References |
1. |
Andreoli, T. E., and
J. A. Schafer.
Effective luminal hypotonicity: the driving force for isotonic proximal tubular fluid absorption.
Am. J. Physiol.
236
(Renal Fluid Electrolyte Physiol. 5):
F89–F96,
1979.
|
2. |
Baerentsen, H. J.,
O. Christensen,
P. G. Thomsen, and
T. Zeuthen.
Steady states and the effects of ouabain in the Necturus gallbladder epithelium: a model analysis.
J. Membr. Biol.
68:
215–225,
1982.
|
3. |
Baerentsen, H.,
F. Giraldez, and
T. Zeuthen.
Influx mechanisms for Na+ and Cl− across the brush border membrane of leaky epithelia: a model and microelectrode study.
J. Membr. Biol.
75:
205–218,
1983.
|
4. |
Barry, P. H., and
J. M. Diamond.
Effects of unstirred layers on membrane phenomena.
Physiol. Rev.
64:
763–873,
1984.
|
5. |
Bello‐Reuss, E.,
T. P. Grady, and
L. Reuss.
Mechanism of the effect of cyanide on cell membrane potentials in Necturus gall‐bladder epithelium.
J. Physiol. Lond.
314:
343–357,
1981.
|
6. |
Boron, W. F., and
E. L. Boulpaep.
Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3− transport.
J. Gen. Physiol.
81:
53–94,
1983.
|
7. |
Boulpaep, E. L., and
H. Sackin.
Electrical analysis of intraepithelial barriers.
Curr. Top. Membr. Transp.
13:
170–196,
1980.
|
8. |
Brazy, P. C., and
R. B. Gunn.
Furosemide inhibition of chloride transport in human red blood cells.
J. Gen. Physiol.
68:
583–599,
1976.
|
9. |
Clausen, C.,
S. A. Lewis, and
J. M. Diamond.
Impedance analysis of a tight epithelium using a distributed resistance model.
Biophys. J.
26:
291–318,
1979.
|
10. |
Corcia, A., and
W. M. Armstrong.
KCl cotransport: a mechanism for basolateral chloride exit in Necturus gallbladder.
J. Membr. Biol.
76:
173–182,
1983.
|
11. |
Cotton, C., and
L. Reuss.
Measurement of the effective thickness of the mucosal unstirred layer in Necturus gallbladder epithelium (Abstract).
J. Gen. Physiol.
86:
44,
1985.
|
12. |
Cotton, C., and
L. Reuss.
Measurement of hydraulic water permeability (Lp) of the apical membrane of Necturus gallbladder epithelium (NGB) (Abstract).
Federation Proc.
45:
891,
1986.
|
13. |
Cremaschi, D., and
S. Hénin.
Na+ and Cl− transepithelial routes in rabbit gallbladder. Tracer analysis of the transports.
Pfluegers Arch.
361:
33–41,
1975.
|
14. |
Cremaschi, D.,
S. Henin,
G. Meyer, and
T. Bacciola.
Does amphotericin B unmask an electrogenic Na+ pump in rabbit gallbladder? Shift of gallbladders with negative to gallbladders with positive transepithelial p.d.'s.
J. Membr. Biol.
34:
55–71,
1977.
|
15. |
Cremaschi, D., and
G. Meyer.
Amiloride‐sensitive sodium channels in rabbit and guinea‐pig gall‐bladder.
J. Physiol. Lond.
326:
21–34.
|
16. |
Crmaschi, D.,
G. Meyer,
S. Bermano, and
M. Marcati.
Different sodium chloride cotransport systems in the apical membrane of rabbit gallbladder epithelial cells.
J. Membr. Biol.
73:
227–235,
1983.
|
17. |
Cremaschi, D.,
G. Meyer, and
C. Rosetti.
Bicarbonate effects, electromotive forces and potassium effluxes in rabbit and guinea‐pig gall‐bladder.
J. Physiol. Lond.
335:
51–64,
1983.
|
18. |
Curran, P. F., and
J. R. MacIntosh.
A model system for biological water transport.
Nature Lond.
193:
347–348,
1962.
|
19. |
Curran, P. F., and
A. K. Solomon.
Ion and water fluxes in the ileum of rats.
J. Gen. Physiol.
41:
143–168,
1957.
|
20. |
Davis, C. W., and
A. L. Finn.
Effects of mucosal sodium removal on cell volume in Necturus gallbladder epithelium.
Am. J. Physiol.
