa in the rat. In: Membrane Transport Processes, edited by J. F. Hoffman. New York: Raven, 1978, vol. 1, p. 309–330.
 9. Binder, H. J., and C. L. Rawlins. Electrolyte transport across isolated large intestinal mucosa. Am. J. Physiol. 225: 1232–1239, 1973.
 10. Bindslev, N. Sodium transport in the hen lower intestine: induction of sodium sites in the brush border by a low sodium diet. J. Physiol. Lond. 288: 449–466, 1979.
 11. Bridges, R. J., G. Nell, and W. Rummel. Influence of vasopressin and calcium on electrolyte transport across isolated colonic mucosa of the rat. J. Physiol. Lond. 338: 463–475, 1983.
 12. Bridges, R. J., M. Rack, W. Rummel, and J. Schreiner. Mucosal plexus and electrolyte transport across the rat colonic mucosa. J. Physiol. Lond. 376: 531–542, 1986.
 13. Bridges, R. J., W. Rummel, and B. Simon. Forskolin induced chloride secretion across the isolated mucosa of rat colon descendens. Naunyn‐Schmiedeberg's Arch. Pharmacol. 323: 355–360, 1983.
 14. Bridges, R. J., W. Rummel, and P. Wollenberg. Effects of vasopressin on electrolyte transport across isolated colon from normal and dexamethasone‐treated rats. J. Physiol. Lond. 355: 11–23, 1984.
 15. Browning, J. G., J. Hardcastle, P. T. Hardcastle, and P. A. Sanford. The role of acetylcholine in the regulation of ion transport by rat colon mucosa. J. Physiol. Lond. 272: 737–754, 1977.
 16. Busa, W. B., and R. Nuccitelli. Metabolic regulation via intracellular pH. Am. J. Physiol. 246 (Regulatory Integrative Comp. Physiol. 15): R409–R438, 1984.
 17. Cartwright, C. A., J. A. McRoberts, K. G. Mandel, A. Weymer, and K. Dharmsathaphorn. Synergistic action of cyclic‐AMP and calcium mediated chloride secretion in a colonic epithelial cell line. J. Clin. Invest. 76: 1837–1842, 1985.
 18. Chang, W. W. L., and C. P. Leblond. Renewal of the epithelium in the descending colon of the mouse. I. Presence of three cell populations: vacuolated‐columnar, mucous and argentaffin. Am. J. Anat. 131: 73–99, 1971.
 19. Cheng, H., M. Bjerknes, and J. Amar. Methods for the determination of epithelial cell kinetic parameters of human colonic epithelium isolated from surgical and biopsy specimens. Gastroenterology 86: 78–85, 1984.
 20. Clauss, W., S. S. Aranson, B. G. Munck, and E. Skadhauge. Aldosterone‐induced sodium transport in lower intestine: effects of varying sodium chloride intake. Pfluegers Arch. 401: 354–360, 1984.
 21. Clauss, W., J. Dürr, and G. Rechkemmer. Characterization of conductive pathways in guinea pig distal colon in vitro. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G176–G183, 1985.
 22. Clauss, W., J. Dürr, E. Skadhauge, and H. Hörnicke. Effects of aldosterone and dexamethasone on apical membrane properties and sodium transport of rabbit distal colon in vitro. Pfluegers Arch. 403: 186–192, 1985.
 23. Clauss, W., H. Schäfer, I. Horch, and H. Hörnicke. Segmental differences in electrical properties and sodium transport of rabbit cecum, proximal and distal colon in vitro. Pfluegers Arch. 403: 228–282, 1985.
 24. Cohn, J. A. Vasoactive intestinal peptide stimulates protein phosphorylation in a colonic epithelial cell line. Am. J. Physiol. 253 (Gastrointest. Liver Physiol. 16): G420–G424, 1987.
 25. Cox, M., and M. Geheb. Aldosterone‐induced proteins in renal epithelia. In: Current Topics in Membranes and Transport. Molecular Approaches to Epithelial Transport, edited by J. B. Wade and S. A. Lewis. New York: Academic, 1984, vol. 20, p. 271–293.
