Comprehensive Physiology Wiley Online Library

Mammalian Gs‐Stimulated Adenylyl Cyclases

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Cloning of Mammalian Isoforms
2 Tissue Distribution of Various Adenylyl Cyclases
3 Structure and Catalytic Site
4 Basal Activity
5 Regulation by Protein–Protein Interactions
5.1 Ca2+/Calmodulin
5.2 G Protein Subunits
6 Regulation by Small Molecules
6.1 P‐Site Ligands
6.2 Forskolin
6.3 Ca2+
7 Regulation by Protein Kinases
7.1 Protein Kinase A
7.2 Protein Kinase C
7.3 Calmodulin‐Kinase
7.4 Other Protein Kinases
8 Future Directions
Figure 1. Figure 1.

Phylogenetic tree of adenylyl cyclases. Comparison was done according to the method of Sneath and Sokal 54 with the GCG program.

Figure 2. Figure 2.

Predicted topology and secondary structure of mammalian adenylyl cyclase. Secondary structure prediction was obtained by use of the PHD program 50. Cylinders represent helixes; wide arrows represent β‐sheets; and the thin lines represent loops. Hydrophobic stretches, thought to be transmembrane regions, are depicted as being buried in the bilayer. Highly conserved regions are shown in solid black. The “N” and “C” indicate the N‐ and C‐termini of the protein.

Figure 3. Figure 3.

A cartoon of the AC2 C‐terminal dimer based on the solved x‐ray structure. The dimer is formed by two monomers in close contact with each other. Two forskolin molecules are located at the interface of the monomers. The ribbons represent α‐helixes and β‐sheets. The thin lines represent disordered loops.

Figure 4. Figure 4.

A schematic drawing of the structure of adenylyl cyclases. The central region is the structure of central loop and C‐terminus region based on the homology model using the C2 dimer as template. The secondary structure elements in gray are the regions not presented in the solved C2 dimer structure. The forskolin binding sites and putative ATP binding pocket are shown. Regions of adenylyl cyclase thought to be involved in interaction with G protein sub‐units and CaM are also labeled. The cylinders represent α‐helixes and ribbons represent β‐sheets. The thin lines represent disordered loops.



Figure 1.

Phylogenetic tree of adenylyl cyclases. Comparison was done according to the method of Sneath and Sokal 54 with the GCG program.



Figure 2.

Predicted topology and secondary structure of mammalian adenylyl cyclase. Secondary structure prediction was obtained by use of the PHD program 50. Cylinders represent helixes; wide arrows represent β‐sheets; and the thin lines represent loops. Hydrophobic stretches, thought to be transmembrane regions, are depicted as being buried in the bilayer. Highly conserved regions are shown in solid black. The “N” and “C” indicate the N‐ and C‐termini of the protein.



Figure 3.

A cartoon of the AC2 C‐terminal dimer based on the solved x‐ray structure. The dimer is formed by two monomers in close contact with each other. Two forskolin molecules are located at the interface of the monomers. The ribbons represent α‐helixes and β‐sheets. The thin lines represent disordered loops.



Figure 4.

A schematic drawing of the structure of adenylyl cyclases. The central region is the structure of central loop and C‐terminus region based on the homology model using the C2 dimer as template. The secondary structure elements in gray are the regions not presented in the solved C2 dimer structure. The forskolin binding sites and putative ATP binding pocket are shown. Regions of adenylyl cyclase thought to be involved in interaction with G protein sub‐units and CaM are also labeled. The cylinders represent α‐helixes and ribbons represent β‐sheets. The thin lines represent disordered loops.

