Comprehensive Physiology Wiley Online Library

Intestinal Transport of Water‐Soluble Vitamins

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 L‐Ascorbic Acid
2 Biotin
3 Folate
3.1 Digestion and Absorption of Dietary Folates
3.2 Transport of Folate
3.3 Proposed Mechanisms of Folate Transport
3.4 Alternate Views
4 Niacin
5 Pantothenic Acid
6 Riboflavin
7 Thiamine
8 Vitamin B6
9 Conclusion
Figure 1. Figure 1.

Time course of ascorbic acid uptake into guinea pig ileal brush‐border membrane vesicles. Vesicles were preequilibrated in 300 mM mannitol and 20 mM HEPES‐Tris (pH 7.0). Incubation was at 20°C in a medium containing 65 μM L‐[14C]ascorbic acid, 100 mM mannitol, 20 mM HEPES‐Tris (pH 7.0), and either 100 mM NaCl (•) or 100 mM KCl (○); 8 observations. HEPES, N‐2‐hydroxyethylpiperazine‐N′‐2‐ethanesulfonic acid; Tris, tris(hydroxymethyl)aminomethane.

[From Bianchi et al. 4.]
Figure 2. Figure 2.

Model of known events in intestinal absorption of reduced and oxidized forms of vitamin C in animals that require L‐ascorbic acid (ASC); model may also apply to events in renal reabsorption of filtered L‐ascorbic acid both in animal species that require dietary L‐ascorbic acid and in those that synthesize it. L‐Ascorbic acid is taken up across the brush‐border membrane against a concentration gradient coupled with Na+ diffusion down an electrochemical potential gradient entering the cell. L‐Ascorbic acid leaves the transport cell by a carrier‐mediated process at the basolateral membrane, perhaps in exchange for interstitial dehydroascorbic acid (DHA). Dehydroascorbic acid from either the lumen or interstitium enters the cell by facilitated diffusion and is enzymatically reduced.

[From Rose et al. 68.]
Figure 3. Figure 3.

Dixon plot of inhibition of 5‐methyltetrahydrofolic acid (5‐CH3THF) intestinal transport by folic acid. Data were obtained from incubation for 10 min at 37°C of everted jejunal sacs with 0.1 μM (•) and 0.25 μM (○) 5‐CH3THF at pH 6.3 with folic acid at increasing concentrations, v, Total transport of 5‐CH3THF in nmol·−1 intestine · 10 min−1.

[From Selhub et al. 85.]
Figure 4. Figure 4.

Properties of pantothenic acid (PA) uptake and release in isolated intestinal epithelial cells of chicken. Data points are means ± SE of 4 determinations. [3H]pantothenic acid was present at 0.9 μM. NaCN was present where indicated at 2.5 mM. ▪, Control; □, cells exposed to cyanide after 14 min of control conditions; Δ, cells exposed to NaCN for 10 min prior to [3H]pantothenic acid addition and during uptake.

[From Fenstermacher and Rose 17.]
Figure 5. Figure 5.

Effect of relative Na+ deficiency on the transport of riboflavin. Transport rates with 144 mM Na+ (—•—•—), 25 mM Na+ + 119 mM choline+ (—*—*—), and 25 mM Na+ + 119 mM Li+ (—▴—▴—) are plotted against the riboflavin concentration. Points are means ± SD of 16 segments for the control and 9 segments for tests with choline+ and with Li+, respectively.

[From Daniel et al. 14.]
Figure 6. Figure 6.

Possible scheme of cellular mechanisms of transport of thiamine by the small intestine. T, thiamine; TMP, thiamine monophosphate; TPP, thiamine pyrophosphate; TPKase, thiamine pyrophosphokinase; TPPase, thiamine pyrophosphatase; TMPase, thiamine monophosphatase.

[Adapted from Rindi 58.]


Figure 1.