249
(Cell Physiol. 18):
C304–C312,
1985.
|
21. |
Diamond, J. M.
The reabsorptive function of the gall‐bladder.
J. Physiol. Lond.
161:
442–473,
1962.
|
22. |
Diamond, J. M.
The mechanism of solute transport by the gall‐bladder.
J. Physiol. Lond.
161:
474–502,
1962.
|
23. |
Diamond, J. M.
The mechanism of water transport by the gall‐bladder.
J. Physiol. Lond.
161:
503–527,
1962.
|
24. |
Diamond, J. M.
Transport of salt and water in rabbit and guinea pig gallbladder.
J. Gen. Physiol.
48:
1–14,
1964.
|
25. |
Diamond, J. M.
The mechanism of isotonic water transport.
J. Gen. Physiol.
48:
15–42,
1964.
|
26. |
Diamond, J. M.
Transport mechanisms in the gallbladder. In:
Handbook of Physiology. Alimentary Canal,
edited by C. F. Code.
Washington, DC:
Am. Physiol. Soc.,
1968,
sect. 6,
vol. V,
chapt. 115,
p. 2451–2482.
|
27. |
Diamond, J. M.
Solute‐linked water transport in epithelia. In:
Membrane Transport Processes,
edited by J. F. Hoffman.
New York:
Raven,
1978,
vol. 1,
p. 257–276.
|
28. |
Diamond, J. M.
Osmotic water flow in leaky epithelia.
J. Membr. Biol.
51:
195–216,
1979.
|
29. |
Diamond, J. M., and
W. H. Bossert.
Standing‐gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia.
J. Gen. Physiol.
50:
2061–2083,
1967.
|
30. |
Diamond, J. M., and
J. M. Tormey.
Role of long extracellular channels in fluid transport across epithelia.
Nature Lond.
210:
817–820,
1966.
|
31. |
Dietschy, J. M.
Water and solute movement across the wall of the everted rabbit gall bladder.
Gastroenterology
47:
395–408,
1964.
|
32. |
Dietschy, J. M.
Recent developments in solute and water transport across the gallbladder epithelium.
Gastroenterology
50:
692–707,
1966.
|
33. |
Dietschy, J. M., and
E. W. Moore.
Diffusion potentials and potassium distribution across the gallbladder wall.
J. Clin. Invest.
43:
1551–1560,
1964.
|
34. |
Duffey, M. E.,
B. Hainau,
S. Ho, and
C. J. Bentzel.
Regulation of epithelial tight junction permeability by cyclic AMP.
Nature Lond.
294:
451–453,
1981.
|
35. |
Duffey, M. E.,
K. Turnheim,
R. A. Frizzell, and
S. G. Schultz.
Intracellular chloride activities in rabbit gallbladder: direct evidence for the role of the sodium‐gradient in energizing “uphill” chloride transport.
J. Membr. Biol.
42:
229–245,
1978.
|
36. |
Eldrup, E.,
O. Frederiksen,
K. Mollgard, and
J. Rostgaard.
Effects of a small serosal hydrostatic pressure on sodium and water transport and morphology in rabbit gall‐bladder.
J. Physiol. Lond.
331:
67–85,
1982.
|
37. |
Ericson, A.‐C., and
K. R. Spring.
Coupled NaCl entry into Necturus gallbladder epithelial cells.
Am. J. Physiol.
243
(Cell Physiol. 12):
C140–C145,
1982.
|
38. |
Fisher, R. S.
Chloride movement across basolateral membrane of Necturus gallbladder epithelium.
Am. J. Physiol.
247
(Cell Physiol. 16):
C495–C500,
1984.
|
39. |
Frederiksen, O.
Effect of amiloride on sodium and water reabsorption in the rabbit gall‐bladder.
J. Physiol. Lond.
335:
75–88,
1983.
|
40. |
Frederiksen, O., and
P. P. Leyssac.
Transcellular transport of isosmotic volumes by the rabbit gall‐bladder in vitro.
J. Physiol. Lond.
201:
201–224,
1969.
|
41. |
Frederiksen, O., and
P. P. Leyssac.
Effects of cytochalasin B and dimethylsulphoxide on isosmotic fluid transport by rabbit gall‐bladder in vitro.
J. Physiol. Lond.
265:
103–118,
1977.
|
42. |
Frizzell, R. A.,
M. C. Dugas, and
S. G. Schultz.
Sodium chloride transport by rabbit gallbladder direct evidence for a coupled NaCl influx process.