References
 1. Bakalyar, H. A., and R. R. Reed. Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 250: 1403–1406, 1990.
 2. Bird, I. A., J. I. Mason, K. Oka, and W. Rainey Angiotensin‐II stimulates an increase in cAMP and expression of 170c‐hydroxylase cytochrome P450 in fetal bovine adrenocortical Cells. Endocrinology 132: 932–934, 1993.
 3. Blitzer, R. D., T. Wong, R. Nouranifar, R. Iyengar, and E. M. Landau. Postsynaptic cAMP pathway gates early LTP in hippocampal CA1 region. Neuron 15: 1403–1414, 1995.
 4. Brostrom, C. O., M. A. Brostrom, and D. J. Wolff. Calcium‐dependent adenylate cyclase from rat cerebral cortex. Reversible activation by sodium fluoride. J. Biol. Chem. 252: 677–5685, 1977.
 5. Cali, J. J., R. S. Parekh, and J. Krupinski Splice variants of type VIII adenylyl cyclase. Differences in glycosylation and regulation by Ca2+/calmodulin. J. Biol. Chem. 271: 1089–1095, 1996.
 6. Cali, J. J., J. C. Zwaagstra, N. Mons, D. M. F. Cooper, and J. Krupinski Type VIII adenylyl cyclase. A Ca2+/calmodulin‐stimulated enzyme expressed in discrete regions of rat brain. J. Biol. Chem. 269: 12190–12195, 1994.
 7. Chen, J.‐q., M. DeVivo, J. Dingus, A. Harry, J. Li, D. J. Carty, J. L. Blank, J. H. Exton, R. H. Stoffel, J. Inglese, R. J. Lefkowitz, D. E. Logothetis, J. D. Hildebrandt, and R. Iyengar A region of adenylyl cyclase 2 critical for regulation by G protein βγ subunits. Science 268: 1166–1169, 1995.
 8. Chen, J.‐q., and R. Iyengar Inhibition of cloned adenylyl cyclases by mutant‐activated Gi‐alpha and specific suppression of type 2 adenylyl cyclase inhibition by phorbol ester treatment. J. Biol. Chem. 268: 12253–12256, 1993.
 9. Chen, Y., A. Harry, J. Li, M. J. Smit, X. Bai, R. Magnusson, J. Pieroni, G. Weng, and R. Iyengar A Gαs interaction region in adenylyl cyclase: selective involvement in protein kinase A regulaion of adenylyl cyclase 6. Proc. Natl. Acad. Sci. U.S.A.: accepted 1997.
 10. Chen, Z., H. S. Nield, H. Sun, A. Barbier, and T. B. Patel. Expression of type V adenylyl cyclase is required for epidermal growth factor–mediated stimulation of cAMP accumulation. J. Biol. Chem. 270: 27525–27530, 1995.
 11. Chern, Y., J. Y. Chiou, H. L. Lai, and M. H. Tsai. Regulation of adenylyl cyclase type VI activity during desensitization of the A2a adenosine receptor mediated cyclic AMP response: role for protein phosphatase 2A. Mol. Pharmacol. 48: 1–8, 1995.
 12. Chiono, M., R. Mahey, G. Tate, and D. M. Cooper. Capacitative Ca2+ entry exclusively inhibits cAMP synthesis in C6–2B glioma cells. Evidence that physiologically evoked Ca2+ entry regulates Ca(2+)‐inhibitable adenylyl cyclase in non‐excitable cells. J. Biol. Chem. 270: 1149–1155, 1995.
 13. Choi, E. J., Z. Xia, and D. R. Storm. Stimulation of the type III olfactory adenylyl cyclase by calcium and calmodulin. Biochemistry 31: 6492–6498, 1992.
 14. Clark, R. B., T. J. Goka, D. A. Green, R. Barber, and R. W. Butcher. Differences in the forskolin activation of adenylate cyclases in wild‐type and variant lymphoma cells. Mol. Pharmacol. 22: 609–613, 1982.
 15. Cooper, D. M. F., N. Mons, and J. W. Karpen. Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature 374: 421–424, 1995.
 16. Defer, N., O. Marinx, D. Stengel, A. Danisova, V. Iourgenko, I. Matsuoka, D. Caput, and J. Hanoune Molecular cloning of the human type VIII adenylyl cyclase. FEBS Lett. 351: 109–113, 1994.