Time course of ascorbic acid uptake into guinea pig ileal brush‐border membrane vesicles. Vesicles were preequilibrated in 300 mM mannitol and 20 mM HEPES‐Tris (pH 7.0). Incubation was at 20°C in a medium containing 65 μM L‐[14C]ascorbic acid, 100 mM mannitol, 20 mM HEPES‐Tris (pH 7.0), and either 100 mM NaCl (•) or 100 mM KCl (○); 8 observations. HEPES, N‐2‐hydroxyethylpiperazine‐N′‐2‐ethanesulfonic acid; Tris, tris(hydroxymethyl)aminomethane.

[From Bianchi et al. 4.]


Figure 2.

Model of known events in intestinal absorption of reduced and oxidized forms of vitamin C in animals that require L‐ascorbic acid (ASC); model may also apply to events in renal reabsorption of filtered L‐ascorbic acid both in animal species that require dietary L‐ascorbic acid and in those that synthesize it. L‐Ascorbic acid is taken up across the brush‐border membrane against a concentration gradient coupled with Na+ diffusion down an electrochemical potential gradient entering the cell. L‐Ascorbic acid leaves the transport cell by a carrier‐mediated process at the basolateral membrane, perhaps in exchange for interstitial dehydroascorbic acid (DHA). Dehydroascorbic acid from either the lumen or interstitium enters the cell by facilitated diffusion and is enzymatically reduced.

[From Rose et al. 68.]


Figure 3.

Dixon plot of inhibition of 5‐methyltetrahydrofolic acid (5‐CH3THF) intestinal transport by folic acid. Data were obtained from incubation for 10 min at 37°C of everted jejunal sacs with 0.1 μM (•) and 0.25 μM (○) 5‐CH3THF at pH 6.3 with folic acid at increasing concentrations, v, Total transport of 5‐CH3THF in nmol·−1 intestine · 10 min−1.

[From Selhub et al. 85.]


Figure 4.

Properties of pantothenic acid (PA) uptake and release in isolated intestinal epithelial cells of chicken. Data points are means ± SE of 4 determinations. [3H]pantothenic acid was present at 0.9 μM. NaCN was present where indicated at 2.5 mM. ▪, Control; □, cells exposed to cyanide after 14 min of control conditions; Δ, cells exposed to NaCN for 10 min prior to [3H]pantothenic acid addition and during uptake.

[From Fenstermacher and Rose 17.]


Figure 5.

Effect of relative Na+ deficiency on the transport of riboflavin. Transport rates with 144 mM Na+ (—•—•—), 25 mM Na+ + 119 mM choline+ (—*—*—), and 25 mM Na+ + 119 mM Li+ (—▴—▴—) are plotted against the riboflavin concentration. Points are means ± SD of 16 segments for the control and 9 segments for tests with choline+ and with Li+, respectively.

[From Daniel et al. 14.]


Figure 6.

Possible scheme of cellular mechanisms of transport of thiamine by the small intestine. T, thiamine; TMP, thiamine monophosphate; TPP, thiamine pyrophosphate; TPKase, thiamine pyrophosphokinase; TPPase, thiamine pyrophosphatase; TMPase, thiamine monophosphatase.

