References |
1. |
Abbracchio, M. P., and
G. Burnstock
Purinoreceptors: are there families of P2X and P2Y purinoreceotors?
Pharmacol. Ther.
64:
445–475,
1994.
|
2. |
Abou‐Samra, A. B.,
K. J. Catt, and
G. Aguilera
Calcium‐dependent control of corticotropin release in rat anterior pituitary cell cultures.
Endocrinology
121:
965–971,
1987.
|
3. |
Abou‐Samra, A.‐B.,
J. P. Harwood,
V. C. Manganiello,
K. J. Catt, and
G. Aguilera
Phorbol 12‐myristate 13‐acetate and vasopressin potentiate the effect of corticotropin‐releasing factor on cyclic AMP production in rat anterior pituitary cells.
J. Biol. Chem.
262:
1129–1136,
1987.
|
4. |
Adler, M.,
B. S. Wong,
S. L. Sabol,
N. Busin,
M. B. Jackson, and
F. F. Weight.
Action potentials and membrane ion channels in clonal anterior pituitary cells.
Proc. Natl. Acad. Sci. U.S.A.
80:
2086–2090,
1983.
|
5. |
Aguilera, G.,
J. P. Harwood,
J. X. Wilson,
J. Molrell,
J. H. Brown, and
K. J. Catt.
Mechanisms of action of corticotropin‐releasing factor and other regulators of corticotropin release in rat pituitary cells.
J. Biol. Chem.
258:
8039–8045,
1983.
|
6. |
Albert, P. R., and
A. H. Tashjian Jr..
Relationship of thyrotropin‐releasing hormone‐induced spike and plateau phases of cytosolic free Ca2+ concentrations to hormone secretion. Selective blockade using ionomycin and nifedipine.
J. Biol. Chem.
259:
15350–15363,
1984.
|
7. |
Albert, P. R., and
A. H. Tashjian Jr
Thyrotropin‐releasing hormone‐induced spike and plateau in cytosolic free Ca2+ concentration in pituitary cells. Relation to prolactin release.
J. Biol. Chem.
259:
5827–5832,
1984.
|
8. |
Albert, P. R.,
G. Wolfson, and
A. H. Tashjian Jr.
Diacylglycerol increases cytosolic free Ca2+ concentration in rat pituitary cells.
J. Biol. Chem.
262:
6577–6581,
1987.
|
9. |
Aletta, J. M.,
M. A. Selbert,
A. C. Nairn, and
A. M. Edelman.
Activation of a calcium–calmodulin‐dependent protein kinase I cascade in PC12 cells.
J. Biol. Chem.
271:
20930–20934,
1996.
|
10. |
Allbritton, N. L.,
E. Oancea,
M. A. Kuhn, and
T. Meyer
Source of nuclear calcium signals.
Proc. Natl. Acad. Sci. U.S.A.
91:
12458–12462,
1994.
|
11. |
Al‐Mohanna, F. A.,
K.W.T. Caddy, and
S. R. Bolsver.
The nucleus is insulated from large cytosolic calcium ion changes.
Nature
367:
745–750,
1994.
|
12. |
Alvarez, J.,
M. Montero, and
J. Garcia‐Sancho.
High affinity inhibition of Ca2+‐dependent K+ channels by cytochrome P‐450 inhibitors.
J. Biol. Chem.
267:
11789–11793,
1992.
|
13. |
Ammala, C.,
O. Larsson,
P. O. Berggern,
K. Bokvist,
L. J. Berggren,
H. Kindmark, and
P. Rorsman
Insoitol trisphosphate‐dependent periodic activation of a Ca2+‐activated K+ conductance in glucose‐stimulated pancreatic β‐cells.
Nature
353:
849–852,
1991.
|
14. |
Andrews, W. V.,
R. A. Maurer, and
P. M. Conn.
Stimulation of rat luteinizing hormone‐beta messenger RNA levels by gonadotropin releasing hormone. Apparent role for protein kinase C.
J. Biol. Chem.
263:
13755–13761,
1988.
|
15. |
Antoni, F. A., and
G. Dayanithi
Blockade of K+ channels reverses the inhibitory action of atriopeptin on secretagogue‐stimulated ACTH release by perifused isolated rat anterior pituitary cells.
J. Endocrinol.
126:
183–191,
1990.
|
16. |
Asaoka, Y.,
S.‐I. Nakamura,
K. Yoshida, and
Y. Nishizuka
Protein kinase C, calcium and phospholipid degradation.
Trends Biochem. Sci.
17:
414–417,
1992.
|
17. |
Badmintgon, M. N.,
A. K. Campbell, and
C. M. Rembold.
Differential regulation of nuclear and cytosolic Ca2+ in HeLa cells.
J. Biol. Chem.
271:
31210–31214,
1996.
|
18. |
Balboa, M. A.,
B. L. Firestein,
C. Godson,
K. S. Bell, and
P. A. Insel.
Protein kinase Cα mediates phospholipase D activation by nucleotides and phorbol ester in Madin‐Darby canine kidney cells.
J. Biol. Chem.
269:
10511–10516,
1994.
|
19. |
Balla, T.,
S. Nakanishi, and
K. J. Catt.
Cation sensitivity of inositol 1,4,5‐trisphosphate production and metabolism in agonist‐stimulated adrenal glomerulosa cells.
J. Biol. Chem.
269:
16101–16107,
1994.
|
20. |
Barros, F.,
G. M. Katz,
G. J. Kaczorowski, and
R. L. Vandlen.
Calcium current in GH3 cultured pituitary cells under whole‐cell voltage clamp: inhibition by voltage‐dependent potassium currents.
Proc. Natl. Acad. Sci. U.S.A.
82:
1108–1112,
1985.
|
21. |
Bean, B. P.
Pharmacology and electrophysiology of ATP‐activated ion channels.
Trends Pharmacol. Sci.
13:
87–90,
1992.
|
22. |
Benham, C. D., and
R. W. Tsien.
A novel receptor‐operated Ca2+‐permeable channel activated by ATP in smooth muscle.
Nature
328:
275–278,
1987.
|
23. |
Bennett, M. R.,
L. Farnell,
W. G. Gibson, and
S. Karunanithi
Quantal transmission at purinergic junctions: stochastic interaction between ATP and its receptors.
Biophys. J.
68:
925–935,
1995.
|
24. |
Berridge, M. J.
Inositol trisphosphate and calcium signaling.
Nature
361:
315–325,
1993.
|
25. |
Berridge, M. J.
Capacitative calcium entry.
Biochem. J.
312:
1–11,
1995.
|
26. |
Berridge, M. J., and
R. F. Irvine.
Inositol phosphates and cell signalling.
Nature
341:
197–205,
1989.
|
27. |
Bezprozvanny, I., and
B. E. Ehrlich.
ATP modulates the function of inositol 1,4,5‐trisphosphate‐gated channels at two sites.
Neuron
10:
1175–1184,
1993.
|
28. |
Bezprozvanny, I. B.,
K. Ondrias,
E. Kaftan,
D. A. Stoyanovsky, and
B. E. Ehrlich.
Activation of the calcium release channel (ryanodine receptor) by heparin and other polyanions is calcium dependent.
Mol. Biol. Cell
4:
347–352,
1993.
|
29. |
Bezprozvanny, I.,
J. Watras, and
B. E. Ehrlich.
Bell‐shaped calcium‐response curves of Ins,,P3‐ and calcium‐gated channels from endoplasmic reticulum of cerebellum.
Nature
351:
751–754,
1991.
|
30. |
Biales, B.,
M. A. Dicher, and
A. Tischler
Sodium and calcium action potential in pituitary cells.
Nature
267:
172–174,
1977.
|
31. |
Bird, S. J.,
M. F. Rossier,
A. R. Hughes,
S. B. Shears,
D. L. Armstrong, and
J. W. Putney.
Activation of Ca2+ entry into acinar cells by a non‐phosphorylatable inositol trisphosphate.
Nature
352:
162–165,
1991.
|
32. |
Bito, H.,
K. Deisseroth, and
R. W. Tsien.
CREB phosphorylation and dephosphorylation: a Ca2+‐ and stimulus duration‐dependent switch for hippocampal gene expression.
Cell
87:
1203–1214,
1996.
|
33. |
Blondel, O.,
G. I. Bell, and
S. Seino
Inositol 1,4,5‐trisphosphate receptors, secretory granules and secretion in endocrine and neuroendocrine cells.
Trends Neurosci.
18:
157–161,
1995.
|
34. |
Bo, X.,
Y. Zhang,
M. Nassar,
G. Burnstock, and
R. Schoepfer
A P2X purinoreceptor cDNA confering a novel pharmacological profile.
FEBS Lett.
375:
129–133,
1995.
|
35. |
Boitano, S.,
E. R. Dirksen, and
M. J. Sanderson.
Intercellular propagation of calcium waves mediated by inositol trisphosphate.
Science
258:
292–295,
1992.
|
36. |
Bootman, M. D.,
C. W. Taylor, and
M. J. Berridge.
The thiol reagent, thimerosal, evokes Ca2+ spikes in HeLa cells by sensitizing the inositol 1,4,5‐trisphosphate receptor.
J. Biol. Chem.
267:
25113–25119,
1992.
|
37. |
Bosma, M. M., and
B. Hille
Electrophysiological properties of a cell line of the gonadotrope lineage.
Endocrinology
130:
3411–3420,
1992.
|
38. |
Brake, A. J.,
M. J. Wagenbach, and
D. Julius
New structural motif for ligand‐gated ion channels defined by an ionotropic ATP receptor.
Nature
371:
519–523,
1994.
|
39. |
Braun, A. P., and
H. Schulman
The multifunctional calcium/calmodulin‐dependent protein kinase: from form to function.
Annu. Rev. Physiol.
57:
417–445,
1995.
|
40. |
Buell, G.,
C. Lewis,
G. Collo,
R. A. North, and
A. Surprenant
An antagonist‐insensitive P2X receptor expressed in epithelia and brain.
EMBO J.
15:
55–62,
1996.
|
41. |
Burgoyne, R. D., and
A. Morgan
Regulated exocytosis.
Biochem. J.
293:
305–316,
1993.
|
42. |
Burgoyne, R. D.,
A. Morgan, and
A. JH. O'Sullivan.
The control of cytoskeletal actin and exocytosis in intact and permeabilized adrenal chromaffin cells: role of calcium and protein kinase C.
Cell. Signal.
4:
323–334,
1989.
|
43. |
Burnstock, G.
Physiological and pathological roles of purines: an update.
Drug Dev. Res.
28:
195–206,
1993.
|
44. |
Caccavelli, L.,
D. Cussac,
I. Pellegrini,
V. Audinot,
P. Jaquet, and
A. Enjalbert
D2 dopaminergic receptors: normal and abnormal transduction mechanisms.
Horm. Res.
38:
78–83,
1992.
|
45. |
Camacho, P., and
J. D. Lechleiter.
Increased frequency of calcium waves in Xenopus laevis oocytes that express a calcium‐ATPase.
Science
260:
226–229,
1993.
|
46. |
Camacho, P., and
J. D. Lechleiter.
Calreticulin inhibits repetitive intracellular Ca2+ waves.
Cell
82:
765–771,
1995.
|
47. |
Campbell, K. P.,
A. T. Leung, and
A. H. Sharp.
The biochemistry and molecular biology of the dihydropyridine‐sensitive calcium channels.
Trends Neurosci.
11:
425–430,
1988.
|
48. |
Canonico, P. L.,
C. A. Valdenergo, and
R. M. Macleod.
The inhibition of phosphatidylinositol turnover: a possible postreceptor mechanism for the prolactin secretion inhibiting effect of dopamine.
Endocrinology
113:
7–14,
1990.
|
49. |
Carew, M. A.,
M.‐L. Wu,
G. J. Law,
Y.‐Z. Tseng, and
W. T. Mason.
Extracellular ATP activates calcium entry and mobilization via P2U‐purinoceptors in rat lactotrophs.
Cell Calcium
16:
227–235,
1994.
|
50. |
Castelletti, L.,
M. Memo,
C. Missale,
P. F. Spano, and
A. Valero
Potassium channels involved in the transduction mechanism of dopamine D2 receptors in rat lactotrophs.
J. Physiol. (Lond.)
410:
251–265,
1989.
|
51. |
Castro, E.,
J. Mateo,
A. R. Tome,
R. M. Barbosa,
M. T. Miras‐Portugal, and
L. M. Rosario.
Cell‐specific purinergic receptors coupled to Ca2+ entry and Ca2+ release from internal stores in adrenal chromaffin cells.
J. Biol. Chem.
270:
5098–5106,
1995.
|
52. |
Catt, K. J., and
S. S. Stojilkovic.
Calcium signaling and gonadotropin secretion.
Trends Endocrinol. Metab.
1:
15–20,
1989.
|
53. |
Catterall, W. A.
Structure and function of voltage‐sensitive ion channels.
Science
242:
50–61,
1988.
|
54. |
Cena, V., and
E. Rojas
Kinetic characteristics of calcium‐dependent, cholinergic receptor controlled ATP secretion from adrenal medullary chromaffin cells.
Biochim. Biophys. Acta
1023:
213–222,
1990.
|
55. |
Cesnjaj, M.,
K. J. Catt, and
S. S. Stojilkovic.
Coordinate actions of calcium and protein kinase C in the expression of primary response genes in pituitary gonadotrophs.
Endocrinology
135:
692–701,
1994.
|
56. |
Cesnjaj, M.,
L. Z. Krsmanovic,
K. J. Catt, and
S. S. Stojilkovic.
Autocrine induction of c‐fos expression in GT1 neuronal cells by gonadotropin‐releasing hormone.
Endocrinology
133:
3042–3045,
1993.
|
57. |
Cesnjaj, M.,
L. Zheng,
K. J. Catt, and
S. S. Stojilkovic.
Dependence of stimulus‐transcription coupling on phospholipase D in agonist‐stimulated pituitary cells.
Mol. Biol. Cell
9:
1037–1047,
1995.
|
58. |
Chadwick, C. C.,
A. Saito, and
S. Fleischer
Isolation and characterization of the inositol trisphosphate receptor from smooth muscle.
Proc. Natl. Acad. Sci. U.S.A.
87:
2132–2136,
1990.
|
59. |
Chang, J. P.,
K. L. Yu,
A. O. Wong, and
R. E. Peter.
Differential actions of dopamine receptor subtypes on gonadotropin and growth hormone release in vitro in goldfish.
Neuroendocrinology
51:
664–674,
1990.
|
60. |
Charles, C. A.,
S. K. Kodali, and
R. F. Tyndale.
Intercellular calcium waves in neurons.
Mol. Cell. Neurosci.
7:
337–353,
1996.
|
61. |
Chatila, T.,
K. A. Anderson,
N. Ho, and
A. R. Means.
A unique phosphorylation‐dependent mechanism for the activation of Ca2+/calmodulin‐dependent protein kinase type IV/GR.
J. Biol. Chem.
271:
21542–21548,
1996.
|
62. |
Cheek, T. R., and
O. Thastrup
Internal Ca2+ mobilization and secretion in bovine adrenal chromaffin cells.
Cell Calcium
10:
213–221,
1989.
|
63. |
Chen, C.‐C.,
A. N. Akoplan,
L. Sivllott,
D. Colquhoun,
G. Burnstock, and
J. N. Wood.
A P2X purinoreceptor expressed by a subset of sensory neurons.
Nature
377:
418–431,
1995.
|
64. |
Chen, C., and
I. J. Clarke.
Modulation of Ca2+ influx in the ovine somatotroph by growth hormone‐releasing factor.
Am. J. Physiol.
268
(Endocrinol. Metab. 31):
E204–EE212,
1995.
|
65. |
Chen, C.,
J. M. Israel, and
J. D. Vincent.
Electrophysiological responses of rat pituitary cells in somatotroph‐enriched primary culture to human growth hormone releasing factor.
Neuroendocrinology
50:
679–687,
1989.
|
66. |
Chen, C.,
J. Zhang,
P. McNeill,
M. Pullar,
J. T. Cummins, and
I. J. Clarke.
Human growth hormone releasing factor (hGRF) modulates calcium currents in human growth hormone secreting adenoma cells.
Brain Res.