J. Gen. Physiol.
65:
830–834,
1975.
|
43. |
Frizzell, R. A., and
K. Heintze.
Transport functions of the gallbladder. In:
Liver and Biliary Tract Physiology I,
edited by N. B. Javitt.
Baltimore, MD:
University Park,
1980,
vol. 21,
p. 221–247.
(Int. Rev. Physiol. Ser.)
|
44. |
Frömter, E.
The route of passive ion movement through the epithelium of Necturus gallbladder.
J. Membr. Biol.
8:
259–301,
1972.
|
45. |
Frömter, E., and
J. Diamond.
Route of passive ion permeation in epithelia.
Nature New Biol.
235:
9–13,
1972.
|
46. |
Garcia‐Diaz, J. F., and
W. M. Armstrong.
The steady‐state relationship between sodium and chloride transmembrane electrochemical potential differences in Necturus gallbladder.
J. Membr. Biol.
55:
213–222,
1980.
|
47. |
Garcia‐Diaz, J. F.,
A. Corcia, and
W. M. Armstrong.
Intracellular chloride activity and apical membrane chloride conductance in Necturus gallbladder.
J. Membr. Biol.
73:
145–155,
1983.
|
48. |
Garcia‐Diaz, J. F.,
W. Nagel, and
A. Essig.
Voltage‐dependent K conductance at the apical membrane of Necturus gallbladder.
Biophys. J.
43:
269–278,
1983.
|
49. |
Gelarden, R. T., and
R. C. Rose.
Electrical properties and diffusion potentials in gallbladder of man, monkey, dog, goose and rabbit.
J. Membr. Biol.
19:
37–54,
1974.
|
50. |
Giraldez, F.
Active sodium transport and fluid secretion in the gall‐bladder epithelium of Necturus.
J. Physiol. Lond.
348:
431–455,
1984.
|
51. |
Gögelein, H., and
W. Van Driessche.
Noise analysis of the K+ current through the apical membrane of Necturus gallbladder.
J. Membr. Biol.
60:
187–198,
1981.
|
52. |
Graf, J., and
G. Giebisch.
Intracellular sodium activity and sodium transport in Necturus gallbladder epithelium.
J. Membr. Biol.
47:
327–355,
1979.
|
53. |
Green, R., and
G. Giebisch.
Luminal hypotonicity: a driving force for fluid absorption from the proximal tubule.
Am. J. Physiol.
246
(Renal Fluid Electrolyte Physiol. 15):
F167–F174,
1984.
|
54. |
Greger, R.
Chloride reabsorption in the rabbit cortical thick ascending limb of the loop of Henle. A sodium dependent process.
Pfluegers Arch.
390:
38–43,
1981.
|
55. |
Guggino, W. B.,
E. E. Windhager,
E. L. Boulpaep, and
G. Giebisch.
Cellular and paracellular resistances of the Necturus proximal tubule.
J. Membr. Biol.
67:
143–154,
1982.
|
56. |
Gunter‐Smith, P. J., and
S. G. Schultz.
Potassium transport and intracellular potassium activities in rabbit gallbladder.
J. Membr. Biol.
65:
41–47,
1982.
|
57. |
Heintze, K., and
K.‐U. Petersen.
Na/H and Cl/HCO3 exchange as a mechanism for HCO3‐stimulated NaCl absorption by gallbladder. In:
Hydrogen Ion Transport in Epithelia,
edited by I. Schulz,
G. Sachs,
J. G. Forte, and
K. J. Ullrich.
Amsterdam:
Elsevier/North‐Holland,
1980,
p. 345–354.
|
58. |
Heintze, K.,
K.‐U. Petersen,
P. Olles,
S. H. Saverymuttu, and
J. R. Wood.
Effects of bicarbonate on fluid and electrolyte transport by the guinea pig gallbladder: a bicarbonate‐chloride exchange.
J. Membr. Biol.
45:
43–59,
1979.
|
59. |
Heintze, K.,
K.‐U. Petersen, and
J. R. Wood.
Effects of bicarbonate on fluid and electrolyte transport by guinea pig and rabbit gallbladder: stimulation of absorption.
J. Membr. Biol.
62:
175–181,
1981.
|
60. |
Hénin, S., and
D. Cremaschi.
Transcellular ion route in rabbit gallbladder. Electrical properties of the epithelial cells.
Pfluegers Arch.