 26. Dawson, D. C. Sodium and chloride transport across the isolated turtle colon: parallel pathways for transmural ion movement. J. Membr. Biol. 37: 213–233, 1977.
 27. Dawson, D. C., and P. F. Curran. Sodium transport by the colon of Bufo marinus: sodium uptake across the mucosal border. J. Membr. Biol. 28: 295–307, 1976.
 28. Dharmsathaphorn, K., P. Krims, and S. J. Pandol. Mechanism of chloride secretion induced by carbachol in a colonic epithelial cell line. J. Clin. Invest. 77: 348–354, 1986.
 29. Dharmsathaphorn, K., K. G. Mandel, H. Masui, and J. A. McRoberts. Vasoactive intestinal polypeptide‐induced chloride secretion by a colonic epithelial cell line: direct participation of a basolaterally localized Na‐K‐Cl cotransport system. J. Clin. Invest. 75: 462–471, 1985.
 30. Dharmsathaphorn, K., J. A. McRoberts, K. G. Mandel, L. D. Tisdale, and H. Masui. A human colonic tumor cell line that maintains vectorial electrolyte transport. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G204–G208, 1984.
 31. Di Bona, D. R., and J. W. Mills. Distribution of sodiumpump sites in transporting epithelia. Federation Proc. 38: 134–143, 1979.
 32. Donowitz, M. Ca2+ in the control of active intestinal Na and Cl transport: involvement in neurohumoral action. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G165–G177, 1983.
 33. Duffey, M. E. Intracellular pH and bicarbonate activities in rabbit colon. Am. J. Physiol. 246 (Cell Physiol. 15): C558–C561, 1984.
 34. Dupont, C., M. Laburthe, J. P. Broyart, D. Bataille, and G. Rosselin. Cyclic‐AMP production in isolated colonic epithelial crypts: a highly sensitive model for the evaluation of vasoactive intestinal peptide action in human intestine. Eur. J. Clin. Invest. 10: 67–76, 1980.
 35. Edmonds, C. J., and T. Smith. Epithelial transport pathways of rat colon determined in vivo by impulse response analysis. J. Physiol. Lond. 269: 471–485, 1979.
 36. Fan, C.‐C., R. G. Faust, and D. W. Powell. Coupled sodiumchloride transport by rabbit ileal brush‐border membrane vesicles. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G375–G385, 1983.
 37. Ferriola, P. C., M. A. Acara, and M. E. Duffey. Thiazide diuretics inhibit chloride absorption by rabbit distal colon. J. Pharmacol. Exp. Ther. 238: 912–915, 1986.
 38. Field, M., J. S. Fordtran, and S. G. Schultz (editors). Secretory Diarrhea. Bethesda, MD: Am. Physiol. Soc., 1980.
 39. Foster, E. S., J. P. Hayslett, and H. J. Binder. Mechanism of active potassium absorption and secretion in the rat colon. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G611–G617, 1984.
 40. Foster, E. S., W. J. Jones, J. P. Hayslett, and H. J. Binder. Role of aldosterone and dietary potassium in potassium adaptation in the distal colon of the rat. Gastroenterology 88: 41–46, 1985.
 41. Foster, E. S., G. I. Sandle, J. P. Hayslett, and H. J. Binder. Cyclic adenosine monophosphate stimulates active potassium secretion in the rat colon. Gastroenterology 84: 324–330, 1983.
 42. Foster, E. S., T. W. Zimmerman, J. P. Hayslett, and H. J. Binder. Corticosteroid alteration of active electrolyte transport in rat distal colon. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G668–G675, 1983.
 43. Frindt, G., and M. B. Burg. Effect of vasopressin on sodium transport in renal cortical collecting tubules. Kidney Int. 1: 224–231, 1972.
 44. Frizzell, R. A. Active chloride secretion by rabbit colon: calcium‐dependent stimulation by ionophore A23187. J. Membr. Biol. 35: 175–187, 1977.
 45. Frizzell, R. A., M. Field, and S. G. Schultz. Sodium‐coupled chloride transport by epithelial tissues. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F1–F8, 1979.
 46. Frizzell, R. A., M. J. Koch, and S. G. Schultz. Ion transport by rabbit colon. I. Active and passive components. J. Membr. Biol. 27: 297–316, 1976.