604:
345–348,
1993.
|
67. |
Chen, Z.‐P.,
M. Kratzmeier,
A. Levy,
C. A. McArdle,
A. Poch,
A. Day,
A. K. Mukhopadhyay, and
S. L. Lightman.
Evidence for a role of pituitary ATP receptors in the regulation of pituitary function.
Proc. Natl. Acad. Sci. U.S.A.
92:
5219–5223,
1995.
|
68. |
Chen, Z.‐P.,
M. Kratzmeier,
A. Poch,
S. Xu,
C. A. McArdle,
A. Levy,
A. K. Mukhopadhyay, and
S. L. Lightman.
Effects of extracellular nucleotides in the pituitary: adenosine trisphosphate receptor‐mediated intracellular responses in gonadotrope‐derived αT3–1 cells.
Endocrinology
137:
248–256,
1996.
|
69. |
Chen, Z.‐P.,
A. Levy, and
S. L. Lightman.
Activation of specific ATP receptors induces a rapid increase in intracellular calcium ions in rat hypothalamic neurons.
Brain Res.
641:
249–256,
1994.
|
70. |
Chen, Z.‐P.,
A. Levy, and
S. L. Lightman.
Nucleotides as extracellular signaling molecules.
J. Neuroendocrinol.
7:
83–96,
1995.
|
71. |
Chen, Z.‐P.,
A. Levy,
C. A. McArdle, and
S. L. Lightman.
Pituitary ATP receptors: characterization and functional localization to gonadotropes.
Endocrinology
135:
1280–1284,
1994.
|
72. |
Cheung, P. H.,
F. J. Dowd,
J. E. Porter, and
L. S. Li.
A Ca2+‐ATPase from rat parotid gland plasma membranes has the characteristics of an ecto‐ATPase.
Cell. Signal.
4:
25–35,
1992.
|
73. |
Choi, O. H.,
R. S. Adelstein, and
M. A. Beaven.
Secretion from rat basophilic RBL‐2H3 cells is associated with diphosphorylation of myosin light chains by myosin light chain kinase as well as phosphorylation by protein kinase C.
J. Biol. Chem.
269:
536–541,
1994.
|
74. |
Clapper, D. L.,
T. F. Walseth,
P. J. Dargoe, and
H. C. Lee.
Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate.
J. Biol. Chem.
262:
9561–9568,
1987.
|
75. |
Clementi, E.,
H. Scheer,
D. Zavvhetti,
C. Fasolato,
T. Pozzan, and
J. Meldolesi
Receptor‐activated Ca2+ influx.
J. Biol. Chem.
267:
2164–2172,
1992.
|
76. |
Collart, M. A.,
N. Tourkine,
D. Belin,
P. Vassalli,
P. Jeanteur, and
J.‐M. Blanchard.
c‐fos gene transcription in murine macrophages is modulated by a calcium‐dependent block to elongation in intron 1.
Mol. Cell. Biol.
11:
2826–2831,
1991.
|
77. |
Collo, G.,
R. A. North,
E. Kawashima,
E. Merlo‐Pich,
S. Neidhart,
A. Surprenant, and
G. Buell
Cloning of P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP‐gated ion channels.
J. Neurosci.
16:
2495–2507,
1996.
|
78. |
Connor, J. A.
Intracellular calcium mobilization by inositol 1,4,5‐trisphosphate: intracellular movements and compartmentalization.
Cell Calcium
14:
185–200,
1993.
|
79. |
Corcuff, J. B.,
N. C. Guerineau,
P. Mariot,
B. T. Lussier, and
P. Mollard
Multiple cytosolic calcium signals and membrane electrical events evoked in single arginine vasopressin‐stimulated corticotrophs.
J. Biol. Chem.
268:
22313–22321,
1993.
|
80. |
Cox, D. A., and
M. A. Matlib.
Modulation of intramitochondrial free Ca2+ concentration by antagonists of Na+‐Ca2+ exchange.
Trends Pharmacol. Sci.
14:
408–413,
1993.
|
81. |
Cullen, P. J.,
J. J. Hsuan,
O. Truong,
A. J. Letcher,
T. R. Jackson,
A. P. Dawson, and
R. F. Irvine.
Identification of a specific Ins,,,P4‐binding protein as a member of the GAP1 family.
Nature
376:
527–530,
1995.
|
82. |
Currie, W. D.,
W. Li,
K. G. Baimbridge,
B. H. Yuen, and
P.C.K. Leung.
Cytosolic free calcium increased by prostaglandin F2α (PGF2α), gonadotropin‐releasing hormone, and angiotensin II in rat granulosa cells and PGF2α in human granulosa cells.
Endocrinology
130:
1837–1843,
1992.
|
83. |
Cusack, N. J.
P2 receptors: subclassification and structure‐activity relationships.
Drug Dev. Res.
28:
244–252,
1993.
|
84. |
Danoff, S. K.,
C. D. Ferris,
C. Donath,
G. A. Fischer,
S. Munemitsu,
A. Ullrich,
S. H. Snyder, and
C. A. Ross.
Inositol 1,4,5‐trisphosphate receptors: distinct neuronal and nonneuronal forms derived by alternative splicing differ in phosphorylation.
Proc. Natl. Acad. Sci. U.S.A.
88:
2951–2955,
1991.
|
85. |
Davidson, J. S.,
I. K. Wakefield,
U. Sohnius,
P. A. van der Merwe, and
R. P. Millar.
A novel extracellular nucleotide receptor coupled to phosphoinositidase‐C in pituitary cells.
Endocrinology
126:
80–87,
1990.
|
86. |
Decamilli, P.,
D. Marconi, and
A. Spada
Dopamine inhibits adenylate cyclase in human prolactin secreting pituitary adenomas.
Nature
278:
252–254,
1979.
|
87. |
de Jongh, K. S.,
C. Warner,
A. A. Colvin, and
W. A. Catterall.
Characterization of the two size forms of the α1 subunit of skeletal muscle L‐type calcium channels.
Proc. Natl. Acad. Sci. U.S.A.
88:
10778–10782,
1991.
|
88. |
del Castillo, A. R.,
M. L. Vitale, and
J.‐M. Tfifaro.
Ca2+ and pH determine the interaction of chromaffin cell scinderin with phosphatidylserine and phosphatidylinositol 4,5‐biphosphate and its cellular distribution during nicotinic‐receptor stimulation and protein kinase C activation.
J. Cell. Biol.
119:
797–810,
1992.
|
89. |
de Leon, M.,
Y. Wang,
L. Jones,
E. Perez‐Reyes,
X. Wei,
T. W. Soong,
T. P. Snutch, and
D. T. Yue.
Essential Ca2 +‐binding motif for Ca2 +‐sensitive inactivation of L‐type Ca2+ channels.
Science
270:
1502–1506,
1995.
|
90. |
Delisle, S.,
K.‐H. Krause,
G. Denning,
B.V.L. Potter, and
M. J. Welsh.
Effect of inositol trisphosphate and calcium on oscillating elevations of intracellular calcium in Xenopus oocytes.
J. Biol. Chem.
265:
11726–11730,
1990.
|
91. |
Demer, L. L.,
C. M. Wortham,
E. R. Dirksen, and
M. J. Sanderson.
Mechanical stimulation induces intercellular calcium signaling in bovine aortic endothelial cells.
Am. J. Physiol.
264
(Heart Circ. Physiol. 35):
H2094–H2102,
1993.
|
92. |
Desrues, L.,
M. Lamacz,
B. G. Jenks,
H. Vaudry, and
M. C. Tonon.
Effect of dopamine on adenylate cyclase activity, polyphosphoinositide metabolism and cytosolic calcium concentrations in frog pituitary melanotrophs.
J. Endocrinol.
136:
421–429,
1993.
|
93. |
Deussen, A.,
B. Bading,
M. Kelm, and
J. Schrader
Formation and salvage of adenosine by macrovascular endothelial cells.
Am. J. Physiol.
264
(Heart Circ. Physiol. 35):
H692–H700,
1993.
|
94. |
de Young, G., and
J. Keizer
A single pool IP3‐receptor based model for agonist stimulated Ca2+ oscillations.
Proc. Natl. Acad. Sci. U.S.A.
89:
9895–9899,
1992.
|
95. |
Diaz, R.,
T. E. Wieleman,
S. J. Anderson, and
P. Stahl
The use of permeabilized cells to study the ion requirements of receptor‐ligand dissociation in endosomes.
Biochem. J.
260:
127–134,
1989.
|
96. |
Dolmetsch, R. E., and
R. S. Lewis.
Signalling between intracellular Ca2+ stores and depletion‐activated Ca2+ channels generates [Ca2 +]i oscillations in T lymphocytes.
J. Gen. Physiol.
103:
365–388,
1994.
|
97. |
Doucet, J. P.,
S. P. Squinto, and
N. G. Bazan.
Fos‐jun and the primary genomic response in the nervous system. Possible physiological role and pathophysiological significance.
Mol. Neurobiol.
4:
27–55,
1990.
|
98. |
Drouva, S. V.,
C. Bihoreau,
E. Laplante,
R. Rasolonjanahary,
H. Clauser, and
C. Kordon
Dihydropyridine‐sensitive calcium channel activity related to prolactin, growth hormone, and luteinizing hormone release from anterior pituitary cells in culture: interactions with somatostatin, dopamine, and estrogens.
Endocrinology
123:
2762–2773,
1988.
|
99. |
Dubel, S. J.,
T.V.B. Starr,
J. Hell,
M. K. Ahlijanian,
J. J. Enyeart,
W. A. Catterall, and
T. P. Snutch.
Molecular cloning of the α‐1 subunit of an ω‐conotoxin‐sensitive calcium channel.
Proc. Natl. Acad. Sci. U.S.A.
89:
5058–5062,
1992.
|
100. |
Dubinsky, J. M., and
G. S. Oxford.
Ionic currents in two strains of rat anterior pituitary tumor cells.
J. Gen. Physiol.
83:
309–339,
1984.
|
101. |
Dubinsky, J. M., and
G. S. Oxford.
Dual modulation of K + channels by thyrotropin‐releasing hormone in clonal pituitary cells.
Proc. Natl. Acad. Sci. U.S.A.
82:
4282–4286,
1985.
|
102. |
Dufy, B.,
J. D. Vincent,
H. Fleury,
P. du Pasquier,
D. Gourdji, and
A. Toxoer‐Vidal.
Membrane effects of thyrotropin‐releasing hormone and estrogen shown by intracellular recording from pituitary cells.
Science
204:
309–311,
1979.
|
103. |
Dufy‐Barbe, L.,
L. Bresson,
P. Sartor,
M.‐F. Odessa, and
B. Dufy
Calcium homeostasis in growth hormone (GH)‐secreting adenoma cells: effect of GH‐releasing factor.
Endocrinology
131:
1436–1444,
1996.
|
104. |
Ehrlich, B. E.,
E. Kaftan,
S. Bezprozvannaya, and
I. Bezprozvanny
The pharmacology of intracellular Ca2+ release channels.
Trends Pharmacol. Sci.
15:
145–149,
1994.
|
105. |
Einhorn, L. C., and
G. S. Oxford.
Guanine nucleotide binding proteins mediate D2 dopamine receptor activation of a potassium channel in rat lactotrophs.
J. Physiol. (Lond.)
462:
563–578,
1993.
|
106. |
Eldar, H.,
P. Ben‐Av,
U.‐S. Schmidt,
E. Livneh, and
M. Liscovitch
Up‐regulation of phospholipase D activity induced by overexpression of protein kinase C‐α.
J. Biol. Chem.
268:
12560–12564,
1993.
|
107. |
Ely, J. A.,
C. Ambroz,
A. J. Baukal,
S. B. Christensen,
T. Balla, and
K. J. Catt.
Relationship between agonist‐ and thapsigargin‐sensitive calcium pools in adrenal glomerulosa cells.
J. Biol. Chem.
266:
18635–18641,
1991.
|
108. |
Enjalbert, A., and
J. Backaert
Pharmacological characterization of the D2 dopaminergic receptor negatively coupled with adenylate cyclase in rat anterior pituitary cells.
Mol. Pharmacol.
23:
576–584,
1983.
|
109. |
Enjalbert, A.,
F. Musset,
C. Chenard,
M. Priam,
C. Kordon, and
S. Heisler
Dopamine inhibits prolactin secretion stimulated by the calcium channel agonist Bay‐K‐8644 through a pertussis toxin‐sensitive G protein in anterior pituitary cells.
Endocrinology
123:
406–412,
1988.
|
110. |
Evans, R. J.,
V. Derkach, and
A. Surprenant
ATP mediates fast synaptic transmission in mammalian neurons.
Nature
357:
503–505,
1992.
|
111. |
Fasolato, C.,
M. Hoth,
G. Matthews, and
R. Penner
Ca2 + and Mn2+ influx through receptor‐mediated activation of nonspecific cation channels in mast cells.
Proc. Natl. Acad. Sci. U.S.A.
90:
3068–3072,
1993.
|
112. |
Fasolato, C.,
M. Zottini,
E. Clementi,
D. Zaccetti,
J. Meldolesi, and
T. Pozzan
Intracellular Ca2+ pools in PC12 cells. Three intracellular pools are distinguished by their turnover and mechanisms of Ca2+ accumulation, storage, and release.
J. Biol. Chem.
266:
20159–20167,
1991.
|
113. |
Ferreira, Z. S.,
N. J. Cipolla, and
R. P. Markus.
Presence of P2–purinoreceptors in the rat pineal gland.
Br. J. Pharmacol.
112:
107–110,
1994.
|
114. |
Ferris, C. D.,
R. L. Huganir,
D. S. Bredt,
A. M. Cameron, and
S. H. Snyder.
Inositol trisphosphate receptor: phosphorylation by protein kinase C and calcium calmodulin‐dependent protein kinases in reconstituted lipid vesicles.
Proc. Natl. Acad. Sci. U.S.A.
88:
2232–2235,
1991.
|
115. |
Ferris, C. D., and
S. H. Snyder.
IP3 receptor: ligand‐activated calcium channels in multiple forms.
Adv. Second Messenger Phosphoprotein Res.
26:
95–107,
1992.
|
116. |
Fewtrell, C.
Ca2+ oscillations in non‐excitable cells.
Annu. Rev. Physiol.
55:
427–454,
1993.
|
117. |
Fielder, J. L.,
H. B. Pollard, and
E. Rojas
Quantitative analysis of depolarization‐induced ATP release from mouse brain synaptosomes: external calcium dependent and independent processes.
J. Membr. Biol.
127:
21–33,
1992.
|
118. |
Fiekers, J. F., and
L. M. Konpoka.
Spontaneous transients of [Ca2 +]i depend on external calcium and the activation of L‐type voltage‐gated calcium channels in a clonal pituitary cell line (AtT‐20) of cultured mouse corticotropes.
Cell Calcium
19:
327–336,
1996.
|
119. |
Finch, E. A.,
T. J. Turner, and
S. M. Goldin.
Calcium as a coagonist of inositol 1,4,5‐trisphosphate‐induced calcium release.
Science
252:
443–446,
1991.
|
120. |
Fisher, S. K.
Homologous and heterologous regulation of receptor‐stimulated phosphoinositide hydrolysis.
Eur. J. Pharmacol.
288:
231–250,
1995.
|
121. |
Fliegel, L.,
E. Leberer,
N. M. Green, and
D.H.S. MacLenan.
The fast twitch muscle calsequesterin isoform predominates in rabbit slow‐twich soleus muscle.
FEBS Lett.
242:
297–300,
1989.
|
122. |
Fohr, K. J.,
J. Scott,
G. A. Hilger, and
M. Gratzl
Characterization of the inositol 1,4,5‐trisphosphate‐induced calcium release from permeabilized endocrine cells and its inhibition by decavanadate and p‐hydroxymercuribenzoate.
Biochem. J.
262:
83–89,
1989.
|
123. |
Fohr, K. J.,
Y. Wahl,
R. Engline,
T. P. Kemmer, and
M. Gratzl
Decavanadate displaces inositol 1,4,5‐trisphosphate (IP3) from its receptor and inhibits IP3 induced Ca2+ release in permeabilized pancreatic acinar cells.
Cell Calcium
12:
735–742,
1991.
|
124. |
Foskett, J. K.,
C. M. Roifman, and
D. Wong
Activation of calcium oscillations by thapsigargin in parotid acinar cells.
J. Biol. Chem.
266:
2778–2782,
1991.
|
125. |
Foskett, J. K., and
D.C.P. Wong.