355:
125–139,
1975.
|
61. |
Hénin, S.,
D. Cremaschi,
T. Schettino,
G. Meyer,
C. L. L. Donin, and
F. Cotelli.
Electrical parameters in gallbladders of different species. Their contribution to the origin of the transmural potential difference.
J. Membr. Biol.
34:
73–91,
1977.
|
62. |
Hill, A. E.
Solute‐solvent coupling in epithelia: a critical examination of the standing‐gradient osmotic flow theory.
Proc. R. Soc. Lond. B Biol. Sci.
190:
99–114,
1975.
|
63. |
Hill, A. E.
Solute‐solvent coupling in epithelia: an electroosmotic theory of fluid transfer.
Proc. R. Soc. Lond. B Biol. Sci.
190:
115–134,
1975.
|
64. |
Hill, A.
Salt‐water coupling in leaky epithelia.
J. Membr. Biol.
56:
177–182,
1980.
|
65. |
Hill, A. E., and
B. S. Hill.
Sucrose fluxes and junctional water flow across Necturus gallbladder epithelium.
Proc. R. Soc. Lond. B Biol. Sci.
200:
163–174,
1978.
|
66. |
Hill, B. S., and
A. E. Hill.
Fluid transfer by Necturus gallbladder epithelium as a function of osmolarity.
Proc. R. Soc. Lond. B Biol. Sci.
200:
151–162,
1978.
|
67. |
Hodgkin, A. L., and
P. Horowicz.
The influence of potassium and chloride ions on the membrane potential of single muscle fibres.
J. Physiol. Lond.
148:
127–160,
1959.
|
68. |
Ikonomov, O.,
M. Simon, and
E. Frömter.
Electrophysiological studies on lateral intercellular spaces of Necturus gallbladder epithelium.
Pfluegers Arch.
403:
301–307,
1985.
|
69. |
Ives, H. E.,
V. J. Yee, and
D. G. Warnock.
Mixed type inhibition of the renal Na+/H+ antiporter by Li+ and amiloride.
J. Biol. Chem.
258:
9710–9716,
1983.
|
70. |
Jarrell, J. A.
Reversible carbon dioxide‐induced inhibition of dye coupling in Necturus gallbladder.
Am. J. Physiol.
244
(Cell Physiol. 13):
C419–C421,
1983.
|
71. |
Kaye, G. I.,
H. O. Wheeler,
R. T. Whitlock, and
N. Lane.
Fluid transport in the rabbit gallbladder: a combined physiological and electron microscopic study.
J. Cell Biol.
30:
237–268,
1966.
|
72. |
Kinsella, J. L., and
P. S. Aronson.
Properties of the Na+‐H+ exchanger in renal microvillus membrane vesicles.
Am. J. Physiol.
238
(Renal Fluid Electrolyte Physiol. 7):
F451–F469,
1980.
|
73. |
Koefoed‐Johnson, V., and
H. H. Ussing.
The nature of the frog skin potential.
Acta Physiol. Scand.
42:
298–308,
1958.
|
74. |
Kottra, G., and
E. Frömter.
Rapid determination of intraepithelial resistance barriers by alternating current spectroscopy. I. Experimental procedures.
Pfluegers Arch.
402:
409–420,
1984.
|
75. |
Kottra, G., and
E. Frömter.
Rapid determination of intraepithelial resistance barriers by alternating current spectroscopy. II. Test of model circuits and quantification of results.
Pfluegers Arch.
402:
421–432,
1984.
|
76. |
Larson, M., and
B.‐E. Persson.
Carbonic anhydrase inhibition slows down volume regulatory increase in Necturus gallbladder epithelial cells.
Acta Physiol. Scand.
124:
118,
1985.
|
77. |
Larson, M., and
K. R. Spring.
Bumetanide inhibition of NaCl transport by Necturus gallbladder.
J. Membr. Biol.
74:
123–129,
1983.
|
78. |
Liedtke, C. M., and
U. Hopfer.
Anion transport in brush border membrane isolated from rat small intestine.
Biochem. Biophys. Res. Commun.
76:
579–585,
1977.
|
79. |
Liedtke, C. M., and
U. Hopfer.
Mechanism of Cl− translocation across small intestinal brush‐border membrane. I. Absence of Na+‐Cl− cotransport.
Am. J. Physiol.
242
(Gastrointest. Liver Physiol. 5):
G263–G271,
1982.
|
80. |
Liedtke, C. M., and
U. Hopfer.
Mechanism of Cl− translocation across small intestinal brush‐border membrane. II. Demonstration of Cl−‐OH− exchange and Cl− conductance.