 17. Desaubry, L., I. Shoshani, and R. A. Johnson. 2′,5′‐Dideoxyadenosine 3′‐polyphosphates are potent inhibitors of adenylyl cyclases. J. Biol. Chem. 271: 2380–2382, 1996.
 18. Feinstein, P. G., K. A. Schrader, H. A. Bakalyar, W.‐J. Tang, J. Kuprinski, A. G. Gilman, and R. R. Reed. Molecular cloning and characterization of a Ca2+/calmodulin‐insensitive adenylyl cyclase from rat brain. Proc. Natl. Acad. Sci. U.S.A. 88: 10173–10177, 1991.
 19. Gao, B., and A. G. Gilman. Cloning and expression of a widely distributed (type IV) adenylyl cyclase. Proc. Natl. Acad. Sci. U.S.A. 88: 10178–10182, 1991.
 20. Gilman, A. G. G proteins: transducers of receptor‐generated signals. Annu. Rev. Biochem 56: 651–693, 1987.
 21. Glatt, C. E., and S. H. Snyder. Cloning and expression of an adenylyl cyclase localized to the corpus striatum. Nature 361: 536–538, 1993.
 22. Harry, A., Y. Chen, R. Magnusson, R. Iyengar, and G. Weng Differential regulation of adenylyl cyclase by Gαs*. J. Biol. Chem. 272: 19017–19021, 1997.
 23. Hellevuo, K., M. Yoshimura, M. Kao, P. L. Hoffman, D. M. Cooper, and B. Tabakoff A novel adenylyl cyclase sequence cloned from the human erythroleukemia cell line. Biochem. Biophys. Res. Commun. 192: 311–318, 1993.
 24. Hildebrandt, J. D., J. Hanoune, and L. Birnbaumer Guanine nucleotide inhibition of cyc− S49 mouse lymphoma cell membrane adenylyl cyclase. J. Biol. Chem. 257: 14723–14725, 1982.
 25. Ishikawa, Y., S. Katsushika, L. Chen, N. J. Halnon, J. Kawabe, and C. J. Homcy. Isolation and characterization of a novel cardiac adenylyl cyclase cDNA. J. Biol. Chem. 267: 13553–13557, 1992.
 26. Iwami, G., J. Kawabe, T. Ebina, P. J. Cannon, C. J. Homcy, and Y. Ishikawa Regulation of adenylyl cyclase by protein kinase A. J. Biol. Chem. 270: 12481–12484, 1995.
 27. Iyengar, R. Molecular and functional diversity of mammalian Gs‐stimulated adenylyl cyclases. FASEB J. 7: 768–775, 1993.
 28. Jacobowitz, O., J. Chen, R. T. Premont, and R. Iyengar Stimulation of specific types of adenylyl cyclases by phorbol ester treatment. J. Biol. Chem. 268: 3829–3832, 1993.
 29. Jacobowitz, O., and R. Iyengar Phorbol ester‐induced stimulation and phosphorylation of adenylyl cyclase 2. Proc. Natl. Acad. Sci. U.S.A. 91: 10630–10634, 1994.
 30. Johnson, R. A., S. M. Yeung, D. Stubner, M. Bushfield, and I. Shoshani Cation and structural requirements for P site‐mediated inhibition of adenylate cyclase. Mol. Pharmacol. 35: 681–688, 1989.
 31. Katada, T., K. Kasukabe, M. Oinuma, and M. Ui A novel mechanism for the inhibition of adenylate cyclase via inhibitory GTP binding proteins. Calmodulin dependent inhibition of the cyclase catalyst by the βγ‐subunits of GTP binding proteins. J. Biol. Chem. 262: 11897–11900, 1987.
 32. Katsushika, S., L. Chen, J.‐I. Kawabe, R. Nilakantan, N. J. Halnon, C. J. Homcy, and Y. Ishikawa Cloning and characterization of a sixth adenylyl cyclase isoform: types V and VI constitute a subgroup within the mammalian adenylyl cyclase family. Proc. Natl. Acad. Sci. U.S.A. 89: 8774–8778, 1992.
 33. Kawabe, J., G. Iwami, T. Ebina, S. Ohno, T. Katada, Y. Ueda, C. J. Homcy, and Y. Ishikawa Differential activation of adenylyl cyclase by protein kinase C. J. Biol. Chem. 269: 16554–16558, 1994.
 34. Koesling, D., E. Boheme, and G. Schultz Guanylyl cyclases, a growing family of signal transducing enzymes. FASEB J. 5: 2785–2791, 1991.