[Adapted from Rindi 58.]
References
 1. Akiyama, T., J. Selhub, and I. H. Rosenberg. FMN phosphatase and FAD pyrophosphatase in rat intestinal brush borders: role in intestinal absorption of dietary riboflavin. J. Nutr. 112: 263–268, 1982.
 2. Baum, C. L., J. Selhub, and I. H. Rosenberg. The hydrolysis of nicotinamide adenine dinucleotide by brush border membranes of rat intestine. Biochem. J. 204: 203–207, 1982.
 3. Berger, E., E. Long, and G. Semenza. The sodium activation of biotin absorption in hamster small intestine in vitro. Biochim. Biophys. Acta 255: 873–887, 1972.
 4. Bianchi, J., F. A. Wilson, and R. C. Rose. Dehydroascorbic acid and ascorbic acid transport in the guinea pig ileum. Am. J. Physiol. 250 (Gastrointest. Liver Physiol. 13): G461–G468, 1986.
 5. Blair, J. A., M. L. Lucas, and S. K. Swanston‐Flatt. Intestinal folic acid absorption and the acid microclimate. The effects of compounds relevant to folate malabsorption. Pfluegers Arch. 392: 29–33, 1981.
 6. Blair, J. A., and A. J. Matty. Acid miocroclimate in intestinal absorption. Clin. Gastroenterol. 3: 183–197, 1974.
 7. Bowman, B. B., J. Selhub, and I. H. Rosenberg. Intestinal absorption of biotin in the rat. J. Nutr. 116: 1266–1271, 1986.
 8. Burgen, A. S. V., and N. J. Goldberg. Absorption of folic acid from the small intestine of the rat. Br. J. Pharmacol. 19: 313–320, 1962.
 9. Butterworth, C. E., Jr., C. M. Baugh, and C. Krumdieck. A study of folate absorption and metabolism in man utilizing carbon‐14‐labeled polyglutamates synthesized by the solid phase method. J. Clin. Invest. 48: 1131–1142, 1969.
 10. Casirola, D., G. Gastaldi, C. Patrini, V. Ricci, G. Ferrari, and G. Rindi. The comparative transport of thiamine and thiamine monophosphate by rat everted jejunal sacs. IRCS Med. Sci. 14: 246–247, 1986.
 11. Chandler, C. J., T. T. J. Wang, and C. H. Halsted. Pteroylpolyglutamate hydrolase from human jejunal brush borders. J. Biol. Chem. 261: 928–933, 1986.
 12. Christensen, S. Studies on riboflavin metabolism in the rat. I. Urinary and faecal excretion after oral administration of riboflavin‐5'‐phosphate. Acta Pharmacol. Toxicol. 27: 27–33, 1969.
 13. Crane, R. K. Hypothesis for mechanism of intestinal active transport of sugars. Federation Proc. 21: 891–895, 1962.
 14. Danford, D. E., and H. N. Munro. The liver in relation to the B vitamins. In: The Liver: Biology and Pathobiology, edited by I. M. Arias, H. Popper, D. Schachter, and D. A. Shafritz. New York: Raven, 1982, p. 367–384.
 15. Daniel, H., E. Binninger, and G. Rehner. Hydrolysis of FMN and FAD by alkaline phosphatase of the intestinal brush‐border membrane. Int. J. Vitam. Nutr. Res. 53: 109–114, 1983.
 16. Daniel, H., B. Neugebauer, A. Kratz, and G. Rehner. Localization of acid microclimate along intestinal villi of rat jejunum. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G293–G298, 1985.
 17. Daniel, H., U. Wille, and G. Rehner. In vitro kinetics of the intestinal transport of riboflavin in rats. J. Nutr. 113: 636–643, 1983.
 18. Domke, I., and W. Weis. Reinvestigation of the diabetogenic effect of dehydroascorbic acid. Int. J. Vitam. Nutr. Res. 53: 51–60, 1982.
 19. Eilam, Y., M. Ariel, J. Jablonska, and N. Grossowicz. On the mechanism of folate transport in isolated intestinal epithelial cells. Am. J. Physiol. 240 (Gastrointest. Liver Physiol. 3): G170–G175, 1981.