 47. Frizzell, R. A., G. Rechkemmer, and R. L. Shoemaker. Altered regulation of airway epithelial cell chloride channels in cystic fibrosis. Science Wash. DC 233: 558–560, 1986.
 48. Frizzell, R. A., and S. G. Schultz. Effect of aldosterone on ion transport by rabbit colon in vitro. J. Membr. Biol. 39: 1–26, 1978.
 49. Frizzell, R. A., and K. Turnheim. Ion transport by rabbit colon. II. Unidirectional sodium influx and the effects of amphotericin B and amiloride. J. Membr. Biol. 40: 193–211, 1978.
 50. Fromm, M., U. Hegel, and S. Luderitz. Segmental heterogeneity of epithelial transport in rat large intestine. Pfluegers Arch. 378: 71–83, 1978.
 51. Fuchs, W., E. H. Larsen, and B. Lindemann. Current‐voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin. J. Physiol. Lond. 267: 137–166, 1977.
 52. Garty, H. Mechanisms of aldosterone action in tight epithelia. J. Membr. Biol. 90: 193–205, 1986.
 53. Gazitua, S., and J. W. L. Robinson. Ion fluxes and electrical characteristics of the short‐circuited rat colon in vitro. Pfluegers Arch. 394: 32–37, 1982.
 54. Geering, K., M. Claire, H.‐P. Gaeggeler, and B. C. Rossier. Receptor occupancy vs. induction of Na+‐K+‐ATPase and Na+ transport by aldosterone. Am. J. Physiol. 248 (Cell Physiol. 17): C102–C108, 1985.
 55. Germann, W. J., M. E. Lowy, S. A. Ernst, and D. C. Dawson. Differentiation of two distinct potassium conductances in the basolateral membrane of turtle colon. J. Gen. Physiol. 237–251, 1986.
 56. Giebisch, G. Some reflections on the mechanism of renal tubular potassium transport. Yale J. Biol. Med. 48: 315–336, 1975.
 57. Glynn, I. M., and S. J. D. Karlish. The sodium pump. Annu. Rev. Physiol. 37: 13–55, 1975.
 58. Grasl, M., and K. Turnheim. Stimulation of electrolyte secretion in rabbit colon by adenosine. J. Physiol. Lond. 346: 93–110, 1983.
 59. Grasset, E., J. Bernabeu, and M. Pinto. Epithelial properties of human colonic carcinoma cell line Caco‐2: effect of secretagogues. Am. J. Physiol. 248 (Cell Physiol. 17): C410–C418, 1985.
 60. Greger, R., and E. Schlatter. Mechanism of sodium chloride secretion in the rectal gland of spiny dogfish (Squalus acanthias). I. Experiments in isolated in vitro perfused rectal gland tubules. Pfluegers Arch. 402: 63–75, 1984.
 61. Greger, R., E. Schlatter, and H. Gögelein. Chloride channels in the luminal membrane of the rectal gland of the dogfish (Squalus acanthias). Properties of the “larger” conductance channel. Pfluegers Arch. 409: 114–121, 1987.
 62. Gunther, R. D., and E. M. Wright. Sodium, lithium and chloride transport by brush border membranes from rabbit jejunum. J. Membr. Biol. 74: 85–94, 1983.
 63. Gustin, M. C., and D. B. P. Goodman. Isolation of brush‐border membrane from the rabbit descending colon epithelium. Partial characterization of a unique potassium‐activated ATPase. J. Biol. Chem. 256: 10651–10656, 1981.
 64. Hajjar, J.‐J. Ion transport in proximal and distal halves of turtle colon. Comp. Biochem. Physiol. A Comp. Physiol. 40: 39–44, 1971.
 65. Halm, D. R., and D. C. Dawson. Cation activation of the basolateral sodium‐potassium pump in turtle colon. J. Gen. Physiol. 82: 315–329, 1983.
 66. Halm, D. R., and D. C. Dawson. Potassium transport by turtle colon: active secretion and active absorption. Am. J. Physiol. 246 (Cell Physiol. 15): C315–C322, 1984.