[Ca2 +]i inhibition of Ca2 + release‐activated Ca2+ influx underlies agonist‐ and thapsigargin‐induced [Ca2 +]i oscillations in salivary acinar cells.
J. Biol. Chem.
269:
31525–31532,
1994.
|
126. |
Friel, D. D., and
R. W. Tsien.
An FCCP‐sensitive Ca2+ store in bullfrog sympathetic neurons and its participation in stimulus‐evoked changes in [Ca2 +]i
J. Neurosci.
14:
4007–4024,
1994.
|
127. |
Fujii, Y.,
M. Tomic,
S. S. Stojilkovic,
T. Iida,
M. L. Brandi,
Y. Ogino, and
K. Sakaguchi
Effects of endothelin‐1 on Ca2 + signaling and secretion in parathyroid cells.
J. Bone Miner. Res.
10:
716–725,
1995.
|
128. |
Fujii, Y.,
Y. Yamada,
K. Chihara,
N. Inagaki, and
S. Seino
Somatostatin receptor subtype SSTR2 mediates the inhibition of high‐voltage‐activated calcium channels by somatostatin and its analogue SMS 201–995.
FEBS Lett.
355:
117–120,
1994.
|
129. |
Fujimoto, T.
Calcium pump of the plasma membrane is localized in caveolae.
J. Cell. Biol.
120:
1147–1157,
1992.
|
130. |
Fujimoto, T.,
S. Nakade,
A. Miyawaki,
K. Mikoshiba, and
K. Ogawa
Localization of inositol 1,4,5‐trisphosphate receptorlike protein in plasmalemmal caveolae.
J. Cell. Biol.
119:
1507–1513,
1992.
|
131. |
Galione, A.,
H. C. Lee, and
W. B. Busa.
Ca2 +‐induced Ca2 + release in sea urchin egg homogenates: modulation by cyclic ADP‐ribose.
Science
253:
1143–1146,
1991.
|
132. |
Gerasimenko, O. V.,
J. V. Gerasimenko,
A. V. Tepikin, and
O. H. Petersen.
ATP‐dependent accumulation and inositol trisphosphate‐ or cyclic ADP‐ribose‐mediated release of Ca2 + from the nuclear envelope.
Cell
80:
439–444,
1995.
|
133. |
Geschwind, J.‐F.,
M. Hiriart,
M. C. Glennon,
H. Najafi,
B. E. Corkey,
F. M. Matschinsky, and
M. Prentki
Selective activation of Ca2+ by extracellular ATP in a pancreatic β‐cell line (HIT).
Biochim. Biophys. Acta
1012:
107–115,
1989.
|
134. |
Ghosh, T. K.,
P. S. Eis,
J. M. Mullaney,
C. L. Ebert, and
D. L. Gill.
Competitive, reversible, and potent antagonism of inositol 1,4,5‐trisphosphate‐activated calcium release by heparin.
J. Biol. Chem.
263:
11075–11079,
1988.
|
135. |
Giannini, G.,
E. Clementi,
R. Ceci,
G. Marziali, and
V. Sorrentino
Expression of a ryanodine receptor‐Ca2+ channel that is regulated by TGF‐beta.
Science
257:
91–94,
1992.
|
136. |
Gilchrist, J. S.,
M. P. Czubryt, and
G. N. Pierce.
Calcium and calcium‐binding proteins in the nucleus.
Mol. Cell. Biochem.
135:
79–88,
1994.
|
137. |
Girard, S., and
D. Clapham
Acceleration of intracellular calcium waves in Xenopus oocytes by calcium influx.
Science
260:
229–232,
1993.
|
138. |
Gomora, J. C.,
G. Avila, and
G. Cota
Ca2+ current expression in pituitary melanotrophs of neonatal rats and its regulation by D2 dopamine receptors.
J. Physiol. (Lond.)
492:
763–737,
1996.
|
139. |
Gray, P.T.A.
Oscillations of free cytosolic calcium evoked by cholinergc and catecholaminergic agonists in rat parotid acinar cells.
J. Physiol. (Lond.)
406:
35–53,
1988.
|
140. |
Greenberg, S.,
F. di Virgilio,
T. H. Steinberg, and
S. C. Silvestein.
Extracellular nucleotides mediate Ca2+ fluxes in J774 macrophages by two distinct mechanisms.
J. Biol. Chem.
263:
10337–10343,
1988.
|
141. |
Greengard, P.,
F. Valtorta,
A. J. Czernik, and
F. Benfenati
Synaptic vesicle phosphoproteins and regulation of synaptic function.
Science
259:
780–785,
1993.
|
142. |
Grunicke, H. H., and
F. Uberall
Protein kinase C modulation.
Cancer Biol.
3:
351–360,
1992.
|
143. |
Guerineau, N.,
J.‐B. Corcuff,
A. Tabarin, and
P. Mollard
Spontaneous and corticotropin‐releasing factor‐induced cytosolic calcium transients in corticotrophs.
Endocrinology
129:
409–420,
1991.
|
144. |
Gunter, T. E.,
K. K. Gunter,
S.‐S. Sheu, and
C. E. Gavin.
Mitochondrial calcium transport: physiological and pathological relevance.
Am. J. Physiol.
267
(Cell Physiol. 36):
C313–C339,
1994.
|
145. |
Hajnoczky, G.,
L. D. Robb‐Gaspers,
M. B. Seitz, and
A. P. Thomas.
Decoding of cytosolic calcium oscillations in the mitochondria.
Cell
82:
415–424,
1995.
|
146. |
Hansen, J. R.,
C. A. McArdle, and
P. M. Conn.
Relative roles of calcium derived from intra‐ and extracellular sources in dynamic luteinizing hormone release from perifused pituitary cells.
Mol. Endocrinol.
1:
808–815,
1987.
|
147. |
Hanson, P. I.,
T. Meyer,
L. Stryer, and
H. Schulman
Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals.
Neuron
12:
943–956,
1994.
|
148. |
Harden, T. K.,
J. L. Boyer, and
R. A. Nicholas.
1 2‐purinergic receptors: subtype‐associated signaling responses and structure.
Annu. Rev. Pharmacol. Toxicol.
35:
541–579,
1995.
|
149. |
Hardie, R. C., and
B. Minke
The trp gene is essential for a light‐activated Ca2+ channel in Drosophila photoreceptors.
Neuron
8:
643–651,
1992.
|
150. |
Hardie, R. C., and
B. Minke
Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide‐mediated Ca2+ mobilization.
Trends Neurosci.
16:
371–376,
1993.
|
151. |
Hardie, R. C.,
A. Peretz,
E. Suss‐Toby,
A. Rom‐Glas,
S. A. Bishop,
Z. Selinger, and
B. Minke
Protein kinase C is required for light adaptation in Drosophila photoreceptor.
Nature
363:
634–637,
1993.
|
152. |
Harootunian, A. T.,
J.P.Y. Kao,
S. Paranjape, and
R. Y. Tsien.
Generation of calcium oscillations in fibroblasts by positive feedback between calcium and IP3.
Science
251:
75–78,
1991.
|
153. |
Haug, E., and
K. M. Gautvik.
Effects of sex steroids on prolactin secreting rat pituitary cells in culture.
Endocrinology
99:
1482–1489,
1976.
|
154. |
Helmchen, F.,
K. Imoto, and
B. Sakmann
Ca2+ buffering and action potential‐evoked Ca2+ signaling in dendrites of pyramidal neurons.
Biophys. J.
70:
1069–1081,
1996.
|
155. |
Hennager, D. J.,
M. J. Welsh, and
S. Delisle
Changes in either cytosolic or nucleoplasms inositol 1,4,5‐trisphosphate levels can control nuclear Ca2+ concentration.
J. Biol. Chem.
270:
4959–4962,
1995.
|
156. |
Hernandez‐Cruz, A.,
F. Sala, and
P. R. Adams.
Subcellular calcium transients visualized by confocal microscopy in a voltage‐clamped vertebrate neurons.
Science
247:
858–862,
1990.
|
157. |
Herrington, J.,
Y. B. Park,
D. F. Babcook, and
B. Hille
Dominant role of mitochondria in clearance of large Ca2+ loads from rat adrenal chromaffin cells.
Neuron
16:
219–228,
1996.
|
158. |
Heyward, P. M.,
C. Chen, and
I. J. Clarke.
Inward membrane currents and electrophysiological responses to GnRH in ovine gonadotropes.
Neuroendocrinology
61:
609–621,
1995.
|
159. |
Heyward, P. M., and
I. J. Clarke.
A transient effect of estrogen on calcium currents and electrophysiological responses to gonadotropin‐releasing hormone in ovine gonadotropes.
Neuroendocrinology
62:
543–552,
1995.
|
160. |
Hille, B.
Ionic Channels of Excitable Membranes.
Sunderland, MA:
Sinauer,
1991.
|
161. |
Holl, R. W.,
M. O. Thorner, and
D. A. Leong.
Cytosolic free calcium in normal somatotropes: effects of forskolin and phorbol ester.
Am. J. Physiol.
256
(Endocrinol. Metab. 19):
E373–E379,
1989.
|
162. |
Holl, R. W.,
M. O. Thorner,
G. L. Mandell,
J. A. Sullivan,
Y. N. Sinha, and
D. A. Leong.
Spontaneous oscillations of intracellular calcium and growth hormone secretion.
J. Biol. Chem.
263:
9682–9685,
1988.
|
163. |
Hoth, M., and
R. Penner
Depletion of intracellular calcium stores activates a calcium current in mast cells.
Nature
355:
353–355,
1992.
|
164. |
Hoth, M., and
R. Penner
Calcium release‐activated calcium current in rat mast cells.
J. Physiol. (Lond.)
465:
359–386,
1993.
|
165. |
Huang, K.‐P.
The mechanism of protein kinase C activation.
Trends Neurosci.
12:
425–432,
1989.
|
166. |
Huang, K.‐P., and
F. L. Huang.
How is protein kinase C activated in CNS.
Neurochem. Int.
22:
417–433,
1993.
|
167. |
Humbert, J. P.,
N. Matter,
J. C. Artault,
P. Koppler, and
A. N. Malviya.
Inositol 1,4,5‐trisphosphate receptor is located in the inner buclear membrane vindicating regulation of nuclear calcium signaling by inositol 1,4,5‐trisphosphate. Discrete distribution of inositol phosphate receptors to inner and outer nuclear membrane.
J. Biol. Chem.
271:
478–485,
1996.
|
168. |
Hunyady, L.,
A. J. Baukal,
M. Bor,
J. A. Ely, and
K. J. Catt.
Regulation of 1,2‐diacylglycerol production by angiotensin‐II in bovine adrenal glomerulosa cells.
Endocrinology
126:
1001–1008,
1990.
|
169. |
Hunyady, L.,
F. Merelli,
A. J. Baukal, and
K. J. Catt.
Agonist‐induced endocytosis and signal generation in adrenal glomerulosa cells. A potential mechanism for receptor‐operated calcium entry.
J. Biol. Chem.
266:
2783–2788,
1991.
|
170. |
Iida, T.,
S. S. Stojilkovic,
S.‐I. Izumi, and
K. J. Catt.
Spontaneous and agonist‐induced calcium oscillations in pituitary gonadotrophs.
Mol. Endocrinol.
5:
949–958,
1991.
|
171. |
Iino, M., and
M. Endo
Calcium‐dependent immediate feedback control of inositol 1,4,5‐trisphosphate‐induced Ca2+ release.
Nature
360:
76–78,
1992.
|
172. |
Illes, P., and
W. Norenberg
Neuronal ATP receptors and their mechanism of action.
Trends Pharmacol. Sci.
14:
50–54,
1993.
|
173. |
Imagawi, T.,
J. S. Smith,
R. Coronado, and
K. J. Campbell.
Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2 +‐permeable pore of the calcium release channel.
J. Biol. Chem.
262:
16636–16643,
1987.
|
174. |
Ingram, C. D.,
R. J. Bicknell, and
W. T. Mason.
Intracellular recordings from bovine anterior pituitary cells: modulation of spontaneous activity by regulators of prolactin secretion.
Endocrinology
119:
2508–2515,
1986.
|
175. |
Inui, M.,
A. Saito, and
S. Fleischer
Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle.
J. Biol. Chem.
262:
1740–1747,
1987.
|
176. |
Irvine, R. F.
“Qantal” Ca2+ release and the control of Ca2 + entry by inositol phosphates: a possible mechanism.
FEBS Lett.
263:
5–9,
1990.
|
177. |
Israel, J.‐M.,
P. Jaquet, and
J.‐D. Vincent.
The electrical properties of isolated human prolactin‐secreting adenoma cells and their modification by dopamine.
Endocrinology
117:
1448–1455,
1985.
|
178. |
Izumi, S.‐I.,
S. S. Stojilkovic, and
K. J. Catt.
Calcium mobilization and influx during the biphasic cytosolic calcium and secretory responses in agonist‐stimulated pituitary gonadotrophs.
Arch. Biochem. Biophys.
275:
410–428,
1989.
|
179. |
Izumi, S.‐I.,
S. S. Stojilkovic,
T. Iida,
L. Z. Krsmanovic,
R. J. Omeljaniuk, and
K. J. Catt.
Role of voltage‐sensitive calcium channels in [Ca2 +]i and secretory responses to activators of protein kinase C in pituitary gonadotrophs.
Biochem. Biophys. Res. Commun.
170:
359–367,
1990.
|
180. |
Jacob, R.
Calcium oscillations in electrically non‐excitable cells.
Biophysica Acta
1052:
427–438,
1990.
|
181. |
Jacob, R. M.,
J. E. Merritt,
T. J. Hallem, and
T. J. Rink.
Repetitive spikes in cytoplasmic calcium evoked by histamine in human endothelial cells.
Nature
335:
40–45,
1988.
|
182. |
Jensen, J. R., and
V. Rehder
FCCP releases Ca2+ from a non‐mitochondrial store in an identified Helisoma neuron.
Brain Res.
551:
311–314,
1991.
|
183. |
Jobin, R. M.,
M. Tomic,
L. Zheng,
S. S. Stojilkovic, and
K. J. Catt.
GnRH‐induced potentiation of calcium‐dependent exocytosis in pituitary gonadotrophs.
Endocrinology
136:
3398–3405,
1995.
|
184. |
Jouaville, L. S.,
F. Ichas,
E. L. Holmuhamedov,
P. Camacho, and
J. D. Lechleiter.
Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes.
Nature
377:
438–441,
1995.
|
185. |
Karin, M., and
T. Smeal
Control of transcriptional factors by signal transduction pathways: the beginning of the end.
Trends Biochem. Sci.
17:
418–422,
1992.
|
186. |
Kasai, H., and
G. J. Augustine.
Cytosolic Ca2+ gradients triggering undirectional fluid secretion from exocrine pancreas.
Nature
348:
735–738,
1990.
|
187. |
Kass, G. E.,
S. K. Duddy,
G. A. Moore, and
S. Orrenius
2,5‐Di(tert‐butyl)1,4‐benzohydroquinone rapidly elevates cytosolic Ca2+ concentration by mobilizing the inositol 1,4,5‐trisphosphate‐sensitive Ca2+ pool.
J. Biol. Chem.
264:
15192–15198,
1989.
|
188. |
Kato, M.,
J. Hoyland,
S. K. Sikdar, and
W. T. Mason.
Imaging of intracellular calcium in rat anterior pituitary cells in response to growth hormone releasing factor.
J. Physiol. (Lond.)
447:
171–189,
1992.
|
189. |
Kawanishi, T.,
L. M. Blank,
A. T. Harootunian,
M. T. Smith, and
R. Y. Tsien.
Ca2 + oscillations induced by hormonal stimulation of individual fura‐2‐loaded hepatocytes.
J. Biol. Chem.
264:
12859–12866,
1989.
|
190. |
Keizer, J.,
Y.‐X. Li,
S. S. Stojilkovic, and
J. Rinzel
InsP3‐induced Ca2 + excitability of the endoplasmic reticulum.
Mol. Biol. Cell
6:
945–951,
1995.
|
191. |
Keja, J. A., and
K. S. Kits.
Single‐channel properties of high‐and low‐voltage‐activated calcium channels in rat pituitary melanotropic cells.