 35. Kozasa, T., J. R. Hepler, A. V. Smrcka, M. I. Simon, S. G. Rhee, P. C. Sternweis, and A. G. Gilman. Purification and characterization of recombinant G16 alpha from Sf9 cells: activation of purified phospholipase C isozymes by G‐protein alpha subunits. Proc. Natl. Acad. Sci. U.S.A. 90: 9176–9180, 1993.
 36. Krupinski, J., F. Coussen, H. A. Bakalyar, W.‐J. Tang, P. G. Feinstein, K. Orth, C. Slaughter, R. R. Reed, and A. G. Gilman. Adenylyl cyclase amino acid sequence: possible channel‐ or transporter‐like structure. Science 244: 1558–1564, 1989.
 37. Kunkel, M. W., J. Friedman, S. Shenolikar, and R. B. Clark. Cell free heterologous desensitization of adenylyl cyclase in S49 cell membranes mediated by cAMP dependent kinase. FASEB J. 3: 2067–2074, 1989.
 38. Levin, L. R., P.‐Y. Han, P. M. Hwang, P. G. Feinstein, R. L. Davis, R. Randall, and R. R. Reed. The Drosophila learning and memory gene rutabaga encodes a Ca2+/calmodulin responsive adenylyl cyclase. Cell 68: 479–489, 1992.
 39. Livingstone, M. S., P. P. Sziber, and W. G. Quinn. Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant. Cell 37: 205–215, 1984.
 40. Lustig, K. D., B. R. Conklin, P. Herzmark, R. Taussig, and H. R. Bourne. Type II adenylylcyclase integrates coincident signals from Gs, Gi, and Gq. J. Biol. Chem. 268: 13900–13905, 1993.
 41. Mons, N., A. Harry, P. Dubourg, R. T. Premont, R. Iyengar, and D. M. Cooper. Immunohistochemical localization of adenylyl cyclase in rat brain indicates a highly selective concentration at synapses. Proc. Natl. Acad. Sci. U.S.A. 92: 8473–8477, 1995.
 42. Neer, E. J. Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80: 249–257, 1995.
 43. Paterson, J. M., S. M. Smith, A. J. Harmar, and F. A. Antoni. Control of a novel adenylyl cyclase by calcineurin. Biochem. Biophys. Res. Commun. 214: 1000–1008, 1995.
 44. Pieroni, J. P., A. Harry, J. Chen, O. Jacobowitz, R. P. Magnusson, and R. Iyengar Distinct characteristics of the basal activities of adenylyl cyclases 2 and 6. J. Biol. Chem. 270: 21368–21373, 1995.
 45. Pieroni, J. P., D. Miller, R. T. Premont, and R. Iyengar Type 5 adenylyl cyclase distribution. Nature 363: 679, 1993.
 46. Premont, R. T., J. Chen, H.‐W. Ma, M. Ponnapalli, and R. Iyengar Two members of a widely expressed subfamily of hormone stimulated adenylyl cyclases. Proc. Natl. Acad. Sci. U.S.A. 89: 9808–9813, 1992.
 47. Premont, R. T., and R. Iyengar Heterologous desensitization of the liver adenylyl cyclase: analysis of the role of G‐proteins. Endocrinology 125: 1151–1160, 1989.
 48. Premont, R. T., O. Jacobowitz, and R. Iyengar Lowered responsiveness of the catalyst of adenylyl cyclase to stimulation by Gs in heterologous desensitization: A role for cAMP dependent phosphorylation. Endocrinology 131: 2774–2783, 1992.
 49. Premont, R. T., I. Matsuoka, M.‐G. Mattei, Y. Pouille, N. Defer, and J. Hanoune Identification and characterization of a widely expressed form of adenylyl cyclase. J. Biol. Chem 271: 13900–13907, 1996.
 50. Rost, B., and C. Sander Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. 232: 584–599, 1993.
 51. Scholich, K., A. J. Barbier, J. B. Mullenix, and T. B. Patel. Characterization of soluble forms of nochimeric type V adenylyl cyclases. Proc. Natl. Acad. Sci. U.S.A. 94: 2915–2920, 1997.