 67. Halm, D. R., and D. C. Dawson. Control of potassium transport by turtle colon: role of membrane potential. Am. J. Physiol. 247 (Cell Physiol. 16): C26–C32, 1984.
 68. Halm, D. R., and D. C. Dawson. Aldosterone does not stimulate the Na/K pump in isolated turtle colon. Pfluegers Arch. 403: 236–239, 1985.
 69. Halm, D. R., and R. A. Frizzell. Active K transport across rabbit distal colon: relation to Na absorption and Cl secretion. Am. J. Physiol. 251 (Cell Physiol. 20): C252–C267, 1986.
 70. Halm, D. R., E. J. Krasny, Jr., and R. A. Frizzell. Electrophysiology of flounder intestinal mucosa: conductance properties of the cellular and paracellular pathways. J. Gen. Physiol. 85: 843–864, 1985.
 71. Halm, D. R., G. R. Rechkemmer, R. A. Schoumacher, and R. A. Frizzell. Apical membrane chloride channels in a colonic cell line activated by secretory agonists. Am. J. Physiol. 254 (Cell Physiol. 23): C505–C511, 1988.
 72. Hamilton, K. L., and D. C. Eaton. Single‐channel recordings from amiloride‐sensitive epithelial sodium channel. Am. J. Physiol. 249 (Cell Physiol. 18): C200–C207, 1985.
 73. Hannafin, J., E. Kinne‐Saffran, D. Friedman, and R. Kinne. Presence of a sodium‐potassium‐chloride cotransport system in the rectal gland of Squalus acanthias. J. Membr. Biol. 75: 73–83, 1983.
 74. Hatch, M., R. W. Freel, A. M. Goldner, and D. L. Earnest. Oxalate and chloride absorption by the rabbit colon: sensitivity to metabolic and anion transport inhibitors. Gut 25: 232–237, 1984.
 75. Hayslett, J. P., H. Gögelein, K. Kunzelmann, and R. Greger. Characteristics of apical chloride channels in human colon cells (HT29). Pfluegers Arch. 410: 487–494, 1987.
 76. Hayslett, J. P., N. Myketey, H. J. Binder, and P. S. Aronson. Mechanism of increased potassium secretion in potassium loading and sodium deprivation. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F378–F382, 1980.
 77. Heintze, K., C. P. Stewart, and R. A. Frizzell. Sodium‐dependent chloride secretion across rabbit descending colon. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G357–G365, 1983.
 78. Hubel, K. A. Intestinal nerves and ion transport: stimuli, reflexes, and responses. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G261–G271, 1985.
 79. Hyun, C. S., E. J. Cragoe, Jr., and M. Field. α2‐Adrenergic receptor‐mediated regulation of intestinal calcium transport. Am. J. Physiol. 249 (Cell Physiol. 18): C117–C123, 1985.
 80. James, P. S., and M. W. Smith. Methionine transport by pig colonic mucosa measured during early post‐natal development. J. Physiol. Lond. 262: 151–168, 1976.
 81. Johnson, R. D., D. R. Halm, E. J. Krasny, Jr., R. A. Frizzell, and D. R. Di Bona. Cellular specificity for chloride secretion in colonic crypt epithelium from the rabbit (Abstract). J. Cell Biol. 99: 292a, 1984.
 82. Jorkasky, D., M. Cox, and G. M. Feldman. Differential effects of corticosteroids on Na+ transport in rat distal colon in vitro. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G424–G431, 1985.
 83. Kaunitz, J. D., and G. Sachs. Identification of a vanadate‐sensitive potassium‐dependent proton pump from rabbit colon. J. Biol. Chem. 261: 14005–14010, 1986.
 84. Kirk, K. L., and D. C. Dawson. Basolateral potassium channel in turtle colon: evidence for a single‐file ion flow. J. Gen. Physiol. 82: 297–314, 1983.
 85. Kirk, K. L., and D. C. Dawson. Mechanism of epithelial lithium transport: evidence for basolateral Na:Na and Na:Li exchange. J. Gen. Physiol. 82: 497–510, 1983.
 86. Kirk, K. L., and D. C. Dawson. Passive cation permeability of turtle colon: evidence for a negative interaction between intracellular sodium and apical sodium permeability. Pfluegers Arch. 403: 82–89, 1985.