J. Neurophysiol.
71:
840–855,
1994.
|
192. |
Keja, J. A., and
K. S. Kits.
Voltage dependence of G‐protein‐mediated inhibition of high‐voltage‐activated calcium channels in rat pituitary melanotropes.
Neuroscience
62:
281–289,
1994.
|
193. |
Khan, A. A.,
J. P. Steiner,
M. G. Klein,
M. F. Schneider, and
S. H. Snyder.
IP3 receptors: localization to plasma membrane of T cells and cocapping with the T cell receptor.
Science
257:
815–818,
1992.
|
194. |
Kidokoro, Y.
Spontaneous calcium action potentials in a clonal pituitary cell line and their relationship to prolactin secretion.
Nature
258:
741–742,
1975.
|
195. |
Kiley, S. C.,
P. J. Parker,
D. Fabbro, and
S. Jaken
Differential regulation of protein kinase C isozymes by thyrotropin‐releasing hormone in GH4Ci cells.
J. Biol. Chem.
266:
23761–23768,
1991.
|
196. |
Kiley, S. C.,
P. J. Parker,
D. Fabbro, and
S. Jaken
Hormone‐and phorbol ester‐activated protein kinase C isozymes mediate a reorganization of the actin cytoskeleton associated with prolactin secretion in GH4C1 cells.
Mol. Endocrinol.
6:
120–131,
1992.
|
197. |
Kim, K.‐T., and
W. Westhead
Cellular responses to Ca2+ from extracellular and intracellular sources are different as shown by simultaneous measurements of cytosolic Ca2+ and secretion from bovine chromaffin cells.
Proc. Natl. Acad. Sci. U.S.A.
86:
9881–9885,
1989.
|
198. |
Klee, C. B.,
G. F. Draetta, and
M. J. Hubbard.
Calcineurin.
Adv. Enzymol. Relat. Areas Mol. Biol.
61:
149–200,
1988.
|
199. |
Kleuss, C.,
H. Scherbul,
J. Hescheler,
G. Schultz, and
B. Wittig
Selectivity in signal transduction determined by γ subunits of heterotrimeric G proteins.
Science
259:
832–834,
1993.
|
200. |
Koch, B. D., and
A. Schonbrunn
The somatostatin receptor is directly coupled to adenylate cyclase in GH4C1 pituitary cell membranes.
Endocrinology
114:
1784–1790,
1984.
|
201. |
Koch, B. D., and
A. Schonbrunn
Characterization of the cyclic AMP‐independent actions of somatostatin in GH cells.
J. Biol. Chem.
263:
226–234,
1988.
|
202. |
Kong, S. K.,
D. Tsang,
K. N. Leung, and
C. Y. Lee.
Nuclear envelope acts as a calcium barrier in C6 glioma cells.
Biochem. Biophys. Res. Commun.
218:
595–600,
1996.
|
203. |
Kongsamut, S.,
I. Shibuya, and
W. W. Douglas.
Melanotrophs of Xenopus laevis do respond directly to neuropeptide‐Y as evidenced by reductions in secretion and cytosolic calcium pulsing in isolated cells.
Endocrinology
133:
336–342,
1993.
|
204. |
Koppler, P.,
N. Matter, and
A. N. Malviya.
Evidence for stereospecific inositol 1,3,4,5‐[3H]tetrakisphosphate binding sites on rat liver nuclei. Delineating inositol 1,3,4,5‐tetrakisphosphate interaction in nuclear calcium signaling process.
J. Biol. Chem.
268:
26248–26252,
1993.
|
205. |
Korn, S. J.,
A. Bolden, and
R. Horn
Control of action potentials and Ca2+ influx by the Ca2 +‐dependent chloride current in mouse pituitary cells.
J. Physiol. (Lond.)
439:
423–437,
1991.
|
206. |
Krause, E.,
F. Pfeiffer,
A. Schmid, and
I. Schulz
Depletion of intracellular calcium stores activates a calcium conducting nonselective cation current in mouse pancreatic acinar cells.
J. Biol. Chem.
271:
32523–32528,
1996.
|
207. |
Krsmanovic, L. Z.,
S. S. Stojilkovic,
T. Balla,
S. Al‐Damluji,
R. I. Weiner, and
K. J. Catt.
Receptors and neurosecretory actions of endothelin in hypothalamic neurons.
Proc. Natl. Acad. Sci. U.S.A.
88:
11124–11128,
1991.
|
208. |
Krsmanovic, L. Z.,
S. S. Stojilkovic, and
K. J. Catt.
Pulsatile gonadotropin‐releasing hormone release and its regulation.
Trends Endocrinol. Metab.
7:
56–59,
1996.
|
209. |
Krsmanovic, L. Z.,
S. S. Stojilkovic,
L. M. Mertz,
M. Tomic, and
K. J. Catt.
Expression of gonadotropin‐releasing hormone receptors and autocrine regulation of neuropeptide release in immortalized hypothalamic neurons.
Proc. Natl. Acad. Sci. U.S.A.
90:
3908–3912,
1993.
|
210. |
Kukuljan, M.,
E. Rojas,
K. J. Catt, and
S. S. Stojilkovic.
Membrane potential regulates inositol 1,4,5‐trisphosphate‐controlled cytoplasmic Ca2+ oscillations in pituitary gonadotrophs.
J. Biol. Chem.
269:
4860–4865,
1994.
|
211. |
Kukuljan, M.,
S. S. Stojilkovic,
E. Rojas, and
K. J. Catt.
Apamin‐sensitive potassium channels mediate agonist‐induced oscillations of membrane potential in pituitary gonadotrophs.
FEBS Lett.
301:
19–22,
1992.
|
212. |
Kukuljan, M.,
L. Vergara, and
S. S. Stojilkovic.
Modulation of the kinetics of inositol 1,4,5‐trisphosphate‐induced [Ca2 +]i oscillations by calcium entry in pituitary gonadotrophs.
Biophys. J.
72:
698–707,
1997.
|
213. |
Kumakura, K.,
K. Sasaki,
T. Sakuri,
M. Ohara‐Imaizumi,
H. Misonou,
S. Nakamura,
Y. Matsuda, and
Y. Nonomura
Essential role of myosin light chain kinase in the mechanism for MgATP‐dependent priming of exocytosis in adrenal chromaffin cells.
J. Neurosci.
14:
7695–7703,
1994.
|
214. |
Kumar, N. M., and
N. B. Gilula.
The gap junction communication channels.
Cell
84:
381–388,
1996.
|
215. |
Kurihara, K.,
K. Hosoi, and
T. Ueha
Characterization of ecto‐nucleoside triphosphatase on A‐431 human epidermoidal carcinoma cells.
Enzyme
46:
213–220,
1992.
|
216. |
Kuryshev, Y. A.,
G. V. Childs, and
A. K. Ritchie.
Corticotropin‐releasing hormone stimulation of Ca2+ entry in corticotropes is partially dependent on protein kinase A.
Endocrinology
136:
3925–3935,
1995.
|
217. |
Kusano, K.,
S. Fueshko,
H. Gainer, and
S. Wray
Electrical and synaptic properties of embryonic luteinizing hormone–releasing hormone neurons in explant cultures.
Proc. Natl. Acad. Sci. U.S.A.
92:
3918–3922,
1995.
|
218. |
Lacerda, A. E.,
D. Rampe, and
A. M. Brown.
Effects of protein kinase C activators on cardiac Ca2+ channels.
Nature
335:
249–251,
1988.
|
219. |
Lai, F. A.,
H. P. Erickson,
E. Rousseau,
Q. Y. Liu, and
G. Meissner
Purification and reconstitution of the calcium release channel.
Nature
331:
315–319,
1988.
|
220. |
Lamberts, S.W.J., and
R. M. MacLeod.
Regulation of prolactin secretion at the level of the lactotrophs.
Endocr. Rev.
7:
279–318,
1990.
|
221. |
Lang, D.G., and
A. K. Ritchie.
Tetraethylammonium blockade of apamin‐sensitive and insensitive Ca2 +‐activated K+ channels in a pituitary cell line.
J. Physiol. (Lond.)
425:
117–132,
1990.
|
222. |
Lechleiter, J. D., and
D. E. Clapham.
Molecular mechanisms of intracellular calcium excitability in X. laevis oocytes.
Cell
69:
283–294,
1992.
|
223. |
Lee, H. C.
Potentiation of calcium‐ and caffeine‐induced calcium release by cyclic ADP‐ribose.
J. Biol. Chem.
268:
293–299,
1993.
|
224. |
Lee, H. C.,
R. Aarthus, and
T. F. Walseth.
Calcium mobilization by dual receptors during fertilization of sea urchin eggs.
Science
261:
352–355,
1993.
|
225. |
Leong, D. A.
A complex mechanism of facilitation in pituitary ACTH cells: recent single‐cell studies.
J. Exp. Biol.
139:
151–168,
1988.
|
226. |
Leong, D. A.
A model for intracellular calcium signaling and the coordinate regulation of hormone biosynthesis, receptors and secretion.
Cell Calcium
12:
255–268,
1991.
|
227. |
Leong, D. A., and
M. O. Thorner.
A potential code of luteinizing hormone–releasing hormone‐induced calcium ion responses in the regulation of luteinizing hormone secretion among individual gonadotropes.
J. Biol. Chem.
266:
9016–9022,
1991.
|
228. |
Leung, A. T.,
T. Imagawa, and
K. P. Campbell.
Structural characterization of the 1,4‐dihydropyridine receptor of the voltage‐dependent Ca2+ channel from rabbit skeletal muscle.
J. Biol. Chem.
262:
7943–7946,
1987.
|
229. |
Lewis, C.,
S. Neldhart,
C. Holy,
R. A. North,
G. Buell, and
A. Surprenant
Coexpression of P2X2 and P2X3 receptor subunits can account for ATP‐gated currents in sensory neurons.
Nature
377:
432–435,
1995.
|
230. |
Lewis, D. L.,
M. B. Goodman,
P. A. St. John, and
J. L. Barker.
Calcium currents and fura‐2 signals in fluorescence‐activated cell sorted lactotrophs and somatotrophs of rat anterior pituitary.
Endocrinology
123:
611–621,
1988.
|
231. |
Lewis, D. L.,
F. F. Weight, and
A. Luini
A guanine nucleotide‐binding protein mediates the inhibition of voltage‐dependent calcium current by somatostatin in a pituitary cell line.
Proc. Natl. Acad. Sci. U.S.A.
83:
9035–9039,
1986.
|
232. |
Li, G.,
E. Rungger‐Brandle,
I. Just,
J.‐C. Jonas,
K. Aktories, and
C. B. Wollheim.
Effect of disruption of actin filaments by Clostridium botulinum C2 toxin on insulin secretion in HIT‐T15 cells and pacreatic islets.
Mol. Biol. Cell
4616:
1199–1213,
1994.
|
233. |
Li, Y.‐X.,
J. Keizer,
S. S. Stojilkovic, and
J. Rinzel
Calcium excitability of the ER membrane: an explanation for IP3‐induced Ca2+ oscillations.
Am. J. Physiol.
269
(Cell Physiol. 32):
C1079–C1092,
1995.
|
234. |
Li, Y.‐X.,
J. Rinzel,
J. Keizer, and
S. S. Stojilkovic.
Calcium oscillations in pituitary gonadotrophs: comparison of experiments and theory.
Proc. Natl. Acad. Sci. U.S.A.
91:
58–62,
1994.
|
235. |
Li, Y.‐X.,
J. Rinzel,
L. Vergara, and
S. S. Stojilkovic.
Spontaneous electrical and calcium oscillations in pituitary gonadotrophs.
Biophys. J.
69:
785–795,
1995.
|
236. |
Li, Y.‐X.,
S. S. Stojilkovic,
J. Keizer, and
J. Rinzel
Sensing and refilling calcium stores in an excitable cell.
Biophys. J.
72:
1080–1091,
1997.
|
237. |
Limor, R.,
D. Ayalon,
A. M. Capponi,
G. Childa, and
Z. Naor
Cytosolic free calcium in cultured pituitary cells separated by centrifugal elutriation: effect of gonadotropin‐releasing hormone.
Endocrinology
120:
497–503,
1987.
|
238. |
Lin, C.,
G. Hajnoczky, and
A. P. Thomas.
Propagation of cytosolic calcium waves into the nuclei of hepatocytes.
Cell Calcium
16:
247–258,
1994.
|
239. |
Lin, S. H., and
W. E. Russell.
Two Ca2 +‐dependent ATPases in rat liver plasma membrane. The previously purified (Ca2 + ‐Mg2 +)ATPase is not a Ca2 + pump but an ecto‐ATPase.
J. Biol. Chem.
263:
12253–12258,
1988.
|
240. |
Liscovitch, M.
Crosstalk among multiple signal‐activated phospholipases.
Trends Biochem. Sci.
17:
393–399,
1992.
|
241. |
Lledo, P.‐M.,
V. Homburger,
J. Bockaert, and
J. D. Vincent.
Differential G protein‐mediated coupling of D2 dopamine receptors to K+ and Ca2 + currents in rat anterior pituitary cells.
Neuron
8:
455–463,
1992.
|
242. |
Lledo, P.‐M.,
J.‐M. Israel, and
J.‐D. Vincent.
A guanine nucleotide‐binding protein mediates the inhibition of voltage‐dependent calcium currents by dopamine in rat lactotrophs.
Brain Res.
528:
143–147,
1990.
|
243. |
Lledo, P.‐M.,
P. Legendre,
J.‐M. Israel, and
J.‐D. Vincent.
Dopamine inhibits two characterized voltage‐dependent calcium currents in identified rat lactotroph cells.
Endocrinology
127:
990–1001,
1990.
|
244. |
Lledo, P.‐M.,
P. Legendre,
J. Zhang,
J.‐M. Israel, and
J.‐D. Vincent.
Effects of dopamine on voltage‐dependent potassium currents in identified rat lactotroph cells.
Neuroendocrinology
52:
545–555,
1990.
|
245. |
Llinas, R.,
M. Sugimori, and
R. B. Silver.
Microdomains of high calcium concentration in a presynaptic terminal.
Science
256:
677–679,
1992.
|
246. |
Lohret, T. A.,
R. C. Murphy,
T. Drgon, and
K. W. Kinnally.
Activity of the mitochondrial multiple conductance channel is independent of the adenine nucleotide translocator.
J. Biol. Chem.
271:
4846–4849,
1996.
|
247. |
Lu, K. P., and
A. R. Means.
Regulation of the cell cycle by calcium and calmodulin.
Endocr. Rev.
14:
40–58,
1993.
|
248. |
Luini, A.,
D. Lewis,
S. Guild,
D. Corda, and
J. Axelrod
Hormone secretagogues increase cytosolic calcium by increasing cAMP in corticotropin‐secreting cells.
Proc. Natl. Acad. Sci. U.S.A.
82:
8034–8038,
1985.
|
249. |
Luini, A.,
D. Lewis,
S. Guild,
G. Schofield, and
F. Weight
Somatostatin, an inhibitor of ACTH secretion, decreases cytosolic free calcium and voltage‐dependent calcium current in a pituitary cell line.
J. Neurosci.
6:
3128–3132,
1986.
|
250. |
Lussier, B. T.,
M. B. French,
B. C. Moor, and
J. Kraicer
Free intracellular Ca2+ concentration and growth hormone (GH) release from purified rat somatotrophs. III. Mechanism of action of GH‐releasing factor and somatostatin.
Endocrinology
128:
592–603,
1991.
|
251. |
Lussier, B. T.,
D. A. Wood,
M. B. French,
B. C. Moor, and
J. Kraicer
Free intracellular Ca2+ concentration ([Ca2 +]i) and growth hormone release from purified rat somatotrophs. II. Somatostatin lowers [Ca2 +]i by inhibiting Ca2+ influx.
Endocrinology
128:
583–591,
1991.
|
252. |
Lytton, J.,
M. Westlin,
S. E. Burk,
G. E. Shull, and
D. H. MacLennan.
Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps.
J. Biol. Chem.
267:
14483–14489,
1992.
|
253. |
Lytton, J.,
M. Westlin, and
M. R. Hanley.
Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca‐ATPase family of calcium pumps.
J. Biol. Chem.
266:
17067–17071,
1991.
|
254. |
Ma, Y.,
E. Kobrinsky, and
A. R. Mark.
Cloning and expression of a novel truncated calcium channel from non‐excitable cells.
