Comprehensive Physiology Wiley Online Library

Phospholipid‐Derived Second Messengers

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Inositol Phospholipid Hydrolysis
1.1 Functional Significance
1.2 Phosphoinositide Phospholipases as Targets of Hormones and Growth Factors
2 Phosphatidylinositol 3,4,5‐Trisphosphate Synthesis
2.1 Phosphatidylinositol 3‐Kinases as Targets of Hormones and Growth Factors
2.2 Role of Phosphatidylinositol 3‐Kinase in Cell Function
3 Phosphatidylcholine Hydrolysis
3.1 Phosphatidylcholine Hydrolysis by Phospholipase D and Its Functional Significance
3.2 Phospholipase D as a Target of Hormones and Growth Factors
3.3 Agonist‐Stimulated Phosphatidylcholine Hydrolysis by Phospholipase C
3.4 Agonist‐Stimulated Phosphatidylcholine Hydrolysis by Phospholipase A2
4 Sphingomyelin Hydrolysis and Its Functional Significance
5 Summary
Figure 1. Figure 1.

Mechanisms involved in physiological responses mediated by receptors linked through G proteins to phosphoinositide phospholipase C. G Prot, G protein; P Lipase, phospholipase C; PIP2, phosphatidylinositol 4,5–P2; IP3, inositol 1,4,5–P3; DAG, 1,2–diacylglycerol; CIF, putative Ca2+ influx factor; CRAC, Ca2+‐release‐activated Ca2+ channel; ER, endoplasmic reticulum; Mito, mitochondrion; Cam, calmodulin.

Figure 2. Figure 2.

Heterotrimeric G protein families. The four families of G protein α‐subunits are displayed in terms of their amino‐acid identity.

[Reproduced from Simon et al. 468, with permission.]
Figure 3. Figure 3.

Structural features of the β, γ, and δ isotypes of phosphoinositide phospholipase C. The conserved X and Y domains are believed to be involved in catalysis. PH, pleckstrin homology domain; SH2 and SH3, Src homology domains.

Figure 4. Figure 4.

Transmembrane‐spanning model of the bovine α1A‐adrenergic receptor. The seven transmembrane helices are defined on the basis of hydropathic analysis. Black residues are those common to the hamster α1B‐adrenergic receptor. Presumed glycosylation sites are marked with crosses.

[Reproduced from Schwinn et al. 465, with permission.]
Figure 5. Figure 5.

Mechanisms involved in activation/deactivation of heterotrimeric G proteins.

Figure 6. Figure 6.

Stimulation of phosphoinositide phospholipase β3 by G protein βγ‐subunits. Experimental conditions were as described in Blank et al. 405. βγ‐subunits were prepared from bovine brain or produced by recombinant means in Sf9 cells.

[From unpublished studies by J. L. Blank, J. A. Iniguez‐Luihi, N. Ueda, A. G. Gilman, and J. H. Exton.]
Figure 7. Figure 7.

Structure of the β receptor for platelet‐derived growth factor (PDGF). The figure presents schematically the binding domain for PDGF, the tyrosine kinase domains, the numbered phosphorylatable tyrosine residues, and the proteins that associate with these. Src, Src family members; Grb2, Shc, and Nck, adapter proteins with SH2 and SH3 domains; PI3K, the regulatory subunit of phosphati‐dylinositol 3‐kinase; GAP, the GTPase‐activating protein of Ras; PTP, a protein tyrosine phosphatase variously designated PTP1D, Syp, SHPTP2, or PTP2C; PLCγ, the γ isozyme of phosphoinositide phospholipase C.

Figure 8. Figure 8.

Pathways of synthesis of 3‐phosphorylated phosphoinositides. PI 3‐kin, phosphatidylinositol 3‐kinase; PI 4‐kin, phosphatidylinositol 4‐kinase; PI 3‐P 4‐kin, phosphatidylinositol 3‐P 4‐kinase; PI 4‐P 5‐kin; phosphatidylinositol 4‐P 5‐kinase.

Figure 9. Figure 9.

Effects of protein kinase C inhibitors (bis‐indoyl‐maleimide and Ro‐31–8220) on stimulation of phospholipase D by basic fibroblast growth factor (bFGF), bombesin (Bomb), and platelet‐derived growth factor (PDGF) in Swiss 3T3 cells. Phospholipase D activity was measured by the formation of radioactive phosphatidylbutanol (PtdBut) in cells previously labeled with [3H] myristic acid.