 87. Kirk, K. L., D. R. Halm, and D. C. Dawson. Active sodium transport by turtle colon via an electrogenic Na‐K exchange pump. Nature Lond. 287: 237–239, 1980.
 88. Koefoed‐Johnsen, V., and H. H. Ussing. The nature of the frog skin potential. Acta Physiol. Scand. 42: 298–308, 1958.
 89. Koeppen, B. M., B. A. Biagi, and G. H. Giebisch. Intracellular microelectrode characterization of the rabbit cortical collecting duct. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F35–F47, 1983.
 90. Krasny, E. J., Jr., and R. A. Frizzell. Fluid secretion by isolated colonic crypts (Abstract). Federation Proc. 43: 1087, 1984.
 91. Latorre, R., and C. Miller. Conduction and selectivity in potassium channels. J. Membr. Biol. 71: 11–30, 1983.
 92. Levins, N. R. Control of intestinal absorption by the reninangiotensin system. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G3–G15, 1985.
 93. Lewis, S. A., D. C. Eaton, and J. M. Diamond. The mechanism of sodium transport by rabbit urinary bladder. J. Membr. Biol. 28: 41–70, 1976.
 94. Lewis, S. A., and N. K. Wills. Interaction between apical and basolateral membranes during sodium transport across tight epithelia. In: Ion Transport by Epithelia, edited by S. G. Schultz. New York: Raven, 1981, p. 93–107.
 95. Liedtke, C. M., and U. Hopfer. Mechanism of Cl− translocation across small intestinal brush‐border membrane. I. Absence of Na+‐Cl− cotransport. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G263–G271, 1982.
 96. Lind, J., B. G. Munck, O. Olsen, and E. Skadhauge. Effects of dietary intake of sodium chloride on sugar and amino acid transport across isolated hen colon. J. Physiol. Lond. 305: 327–336, 1980.
 97. MacKnight, A. D. C., D. R. Di Bona, and A. Leaf. Sodium transport across toad urinary bladder: a model “tight” epithelium. Physiol. Rev. 60: 615–715, 1980.
 98. Marver, D. Assessment of mineralocorticoid activity in the rabbit colon. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F437–F446, 1984.
 99. McCabe, R., H. J. Cooke, and L. P. Sullivan. Potassium transport by rabbit descending colon. Am. J. Physiol. 242 (Cell Physiol. 11): C81–C86, 1982.
 100. McCabe, R. D., and P. L. Smith. Effects of histamine and histamine receptor antagonists on ion transport in rabbit descending colon. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G411–G418, 1984.
 101. McCabe, R. D., and P. L. Smith. Colonic potassium and chloride secretion: role of cAMP and calcium. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G103–G109, 1985.
 102. McCabe, R. D., P. L. Smith, and L. P. Sullivan. Ion transport by rabbit descending colon: mechanisms of transepithelial potassium transport. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G594–G602, 1984.
 103. McRoberts, J. A., S. Erlinger, M. J. Rindler, and M. H. Saier, Jr. Furosemide‐sensitive salt transport in the Madin‐Darby canine kidney cell line: evidence for the cotransport of sodium, potassium and chloride. J. Biol. Chem. 257: 2260–2266, 1982.
 104. Nagel, W. Inhibition of potassium conductance by barium in frog skin epithelium. Biochim. Biophys. Acta 552: 346–357, 1979.
 105. Nishizuka, Y. Turnover of inositol phospholipids and signal transduction. Science Wash. DC 255: 1365–1370, 1984.
 106. O'Grady, S. M., M. W. Musch, and M. Field. Stoichiometry and ion affinities of the Na‐K‐Cl cotransport system in the intestine of the winter flounder (Pseudopleuronectes americanus). J. Membr. Biol. 91: 33–41, 1986.
 107. O'Neil, R. G., and E. L. Boulpaep. Ionic conductive properties and electrophysiology of the rabbit cortical collecting tubule. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F81–F95, 1982.
 108. O'Neil, R. G., and S. I. Helman. Transport characteristics of renal collecting tubules: influences of DOCA and diet. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F544–F558, 1977.