J. Biol. Chem.
270:
483–493,
1995.
|
255. |
Maeda, N.,
M. Niinobe, and
K. Mikoshiba
A cerebellar Purkinje cell marker P400 protein is an inositol 1,4,5‐trisphosphate (InsP3) receptor protein. Purification and characterization of InsP3 receptor complex.
EMBO J.
9:
61–67,
1990.
|
256. |
Malgaroli, A.,
L. Vallar,
F. R. Elahi,
T. Pozzan,
A. Spada, and
J. Meldolesi
Dopamine inhibits cytosolic Ca2+ increases in rat lactotroph cells.
J. Biol. Chem.
262:
13920–13927,
1987.
|
257. |
Marchetti, C.,
G. V. Childs, and
A. M. Brown.
Membrane currents of identified isolated rat corticotropes and gonadotropes.
Am. J. Physiol.
252
(Endocrinol. Metab. 15):
E340–E346,
1987.
|
258. |
Marchetti, C.,
G. V. Childs, and
A. M. Brown.
Voltage‐dependent calcium currents in rat gonadotropes separated by centrifugal elutriation.
Am. J. Physiol.
258
(Endocrinol. Metab. 21):
E589–E596,
1990.
|
259. |
Marshall, I.C.B., and
C. W. Taylor.
Biphasic effects of cytosolic Ca2+ on Ins,,P3‐stimulated Ca2+ mobilization in hepatocytes.
J. Biol. Chem.
268:
13214–13220,
1993.
|
260. |
Marshall, I.C.B., and
C. W. Taylor.
Regulation of inositol 1,4,5‐trisphosphate receptors.
J. Exp. Biol.
184:
161–182,
1993.
|
261. |
Marshall, I.C.B., and
C. W. Taylor.
Two calcium binding sites mediate the interconversion of liver inositol 1,4,5‐trisphosphate receptors between three conformational states.
Biochem. J.
301:
591–598,
1994.
|
262. |
Martelli, A. M.,
R. S. Gilmour,
V. Bertagnolo,
L. M. Neri,
L. Manzoli, and
L. Cocco
Nuclear localization and signaling activity of phosphoinositase C beta in Swiss 3T3 cells.
Nature
358:
242–245,
1992.
|
263. |
Mason, M. J.,
M. P. Mahaut‐Smith, and
S. Grinstein
The role of intracellular Ca2+ in the regulation of the plasma membrane Ca2+ permeability of unstimulated rat lymphocytes.
J. Biol. Chem.
266:
10872–10879,
1991.
|
264. |
Matesic, D. F.,
J. A. Germak,
E. Dupont, and
B. V. Madhukar.
Immortalized hypothalamic luteinizing hormone–releasing hormone neurons express a connexin 26‐like protein and display functional gap junction coupling assayed by fluorescence recovery after photobleaching.
Neuroendocrinology
58:
485–492,
1993.
|
265. |
Matthews, R. P.,
C. R. Guthrie,
L. M. Wailes,
X. Zhao,
A. R. Means, and
G. S. McKnight.
Calcium‐calmodulin‐dependent protein kinase types II and IV differentially regulate CREB‐dependent gene expression.
Mol. Cell. Biol.
14:
6107–6116,
1994.
|
266. |
Mayer, M. L.
A calcium‐activated chloride current generates the after‐depolarization of rat sensory neurones in culture.
J. Physiol. (Lond.)
364:
217–239,
1985.
|
267. |
Mazzanti, M.,
L. J. Defelice,
J. Cohn, and
H. Malter
Ion channels in the nuclear envelope.
Nature
343:
764–767,
1990.
|
268. |
Mazzanti, M.,
B. Innocenti, and
M. Rigatelli
ATP‐dependent ionic permeability on nuclear envelope in in situ nuclei of Xenopus oocytes.
FASEB J.
8:
231–236,
1994.
|
269. |
McArdle, C. A.,
W. Forrest‐Owen,
J. S. Davidson,
R. Fowkes,
R. Bunting,
W. T. Mason,
A. Poch, and
M. Kratzmeier
Ca2 + entry in gonadotrophs and αT3–1 cells: does store‐dependent Ca2+ influx mediate gonadotrophin‐releasing hormone action?
J. Endocrinol.
149:
155–169,
1996.
|
270. |
McArdle, C. A.,
R. Bunting, and
W. T. Mason.
Dynamic video imaging of cytosolic Ca2+ in the αT3–1, gonadotrope‐derived cell line.
Mol. Cell. Endocrinol.
3:
124–132,
1992.
|
271. |
McCormack, J. G.,
A. P. Halestrap, and
R. M. Denton.
Role of calcium ions in regulation of mammalian intramitochondrial metabolism.
Physiol. Rev.
70:
391–425,
1990.
|
272. |
McDonald, T. V.,
B. A. Premack, and
P. Gardner
Flash photolysis of caged inositol 1,4,5‐trisphosphate activates plasma membrane calcium current in human T cells.
J. Biol. Chem.
268:
3889–3896,
1993.
|
273. |
McPherson, P. S., and
K. P. Campbell.
The ryanodine receptor/ Ca2+ release channel.
J. Biol. Chem.
268:
13765–13768,
1993.
|
274. |
McPherson, S. M.,
P. S. McPherson,
L. Mathews,
K. P. Campbell, and
F. J. Longo.
Cortical localization of a calcium release channel in sea urchin eggs.
J. Cell. Biol.
116:
1111–1121,
1992.
|
275. |
Means, A. R.,
I. C. Bagchi,
M. F. Vanberkum, and
B. E. Kemp.
Regulation of smooth muscle myosin light chain kinase by calmodulin.
Adv. Exp. Med. Biol.
304:
11–24,
1991.
|
276. |
Means, A. R., and
J. R. Dedman.
Calmodulin—an intracellular calcium receptor.
Nature
285:
73–77,
1980.
|
277. |
Means, A. R., and
S. E. George.
Calmodulin regulation of smooth myosin light‐chain kinase.
J. Cardiovasc. Pharmacol.
12:
S25–S29,
1988.
|
278. |
Means, A. R.,
M. F. Vanberkum,
I. Bagchi,
K. P. Lu, and
C. D. Rasmussen.
Regulatory functions of calmodulin.
Pharmacol. Ther.
50:
255–270,
1991.
|
279. |
Meda, P.
The role of gap junction membrane channels in secretion and hormonal action.
J. Bioenerg. Biomembr.
28:
369–377,
1996.
|
280. |
Meldolesi, J.,
A. Villa,
P. Volpe, and
T. Pozzan
Cellular sites of IP3 action.
Adv. Second Messenger Phosphoprotein Res.
26:
187–208,
1992.
|
281. |
Merelli, F.,
S. S. Stojilkovic,
T. Iida,
L. Z. Krsmanovic,
L. Zheng,
P. L. Mellon, and
K. J. Catt.
Gonadotropin‐releasing hormone‐induced calcium signaling in clonal pituitary gonadotrophs.
Endocrinology
131:
925–932,
1992.
|
282. |
Mermelstein, P. G.,
J. B. Becker, and
D. J. Surmeier.
Estradiol reduces calcium currents in rat neostriatal neurons via a membrane receptor.
J. Neurosci.
16:
595–604,
1996.
|
283. |
Meyer, T.
Cell signaling by second messenger waves.
Cell
64:
675–678,
1991.
|
284. |
Meyer, T., and
L. Stryer
Calcium spiking.
Annu. Rev. Biophys. Chem.
20:
153–174,
1991.
|
285. |
Meyer, T. E., and
J. F. Habener.
Cyclic adenosine 3′,5′‐monophosphate response element binding protein (CREB) and related transcription‐activating deoxyribonucleic acid‐binding proteins.
Endocr. Rev.
14:
269–290,
1993.
|
286. |
Michalak, M.,
R. E. Milner,
K. Burns, and
M. Opas
Calreticulin.
Biochem. J.
285:
681–692,
1992.
|
287. |
Mignery, G. A.,
C. L. Newton,
B. T. Archer, and
T. C. Sudhof.
Structure and expression of the rat inositol 1,4,5‐trisphsophate receptor.
J. Biol. Chem.
265:
12679–12685,
1990.
|
288. |
Mignery, G. A.,
T. C. Sudhof,
K. Takei, and
P. de Camilli.
Putative receptor for insoitol 1,4,5‐trisphosphate similar to ryanodine receptor.
Nature
342:
192–195,
1989.
|
289. |
Miller, R. J.
Multiple calcium channels and neuronal function.
Science
235:
46–52,
1987.
|
290. |
Milner, R. E.,
K. S. Famulski, and
M. Michalak
Calcium binding proteins in the sarcoplasmic/endoplasmic reticulum of muscle and non‐muscle cells.
Mol. Cell. Biochem.
112:
1–13,
1992.
|
291. |
Minke, B., and
Z. Selinger
Inositol lipid pathway in fly photoreceptors: excitation, calcium mobilization and retinal degradation. In:
Retinal Research,
edited by N. N. Osborne and
G. J. Chader.
New York:
Pergamon,
1996,
vol. 11,
p. 99–124.
|
292. |
Mitchell, P.
Coupling of phosphorylation to electron and hydrogen transfer by a chemioosmotic type of mechanism.
Nature
191:
144–148,
1961.
|
293. |
Mitsui, K.,
M. Brady,
H. C. Palfrey, and
A. C. Nairn.
Purification and characterization of calmodulin‐dependent protein kinase III from rabbit reticulocytes and rat pancreas.
J. Biol. Chem.
268:
13422–13433,
1993.
|
294. |
Miyawaki, A.,
T. Furuichi,
Y. Ryou,
S. Yoshikawa,
T. Nakagawa,
T. Saitoh, and
K. Mikoshiba
Structure–function relationships of the mouse inositol 1,4,5‐trisphosphate receptor.
Proc. Natl. Acad. Sci. U.S.A.
88:
4911–4915,
1991.
|
295. |
Miyazaki, S.,
H. Shirakawa,
K. Nakada,
Y. Honda,
M. Yuzaki,
S. Nakade, and
K. Mikoshiba
Antibody to the inositol trisphosphate receptor blocks thimerosal‐enhanced Ca2 +‐induced Ca2+ release and Ca2+ oscillations in hamster eggs.
FEBS Lett.
309:
180–184,
1992.
|
296. |
Miyazaki, S.,
M. Yuzaki,
K. Nakada,
H. Shirakawa,
S. Nakanishi,
S. Nakade, and
K. Mikoshiba
Block of Ca2+ wave and Ca2+ oscillation by antibody to the inositol 1,4,5‐trisphosphate receptor in fertilized hamster eggs.
Science
257:
251–255,
1992.
|
297. |
Molday, R. S.
Calmodulin regulation of cyclic‐nucleotide‐gated channels.
Curr. Opin. Neurobiol.
6:
445–52,
1996.
|
298. |
Mollard, P.,
N. Guerineau,
C. Chiavaroli,
W. Schlegel, and
D. M. Cooper.
Adenosine A1 receptor‐induced inhibition of Ca2+ transients linked to action potentials in clonal pituitary cells.
Eur. J. Pharmacol.
206:
271–277,
1991.
|
299. |
Mollard, P.,
J.‐M. Theler,
N. Guerineau,
P. Vacher,
C. Chiavaroli, and
W. Schlegel
Cytosolic Ca2+ of excitable pituitary cells at resting potentials is controlled by steady state Ca2+ currents sensitive to dihydropyridines.
J. Biol. Chem.
269:
25158–25164,
1994.
|
300. |
Mollard, P.,
P. Vacher,
B. Dufy, and
J. L. Barker.
Somatostatin blocks Ca2+ action potential activity in prolactin‐secreting pituitary tumor cells through coordinate actions of K+ and Ca2+ conductances.
Endocrinology
123:
721–732,
1988.
|
301. |
Montero, M.,
J. Garcia‐Sancho, and
J. Alvares
Transient inhibition by chemotactic peptide of a store‐operated Ca2+ entry pathway in human neutrophils.
J. Biol. Chem.
268:
13055–13061,
1993.
|
302. |
Moore, G. A.,
D. J. McConkey,
G.E.N. Kass,
P. J. O'Brien, and
S. Orrenius
2,5‐Di(tert‐butyl)‐1,4‐benzohydroquinone—a novel inhibitor of liver microsomal Ca2+ sequestration.
FEBS Lett.
224:
331–336,
1987.
|
303. |
Mori, Y.,
T. Friedrich,
M.‐S. Kim,
A. Mikami,
J. Nakai,
P. Ruth,
E. Bosse,
F. Hofmann,
V. Flockerzi, and
T. Furuichi
Primary structure and functional expression from complementary DNA of a brain calcium channel.
Nature
350:
398–402,
1991.
|
304. |
Morris, A. P.,
D. V. Gallacher,
R. F. Irvine, and
O. H. Petersen.
Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+ ‐dependent K+ channels.
Nature
330:
653–655,
1987.
|
305. |
Muallem, S.,
M. Scheffield,
S. Pandol, and
G. Sachs
Inositol trisphosphate modification of ion transport in rough endoplasmic reticulum.
Proc. Natl. Acad. Sci. U.S.A.
82:
4433–4437,
1985.
|
306. |
Musset, F.,
P. Bertrand,
C. Kordon, and
A. Enjalbert
Differential coupling with pertussis toxin‐sensitive G proteins of dopamine and somatostatin receptors involved in regulation of adenohypophyseal secretion.
Mol. Cell. Endocrinol.
73:
1–10,
1990.
|
307. |
Nairn, A. C., and
H. C. Palfrey.
Identification of the major Mr 100,000 substrate for calmodulin‐dependent protein kinase III in mammalian cells as elongation factor‐2.
J. Biol. Chem.
262:
17299–17303,
1987.
|
308. |
Nairn, A. C., and
M. R. Picciotto.
Calcium/calmodulin‐dependent protein kinases.
Semin. Cancer Biol.
5:
295–303,
1994.
|
309. |
Nakagawa, T.,
H. Okano,
T. Furuichi,
J. Aruga, and
K. Mikoshiba
The subtypes of the mouse inositol 1,4,5‐trisphosphate receptor are expressed in a tissue specific and developmentally specific manner.
Proc. Natl. Acad. Sci. U.S.A.
88:
6244–6248,
1991.
|
310. |
Nakajima, T.,
T. Lkitazawa,
E. Hamada,
H. Hazama,
M. Omata, and
Y. Kurachi
17β‐Estradiol inhibits the voltage‐dependent l‐type Ca2+ currents in aortic smooth muscle cells.
Eur. J. Pharmacol.
294:
625–635,
1995.
|
311. |
Nakazawa, K.,
K. Fujimori,
A. Takanaka, and
K. Inoue
Comparison of adenosine triphosphate‐ and nicotine‐activated inward currents in rat phaeochromocytoma cells.
J. Physiol.
434:
647–660,
1991.
|
312. |
Naor, Z.,
H. D. Cohen,
J. Hermon, and
R. Limor
Induction of exocytosis in permeabilized pituitary cells by α‐ and β‐type protein kinase C.
Proc. Natl. Acad. Sci. U.S.A.
86:
4501–4504,
1989.
|
313. |
Nathanson, M. H.,
P. J. Padfield,
A. J. O'Sullivan,
A. D. Burghstahler, and
J. D. Jamieson.
Mechanism of Ca2+ wave propagation in pancreatic acinar cells.
J. Biol. Chem.
267:
18118–18121,
1992.
|
314. |
Naumov, A. P.,
J. Herrington, and
B. Hille
Actions of growth‐hormone‐releasing hormone on rat pituitary cells: intracellular calcium and ionic currents.
Pflugers Arch.
427:
414–421,
1994.
|
315. |
Nedergaard, M.
Direct signaling from astrocytes to neurons in cultures of mammalian brain cells.
Science
263:
1768–1771,
1994.
|
316. |
Neely, A., and
C. J. Lingle.
Two components of calcium‐activated potassium current in rat adrenal chromaffin cells.
J. Physiol. (Lond.)
453:
97–131,
1992.
|
317. |
Neher, E., and
G. J. Augustine.
Calcium gradients and buffers in bovine chromaffin cells.
J. Physiol. (Lond.)
450:
272–301,
1992.
|
318. |
Nilius, B.
Permeation properties of a non‐selective cation channel in human vascular endothelial cells.
Pflugers Arch.