 20. Fenstermacher, D. K., and R. C. Rose. Absorption of pantothenic acid in rat and chick intestine. Am. J. Physiol. 250 (Gastrointest. Liver Physiol. 13): G155–G160, 1986.
 21. Ferrari, G., C. Patrini, and G. Rindi. Intestinal thiamin transport in rats. Thiamin and thiamin phosphoester content in the tissue and serosal fluid of everted jejunal sacs. Pfluegers Arch. 393: 37–41, 1982.
 22. Ferrari, G., G. Sciorelli, P. Del Poggio, U. Ventura, and G. Rindi. Free thiamine as the likely precursor of endocellular thiamine phosphates in everted rings of rat jejunum. Pfluegers Arch. 356: 111–120, 1975.
 23. Ferrari, G., U. Ventura, and G. Rindi. The Na+ ‐dependence of thiamin intestinal transport in vitro. Life Sci. 10: 67–75, 1971.
 24. Fox, K. R., and C. A. M. Hogben. Nicotinic acid active transport by in vitro bullfrog small intestine. Biochim. Biophys. Acta 332: 336–340, 1974.
 25. Gore, J., and C. Hoinard Evidence for facilitated transport of biotin by hamster enterocytes. J. Nutr. 117: 527–532, 1987.
 26. Gross, C. J., and L. M. Henderson. Digestion and absorption of NAD by the small intestine of the rat. J. Nutr. 113: 412–420, 1983.
 27. Halsted, C. H., C. M. Baugh, and C. E. Butterworth, Jr. Jejunal perfusion of simple and conjugated folates in man. Gastroenterology 68: 261–269, 1975.
 28. Halsted, C. H., K. Bhanthumnavin, and E. Mezey. Jejunal uptake of tritiated folic acid in the rat studied by in vivo perfusion. J. Nutr. 104: 1674–1680, 1974.
 29. Hamm, M. W., H. Mehansho, and L. M. Henderson. Transport and metabolism of pyridoxamine and pyridoxamine phosphate in the small intestine of the rat. J. Nutr. 109: 1552–1559, 1979.
 30. Hayashi, K., S. Yoshida, and T. Kawasaki. Thiamine transport in the brush border membrane vesicles of the guineapig jejunum. Biochim. Biophys. Acta 641: 106–113, 1981.
 31. Hegazy, E., and M. Schwenk. Riboflavin uptake by isolated enterocytes of guinea pigs. J. Nutr. 113: 1702–1707, 1983.
 32. Henderson, L., and C. Gross. Transport of niacin and niacinamide in perfused rat intestine. J. Nutr. 109: 646–653, 1979.
 33. Henderson, L., and C. Gross. Metabolism of niacin and niacinamide in perfused rat intestine. J. Nutr. 109: 654–662, 1979.
 34. Hoffbrand, A. V., and T. J. Peters. The subcellular localization of pteroyl polyglutamate hydrolase and folate in guinea pig intestinal mucosa. Biochim. Biophys. Acta 192: 479–485, 1969.
 35. Hogben, C. A. M., D. J. Tocco, B. B. Brodie, and L. S. Schanker. On the mechanism of intestinal absorption of drugs. J. Pharmacol. Exp. Ther. 125: 275–282, 1959.
 36. Hoyumpa, A. M., Jr., H. M. Middleton III, F. A. Wilson, and S. Schenker. Thiamine transport across the rat intestine. I. Normal characteristics. Gastroenterology 68: 1218–1227, 1975.
 37. Hoyumpa, A. M., Jr., S. Nichols, S. Schenker, and F. A. Wilson. Thiamine transport in thiamine‐deficient rats. Role of the unstirred water layer. Biochim. Biophys. Acta 436: 438–447, 1976.
 38. Hoyumpa, A. M., Jr., R. Strickland, J. J. Sheehan, G. Yarborough, and S. Nichols. Dual system of intestinal thiamine transport in humans. J. Lab. Clin. Med. 99: 701–708, 1982.
 39. Jusko, W. J., and G. Levy. Absorption, metabolism, and excretion of riboflavin‐5'‐phosphate in man. J. Pharm. Sci. 56: 58–62, 1967.