Am. J. Physiol.
242
(Gastrointest. Liver Physiol. 5):
G272–G280,
1982.
|
81. |
Machen, T. E.,
D. Erlij, and
F. B. P. Wooding.
Permeable junctional complexes. The movement of lanthanum across rabbit gallbladder and intestine.
J. Cell Biol.
54:
302–312,
1972.
|
82. |
Martin, D. W., and
J. M. Diamond.
Energetics of coupled active transport of sodium and chloride.
J. Gen. Physiol.
50:
295–315,
1966.
|
83. |
Mills, J. W., and
D. R. Di Bona.
Distribution of Na+ pump sites in the frog gallbladder.
Nature Lond.
271:
273–275,
1978.
|
84. |
Mollgard, K., and
J. Rostgaard.
The transcellular compartment of tubulo‐cisternal endoplasmic reticulum, a common feature of transporting epithelial cells. In:
Water Transport Across Epithelia. Barriers, Gradients and Mechanisms,
edited by H. H. Ussing,
N. Bindslev,
N. A. Lassen, and
O. Sten‐Knudsen.
Copenhagen:
Munksgaard,
1981,
p. 85–98.
(Alfred Benzon Symp. 15.)
|
85. |
Moreno, J. H., and
J. M. Diamond.
Cation permeation mechanisms and cation selectivity in tight junctions of gallbladder epithelium. In:
Membranes. A Series of Advances. Lipid Bilayers and Biological Membranes: Dynamic Properties,
edited by G. Eisenman,
New York:
Dekker,
1975,
vol. 3,
p. 383–497.
|
86. |
Musch, M. W.,
S. A. Orellana,
L. S. Kimberg,
M. Field,
D. R. Halm,
E. J. Krasny, Jr., and
R. A. Frizzell.
Na+‐K+ Cl− co‐transport in the intestine of a marine teleost.
Nature Lond.
300:
351–353,
1982.
|
87. |
Pedley, T. J., and
J. Fischbarg.
Unstirred layer effects in osmotic water flow across gallbladder epithelium.
J. Membr. Biol.
54:
89–102,
1980.
|
88. |
Persson, B.‐E., and
K. R. Spring.
Gallbladder epithelial cell hydraulic water permeability and volume regulation.
J. Gen. Physiol.
79:
481–505,
1982.
|
89. |
Petersen, K.‐U., and
L. Reuss.
Cyclic AMP‐induced chloride permeability in the apical membrane of Necturus gallbladder epithelium.
J. Gen. Physiol.
81:
705–729,
1983.
|
90. |
Petersen, K.‐U., and
L. Reuss.
Electrophysiological effects of propionate and bicarbonate on gallbladder epithelium.
Am. J. Physiol.
248
(Cell Physiol. 17):
C58–C69,
1985.
|
91. |
Petersen, K.‐U.,
F. Wehner, and
J. M. Winterhager.
Na/H exchange at the apical membrane of guinea‐pig gallbladder epithelium: properties and inhibition by cyclic AMP.
Pfluegers Arch.
405:
S115–S120,
1985.
|
92. |
Reuss, L.
Effects of amphotericin B on the electrical properties of Necturus gallbladder: intracellular microelectrode studies.
J. Membr. Biol.
41:
65–86,
1978.
|
93. |
Reuss, L.
Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. III. Ionic permeability of the basolateral cell membrane.
J. Membr. Biol.
47:
239–259,
1979.
|
94. |
Reuss, L.
Mechanisms of sodium and chloride transport by gallbladder epithelium.
Federation Proc.
38:
2733–2738,
1979.
|
95. |
Reuss, L.
Transport in gallbladder. In:
Membrane Transport in Biology. Transport Organs,
edited by G. Giebisch,
D. C. Tosteson, and
H. H. Ussing.
Berlin:
Springer‐Verlag,
1979,
vol. 4,
pt. B,
p. 853–898.
|
96. |
Reuss, L.
Mechanisms of the mucosa‐negative transepithelial potential produced by amphotericin B in gallbladder epithelium.
Federation Proc.
40:
2206–2212,
1981.
|
97. |
Reuss, L.
Potassium transport mechanisms by amphibian gallbladder. In:
Ion Transport by Epithelia,
edited by S. G. Schultz.
New York:
Raven,
1981,
p. 109–128.
|
98. |
Reuss, L.