[Reproduced from Yeo and Exton 385, with permission.]
Figure 10. Figure 10.

Stimulation of HL60 phospholipase D by recombinant ADP‐ribosylation factor (ARF) (rARF) and ARF purified from bovine brain. Phospholipase D partially purified from HL60 membranes was assayed in the presence of GTPγS and the ARF forms.

[Data replotted from Brown et al. 33, with permission.]
Figure 11. Figure 11.

Effects of Rho GDP dissociation inhibitor (GDI) and Rho family members on activation of phospholipase D (PLD) by GTPγS in rat liver plasma membranes. Membranes were treated with GDI and then washed and incubated with or without GTPγS in the absence or presence of RhoA, Rac1, Cdc42, or ARF. Phospholipase D was assayed by transphosphatidylation with ethanol.

[Reproduced from Malcolm et al. 204, with permission.]
Figure 12. Figure 12.

Effects of C3 exoenzyme of Clostridium botulinum on the stimulation of phospholipase D in Rat1 fibroblasts by lysophosphatidic acid (LPA), endothelin‐1 (ET‐1), and phorbol myristate acetate (PMA). The exoenzyme was introduced into cells by scrape‐loading 24 h prior to labeling with [3H]myristic acid and 48 h prior to assay of phospholipase D by measurement of [3H]phosphatidylbutanol (PtdBut) formation.

[Reproduced from Malcolm et al. 203, with permission.]
Figure 13. Figure 13.

Mechanisms of regulation of cytosolic phospholipase A2 (cPLA2) by growth factors and agonists linked to G proteins (GProt). Tyr Kin tyrosine kinase; SOS, nucleotide exchange factor (GDP‐dissociation stimulator) for Ras; DAG, 1,2‐diacylglycerol; ER, endoplasmic reticulum; PLC, phospholipase C; PKC, protein kinase C; PIP2, phosphatidylinositol 4,5‐P2; IP3, inositol 1,4,5‐P3.

Figure 14. Figure 14.

Pathways of formation and breakdown of ceramide.



Figure 1.

Mechanisms involved in physiological responses mediated by receptors linked through G proteins to phosphoinositide phospholipase C. G Prot, G protein; P Lipase, phospholipase C; PIP2, phosphatidylinositol 4,5–P2; IP3, inositol 1,4,5–P3; DAG, 1,2–diacylglycerol; CIF, putative Ca2+ influx factor; CRAC, Ca2+‐release‐activated Ca2+ channel; ER, endoplasmic reticulum; Mito, mitochondrion; Cam, calmodulin.



Figure 2.

Heterotrimeric G protein families. The four families of G protein α‐subunits are displayed in terms of their amino‐acid identity.

[Reproduced from Simon et al. 468, with permission.]


Figure 3.

Structural features of the β, γ, and δ isotypes of phosphoinositide phospholipase C. The conserved X and Y domains are believed to be involved in catalysis. PH, pleckstrin homology domain; SH2 and SH3, Src homology domains.



Figure 4.

Transmembrane‐spanning model of the bovine α1A‐adrenergic receptor. The seven transmembrane helices are defined on the basis of hydropathic analysis. Black residues are those common to the hamster α1B‐adrenergic receptor. Presumed glycosylation sites are marked with crosses.

[Reproduced from Schwinn et al. 465, with permission.]


Figure 5.

Mechanisms involved in activation/deactivation of heterotrimeric G proteins.



Figure 6.

Stimulation of phosphoinositide phospholipase β3 by G protein βγ‐subunits. Experimental conditions were as described in Blank et al. 405. βγ‐subunits were prepared from bovine brain or produced by recombinant means in Sf9 cells.

[From unpublished studies by J. L. Blank, J. A. Iniguez‐Luihi, N. Ueda, A. G. Gilman, and J. H. Exton.]


Figure 7.

Structure of the β receptor for platelet‐derived growth factor (PDGF). The figure presents schematically the binding domain for PDGF, the tyrosine kinase domains, the numbered phosphorylatable tyrosine residues, and the proteins that associate with these. Src, Src family members; Grb2, Shc, and Nck, adapter proteins with SH2 and SH3 domains; PI3K, the regulatory subunit of phosphati‐dylinositol 3‐kinase; GAP, the GTPase‐activating protein of Ras; PTP, a protein tyrosine phosphatase variously designated PTP1D, Syp, SHPTP2, or PTP2C; PLCγ, the γ isozyme of phosphoinositide phospholipase C.



Figure 8.