 40. Kesavan, V., and J. M. Noronha. An ATPase dependent, radiosensitive acidic microclimate essential for intestinal folate absorption. J. Physiol. Lond. 280: 1–7, 1978.
 41. Knickelbein, R., P. S. Aronson, W. Atherton, and J. W. Dobbins. Sodium and chloride transport across rabbit ileal brush border. I. Evidence for Na‐H exchange. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G504–G510, 1983.
 42. Komai, T., K. Kawai, and H. Shindo. Active transport of thiamine from rat small intestine. J. Nutr. Sci. Vitaminol. 20: 163–177, 1974.
 43. Lei, F.‐H., M. L. Lucas, and J. A. Blair. The influence of pH, low sodium ion concentration and methotrexate on the jejunal‐surface pH: a model for folic acid transfer. Biochem. Soc. Trans. 5: 149–152, 1977.
 44. Leslie, G. I., and P. B. Rowe. Folate binding by the brush border membrane proteins of small intestinal epithelial cells. Biochemistry 11: 1696–1703, 1972.
 45. Levy, G., and R. R. Hewitt. Evidence in man for different specialized intestinal transport mechanisms for riboflavin and thiamin. Am. J. Clin. Nutr. 24: 401–404, 1971.
 46. Lucas, M. L., and J. A. Blair. The magnitude and distribution of the acid microclimate in proximal jejunum and its relation to luminal acidification. Proc. R. Soc. Lond. A Math. Phys. Sci. 200: 27–41, 1978.
 47. Mayersohn, M., and M. Gibaldi. Drug transport. II. The effect of various cations on the passive transfer of drugs across the everted rat intestine. Biochim. Biophys. Acta 196: 296–304, 1970.
 48. Mehansho, H., M. W. Hamm, and L. M. Henderson. Transport and metabolism of pyridoxal and pyridoxal phosphate in the small intestine of the rat. J. Nutr. 109: 1542–1551, 1979.
 49. Mellors, A. J., D. L. Nahrwold, and R. C. Rose. Ascorbic acid flux across mucosal border of guinea pig and human ileum. Am. J. Physiol. 233 (Endocrinol. Metab. Gastrointest. Physiol. 2): E374–E379, 1977.
 50. Middleton, H. M., III Uptake of pyridoxine hydrochloride by the rat jejunal mucosa in vitro. J. Nutr. 107: 126–131, 1977.
 51. Middleton, H. M., III Jejunal phosphorylation and dephosphorylation of absorbed pyridoxine HCl in vitro. Am. J. Physiol. 235 (Endocrinol. Metab. Gastrointest. Physiol. 4): E272–E278, 1978.
 52. Middleton, H. M., III Intestinal absorption of pyridoxal‐5'‐phosphate: disappearance from perfused segments of rat jejunum in vivo. J. Nutr. 109: 975–981, 1979.
 53. Middleton, H. M., III Transmural absorption of pyridoxine HCl in vitro in the rat jejunum. Proc. Soc. Exp. Biol. Med. 167: 519–524, 1981.
 54. Middleton, H. M., III Characterization of pyridoxal 5'‐phosphate disappearance from in vivo perfused segments of rat jejunum. J. Nutr. 112: 269–275, 1982.
 55. Middleton, H. M., III Pyridoxal 5'‐phosphate disappearance from perfused rat jejunal segments: correlation with perfusate alkaline phosphatase and water absorption. Proc. Soc. Exp. Biol. Med. 174: 249–257, 1983.
 56. Middleton, H. M., III Uptake of pyridoxine by in vivo perfused segments of rat small intestine: a possible role for intracellular vitamin metabolism. J. Nutr. 115: 1079–1088, 1985.
 57. Morrison, A. B., and J. A. Campbell. Vitamin absorption studies. I. Factors influencing the excretion of oral test doses of thiamine and riboflavin by human subjects. J. Nutr. 72: 435–440, 1960.
 58. Patterson, J. W. The diabetogenic effect of dehydroascorbic acid and dehydroisoascorbic acid. J. Biol. Chem. 183: 81–88, 1950.