The paracellular pathway in amphibian gallbladder. In:
The Paracellular Pathway,
edited by S. E. Bradley and
E. F. Purcell.
New York:
Josiah Macy, Jr. Found.,
1982,
p. 247–269.
|
99. |
Reuss, L.
Basolateral KCl co‐transport in a NaCl‐absorbing epithelium.
Nature Lond.
305:
723–726,
1983.
|
100. |
Reuss, L.
Independence of apical membrane Na+ and Cl− entry in Necturus gallbladder epithelium.
J. Gen. Physiol.
84:
423–445,
1984.
|
101. |
Reuss, L.
Changes in cell volume measured with an electrophysiologic technique.
Proc. Natl. Acad. Sci. USA
82:
6014–6018,
1985.
|
102. |
Reuss, L.,
E. Bello‐Reuss, and
T. P. Grady.
Effects of ouabain on fluid transport and electrical properties of Necturus gallbladder. Evidence in favor of a neutral basolateral sodium transport mechanism.
J. Gen. Physiol.
73:
385–402,
1979.
|
103. |
Reuss, L., and
J. L. Costantin.
Cl−/HCO3− exchange at the apical membrane of Necturus gallbladder.
J. Gen. Physiol.
83:
801–818,
1984.
|
104. |
Reuss, L., and
A. L. Finn.
Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. I. Circuit analysis and steady‐state effects of mucosal solution ionic substitutions.
J. Membr. Biol.
25:
115–139,
1975.
|
105. |
Reuss, L., and
A. L. Finn.
Electrical properties of the cellular transpeithelial pathway in Necturus gallbladder. II. Ionic permeability of the apical cell membrane.
J. Membr. Biol.
25:
141–161,
1975.
|
106. |
Reuss, L., and
T. P. Grady.
Effects of external sodium and cell membrane potential on intracellular chloride activity in gallbladder epithelium.
J. Membr. Biol.
51:
15–31,
1979.
|
107. |
Reuss, L.,
S. A. Lewis,
N. K. Wills,
S. I. Helman,
T. C. Cox,
W. F. Boron,
A. W. Siebens,
W. B. Guggino,
G. Biebisch, and
S. G. Schultz.
Ion transport processes in basolateral membranes of epithelia.
Federation Proc.
43:
2488–2502,
1984.
|
108. |
Reuss, L., and
K.‐U. Petersen.
Cyclic AMP inhibits Na+/H+ exchange at the apical membrane of Necturus gallbladder epithelium.
J. Gen. Physiol.
85:
409–429,
1985.
|
109. |
Reuss, L., and
S. A. Weinman.
Intracellular ionic activities and transmembrane electrochemical potential differences in gallbladder epithelium.
J. Membr. Biol.
49:
345–362,
1979.
|
110. |
Reuss, L.,
S. A. Weinman, and
T. P. Grady.
Intracellular K+ activity and its relation to basolateral membrane ion transport in Necturus gallbladder epithelium.
J. Gen. Physiol.
76:
33–52,
1980.
|
111. |
Reuss, L.,
S. A. Weinman, and
K.‐U. Petersen.
Unstirred layer effects on electrical properties and transport across the apical membrane of amphibian gallbladder epithelium. In:
Intestinal Absorption and Secretion,
edited by E. Skadhauge and
K. Heintze,
Lancaster, UK:
MTP,
1984,
p. 55–66.
|
112. |
Rose, R. C.
Absorptive functions of the gallbladder. In:
Physiology of the Gastrointestinal Tract
(1st ed.),
edited by L. R. Johnson.
New York:
Raven,
1981,
p. 1021–1033.
|
113. |
Rose, R. C.,
R. T. Gelarden, and
D. L. Nahrwold.
Electrical properties of isolated human gallbladder.
Am. J. Physiol.
224:
1320–1326,
1973.
|
114. |
Rose, R. C., and
D. L. Nahrwold.
Electrolyte transport by gallbladders of rabbit and guinea pig: effect of amphotericin B and evidence of rheogenic Na transport.
J. Membr. Biol.
29:
1–22,
1976.
|
115. |
Rose, R. C., and
D. L. Nahrwold.
Electrolyte transport in Necturus gallbladder: the role of rheogenic Na transport.
Am. J. Physiol.
238
(Gastrointest. Liver Physiol. 1):
G358–G365,
1980.
|
116. |
Rose, R. C., and
S. G. Schultz.
Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal electrical potential differences.