416:
609–611,
1990.
|
319. |
Nilius, B.,
G. Schwartz,
M. Oike, and
G. Droogmans
Histamine‐activated, non‐selective cation currents and Ca2+ transients in endothelial cells.
Pflugers Arch.
424:
285–293,
1993.
|
320. |
Nishizuka, Y.
Turnover of inositol phospholipids and signal transduction.
Science
225:
1365–1369,
1984.
|
321. |
Nishizuka, Y.
Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C.
Science
258:
607–614,
1992.
|
322. |
Norregaard, A.,
B. Vilsen, and
J. P. Andersen.
Transmembrane segement M3 is essential to thapsigargin sensitivity of the sarcoplasmic reticulum Ca2+ ‐ATPase.
J. Biol. Chem.
269:
26598–26601,
1994.
|
323. |
Nowycky, M. C.,
A. P. Fox, and
R. W. Tsien.
Three types of neuronal calcium channel with different calcium agonist sensitivity.
Nature
316:
440–443,
1985.
|
324. |
Ohara‐Imaizumi, M.,
T. Sakurai,
S. Nakamura,
S. Nakanishi,
Y. Matsuda,
S. Muramatsu,
Y. Nonomura, and
K. Kumakura
Inhibition of Ca2+ ‐dependent catecholamine release by myosin light chain kinase inhibitor, wortmannin, in adrenal chromaffin cells.
Biochem. Biophys. Res. Commun.
185:
1016–1021,
1992.
|
325. |
Ortmann, O.,
F. Merelli,
S. S. Stojilkovic,
K. D. Schultz,
G. Emons, and
K. J. Catt.
Modulation of calcium signaling and LH secretion by progesterone in pituitary gonadotrophs and clonal pituitary cells.
J. Steroid Biochem. Mol. Biol.
48:
47–54,
1994.
|
326. |
Ortmann, O.,
S. S. Stojilkovic,
M. Cesnjaj,
G. Emons, and
K. J. Catt.
Modulation of cytoplasmic calcium signaling in rat pituitary gonadotrophs by estradiol and progesterone.
Endocrinology
131:
1565–1568,
1992.
|
327. |
Osipchuk, Y., and
M. Cahalan
Cell‐to‐cell spread of calcium signals mediated by ATP receptors in mast cells.
Nature
359:
241–244,
1992.
|
328. |
Osipchuk, Y. V.,
M. Wakui,
D. I. Yule,
D. V. Gallacher, and
O. H. Petersen.
Cytoplasmic Ca2+ oscillations evoked by receptor stimulation, G‐protein activation, internal application of inositol trisphosphate or Ca2+ : simultaneous microfluorimetry and Ca2+ dependent Cl− current recording in single pancreatic acinar cells.
EMBO J.
9:
697–704,
1990.
|
329. |
Ostberg, B. C.,
O. Sand,
T. Bjoro, and
E. Haugh
The phorbol ester TPA induced hormone release and electrical activity in clonal rat pituitary cells.
Acta Physiol. Scand.
126:
517–524,
1986.
|
330. |
Otsu, K.,
H. F. Willard,
V. K. Khanna,
F. Zorzato,
N. M. Green, and
D. H. MacLennan.
Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum.
J. Biol. Chem.
265:
13472–13483,
1990.
|
331. |
Ozawa, K.,
Z. Szallasi,
M. G. Kazanietz,
P. M. Blumberg,
H. Mischak,
J. F. Mushinski, and
M. A. Beaven.
Ca2+ ‐dependent and Ca2+ ‐independent isozymes of protein kinase C mediate exocytosis in antigen‐stimulated rat basophilic RBL‐2H3 cells.
J. Biol. Chem.
268:
1749–1756,
1993.
|
332. |
Ozawa, K.,
K. Yamada,
M. G. Kazanietz,
P. M. Blumberg, and
M. A. Beaven.
Different isozymes of protein kinase C mediate feedback inhibition of phospholipase C and stimulatory signals for exocytosis in rat RBL‐2H3 Cells.
J. Biol. Chem.
268:
2280–2283,
1993.
|
333. |
Ozawa, S., and
N. Kimura
Membrane potential changes caused by thyrotropin‐releasing hormone in the clonal GH3 cell and their relationship to secretion of pituitary hormone.
Proc. Natl. Acad. Sci. U.S.A.
76:
6017–6020,
1979.
|
334. |
Ozawa, S., and
O. Sand
Electrophysiology of excitable endocrine cells.
Physiol. Rev.
66:
887–952,
1986.
|
335. |
Palfrey, H. C.,
A. C. Nairn,
L. L. Muldoon, and
M. L. Villereal.
Rapid activation of calmodulin‐dependent protein kinase II in mitogen‐stimulated human fibroblasts. Correlation with intracellular Ca2+ transients.
J. Biol. Chem.
262:
9785–9792,
1987.
|
336. |
Pandol, S. J., and
M. S. Schoeffield‐Payne.
Cyclic GMP mediates the agonist‐stimulated increase in plasma membrane calcium entry in the pancreatic acinar cells.
J. Biol. Chem.
265:
12846–12853,
1990.
|
337. |
Parekh, A. B.,
H. Terlau, and
W. Stuhmer
Depletion of InsP3 stores activates a Ca2+ and K+ current by means of a phosphatase and a diffusible messenger.
Nature
364:
814–818,
1993.
|
338. |
Park, Y. B.
Ion selectivity and gating of small conductance Ca2+ ‐activated K+ channels in cultured rat adrenal chromaffin cells.
J. Physiol. (Lond.)
481:
555–570,
1994.
|
339. |
Parker, I., and
I. Ivorra
Inhibition by Ca2+ of inositol trisphosphate‐mediated Ca2+ liberation: a possible mechanism for oscillatory release of Ca2+.
Proc. Natl. Acad. Sci. U.S.A.
87:
260–264,
1990.
|
340. |
Parker, I., and
I. Ivorra
Localized all‐or‐none calcium liberation by inositol trisphosphate.
Science
250:
977–979,
1990.
|
341. |
Parker, I.,
Y. Yao, and
V. Ilyin
Fast kinetics of calcium liberation induced in Xenopus oocytes by photoreleased inositol trisphosphate.
Biophys. J.
70:
222–237,
1996.
|
342. |
Parker, K. E., and
A. Scarpa
An ATP‐activated nonselective cation channel in guinea pig ventricular myocytes.
Am. J. Physiol.
269
(Heart Circ. Physiol. 40):
H789–H797,
1995.
|
343. |
Partridge, L. D.,
T. H. Muller, and
D. Swandulla
Calcium‐activated non‐selective channels in the nervous system.
Brain Res. Rev.
19:
319–325,
1994.
|
344. |
Partridge, L. D., and
D. Swandulla
Calcium‐activated nonspecific cation channels.
Trends Neurosci.
11:
69–72,
1988.
|
345. |
Patel, Y. C., and
C. B. Srikant.
Somatostatin mediation of adenohypophysial secretion.
Annu. Rev. Physiol.
48:
551–567,
1986.
|
346. |
Pearson, J. D.
Ectonucleotidases: measurement of activities and use of inhibitors.
Methods Pharmacol.
6:
83–107,
1985.
|
347. |
Perez‐Reyes, E.,
X. Wei,
A. Castellano, and
L. Birnbaumer
Molecular diversity of l‐type calcium channels.
J. Biol. Chem.
265:
20430–20436,
1990.
|
348. |
Perez‐Tezic, C.,
J. Pyle,
M. Jaconi,
L. Stehno‐Bittel, and
D. E. Clapham.
Conformational states of the nuclear pore complex induced by depletion of nuclear Ca2+ store.
Science
273:
1875–1877,
1996.
|
349. |
Perrin, D.,
K. Moller,
K. Hanke, and
H.‐D. Soling.
cAMP and Ca2+ ‐mediated secretion in parotid acinar cells is associated with reversible changes in the organization of the cytoskeleton.
J. Cell. Biol.
116:
127–134,
1992.
|
350. |
Peter, R. E.,
J. P. Chang,
C. S. Nahorniak,
R. J. Omeljaniuk,
M. Sokolowska,
S. H. Shih, and
R. Billard
Interactions of catecholamines and GnRH in regulation of gonadotropin secretion in teleost fish.
Recent Prog. Horm. Res.
42:
513–548,
1986.
|
351. |
Petersen, C. C., and
M. J. Berridge.
The regulation of capacitative calcium entry by calcium and protein kinase C in Xenopus oocytes.
J. Biol. Chem.
269:
32246–32253,
1994.
|
352. |
Petersen, C. C., and
M. J. Berridge.
G‐protein regulation of capacitative calcium entry may be mediated by protein kinases A and C in Xenopus oocytes.
Biochem. J.
307:
663–668,
1995.
|
353. |
Petersen, C.C.H.,
O. H. Petersen, and
M. J. Berridge.
The role of endoplasmic reticulum calcium pumps during cytosolic calcium spiking in pancreatic acinar cells.
J. Biol. Chem.
268:
22262–22264,
1993.
|
354. |
Petersen, C.C.H.,
E. C. Toescu, and
O. H. Petersen.
Different patterns of receptor‐activated cytoplasmic oscillations in single pancreatic acinar cells: dependence on receptor type, agonist concentration and intracellular calcium buffering.
EMBO J.
10:
527–533,
1991.
|
355. |
Petersen, O. H.,
C. H. Petersen, and
H. Kasai
Calcium and hormone action.
Annu. Rev. Physiol.
56:
297–319,
1994.
|
356. |
Phillips, A. M.,
A. Bull, and
L. E. Kelly.
Identification of a Drosophila gene encoding a calmodulin‐binding protein with homology to the trp phototransduction gene.
Neuron
8:
631–642,
1992.
|
357. |
Picher, M.,
J. Sevigny,
P. D'Orleans‐Juste, and
A. R. Beaudoin.
Hydrolysis of P2‐purinoreceptor agonists by a purified ectonucleotidase from the bovine aorta, the ATP‐diphosphohydrolase.
Biochem. Pharmacol.
51:
1453–1460,
1996.
|
358. |
Picotto, G.,
V. Massheimer, and
R. Boland
Acute stimulation of intestinal cell calcium influx induced by 17 beta‐estradiol via the cAMP messenger system.
Mol. Cell. Endocrinol.
119:
129–134,
1996.
|
359. |
Pietri, F.,
M. Hilly, and
J. P. Mauger.
Calcium mediates the interconversion between two states of the liver inositol 1,4,5‐trisphosphate receptor.
J. Biol. Chem.
265:
17478–17485,
1990.
|
360. |
Pozzan, T.,
R. Rizzuto,
P. Volpe, and
J. Meldolesi
Molecular and cellular physiology of intracellular calcium stores.
Physiol. Rev.
74:
596–636,
1994.
|
361. |
Putney, J. W., Jr.
Capacitative calcium entry revisited.
Cell Calcium
11:
611–624,
1990.
|
362. |
Putney, J. W., Jr.
Inositol phosphates and calcium entry.
Adv. Second Messenger Phosphoprotein Res.
26:
143–156,
1992.
|
363. |
Putney, J. W., Jr., and
G. St. J. Bird.
The inositol phosphate‐calcium signaling system in nonexcitable cells.
Endocr. Rev.
14:
610–631,
1993.
|
364. |
Randriamampita, C., and
R. Y. Tsien.
Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx.
Nature
364:
809–814,
1993.
|
365. |
Rane, S. G., and
K. Dunlop
Kinase C activator 1–oleoyl‐2–acetylglycerol attenuates voltage‐dependent calcium current in sensory neurones.
Proc. Natl. Acad. Sci. U.S.A.
83:
184–188,
1986.
|
366. |
Ransone, L. J., and
I. M. Verma.
Nuclear proto‐oncogenes fos and jun.
Annu. Rev. Cell Biol.
6:
539–557,
1990.
|
367. |
Rao, K.,
W.‐Y. Paik,
L. Zheng,
R. M. Jobin,
M. Tomic,
H. Jiang,
S. Nakanishi, and
S. S. Stojilkovic.
Wortmannin‐sensitive and insensitive steps in calcium‐controlled exocytosis in pituitary gonadotrophs.
Endocrinology,
138:
1440–1449,
1997.
|
368. |
Rapp, P.E., and
M. J. Berridge.
The control of transepithelial potential oscillations in the salivary gland of Calliphora erythrocephala.
J. Exp. Biol.
93:
119–132,
1981.
|
369. |
Rawlings, S. R.,
N. Demaurex, and
W. Schlegel
Pituitary adenylate cyclase‐activating polypeptide increases [Ca2+]i in rat gonadotrophs through an inositol trisphosphate‐dependent mechanism.
J. Biol. Chem.
269:
5680–5686,
1994.
|
370. |
Reisine, T.
Phorbol esters and corticotropin‐releasing factor stimulate calcium influx in the anterior pituitary tumor cell line, AtT‐20, through different intracellular sites of action.
J. Pharmacol. Exp. Ther.
248:
984–990,
1989.
|
371. |
Reisine, T., and
G. I. Bell.
Molecular biology of somatostatin receptors.
Endocr. Rev.
16:
427–442,
1995.
|
372. |
Renterghen, C. V.,
G. Romey, and
M. Lazdunski
Vasopressin modulates the spontaneous electrical activity in aortic cells (line A7r5) by acting on three different types of ionic channels.
Proc. Natl. Acad. Sci. U.S.A.
85:
9365–9369,
1988.
|
373. |
Rhee, S. G.,
P.‐G. Suh,
S.‐H. Ryu, and
S. Y. Lee.
Studies on inositol phospholipid‐specific phospholipase C.
Science
244:
546–550,
1989.
|
374. |
Rhoads, A. R.,
R. Parui,
N.‐D. Vu,
R. Cadogan, and
P. D. Wagner.
ATP‐induced secretion in PC12 cells and photoaffinity labeling of receptors.
J. Neurochem.
61:
1657–1666,
1993.
|
375. |
Ribeiro, C.M.P., and
J. W. Putney Jr.
Differential effects of protein kinase C activation on calcium storage and capacitative calcium entry in NIH 3T3 cells.
J. Biol. Chem.
271:
21522–21528,
1996.
|
376. |
Rinzel, J.,
J. Keizer, and
Y.‐X. Li.
Modeling plasma membrane and endoplasmic reticulum excitability in pituitary cells.
Trends Endocrinol. Metab.
7:
388–393,
1996.
|
377. |
Ritchie, A. K.
Two distinct calcium‐activated potassium currents in a rat anterior pituitary cell line.
J. Physiol. (Lond.)
385:
591–609,
1987.
|
378. |
Ritchie, A. K.
Thyrotropin‐releasing hormone stimulates a calcium‐activated potassium current in a rat anterior pituitary cell line.
J. Physiol. (Lond.)
385:
611–625,
1987.
|
379. |
Rizzuto, R.,
M. Brini,
M. Murgia, and
T. Pozzan
Microdomains with high Ca2+ close to IP3‐sensitive channels are sensed by neighboring mitochondria.
Science
262:
744–746,
1993.
|
380. |
Rizzuto, R.,
W. M. Simpson,
M. Brini, and
T. Pozzan
Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin.
Nature
358:
325–327,
1992.
|
381. |
Robb‐Gaspers, L. D., and
A. P. Thomas.
Coordination of Ca2+ signaling by intercellular propagation of Ca2+ waves in the intact liver.
J. Biol. Chem.
270:
8102–8107,
1995.
|
382. |
Rooney, T. A.,
E. J. Sass, and
A. P. Thomas.
Characterization of cytosolic calcium oscillations induced by phenylaphrine and vasopressin in single fura‐2‐loaded hepatocytes.
J. Biol. Chem.
264:
17131–17141,
1989.
|
383. |
Rooney, T. A.,
E. J. Sass, and
A. P. Thomas.
Agonist‐induced cytosolic calcium oscillations originate from a specific locus in single hepatocytes.
J. Biol. Chem.
265:
10792–10796,
1990.
|
384. |
Rotenberg, A.,
M. Mayford,
R. D. Hawkins,
E. R. Kandel, and
R. U. Muller.
Mice expressing activated CaMKII lack low frequency LTP and do not form stable place cells in the CA1 region of the hippocampus.
Cell
87:
1351–1361,
1996.
|
385. |
Roussel, J. P.,
G. Mateu, and
H. Astier
Blockade of potassium or calcium channels provokes modifications in TRH‐induced TSH release from rat perifused pituitaries.