 59. Patterson, L. T., D. L. Nahrwold, and R. C. Rose. Ascorbic acid uptake in guinea pig intestinal mucosa. Life Sci. 31: 2783–2791, 1982.
 60. Perry, J., and I. Chanarin. Formylation of folate as step in physiological folate absorption. Br. Med. J. 2: 588–589, 1973.
 61. Reisenauer, A. M., C. L. Krumdieck, and C. H. Halsted. Folate conjugase: two separate activities in human jejunum. Science Wash. DC 198: 196–197, 1977.
 62. Rindi, G. Thiamin absorption by small intestine. Acta Vitaminol. Enzymol. 6: 47–55, 1984.
 63. Rindi, G., and G. Ferrari. Thiamine transport by human intestine in vitro. Experientia Basel 33: 211–213, 1977.
 64. Rindi, G., G. Gastaldi, D. Casirola, and G. Ferrari. Thiamin uptake by brush border membrane vesicles from rat small intestine. IRCS Med. Sci. 13: 234–235, 1985.
 65. Rindi, G., and U. Ventura. Phosphorylation and uphill intestinal transport of thiamine, in vitro. Experientia Basel 23: 175–176, 1967.
 66. Rindi, G., and U. Ventura. Thiamine countertransport in rat small intestine. Pfluegers Arch. 310: 185–188, 1969.
 67. Rivier, D. A. Kinetics and Na‐dependence of riboflavin absorption by intestine in vivo. Experientia Basel 29: 1443–1446, 1973.
 68. Rose, R. C. Transport and metabolism of water‐soluble vitamins in intestine. Am. J. Physiol. 240 (Gastrointest. Liver Physiol. 3): G97–G101, 1981.
 69. Rose, R. C. Ascorbic acid transport in mammalian kidney. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F627–F632, 1986.
 70. Rose, R. C. Intestinal absorption of water‐soluble vitamins. In: Physiology of the Gastrointestinal Tract (2nd ed.), edited by L. R. Johnson New York: Raven, 1987, vol. 2, p. 1581–1596.
 71. Rose, R. C. Solubility properties of reduced and oxidized ascorbate as determinants of membrane permeation. Biochim. Biophys. Acta 924: 254–256, 1987.
 72. Rose, R. C., M. J. Koch, and D. L. Nahrwold. Folic acid transport by mammalian small intestine. Am. J. Physiol. 235 (Endocrinol. Metab. Gastrointest. Physiol. 4): E678–E685, 1978.
 73. Rose, R. C., D. B. McCormick, T.‐K. Li, L. Lumeng, J. G. Haddad, Jr., and R. Spector. Transport and metabolism of vitamins. Federation Proc. 45: 30–39, 1986.
 74. Rose, R., and D. Nahrwold. Intestinal ascorbic acid transport following diets of high or low ascorbic acid content. Int. J. Vitam. Nutr. Res. 48: 382–386, 1978.
 75. Rose, R. C., and S. G. Schultz. Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal electrical potential differences. J. Gen. Physiol. 57: 639–663, 1971.
 76. Rosenberg, I. H. Intestinal absorption of folate. In: Physiology of the Gastrointestinal Tract (1st ed.), edited by L. R. Johnson New York: Raven, 1981, vol. 2, p. 1221–1230.
 77. Rosenberg, I. H., R. R. Streiff, H. A. Godwin, and W. B. Castle. Absorption of polyglutamic folate: participation of deconjugating enzymes of the intestinal mucosa. N. Engl. J. Med. 280: 985–988, 1969.
 78. Russell, R. M., G. J. Dhar, S. K. Dutta, and I. H. Rosenberg. Influence of intraluminal pH on folate absorption: studies in control subjects and in patients with pancreatic insufficiency. J. Lab. Clin. Med. 93: 428–436, 1979.
 79. Said, H. M., F. K. Ghishan, and J. E. Murrell. Ontogenesis of intestinal transport of 5‐methyltetrahydrofolate in the rat. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G567–G571, 1985.