J. Gen. Physiol.
57:
639–663,
1971.
|
117. |
Sackin, H. and
E. L. Boulpaep.
Models for coupling of salt and water transport.
J. Gen. Physiol.
66:
671–733,
1975.
|
118. |
Schultz, S. G.
The double‐membrane model for sodium‐absorbing epithelia: current status and questions for the future. In:
Membrane Biophysics. Physical Methods in the Study of Epithelia,
edited by M. A. Dinno,
A. B. Callahan, and
T. C. Rozzell.
New York:
Liss,
1983,
vol. II,
p. 1–13.
|
119. |
Spring, K. R.
Fluid transport by gallbladder epithelium.
J. Exp. Biol.
106:
181–194,
1983.
|
120. |
Spring, K. R., and
A.‐C. Ericson.
Epithelial cell volume modulation and regulation.
J. Membr. Biol.
69:
167–176,
1982.
|
121. |
Spring, K. R., and
A. Hope.
Fluid transport and the dimensions of cells and interspaces of living Necturus gallbladder.
J. Gen. Physiol.
73:
287–305,
1979.
|
122. |
Spring, K. R.,
A. Hope, and
B.‐E. Persson.
Quantitative light microscopic studies of epithelial fluid transport. In:
Water Transport Across Epithelia. Barriers, Gradients and Mechanisms,
edited by H. H. Ussing,
N. Bindslev,
N. A. Lassen, and
O. Sten‐Knudsen.
Copenhagen:
Munksgaard,
1981,
p. 190–205.
(Alfred Benzon Symp. 15.)
|
123. |
Spring, K. R., and
G. Kimura.
Chloride reabsorption by renal proximal tubules of Necturus.
J. Membr. Biol.
38:
233–254,
1978.
|
124. |
Steward, M. C.
Paracellular non‐electrolyte permeation during fluid transport across rabbit gall‐bladder epithelium.
J. Physiol. Lond.
322:
419–439,
1982.
|
125. |
Stoddard, J. S., and
L. Reuss.
Effect of mucosal CO2/HCO3 on intracellular pH in Necturus gallbladder epithelium (Abstract).
J. Gen. Physiol.
86:
42,
1985.
|
126. |
Sullivan, B., and
W. O. Berndt.
Transport by isolated rabbit gallbladders in phosphate‐buffered solutions.
Am. J. Physiol.
225:
838–844,
1973.
|
127. |
Sullivan, B., and
W. O. Berndt.
Transport by isolated rabbit gallbladders in bicarbonate‐buffered solutions.
Am. J. Physiol.
225:
845–848,
1973.
|
128. |
Suzuki, K.,
G. Kottra,
L. Kampmann, and
E. Frömter.
Square wave pulse analysis of cellular and paracellular conductance pathways in Necturus gallbladder epithelium.
Pfluegers Arch.
394:
302–312,
1982.
|
129. |
Tormey, J., and
J. M. Diamond.
The ultrastructural route of fluid transport in rabbit gall bladder.
J. Gen. Physiol.
50:
2031–2060,
1967.
|
130. |
Van Driessche, W., and
H. Gögelein.
Potassium channels in the apical membrane of the toad gallbladder.
Nature Lond.
275:
665–667,
1978.
|
131. |
Van Os, C. H.,
J. A. Michels, and
J. F. G. Slegers.
Effects of electrical gradients on volume flows across gall bladder epithelium.
Biochim. Biophys. Acta
443:
545–555,
1976.
|
132. |
Van Os, C. H., and
J. F. G. Slegers.
Correlation between (Na+‐K+)‐activated ATPase activities and the rate of isotonic fluid transport of gallbladder epithelium.
Biochim. Biophys. Acta
241:
89–96,
1971.
|
133. |
Van Os, C. H., and
J. F. G. Slegers.
Path of osmotic water flow through rabbit gall bladder epithelium.
Biochim. Biophys. Acta
291:
197–207,
1973.
|
134. |
Van Os, C. H., and
J. F. G. Slegers.
The electrical potential profile of gallbladder epithelium.
J. Membr. Biol.
24:
341–363,
1975.
|
135. |
Van Os, C. H.,
G. Wiedner, and
E. M. Wright.
Volume flows across gallbladder epithelium induced by small hydrostatic and osmotic gradients.
J. Membr. Biol.
49:
1–20,
1979.
|
136. |
Warnock, D. G.,
R. Greger,
P. B. Dunham,
M. A. Benjamin,
R. A. Frizzell,
M. Field,
K. R. Spring,
H. E. Ives,
P. S. Aronson, and
J. Seifter.
Ion transport processes in apical membranes of epithelia.