 109. Palmer, L. G., J. Li, B. Lindemann, and I. S. Edelman. Aldosterone control of the density of sodium channels in the toad urinary bladder. J. Membr. Biol. 64: 91–102, 1982.
 110. Perrone, R. D., and S. L. Jenks. Suppression of coupled Na‐Cl absorption by aldosterone and dexamethasone in rat distal colon in vitro. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F785–F793, 1984.
 111. Peterson, O. H., and Y. Maruyama. Calcium‐activated potassium channels and their role in secretion. Nature Lond. 307: 693–696, 1984.
 112. Phillips, T. E., T. H. Phillips, and M. R. Neutra. Regulation of intestinal goblet cell secretion. III. Isolated intestinal epithelium. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 6): G674–G681, 1984.
 113. Plass, H., A. Gridl, and K. Turnheim. Absorption and secretion of potassium across rabbit descending colon. Pfluegers Arch. 406: 509–519, 1986.
 114. Putney, J. W., Jr. Formation and actions of calcium‐mobilizing messenger, inositol 1,4,5‐trisphosphate. Am. J. Physiol. 252 (Gastrointest. Liver Physiol. 15): G149–G157, 1987.
 115. Rechkemmer, G., and D. R. Halm. Aldosterone stimulates potassium secretion across mammalian colon independent of sodium absorption. Proc. Natl. Acad. Sci. USA 89: 9000–9005, 1988.
 116. Rechkemmer, G., D. R. Halm, and R. A. Frizzell. Potassium transport across guinea pig distal colon (Abstract). Federation Proc. 45: 748, 1986.
 117. Rechkemmer, G., D. R. Halm, and R. A. Frizzell. Regional differences in colonic electrolyte transport (Abstract). Proc. Int. Union Physiol. Sci. 16: 478, 1986.
 118. Rechkemmer, G., M. Wahl, W. Kuschinsky, and W. von Engelhardt. pH‐microclimate at the luminal surface of the intestinal mucosa of guinea pig and rat. Pfluegers Arch. 407: 33–40, 1986.
 119. Reuss, L. Basolateral potassium‐chloride cotransport in a sodium‐chloride absorbing epithelium. Nature Lond. 305: 723–726, 1983.
 120. Richards, N. W., and D. C. Dawson. Single potassium channels blocked by lidocaine and guinidine in isolated turtle colon epithelial cells. Am. J. Physiol. 251 (Cell Physiol. 20): C85–C89, 1986.
 121. Rick, R., A. Dörge, E. von Arnim, and K. Thurau. Electron microprobe analysis of frog skin epithelium: evidence for a syncytial sodium transport compartment. J. Membr. Biol. 39: 313–331, 1978.
 122. Sandle, G. I., E. S. Foster, S. A. Lewis, H. J. Binder, and J. P. Hayslett. The electrical basis for enhanced potassium secretion in rat distal colon during dietary potassium loading. Pfluegers Arch. 403: 433–439, 1985.
 123. Sandle, G. I., J. P. Hayslett, and H. J. Binder. Effect of chronic hyperaldosteronism on the electrophysiology of rat distal colon. Pfluegers Arch. 401: 22–26, 1984.
 124. Scharrer, E., and S. Medl. The electrical potential difference, short circuit current and sodium and chloride transport across different segments of sheep colon. Comp. Biochem. Physiol. A Comp. Physiol. 73: 413–416, 1982.
 125. Schultz, S. G., R. A. Frizzell, and H. N. Nellans. Active sodium transport and the electrophysiology of rabbit colon. J. Membr. Biol. 33: 351–384, 1977.
 126. Sellin, J. H., and R. C. De Soignie. Rabbit proximal colon: a distinct transport epithelium. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G603–G610, 1984.
 127. Sellin, J. H., and R. C. De Soignie. Steroids alter ion transport and absorptive capacity in proximal and distal colon. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G113–G119, 1985.
 128. Sellin, J. H., and R. De Soignie. Regulation of Na‐Cl absorption in rabbit proximal colon in vitro. Am. J. Physiol. 252 (Gastrointest. Liver Physiol. 15): G45–G51, 1987.