Pathways of synthesis of 3‐phosphorylated phosphoinositides. PI 3‐kin, phosphatidylinositol 3‐kinase; PI 4‐kin, phosphatidylinositol 4‐kinase; PI 3‐P 4‐kin, phosphatidylinositol 3‐P 4‐kinase; PI 4‐P 5‐kin; phosphatidylinositol 4‐P 5‐kinase.



Figure 9.

Effects of protein kinase C inhibitors (bis‐indoyl‐maleimide and Ro‐31–8220) on stimulation of phospholipase D by basic fibroblast growth factor (bFGF), bombesin (Bomb), and platelet‐derived growth factor (PDGF) in Swiss 3T3 cells. Phospholipase D activity was measured by the formation of radioactive phosphatidylbutanol (PtdBut) in cells previously labeled with [3H] myristic acid.

[Reproduced from Yeo and Exton 385, with permission.]


Figure 10.

Stimulation of HL60 phospholipase D by recombinant ADP‐ribosylation factor (ARF) (rARF) and ARF purified from bovine brain. Phospholipase D partially purified from HL60 membranes was assayed in the presence of GTPγS and the ARF forms.

[Data replotted from Brown et al. 33, with permission.]


Figure 11.

Effects of Rho GDP dissociation inhibitor (GDI) and Rho family members on activation of phospholipase D (PLD) by GTPγS in rat liver plasma membranes. Membranes were treated with GDI and then washed and incubated with or without GTPγS in the absence or presence of RhoA, Rac1, Cdc42, or ARF. Phospholipase D was assayed by transphosphatidylation with ethanol.

[Reproduced from Malcolm et al. 204, with permission.]


Figure 12.

Effects of C3 exoenzyme of Clostridium botulinum on the stimulation of phospholipase D in Rat1 fibroblasts by lysophosphatidic acid (LPA), endothelin‐1 (ET‐1), and phorbol myristate acetate (PMA). The exoenzyme was introduced into cells by scrape‐loading 24 h prior to labeling with [3H]myristic acid and 48 h prior to assay of phospholipase D by measurement of [3H]phosphatidylbutanol (PtdBut) formation.

[Reproduced from Malcolm et al. 203, with permission.]


Figure 13.

Mechanisms of regulation of cytosolic phospholipase A2 (cPLA2) by growth factors and agonists linked to G proteins (GProt). Tyr Kin tyrosine kinase; SOS, nucleotide exchange factor (GDP‐dissociation stimulator) for Ras; DAG, 1,2‐diacylglycerol; ER, endoplasmic reticulum; PLC, phospholipase C; PKC, protein kinase C; PIP2, phosphatidylinositol 4,5‐P2; IP3, inositol 1,4,5‐P3.



Figure 14.

Pathways of formation and breakdown of ceramide.