 80. Said, H. M., D. Hollander, and Y. Duong. A dual, concentration‐dependent transport system for riboflavin in rat intestine in vitro. Nutr. Res. 5: 1269–1279, 1985.
 81. Said, H. M., D. Hollander, and D. Katz. Absorption of 5‐methyltetrahydrofolate in rat jejunum with intact blood and lymphatic vessels. Biochim. Biophys. Acta 775: 402–408, 1984.
 82. Said, H. M., and R. Redha. A carrier‐mediated system for transport of biotin in rat intestine in vitro. Am. J. Physiol. 252 (Gastrointest. Liver Physiol. 15): G52–G55, 1987.
 83. Said, H. M., and W. B. Strum. Cyclic adenosine‐3', 5'‐monophosphate and folate transport in rat jejunum. Biochem. Biophys. Res. Commun. 115: 756–761, 1983.
 84. Said, H. M., and W. B. Strum. A pH‐dependent, carriermediated system for transport of 5‐methyltetrahydrofolate in rat jejunum. J. Pharmacol. Exp. Ther. 226: 95–99, 1983.
 85. Santiago‐Borrero, P. J., R. Santini, E. Perez‐Santiago, and N. Maldonado. Congenital isolated defect of folic acid absorption. J. Pediatr. 82: 450–455, 1973.
 86. Schaller, K., and H. Holler. Thiamine absorption in the rat. Int. J. Vitam. Nutr. Res. 44: 443–451, 1974.
 87. Schron, C. M., C. Washington, Jr., and B. L. Blitzer. The transmembrane pH gradient drives uphill folate transport in rabbit jejunum. J. Clin. Invest. 76: 2030–2033, 1985.
 88. Schuette, S. A., and R. C. Rose. Nicotinamide uptake and metabolism by chick intestine. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G531–G538, 1983.
 89. Schultz, S. G., and P. F. Curran. Intestinal absorption of sodium chloride and water. In: Handbook of Physiology. Alimentary Canal, edited by C. F. Code Washington, DC: Am. Physiol. Soc., 1968, sect. 6, vol. III, chapt. 117, p. 1245–1275.
 90. Selhub, J., H. Brin, and N. Grossowicz. Uptake and reduction of radioactive folate by everted sacs of rat small intestine. Eur. J. Biochem. 33: 433–438, 1973.
 91. Selhub, J., G. M. Powell, and I. H. Rosenberg. Intestinal transport of 5‐methyltetrahydrofolate. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G515–G520, 1984.
 92. Selhub, J., and I. H. Rosenberg. Folate transport in isolated brush border membrane vesicles from rat intestine. J. Biol. Chem. 256: 4489–4493, 1981.
 93. Serebro, H. A., H. M. Solomon, J. H. Johnson, and T. R. Hendrix. The intestinal absorption of vitamin B6 compounds by the rat and hamster. Bull. Johns Hopkins Hosp. 119: 166–171, 1966.
 94. Shiau, Y.‐F., P. Fernandez, M. J. Jackson, and S. McMonagle. Mechanisms maintaining a low‐pH microclimate in the intestine. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G608–G617, 1985.
 95. Shibata, K., C. J. Gross, and L. M. Henderson. Hydrolysis and absorption of pantothenate and its coenzymes in the rat small intestine. J. Nutr. 113: 2207–2215, 1983.
 96. Siliprandi, L., P. Vanni, M. Kessler, and G. Semenza. Na+ ‐dependent, electroneutral L‐ascorbate transport across brush‐border membrane vesicles from guinea pig small intestine. Biochim. Biophys. Acta 552: 129–142, 1979.
 97. Smith, M. E. The uptake of pteroylglutamic acid by the rat jejunum. Biochim. Biophys. Acta 298: 124–129, 1973.
 98. Smith, M. E., A. J. Matty, and J. A. Blair. The transport of pteroylglutamic acid across the small intestine of the rat. Biochim. Biophys. Acta 219: 37–46, 1970.
 99. Spector, R. Vitamin homeostasis in the central nervous system. N. Engl. J. Med. 296: 1393–1398, 1977.