 129. Shorofsky, S. R., M. Field, and H. A. Fozzard. Electrophysiology of chloride secretion in canine trachea. J. Membr. Biol. 72: 105–115, 1983.
 130. Silva, P., J. S. Stoff, R. J. Solomon, R. Rosa, A. Stevens, and J. Epstein. Oxygen cost of chloride transport in perfused rectal gland of Squalus acanthias. J. Membr. Biol. 53: 215–221, 1980.
 131. Smith, P. L., and R. A. Frizzell. Chloride secretion by canine tracheal epithelium. IV. Basolateral membrane potassium permeability parallels secretion rate. J. Membr. Biol. 72: 187–199, 1984.
 132. Smith, P. L., and R. D. McCabe. A23187‐induced changes in colonic K and Cl transport are mediated by separate mechanisms. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G695–G702, 1984.
 133. Smith, P. L., and R. D. McCabe. Potassium secretion by rabbit descending colon: effects of adrenergic stimuli. Am. J. Physiol. 250 (Gastrointest. Liver Physiol. 13): G432–G439, 1986.
 134. Snipes, R. L., W. Clauss, A. Weber, and H. Hörnicke. Structural and functional differences in various divisions of the rabbit colon. Cell Tissue Res. 225: 331–346, 1982.
 135. Stiles, G. L., M. G. Caron, and R. J. Lefkowitz. β‐Adrenergic receptors: biochemical mechanisms of physiological regulation. Physiol. Rev. 64: 661–743, 1984.
 136. Sullivan, S. K., and P. L. Smith. Active potassium secretion by rabbit proximal colon. Am. J. Physiol. 250 (Gastrointest. Liver Physiol. 13): G475–G483, 1986.
 137. Suzuki, Y., and K. Kaneko. Acid secretion in isolated guinea pig colon. Am. J. Physiol. 253 (Gastrointest. Liver Physiol. 16): G155–G164, 1987.
 138. Tapper, E. J. Local modulation of intestinal ion transport by enteric neurons. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G457–G468, 1983.
 139. Thompson, S. M., and D. C. Dawson. Cation selectivity of the apical membrane of the turtle colon: sodium entry in the presence of lithium. J. Gen. Physiol. 72: 269–282, 1978.
 140. Thompson, S. M., and D. C. Dawson. Sodium uptake across the apical border of the isolated turtle colon: confirmation of the two‐barrier model. J. Membr. Biol. 42: 357–374, 1978.
 141. Thompson, S. M., and J. H. Sellin. Relationships among sodium current, permeability and sodium activities in control and glucocorticoid stimulated rabbit descending colon. J. Membr. Biol. 92: 121–134, 1986.
 142. Thompson, S. M., Y. Suzuki, and S. G. Schultz. The electrophysiology of rabbit descending colon. I. Instantaneous transepithelial current‐voltage relations and the current‐voltage relation of the sodium‐entry mechanism. J. Membr. Biol. 66: 41–54, 1982.
 143. Thompson, S. M., Y. Suzuki, and S. G. Schultz. The electrophysiology of rabbit descending colon. II. Current‐voltage relations of the apical membrane, the basolateral membrane and the parallel pathways. J. Membr. Biol. 66: 55–61, 1982.
 144. Turnheim, K., H. Plass, M. Grasl, P. Krivanek, and H. Wiener. Sodium absorption and potassium secretion in rabbit colon during sodium deficiency. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F235–F245, 1986.
 145. Turnheim, K., S. M. Thompson, and S. G. Schultz. Relation between intracellular sodium and active sodium transport in rabbit colon: current‐voltage relations of the apical sodium entry mechanism in the presence of varying luminal sodium concentrations. J. Membr. Biol. 76: 299–309, 1983.
 146. Ussing, H. H., and K. Zerahn. Active transport of sodium as the source of the electric current in the short‐circuited isolated frog skin. Acta Physiol. Scand. 23: 110–127, 1951.
 147. Venglarik, C. J., and D. C. Dawson. A role for submucosal neurons in the regulation of basolateral potassium conductance in turtle colon epithelial cells (Abstract). Federation Proc. 44: 1745, 1985.