Endocr. Regul.
26:
163–170,
1992.
|
386. |
Rozengurt, E., and
L. A. Heppler.
A specific effect of external ATP on the permeability of transformed 3T3 cells.
Biochem. Biophys. Res. Commun.
67:
1581–1588,
1975.
|
387. |
Ruth, P.,
A. Rohrkasten,
M. Biel,
E. Bosse,
S. Regulla,
H. E. Meyer,
V. Flockerzi, and
F. Hofmann
Primary structure of the β subunit of the DHP‐sensitive calcium channel from skeletal muscle.
Science
245:
1115–1118,
1989.
|
388. |
Sagara, Y.,
F. F. Belda,
L. Demeis, and
G. Inesi
Characterization of the inhibition of intracellular Ca2+ transport ATPases by thapsigargin.
J. Biol. Chem.
267:
12606–12613,
1992.
|
389. |
Sage, S. O.,
D. J. Adams, and
C. van Breemen.
Synchronized oscillations in cytoplasmic free calcium concentration in confluent bradykinin‐stimulated bovine pulmonary artery endothelial cell monolayers.
J. Biol. Chem.
264:
6–9,
1989.
|
390. |
Sah, P.
Ca2+ ‐activated K+ currents in neurones: types, physiological roles and modulation.
Trends Neurosci.
19:
150–154,
1996.
|
391. |
Saimi, Y., and
C. Kung
Ion channel regulation by calmodulin binding.
FEBS Lett.
350:
155–158,
1994.
|
392. |
Sala, F., and
A. Hernandez‐Cruz.
Calcium diffusion modeling in a spherical neuron.
Biophys. J.
57:
313–324,
1990.
|
393. |
Sargeant, P.,
R. W. Farndale, and
S. O. Sage.
The tyrosine kinase inhibitors methyl 2,5‐dihydroxynnamate and genistein reduce thrombin‐evoked tyrosine phosphorylation and Ca2+ entry in human platelets.
FEBS Lett.
315:
242–246,
1993.
|
394. |
Scheenen, W. J.,
H. G. Yntema,
P. H. Willems,
E. W. Roubos,
J. R. Lieste, and
B. G. Jenks.
Neuropeptide Y inhibits Ca2+ oscillations, cyclic AMP, and secretion in melanotrope cells of Xenopus laevis via a Y1 receptor.
Peptides
16:
889–895,
1995.
|
395. |
Schlegel, W.,
B. P. Winiger,
P. Mollard,
P. Vacher,
F. Wuarin,
G. R. Zahnd,
C. B. Wollheim, and
B. Dufy
Oscillations of cytosolic Ca2+ in pituitary cells due to action potentials.
Nature
329:
719–721,
1987.
|
396. |
Schulman, H., and
L. L. Lou.
Multifunctional Ca2+/calmodulin‐dependent protein kinase: domain structure and regulation.
Trends Biochem. Sci.
14:
62–66,
1989.
|
397. |
Seabrook, G. R.,
M. Knowles,
N. Brown,
J. Myers,
H. Sinclair,
S. Patel,
S. B. Freedman, and
G. McAllister
Pharmacology of high‐threshold calcium currents in GH4C1 pituitary cells and their regulation by activation of human D2 and D4 dopamine receptors.
Br. J. Pharmacol.
112:
728–734,
1994.
|
398. |
Sham, J.S.K.,
L. Cleemann, and
M. Morad
Functional coupling of Ca2+ channels and ryanodine receptors in cardiac myocytes.
Proc. Natl. Acad. Sci. U.S.A.
92:
121–125,
1995.
|
399. |
Shan, J.,
L. M. Resnick,
Q. Y. Liu,
X. C. Wu,
M. Barbagallo, and
P. K. Pang.
Vascular effects of 17β‐estradiol in male Sprague‐Dawley rats.
Am. J. Physiol.
266
(Heart Circ. Physiol. 37):
H967–H973,
1994.
|
400. |
Shangold, G. A., and
R. J. Miller.
Direct neuropeptide Y‐induced modulation of gonadotrope intracellular calcium transients and gonadotropin secretion.
Endocrinology
126:
2336–2342,
1990.
|
401. |
Shangold, G. A.,
S. N. Murphy, and
R. J. Miller.
Gonadotropin‐releasing hormone‐induced Ca2+ transients in single identified gonadotropes require both intracellular Ca2+ mobilization and Ca2+ influx.
Proc. Natl. Acad. Sci. U.S.A.
85:
6566–6570,
1988.
|
402. |
Shearman, M. S.,
K. Sekiquchi, and
Y. Nishizuka
Modulation of ion channel activity: a key function of the protein kinase C enzyme family.
Pharmacol. Rev.
41:
211–237,
1989.
|
403. |
Shepherd, G. M.
Neurobiology.
New York:
Oxford University Press,
1988.
|
404. |
Shipston, M. J.,
J. S. Kelly, and
F. A. Antoni.
Glucocorticoids block protein kinase A inhibition of calcium‐activated potassium channels.
J. Biol. Chem.
271:
9197–9200,
1996.
|
405. |
Simasko, S. M.,
G. A. Weiland, and
R. E. Oswald.
Pharmacological characterization of two calcium currents in GH3 cells.
Am. J. Physiol.
254
(Endocrinol. Metab. 17):
E328–E336,
1988.
|
406. |
Simpson, P. B., and
J. T. Russell.
Mitochondria support inositol 1,4,5‐trisphosphate‐mediated Ca2+ waves in cultured oligodendorocytes.
J. Biol. Chem.
271:
33493–33501,
1996.
|
407. |
Slivka, S. R., and
P. A. Insel.
Phorbol ester and neomycin dissociate bradykinin receptor‐mediated arachidonic acid release and polyphosphoinositide hydrolysis in Madin‐Darby canine kidney cells.
J. Biol. Chem.
263:
14640–14647,
1988.
|
408. |
Sneyd, J.,
A. C. Charles, and
M. J. Sanderson.
A model for the propagation of intercellular calcium waves.
Am. J. Physiol.
266
(Cell Physiol. 35):
C293–C302,
1994.
|
409. |
Snutch, T. P.,
J. P. Leonard,
M. M. Gilbert,
H. A. Lester, and
N. Davidson
Rat brain expresses a heterogeneous family of calcium channels.
Proc. Natl. Acad. Sci. U.S.A.
87:
3391–3395,
1990.
|
410. |
Sorrentino, V., and
P. Volpe
Ryanodine receptors: how many, where and why.
Trends Pharmacol. Sci.
14:
98–103,
1993.
|
411. |
Squires, P. E.,
R.F.L. James,
N.J.M. London, and
M. J. Dunne.
ATP‐induced intracellular Ca2+ signals in isolated human insulin‐secreting cells.
Pflugers Arch.
427:
181–183,
1994.
|
412. |
Stack, J., and
A. Surprenant.
Dopamine actions on calcium currents, potassium currents and hormone release in rat melanotrophs.
J. Physiol. (Lond.)
439:
37–58,
1991.
|
413. |
Starr, T.,
V.B. W. Prystay, and
T. P. Snutch.
Primary structure of a calcium channel that is highly expressed in the rat cerebellum.
Proc. Natl. Acad. Sci. U.S.A.
88:
5621–5625,
1991.
|
414. |
Stauffer, P. L.,
H. Zhao,
K. Luby‐Phelps,
R. L. Moss,
R. A. Star, and
S. Muallem
Gap junction communication modulates [Ca2+]i oscillations and enzyme secretion in pancreatic acini.
J. Biol. Chem.
268:
19769–19775,
1993.
|
415. |
Stea, A.,
T. W. Soong, and
T. P. Snutch.
Determinants of PKC‐dependent modulation of a family of neuronal calcium channels.
Neuron
15:
929–940,
1995.
|
416. |
Stehno‐Bittel, L.,
A. Luckhoff, and
D. E. Clapham.
Calcium release from the nucleus by InsP3 receptor channels.
Neuron
14:
163–167,
1995.
|
417. |
Stehno‐Bittel, L.,
C. Perez‐Terzic, and
D. E. Clapham.
Diffusion across the nuclear envelope inhibited by depletion of the nuclear Ca2+ store.
Science
270:
1835–1838,
1955.
|
418. |
Stendahl, O.,
K.‐H. Krause,
J. Krischer,
P. Jerstrom,
J.‐M. Theler,
R. A. Clark,
J.‐L. Carpentier, and
D. P. Lew.
Redistribution of intracellular Ca2+ stores during phagocytosis in human neutrophils.
Science
265:
1439–1441,
1994.
|
419. |
Stojilkovic, S. S.,
T. Balla,
S. Fukuda,
M. Cesnjaj,
F. Merelli,
L. Z. Krsmanovic, and
K. J. Catt.
Endothelin ETA receptors mediate the signaling and secretory actions of endothelins in pituitary gonadotrophs.
Endocrinology
130:
465–474,
1992.
|
420. |
Stojilkovic, S. S., and
K. J. Catt.
Neuroendocrine actions of endothelins.
Trends Pharmacol. Sci.
13:
385–391,
1992.
|
421. |
Stojilkovic, S. S., and
K. J. Catt.
Calcium oscillations in anterior pituitary cells.
Endocr. Rev.
13:
256–280,
1992.
|
422. |
Stojilkovic, S. S.,
J. P. Chang,
S.‐I. Izumi,
K. Tasaka, and
K. J. Catt.
Mechanisms of secretory responses to gonadotropin‐releasing hormone and phorbol esters in cultured pituitary cells.
J. Biol. Chem.
263:
17301–17306,
1988.
|
423. |
Stojilkovic, S. S.,
T. Iida,
M. Cesnjaj, and
K. J. Catt.
Differential actions of endothelin and gonadotropin‐releasing hormone in pituitary gonadotrophs.
Endocrinology
131:
2821–2828,
1992.
|
424. |
Stojilkovic, S. S.,
T. Iida,
F. Merelli, and
K. J. Catt.
Calcium signaling and secretory responses in endothelin‐stimulated anterior pituitary cells.
Mol. Pharmacol.
39:
762–770,
1991.
|
425. |
Stojilkovic, S. S.,
T. Iida,
F. Merelli,
A. Torsello,
L. Z. Krsmanovic, and
K. J. Catt.
Interactions between calcium and protein kinase C in the control of signaling and secretion in pituitary gonadotrophs.
J. Biol. Chem.
266:
10377–10384,
1991.
|
426. |
Stojilkovic, S. S.,
T. Iida,
M. A. Virmani,
S.‐I. Izumi,
E. Rojas, and
K. J. Catt.
Dependence of hormone secretion on activation‐inactivation kinetics of voltage‐sensitive Ca2+ channels in pituitary gonadotrophs.
Proc. Natl. Acad. Sci. U.S.A.
87:
8855–8859,
1990.
|
427. |
Stojilkovic, S. S.,
S.‐I. Izumi, and
K. J. Catt.
Participation of voltage‐sensitive calcium channels in pituitary hormone secretion.
J. Biol. Chem.
263:
13054–13061,
1988.
|
428. |
Stojilkovic, S. S.,
L. Z. Krsmanovic,
D. J. Spergel,
M. Tomic, and
K. J. Catt.
Calcium signaling and episodic secretory responses of GnRH neurons.
Methods Neurosci.
20:
68–84,
1994.
|
429. |
Stojilkovic, S. S.,
M. Kukuljan,
T. Iida,
E. Rojas, and
K. J. Catt.
Integration of cytoplasmic calcium and membrane potential oscillations maintains calcium signaling in pituitary gonadotrophs.
Proc. Natl. Acad. Sci. USA
89:
4081–4085,
1992.
|
430. |
Stojilkovic, S. S.,
M. Kukuljan,
M. Tomic,
E. Rojas, and
K. J. Catt.
Mechanism of agonist‐induced [Ca2+]i oscillations in pituitary gonadotrophs.
J. Biol. Chem.
268:
7713–7720,
1993.
|
431. |
Stojilkovic, S. S.,
F. Merelli,
T. Iida,
L. Z. Krsmanovic, and
K. J. Catt.
Endothelin stimulation of cytosolic calcium and gonadotropin secretion in anterior pituitary cells.
Science
248:
1663–1666,
1990.
|
432. |
Stojilkovic, S. S.,
J. Reinhart, and
K. J. Catt.
GnRH receptors: structure and signal transduction pathways.
Endocr. Rev.
15:
462–499,
1994.
|
433. |
Stojilkovic, S. S.,
E. Rojas,
A. Stutzin,
S.‐I. Izumi, and
K. J. Catt.
Desensitization of pituitary gonadotropin secretion by agonist‐induced inactivation of voltage‐sensitive calcium channels.
J. Biol. Chem.
264:
10939–10942,
1989.
|
434. |
Stojilkovic, S. S.,
A. Stutzin,
S.‐I. Izumi,
S. Dufour,
A. Torsello,
M. A. Virmani,
E. Rojas, and
K. J. Catt.
Generation and amplification of the cytoplasmic calcium signal during secretory responses to gonadotropin‐releasing hormone.
New Biol.
3:
272–283,
1990.
|
435. |
Stojilkovic, S. S.,
M. Tomic,
M. Kukuljan, and
K. J. Catt.
Control of calcium spiking frequency in pituitary gonadotrophs by a single‐pool cytoplasmic oscillator.
Mol. Pharmacol.
45:
1013–1021,
1994.
|
436. |
Striessnig, J.,
B. J. Murphy, and
W. A. Catterall.
Dihydropryridine receptor of l‐type Ca2+ channels: identification of binding domains for [3H](+)‐PN200–110 and [3H]azidopine within the α1 subunit.
Proc. Natl. Acad. Sci. U.S.A.
88:
10769–10773,
1991.
|
437. |
Stull, J. T.,
M. H. Nunnally, and
C. H. Michnoff.
Calmodulin‐dependent protein kinases. In:
The Enzymes,
edited by E. G. Krebs and
P. D. Boyer.
Orlando, FL:
Academic,
1986,
p. 113–166.
|
438. |
Stutzin, A.,
S. S. Stojilkovic,
K. J. Catt, and
E. Rojas
Characteristics of two types of calcium channels in rat pituitary gonadotrophs.
Am. J. Physiol.
257
(Cell Physiol. 26):
C865–C874,
1989.
|
439. |
Surprenant, A.,
F. Rassendren,
E. Kawashima,
R. A. North, and
G. Buell
The cytosolic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7).
Science
272:
735–738,
1996.
|
440. |
Sweeney, H. L.,
B. F. Bowman, and
J. T. Stull.
Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function.
Am. J. Physiol.
264
(Cell Physiol. 33):
C1085–C1095,
1993.
|
441. |
Takasawa, S.,
K. Nata,
H. Yonekura, and
H. Okamoto
Cyclic ADP‐ribose in insulin secretion from pancreatic β cells.
Science
259:
370–373,
1993.
|
442. |
Takemura, H.,
A. R. Hughes,
O. Thastrup, and
J. W. Putney.
Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells.
J. Biol. Chem.
264:
12266–12271,
1989.
|
443. |
Takeshima, H.,
S. Nishimura,
T. Matsumoto,
H. Ishida,
K. Kangawa,
N. Manamino,
H. Matsuo,
M. Ueda,
M. Hanaoka, and
T. Hirose
Primary structure and expression from complementary DNA of sceletal muscle ryanodine receptor.
Nature
339:
439–445,
1989.
|
444. |
Takuwa, N.,
W. Zhou, and
Y. Takuwa
Calcium, calmodulin and cell cycle progression.
Cell. Signal.
7:
93–104,
1995.
|
445. |
Tallent, M.,
G. Liapakis,
A. M. O'Carroll,
S. J. Lolait,
M. Dichter, and
T. Reisine
Somatostatin receptor subtypes SSTR2 and SSTR5 couple negatively to an l‐type Ca2+ current in the pituitary cell line AtT‐20.
Neuroscience
71:
1073–1081,
1996.
|
446. |
Tanabe, T.,
H. Takeshima,
A. Mikami,
V. Flockerzi,
H. Takahashi,
K. Kangawa,
M. Kojima,
H. Matsuo,
T. Hirose, and
S. Numa
Primary structure of the receptor for calcium channel blockers from skeletal muscle.
Nature
328:
313–318,
1987.
|
447. |
Taraskevich, P. S., and
W. W. Douglas.
Catecholamines of supposed inhibitory hypophysiotrophic function suppress action potentials in prolactin cells.