Federation Proc.
43:
2473–2487,
1984.
|
137. |
Wedner, H. J., and
J. M. Diamond.
Contributions of unstirred‐layer effects to apparent electrokinetic phenomena in the gall‐bladder.
J. Membr. Biol.
1:
92–108,
1969.
|
138. |
Weinman, S. A., and
L. Reuss.
Na+‐H+ exchange at the apical membrane of Necturus gallbladder. Extracellular and intracellular pH studies.
J. Gen. Physiol.
80:
299–321,
1982.
|
139. |
Weinman, S. A., and
L. Reuss.
Na+‐H+ exchange and Na+ entry across the apical membrane of Necturus gallbladder.
J. Gen. Physiol.
83:
57–74,
1984.
|
140. |
Weinstein, A. M., and
J. L. Stephenson.
Electrolyte transport across a simple epithelium. Steady‐state and transient analysis.
Biophys. J.
27:
165–186,
1979.
|
141. |
Wheeler, H. O.
Concentrating function of the gallbladder.
Am. J. Med.
51:
588–595,
1971.
|
142. |
Whitlock, R. T., and
H. O. Wheeler.
Coupled transport of solute and water across rabbit gallbladder epithelium.
J. Clin. Invest.
43:
2249–2265,
1964.
|
143. |
Whitlock, R. T., and
H. O. Wheeler.
Hydrogen ion transport by isolated rabbit gallbladder.
Am. J. Physiol.
217:
310–316,
1969.
|
144. |
Whittembury, G.,
C. V. De Martinez,
A. Paz‐Aliaga, and
H. Linares.
Paracellular water flow in leaky epithelia. Evidence from solvent drag of extracellular solutes. In:
Water Transport Across Epithelia. Barriers, Gradients and Mechanisms,
edited by H. H. Ussing,
N. Bindslev,
N. A. Lassen, and
O. Sten‐Knudsen.
Copenhagen:
Munksgaard,
1981,
p. 17–35.
(Alfred Benzon Symp. 15.)
|
145. |
Wieth, J. O., and
J. Brahm.
Cellular anion transport. In:
The Kidney: Physiology and Pathophysiology,
edited by D. W. Seldin and
G. Giebisch.
New York:
Raven,
1985,
p. 49–89.
|
146. |
Windhager, E. E.,
E. L. Boulpaep, and
G. Giebisch.
Electrophysiological studies on single nephrons.
Proc. Int. Congr. Nephrol.
1:
35–47,
1966.
|
147. |
Winterhager, J. M.,
C. P. Stewart,
K. Heintze, and
K.‐U. Petersen.
Electroneutral secretion of bicarbonate by guinea pig gallbladder epithelium.
Am. J. Physiol.
250
(Cell Physiol. 19):
C617–C628,
1986.
|
148. |
Wood, J. R., and
J. Svanvik.
Gall‐bladder water and electrolyte transport and its regulation.
Gut
24:
579–593,
1983.
|
149. |
Wright, E. M.,
A. P. Smulders, and
J. M. Tormey.
The role of the lateral intercellular spaces and solute polarization effects in the passive flow of water across the rabbit gallbladder.
J. Membr. Biol.
7:
198–219,
1972.
|
150. |
Yoshitomi, K.,
B.‐C. Burckhardt, and
E. Frömter.
Rheogenic sodium‐bicarbonate cotransport in the peritubular cell membrane of rat renal proximal tubule.
Pfluegers Arch.
405:
360–366,
1985.
|
151. |
Zeldin, D. C.,
A. Corcia, and
W. M. Armstrong.
Cyclic AMP‐induced changes in membrane conductance of Necturus gallbladder epithelial cells.
J. Membr. Biol.
84:
193–206,
1985.
|
152. |
Zeuthen, T.
Relations between intracellular ion activities and extracellular osmolarity in Necturus gallbladder epithelium.
J. Membr. Biol.
66:
109–121,
1982.
|
153. |
Zeuthen, T., and
T. Machen.
HCO3−/CO2 stimulates Na+/H+ and Cl+/HCO3− exchange in Necturus gallbladder. In:
Hydrogen Ion Transport in Epithelia,
edited by J. G. Forte,
D. G. Warnock, and
F. C. Rector, Jr.
New York:
Wiley,
1984,
p. 97–108.
|