 52. Seamon, K. B. Forskolin and adenylate cyclase. ISI Atlas of Science: Pharmacology 1: 250–253, 1987.
 53. Simmoteit, R. R., H. D. Schulzki, D. Palm, S. Mollner, and T. Pfeuffer Chemical and functional analysis of components of adenylyl cyclase from human platelets treated with phorbol esters. FEBS Lett. 249: 189–194, 1991.
 54. Sneath, P. H. A., and R. R. Sokal. Numerical Toxonomy. San Francisco: Freeman, 1973.
 55. Somkuti, S. G., J. D. Hildebrandt, J. T. Herberg, and R. Iyengar Divalent cation regulation of adenylyl cyclase. An allosteric site on the catalytic component. J. Biol. Chem. 257: 6387–6393, 1982.
 56. Sutkowski, E. M., W.‐J. Tang, C. W. Broome, J. D. Robbins, and K. B. Seamon. Regulation of forskolin interactions with type I, II, V, and VI adenylyl cyclases by Gs‐α. Biochemistry 33: 12852–12859, 1994.
 57. Tang, W.‐J., and A. G. Gilman. Adenylyl cyclases. Cell 70: 869–872, 1992.
 58. Tang, W.‐J., and A. G. Gilman. Construction of a soluble adenylyl cyclase activated by Gs alpha and forskolin. Science 268: 1769–1772, 1995.
 59. Tang, W.‐J., and A. G. Gilman. Type specific regulation of adenylyl cyclase by G protein βγ‐subunits. Science 254: 1500–1503, 1991.
 60. Tang, W.‐J., J. Krupinski, and A. G. Gilman. Expression and characterization of calmodulin‐activated (type I) adenylyl cyclase. J. Biol. Chem. 266: 8595–8603, 1991.
 61. Tang, W.‐J., M. Stanzel, and A. G. Gilman. Truncation and alanine‐scanning mutants of type I adenylyl cyclase. Biochemistry 34: 14563–14572, 1995.
 62. Taussig, R., J. A. Iniguez‐Lluhi, and A. G. Gilman. Inhibition of adenylyl cyclase by Gi alpha. Science 261: 218–221, 1993.
 63. Taussig, R., L. M. Quarmby, and A. G. Gilman. Regulation of purified type I and II adenylyl cyclases by G protein βγ subunits. J. Biol. Chem. 268: 9–12, 1993.
 64. Taussig, R., W.‐J. Tang, J. R. Hepler, and A. G. Gilman. Distinct patterns of bidirectional regulation of mammalian adenylyl cyclases. J. Biol. Chem. 269: 6093–6100, 1994.
 65. Villacres, E. C., Z. Wu, W. Hua, M. D. Nielsen, J. J. Watters, C. Yan, J. Beavo, and D. R. Storm. Developmentally expressed Ca(2+)‐sensitive adenylyl cyclase activity is disrupted in the brains of type I adenylyl cyclase mutant mice. J. Biol. Chem. 270: 14352–14357, 1995.
 66. Vorherr, T., L. Knopfel, F. Hofmann, S. Mollner, T. Pfeuffer, and E. Carafoli The calmodulin binding domain of nitric oxide synthase and adenylyl cyclase. Biochemistry 32: 6081–6088, 1993.
 67. Waard, M. D., H. Liu, D. Walker, V. E. S. Scott, C. A. Gurnett, and K. P. Campbell. Direct binding of G‐protein βγ complex to voltage‐dependent calcium channels. Nature 385: 446–450, 1997.
 68. Watson, P. A., J. Krupinski, A. M. Kempinski, and C. D. Frankenfield. Molecular cloning and characterization of the type VII isoform of mammalian adenylyl cyclase expressed widely in mouse tissues and in S49 mouse lymphoma cells. J. Biol. Chem. 269: 28893–28898, 1994.
 69. Wayman, G. A., S. Impey, and D. R. Storm. Ca2+ inhibition of type III adenylyl cyclase in vivo. J. Biol. Chem. 270: 21480–21486, 1995.
 70. Wayman, G. A., S. Impey, Z. Wu, W. Kindsvogel, L. Prichard, and D. R. Storm. Synergistic activation of the type I adenylyl cyclase by Ca2+ and Gs‐coupled receptors in vivo. J. Biol. Chem. 269: 25400–25405, 1994.
 71. Wayman, G. A., J. Wei, S. Wong, and D. R. Storm. Regulation of type I adenylyl cyclase by calmodulin kinase IV in vivo. Mol. Cell. Biol. 16: 6075–6082, 1996.