Nature
276:
832–834,
1978.
|
448. |
Tasaka, K.,
S. S. Stojilkovic,
S.‐I. Izumi, and
K. J. Catt.
Biphasic activation of cytosolic free calcium and LH responses by gonadotropin‐releasing hormone.
Biochem. Biophys. Res. Commun.
154:
398–403,
1988.
|
449. |
Tatham, P.E.R., and
M. Lindau
ATP‐induced pore formation in the plasma membrane of rat peritoneal mast cells.
J. Gen. Physiol.
95:
459–476,
1990.
|
450. |
Thastrup, O.,
P. J. Cullen,
B. K. Drobak,
M. R. Hanley, and
A. P. Dawson.
Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+ ‐ATPase.
Proc. Natl. Acad. Sci. U.S.A.
87:
2466–2470,
1990.
|
451. |
Thompson, N. T.,
R. W. Bonser, and
L. G. Garland.
Receptor‐coupled phospholipase D and its inhibition.
Trends Pharmacol. Sci.
12:
404–408,
1991.
|
452. |
Thorner, M. O.,
R. W. Holl, and
D. A. Leong.
The somatotrope: an endocrine cell with functional calcium transients.
J. Exp. Biol.
139:
169–179,
1988.
|
453. |
Toescu, E. C.,
A. M. Lawrie,
O. H. Petersen, and
D. V. Gallacher.
Spatial and temporal distribution of agonist‐evoked cytoplasmic Ca2+ signals in exocrine acinar cells analyzed by digital image microscopy.
EMBO J.
11:
1623–1629,
1992.
|
454. |
Tomic, M.,
M. Cesnjaj,
K. J. Catt, and
S. S. Stojilkovic.
Developmental and physiological aspects of Ca2+ signaling in agonist‐stimulated pituitary gonadotrophs.
Endocrinology
135:
1762–1771,
1994.
|
455. |
Tomic, M.,
M. L. Dufau,
K. J. Catt, and
S. S. Stojilkovic.
Calcium signaling in single rat Leydig cells.
Endocrinology
136:
3422–3429,
1995.
|
456. |
Tomic, M.,
R. M. Jobin,
L. A. Vergara, and
S. S. Stojilkovic.
Expression of purinergic receptor channels in their role in calcium signaling and hormone release in pituitary gonadotrophs.
J. Biol. Chem.
271:
21200–21208,
1996.
|
457. |
Torres, M.,
J. Pintor, and
M. T. Miras‐Portugal.
Presence of ectonucleotidases in cultured chromaffin cells: hydrolysis of extracellular adenine nucleotides.
Arch. Biochem. Biophys.
279:
37–44,
1990.
|
458. |
Toyofuku, T.,
K. Kurzydlowski,
J. Lytton, and
D. H. MacLennan.
The nuclear binding/hinge domain plays a crucial role in determining isoform‐specific Ca2+ dependence of organellar Ca2+ ‐ATPases.
J. Biol. Chem.
267:
14490–14496,
1992.
|
459. |
Traina, G.,
S. Cannistraro, and
P. Bagnoli
Effects of somatostatin on intracellular calcium concentration in PC12 cells.
J. Neurochem.
66:
485–492,
1996.
|
460. |
Treisman, R.
The serum responsive element.
Trends Biochem. Sci.
17:
423–426,
1992.
|
461. |
Tschopl, M.,
L. Harms,
W. Norenberg, and
P. Illes
Excitatory effects of adenosine 5′‐trisphosphate on rat locus coeruleus neurones.
Eur. J. Pharmacol.
213:
71–77,
1992.
|
462. |
Tse, A., and
B. Hille
GnRH‐induced Ca2+ oscillations and rhythmic hyperpolarizations of pituitary gonadotropes.
Science
255:
462–464,
1992.
|
463. |
Tse, A., and
B. Hille
Role of voltage‐gated Na+ and Ca2+ channels in gonadotropin‐releasing hormone‐induced membrane potential changes in identified rat gonadotropes.
Endocrinology
132:
1475–1481,
1993.
|
464. |
Tse, A.,
F. W. Tse,
W. Almers, and
B. Hille
Rhythmic exocytosis stimulated by GnRH‐induced calcium oscillations in rat gonadotropes.
Science
260:
82–84,
1993.
|
465. |
Tse, A.,
F. W. Tse, and
B. Hille
Calcium homeostasis in identified rat gonadotrophs.
J. Physiol. (Lond.)
477:
511–525,
1994.
|
466. |
Tse, A.,
F. W. Tse, and
B. Hille
Modulation of Ca2+ oscillation and apamin‐sensitive, Ca2+ ‐activated K+ current in rat gonadotropes.
Pflugers Arch.
430:
645–652,
1995.
|
467. |
Tsien, R. W., and
R. Y. Tsien.
Calcium channels, stores, and oscillations.
Annu. Rev. Cell Biol.
6:
715–760,
1990.
|
468. |
Valentijn, J. A.,
E. Louiset,
H. Vaudry, and
L. Cazin
Dopamine‐induced inhibition of action potentials in cultured frog pituitary melanotrophs is mediated through activation of potassium channels and inhibition of calcium and sodium channels.
Neuroscience
42:
29–39,
1991.
|
469. |
Valentijn, J. A.,
H. Vaudry, and
L. Cazin
Multiple control of calcium channel gating by dopamine D2 receptors in frog pituitary melanotrophs.
Ann. N. Y. Acad. Sci.
680:
211–228,
1993.
|
470. |
Valera, S.,
N. Hussy,
R. J. Evans,
N. Adami,
A. Surpernant, and
G. Buell
A new class of ligand‐gated ion channel defoined by P2X receptor for extracellular ATP.
Nature
371:
516–519,
1994.
|
471. |
van Goor, F.,
J. I. Goldberg, and
J. P. Chang.
Dopamine actions on calcium current in identified goldfish (Carassius aureatus) gonadotropin cells. In:
Reproductive Physiology of Fish, edited by F. Goetz and P. Thomas.
1995,
p. 61–63.
|
472. |
Veenstra, R. D.
Size and selectivity of gap junction channels formed from different connexins.
J. Bioenerg. Biomembr.
28:
327–337,
1996.
|
473. |
Vergara, L. A.,
S. S. Stojilkovic, and
E. Rojas
GnRH induced cytosolic calcium oscillations in pituitary gonadotrophs: phase resetting by membrane depolarization.
Biophys. J.
69:
1606–1614,
1995.
|
474. |
Vergara, L.,
E. Rojas, and
S. S. Stojilkovic.
A novel calcium‐activated apamin‐insensitive potassium current in pituitary gonadotrophs.
Endocrinology
138
(in press),
1997.
|
475. |
Vogel, H. J.
Calmodulin: a versatile calcium mediator protein.
Biochem. Cell. Biol.
72:
357–376,
1994.
|
476. |
Vogel, H. J., and
M. Zhang
Protein engineering and NMR studies of calmodulin.
Mol. Cell. Biochem.
149/150:
3–15,
1995.
|
477. |
Vostal, J. C.,
W. L. Jackson, and
N. R. Shulman.
Cytosolic and stored calcium antagonistically control tyrosine phosphorylation of specific platelet proteins.
J. Biol. Chem.
266:
16911–16916,
1991.
|
478. |
Wakui, M.,
Y. V. Osipchuk, and
O. H. Petersen.
Receptor‐activated cytoplasmic Ca2+ spiking mediated by inositol trisphosphate is due to Ca2+ ‐induced Ca2+ release.
Cell
63:
1025–1032,
1990.
|
479. |
Wakui, M.,
B.V.L. Potter, and
O. H. Petersen.
Pulsatile intracellular calcium release does not depend on fluctuations in inositol trisphosphate concentration.
Nature
339:
317–320,
1989.
|
480. |
Walton, P. D.,
J. A. Airey,
J. L. Sutko,
C. F. Beck,
G. A. Mignery,
T. C. Sudhof,
T. J. Bdeerinck, and
M. H. Ellisman.
Ryanodine and inositol trisphosphate receptors coexist in avian cerebellar Purkinje neurons.
J. Cell. Biol.
113:
1145–1157,
1991.
|
481. |
Wang, J.,
K. G. Baimbridge, and
P.C.K. Leung.
Changes in cytosolic free calcium ion concentrations in individual rat granulosa cells: effect of luteinizing hormone–releasing hormone.
Endocrinology
124:
1912–1917,
1989.
|
482. |
Wang, J.,
P. Ciofi, and
W. R. Crowley.
Neuropeptide Y suppresses prolactin secretion from rat anterior pituitary cells: evidence for interactions with dopamine through inhibitory coupling to calcium entry.
Endocrinology
137:
587–594,
1996.
|
483. |
Wang, X.,
T. Inukai,
M. A. Greer, and
S. E. Greer.
Evidence that Ca2+ ‐activated K+ channels participate in the regulation of pituitary prolactin secretion.
Brain Res.
662:
83–87,
1994.
|
484. |
Watras, J.,
I. Bezprozvanny, and
B. E. Ehrlich.
Inositol 1,4,5‐trisphosphate‐gated channels in cerebellum: presence of multiple conductance states.
J. Neurosci.
11:
3239–3245,
1991.
|
485. |
Werlen, G.,
D. Belin,
B. Conne,
E. Roche,
D. P. Lew, and
M. Prentki
Intracellular Ca2+ and the regulation of early response gene expression in HL‐60 myeloid leukemia cells.
J. Biol. Chem.
268:
16596–16601,
1993.
|
486. |
Wheeler, D. B.,
A. Randall,
W. A. Sather, and
R. W. Tsien.
Neuronal calcium channels encoded by the α1A subunit and their contribution to excitatory synaptic transmission in the CNS.
Prog. Brain Res.
105:
65–78,
1995.
|
487. |
White, R. E.,
A. Schonbrunn, and
D. L. Armstrong.
Somatostatin stimulates Ca2+ activated K+ channels through protein dephosphorylation.
Nature
351:
570–573,
1991.
|
488. |
Wickman, K., and
D. E. Clapham.
Ion channel regulation by G proteins.
Physiol. Rev.
75:
865–885,
1995.
|
489. |
Wictome, M.,
I. Henderson,
A. G. Lee, and
J. M. East.
Mechanism of inhibition of the calcium pump of sarcoplasmic reticulum by thapsigargin.
Biochem. J.
283:
525–529,
1992.
|
490. |
Wiley, J. S.,
R. Chen, and
G. P. Jamieson.
The ATP4‐ receptor‐operated channel (P2Z class) of human lymphocytes allows Ba2+ and ethidium+ uptake: inhibition of fluxes by suramin.
Arch. Biochem. Biophys.
305:
54–60,
1993.
|
491. |
Williams, M. E.,
P. F. Brust,
D. H. Feldman,
S. Patthi,
S. Simerson,
A. Maroufi,
A. F. McCue,
G. Velicelebi,
S. B. Ellis, and
M. M. Harpold.
Structure and functional expression of an ω‐conotoxin‐sensitive human N‐type calcium channel.
Science
257:
389–395,
1992.
|
492. |
Williams, P. J.,
B. A. MacVicar, and
Q. J. Pittman.
A dopaminergic inhibitory postsynaptic potential mediated by an increased potassium conductance.
Neuroscience
31:
673–681,
1989.
|
493. |
Xu, Y. H.,
D. A. Wilkinson, and
G. M. Carlson.
Divalent cations but not other activators enhance phosphorylase kinase's affinity for glycogen phosphorylase.
Biochemistry
35:
5014–5021,
1996.
|
494. |
Yagi, K.,
M. Shinbo,
M. Hashizume,
L. S. Shimba,
S. Kurimura, and
Y. Miura
ATP diphosphohydrolase is responsible for ecto‐ATPase and ecto‐ADPase activites in bovine aorta endothelial and smooth muscle cells.
Biochem. Biophys. Res. Commun.
180:
1200–1206,
1991.
|
495. |
Yagodin, S. V.,
L. Holtzclaw,
C. A. Sheppard, and
J. T. Russell.
Nonlinear propagation of agonist‐induced cytoplasmic calcium waves in single astrocytes.
J. Neurobiol.
25:
265–280,
1994.
|
496. |
Yamashita, N.,
I. Kojima,
N. Shibuya, and
E. Ogata
Pertussis toxin inhibits somatostatin‐induced K+ conductance in human pituitary tumor cells.
Am. J. Physiol.
253
(Endocrinol. Metab. 16):
E28–E32,
1987.
|
497. |
Yamashita, N.,
N. Shibuya, and
E. Ogata
Hyperpolarization of the membrane potential caused by somatostatin in dissociated human pituitary adenoma cells that secrete growth hormone.
Proc. Natl. Acad. Sci. U.S.A.
83:
6198–6202,
1986.
|
498. |
Yatani, A.,
J. Codina,
R. D. Sekura,
L. Birnbaumer, and
A. M. Brown.
Reconstitution of somatostatin and muscarinic receptor mediated stimulation of K+ channels by isolated GK protein in clonal rat anterior pituitary cell membranes.
Mol. Endocrinol.
1:
283–289,
1987.
|
499. |
Yeager, M., and
B. J. Nicholson.
Structure of gap junction intercellular channels.
Cur. Opin. Struct. Biol.
6:
183–192,
1996.
|
500. |
Yoshimura, Y.,
M. Nishida, and
J. Kawada
An ecto‐ATPase of thyroidal cell membrane.
Endocrinol. Jpn.
30:
769–775,
1983.
|
501. |
Yule, D. I., and
D. V. Gallacher.
Oscillations in cytosolic calcium in single pancreatic acinar cells stimulated by acetylcholine.
FEBS Lett.
239:
358–362,
1988.
|
502. |
Zhang, F.,
J. L. Ram,
P. R. Standley, and
J. R. Sowers.
17β‐Estradiol attenuates voltage‐dependent Ca2+ currents in A7r5 vascular smooth muscle cell line.
Am. J. Physiol.
266
(Cell Physiol. 35):
C975–C980,
1994.
|
503. |
Zheng, L.,
L. Z. Krsmanovic,
L. A. Vergara,
K. J. Catt, and
S. S. Stojilkovic.
Dependence of intracellular signaling and neurosecretion on phospholipase D activation in immortalized gonadotropin‐releasing hormone neurons.
Proc. Natl. Acad. Sci. U.S.A.
94:
1573–1578,
1997.
|
504. |
Zheng, L.,
S. S. Stojilkovic,
L. Hunyady,
L. Z. Krsmanovic, and
K. J. Catt.
Sequential activation of phospholipase C and phospholipase D in agonist‐stimulated gonadotrophs.
Endocrinology
134:
1446–1454,
1994.
|
505. |
Zhou, Z., and
E. Neher
Mobile and immobile calcium buffers in bovine chromaffin cells.
J. Physiol. (Lond.)
469:
245–273,
1993.
|
506. |
Ziganshin, A. U.,
L. E. Ziganshin,
B. E. King, and
G. Burnstock
Characteristics of ecto‐ATPase of Xenopus oocytes and the inhibitory actions of suramin on ATP breakdown.
Pflugers Arch.
429:
412–418,
1995.
|
507. |
Zimmermann, H.
Signaling via ATP in the nervous system.
Trends Neurosci.
17:
420–426,
1994.
|
508. |
Zorzato, F.,
J. Fuji,
K. Otsu,
M. Philips,
N. M. Green,
F. A. Lai,
G. Meissner, and
D. H. MacLennan.
Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum.
J. Biol. Chem.
265:
2244–2256,
1990.
|
509. |
Zweifach, A., and
R. S. Lewis.
Mitogen‐regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores.
Proc. Natl. Acad. Sci. U.S.A.
90:
6295–6299,
1993.
|
510. |
Zweifach, A., and
R. S. Lewis.
Rapid inactivation of depletion‐activated calcium current (ICARC) due to local calcium feedback.
J. Gen. Physiol.
105:
209–226,
1995.
|
511. |
Zweifach, A., and
R. S. Lewis.
Slow calcium‐dependent inactivation of depletion‐activated calcium current. Store‐dependent and ‐independent mechanisms.
J. Biol. Chem.
270:
14445–14451,
1995.
|
512. |
Zweifach, A., and
R. S. Lewis.
Calcium‐dependent potentiation of store‐operated calcium channels.
J. Gen. Physiol.
107:
597–610,
1996.
|