 148. Warnock, D. G., and J. Eveloff. NaCl entry mechanisms in the luminal membrane of the renal tubule. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F561–F574, 1982.
 149. Welsh, M. J. Intracellular chloride activities in canine tracheal epithelium. Direct evidence for sodium‐coupled intracellular chloride accumulation in a chloride‐secreting epithelium. J. Clin. Invest. 71: 1392–1401, 1983.
 150. Welsh, M. J. An apical‐membrane chloride channel in human tracheal epithelium. Science Wash. DC 232: 1648–1650, 1986.
 151. Welsh, M. J., and P. Karp. Energetics of chloride secretion in canine tracheal epithelium: comparison of the metabolic cost of chloride transport with the metabolic cost of sodium transport. J. Clin. Invest. 74: 262–268, 1984.
 152. Welsh, M. J., and J. D. McCann. Intracellular calcium regulates basolateral potassium channels in a chloride‐secreting epithelium. Proc. Natl. Acad. Sci. USA 82: 8823–8826, 1985.
 153. Welsh, M. J., P. L. Smith, and R. A. Frizzell. Chloride secretion by canine tracheal epithelium. II. The cellular electrical potential profile. J. Membr. Biol. 70: 227–238, 1982.
 154. Welsh, M. J., P. L. Smith, and R. A. Frizzell. Chloride secretion by canine tracheal epithelium. III. Membrane resistance and electromotive forces. J. Membr. Biol. 71: 209–218, 1983.
 155. Welsh, M. J., P. L. Smith, M. Fromm, and R. A. Frizzell. Crypts are the site of intestinal fluid and electrolyte secretion. Science Wash. DC 218: 1219–1221, 1982.
 156. Will, P. C., R. N. Cortright, R. C. De Lisle, J. G. Douglas, and U. Hopfer. Regulation of amiloride‐sensitive electrogenic sodium transport in the rat colon by steroid hormones. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G124–G132, 1985.
 157. Wills, N. K. Regulation of sodium transport across tight epithelia. In: Intestinal Absorption and Secretion, edited by E. Skadhauge and K. Heintze, Boston, MA: MTP, 1984, p. 221–231.
 158. Wills, N. K. Apical membrane potassium and chloride permeabilities in surface cells of rabbit descending colon epithelium. J. Physiol. Lond. 358: 433–445, 1985.
 159. Wills, N. K., W. P. Alles, G. I. Sandle, and H. J. Binder. Apical membrane properties and amiloride binding kinetics of the human descending colon. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G749–G757, 1984.
 160. Wills, N. K., and B. Biagi. Active potassium transport by rabbit descending colon epithelium. J. Membr. Biol. 64: 195–203, 1982.
 161. Wills, N. K., S. A. Lewis, and D. C. Eaton. Active and passive properties of rabbit descending colon: a microelectrode and nystatin study. J. Membr. Biol. 45: 81–108, 1979.
 162. Wills, N. K., W. Zeiske, and W. Van Driessche. Noise analysis reveals potassium channel conductance fluctuations in the apical membrane of rabbit colon. J. Membr. Biol. 69: 187–197, 1982.
 163. Wrong, O. M., C. J. Edmonds, and V. S. Chadwick. The Large Intestine: Its Role in Mammalian Nutrition and Homeostasis. Lancaster, UK: MTP, 1981, p. 217.
 164. Zeiske, W., N. K. Wills, and W. Van Driessche. Sodium channels and amiloride‐induced noise in the mammalian colon epithelium. Biochim. Biophys. Acta 688: 201–210, 1982.
 165. Zimmerman, T. W., and H. J. Binder. Serotonin‐induced alteration of colonic electrolyte transport in the rat. Gastroenterology 86: 310–317, 1984.
 166. Zimmerman, T. W., J. W. Dobbins, and H. J. Binder. Mechanism of cholinergic regulation of electrolyte transport in rat colon in vitro. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G116–G123, 1982.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Dan R. Halm, Raymond A. Frizzell. Ion Transport Across the Large Intestine. Compr Physiol 2011, Supplement 19: Handbook of Physiology, The Gastrointestinal System, Intestinal Absorption and Secretion: 257-273. First published in print 1991. doi: 10.1002/cphy.cp060408