 72. Wei, J., G. Wayman, and D. R. Storm. Phosphorylation and inhibition of type III adenylyl cyclase by calmodulin‐dependent protein kinase II in vivo. J. Biol. Chem. 271: 24231–24235, 1996.
 73. Whisnant, R. E., A. G. Gilman, and C. W. Dessauer. Interaction of the two cytosolic domains of mammalian adenylyl cyclase. Proc. Natl. Acad. Sci. U.S.A. 93: 6621–6625, 1996.
 74. Wong, Y. H., B. R. Conklin, and H. R. Bourne. Gz‐mediated hormonal inhibition of cyclic AMP accumulation. Science 255: 339–342, 1992.
 75. Wu, Z. L., S. A. Thomas, E. C. Villacres, Z. Xia, M. L. Simmons, C. Chavkin, R. D. Palmiter, and D. R. Storm. Altered behavior and long‐term potentiation in type I adenylyl cyclase mutant mice. Proc. Natl. Acad. Sci. U.S.A. 92: 220–224, 1995.
 76. Xia, Z., E. J. Choi, F. Wang, and D. R. Storm. The type III calcium/calmodulin‐sensitive adenylyl cyclase is not specific to olfactory sensory neurons. Neurosci. Lett. 144: 169–173, 1992.
 77. Xia, Z., C. Refsdal, K. M. Merchant, D. M. Dorsa, and D. R. Storm. Distribution of mRNA for the calmodulin‐sensitive adenylate cyclase in rat brain: expression in areas associated with learning and memory. Neuron 6: 431–443, 1991.
 78. Yan, K., and N. Gautam A domain on the G protein β subunit interacts with both adenylyl cyclase 2 and the muscarinic atrial potassium channel. J. Biol. Chem. 271: 17597–17600, 1996.
 79. Yan, S.‐Z., D. Hahn, Z.‐H. Huang, and W.‐J. Tang. Two cytoplasmic domains of mammalian adenylyl cyclase form a Gsα‐ and forskolin‐activated enzyme in vitro. J. Biol. Chem. 271: 10941–10945, 1996.
 80. Yan, S.‐Z., Z.‐H. Huang, V. D. Rao, J. H. Hurley, and W.‐J. Tang. Three discrete regions of mammalian adenylyl cyclase from a site for Gsα activation. J. Biol. Chem. in press, 1997.
 81. Yan, S.‐Z., Z.‐H. Huang, R. S. Shaw, and W.‐J. Tang. The conserved asparagine and arginine are essential for catalysis of mammalian adenylyl cyclase. J. Biol. Chem. 272: 12342–12349, 1997.
 82. Yoshimasa, T., D. R. Sibley, M. Bouvier, R. J. Lefkowitz, and M. G. Caron. Cross‐talk between cellular signalling pathways suggested by phorbol ester induced adenylate cyclase phosphorylation. Nature 327: 6770–6777, 1987.
 83. Yoshimura, M., and D. M. F. Cooper. Cloning and expression of a Ca2+ inhibitable adenylyl cyclase from NCB‐20 cells. Proc. Natl. Acad. Sci. U.S.A. 89: 6716–6720, 1992.
 84. Yoshimura, M., and D. M. F. Cooper. Type Specifc stimulation of adenylyl cyclase by protein kinase C. J. Biol. Chem. 268: 4604–4607, 1993.
 85. Zamponi, G. W., E. Bourinet, D. Nelson, J. Nargeot, and T. P. Snutch. Crosstalk between G proteins and protein kinase C mediated by the calcium channel α1 subunit. Nature 385: 442–446, 1997.
 86. Zhang, G., Y. Liu, A. E. Ruoho, and J. H. Hurley. Structure of the adenylyl cyclase catalytic core. Nature 386: 247–253, 1997.
 87. Zimmerman, G. N., and R. Taussig Protein kinase C alters the responses to G protein α and βγ subunits. J. Biol. Chem. 271: 27161–27166, 1996.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Gezhi Weng, Yibang Chen, Ravi Iyengar. Mammalian Gs‐Stimulated Adenylyl Cyclases. Compr Physiol 2011, Supplement 20: Handbook of Physiology, The Endocrine System, Cellular Endocrinology: 165-176. First published in print 1998. doi: 10.1002/cphy.cp070108