 100. Spencer, R. P., and K. R. Brody. Biotin transport by small intestine of rat, hamster, and other species. Am. J. Physiol. 206: 653–657, 1964.
 101. Stevenson, N. Active transport of L‐ascorbic acid in the human ileum. Gastroenterology 67: 952–956, 1974.
 102. Stevenson, N., and M. Brush. Existence and characteristics of Na+ ‐dependent active transport of ascorbic acid in guinea pig. Am. J. Clin. Nutr. 22: 318–326, 1969.
 103. Stripp, B. Intestinal absorption of riboflavin by man. Acta Pharmacol. Toxicol. 22: 353–362, 1965.
 104. Strugala, G. J., H. Overhoff, and W. Forth. Bidirectional transfer and tissue accumulation of folic acid by rat intestine in vitro. Digestion 32: 255–266, 1985.
 105. Strum, W. B. A pH‐dependent, carrier‐mediated transport system for the folate analog, amethopterin, in rat jejunum. J. Pharmacol. Exp. Ther. 203: 640–645, 1977.
 106. Strum, W. B. Enzymatic reduction and methylation of folate following pH‐dependent, carrier‐mediated transport in rat jejunum. Biochim. Biophys. Acta 554: 249–257, 1979.
 107. Strum, W. B. Characteristics of the transport of pteroylglutamate and amethopterin in rat jejunum. J. Pharmacol. Exp. Ther. 216: 329–333, 1981.
 108. Suormala, T., H. Wick, J.‐P. Bonjour, and E. R. Baumgartner. Intestinal absorption and renal excretion of biotin in patients with biotinidase deficiency. Eur. J. Pediatr. 144: 21–26, 1985.
 109. Swendseid, M. E., O. D. Bird, R. A. Brown, and F. H. Gethell. Metabolic function of pteroylglutamic acid and its hexaglutamyl conjugate. J. Lab. Clin. Med. 32: 23–27, 1947.
 110. Thoene, J. G., R. Lemons, and H. Baker. Impaired intestinal absorption of biotin in juvenile multiple carboxylase deficiency. N. Engl. J. Med. 308: 639–642, 1983.
 111. Tsuji, T., R. Yamada, and Y. Nose. Intestinal absorption of vitamin B6. I. Pyridoxol uptake by rat intestinal tissue. J. Nutr. Sci. Vitaminol. 19: 401–417, 1973.
 112. Ventura, U., G. Ferrari, R. Tagliabue, and G. Rindi. A kinetical study of thiamine intestinal transport in vitro. Life Sci. 8: 699–705, 1969.
 113. Ventura, U., and G. Rindi. Transport of thiamine by the small intestine in vitro. Experientia Basel 21: 645–646, 1965.
 114. Yagi, K., and J. Okuda. Phosphorylation of riboflavin by transferase action. Nature Lond. 181: 1663–1664, 1958.
 115. Yoshida, S., K. Hayashi, and T. Kawasaki. Pyridoxine transport in brush border membrane vesicles of guinea pig jejunum. J. Nutr. Sci. Vitaminol. 27: 311–317, 1981.
 116. Zimmerman, J., J. Selhub, R. Arnold, and I. H. Rosenberg. Studies of the mechanism of NA+ effect on folate transport in the small intestine (Abstract). Federation Proc. 44: 811, 1985.
 117. Zimmerman, J., J. Selhub, and I. H. Rosenberg. The role of sodium ion in the transport of folic acid in the small intestine. Am. J. Physiol. 251 (Gastrointest. Liver Physiol. 14): G218–G222, 1986.
 118. Zinner, P. M., M. Kirchgessner, and D. A. Roth‐Maier. Intestinale Vitamin‐B6‐Absorption in vitro in Abhängigkeit von der Pyridoxin. HCl‐Konzentration der Mucosalösung. Int. J. Vitam. Nutr. Res. 51: 132–138, 1981.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Richard C. Rose. Intestinal Transport of Water‐Soluble Vitamins. Compr Physiol 2011, Supplement 19: Handbook of Physiology, The Gastrointestinal System, Intestinal Absorption and Secretion: 421-435. First published in print 1991. doi: 10.1002/cphy.cp060419