References
 1. Abram, C. S., J. Zhang, C. P. Downes, X. Tang, W. Zhao, and S. E. Rittenhouse. Phosphopleckstrin inhibits Gβγ‐activable platelet phosphatidylinositol‐4,5‐bisphosphate 3‐kinase. J. Biol. Chem. 271: 25192–25197, 1996.
 2. Ackerman, E. J., E. S. Kempner, and E. A. Dennis. Ca2+‐independent cytosolic phospholpase A2 from macrophage‐like P388D21 cells. Isolation and characterization. J. Biol. Chem. 269: 9227–9233, 1994.
 3. Ahmed, A., R. Plevin, M. H. Shoaibi, S. A. Fountain, R. A. Ferriani, and S. K. Smith. Basic FGF activates phospholipase D in endothelial cells in the absence of inositol‐lipid hydrolysis. Am. J. Physiol. 266 (Cell Physiol.) 35): C206–C212, 1994.
 4. Ahmed, S., J. Lee, R. Kozma, A. Best, C. Monfries, and L. Lim. A novel functional target for tumor‐promoting phorbol esters and lysophosphatidic acid. The p21rac‐GTPase activating protein n‐chimaerin. J. Biol. Chem. 268: 10709–10712, 1993.
 5. Akimoto, K., R. Takahashi, S. Moriya, N. Nishioka, J. Takayanagi, K. Kimura, Y. Fukui, S‐i. Osada, K. Mizuno, S‐i. Hirai, A. Kazlauskas, and S. Ohno. EGF or PDGF receptors activate atypical PKCλ through phosphatidylinositol 3‐kinase. EMBO J. 15: 788–798, 1996.
 6. Alblas, J., E. J. van Corven, P. L. Hordijk, G. Milligan, and W. H. Moolenaar. Gi‐mediated activation of the p21ras‐mitogen‐activated protein kinase pathway by α2‐adrenergic receptors expressed in fibroblasts. J. Biol. Chem. 268: 22235–22238, 1993.
 7. Alessi, D. R., S. R. James, C. P. Downes, A. B. Holmes, P.R.J. Gaffney, C. B. Reese, and P. Cohen. Characterization of a 3‐phosphoinositide‐dependent protein kinase which phosphorylates and activates protein kinase. Bα. Curr. Biol. 7: 261–269, 1997.
 8. Arcaro, A., and M. P. Wymann. Wortmannin is a potent phosphatidylinositol 3‐kinase inhibitor: the role of phosphatidylinositol 3,4,5‐trisphosphate in neutrophil responses. Biochem. J. 296: 297–301, 1993.
 9. Arkinstall, S., C. Chabert, K. Maundrell, and M. Peitsch. Mapping regions of Gαq interacting with PLCβ1 using multiple overlapping synthetic peptides. FEBS Lett. 364: 45–50, 1995.
 10. Asano, M., K. Tamiya‐Koizumi, Y. Homma, T. Takenawa, Y. Nimura, K. Kojima, and S. Yoshida. Purification and characterization of nuclear phospholipase C specific for phosphoinositides. J. Biol. Chem. 269: 12360–12366, 1994.
 11. Bagrodia, S., S. J. Taylor, C. L. Creasy, J. Chernoff, and R. A. Cerione. Identification of a mouse p21Cdc42/Rac activated kinase. J. Biol. Chem. 270: 22731–22737, 1995.
 12. Balboa, M. A., B. L. Firestein, C. Godson, K. S. Bell, and P. A. Insel. Protein kinase Cα mediates phospholipase D activation by nucleotides and phorbol ester in Madin‐Darby canine kidney cells. Stimulation of phospholipase D is independent of activation of polyphosphoinositide‐specific phospholipase C and phospholipase A2. J. Biol. Chem. 269: 10511–10516, 1994.
 13. Baldwin, J. M. Structure and function of receptors coupled to G proteins. Curr. Opin. Cell Biol. 6: 180–190, 1994.
 14. Balsinde, J., E. Diez, and F. Mollinedo. Arachidonic acid release from diacylglycerol in human neutrophils. Translocation of diacylglycerol‐deacylating enzyme activities from an intracellular pool to plasma membrane upon cell activation. J. Biol. Chem. 266: 15638–15643, 1991.
 15. Banno, Y., K. Tamiya‐Koizumi, H. Oshima, A. Morikawa, S. Yoshida, and Y. Nozawa. Nuclear ADP‐ribosylation factor (ARF)‐ and oleate‐dependent phospholipase D (PLD) in rat liver cells. Increases of ARF‐dependent PLD activity in regenerating liver cells. J. Biol. Chem. 272: 5208–5213, 1997.
 16. Barnett, R. L., L. Ruffini, L. Ramsammy, R. Pasmantier, M. M. Friedlaender, and E. P. Nord. Angiotensin‐mediated phosphatidylcholine hydrolysis and protein kinase C activation in mesangial cells. Am. J. Physiol. 265 (Cell Physiol. 34): C1100–C1108, 1993.
 17. Bauldry, S. A., D. A. Bass, S. L. Cousart, and C. E. McCall. Tumor necrosis factor α priming of phospholipase D in human neutrophils. Correlation between phosphatidic acid production and superoxide generation. J. Biol. Chem. 266: 4173–4179, 1991.
 18. Berridge, M. J. Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem. J. 212: 849–858, 1983.
 19. Berridge, M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem. J. 220: 345–360, 1984.
 20. Berridge, M. J. Inositol trisphosphate and calcium signalling. Nature 361: 315–325, 1993.
 21. Berridge, M. J. Capacitative calcium entry. Biochem. J. 312: 1–11, 1995.
 22. Berridge, M. J., and G. Dupont. Spatial and temporal signalling by calcium. Curr. Opin. Cell Biol. 6: 267–274, 1994.
 23. Bi, K., M. G. Roth, and N. T. Ktistakis. Phosphatidic acid formation by phospholipase D is required for transport from the endoplasmic reticulum to the Golgi complex. Curr. Biol. 7: 301–307, 1997.
 24. Bielawska, A., C. M. Linardic, and Y. A. Hannun. Ceramide‐mediated biology. Determination of structural and stereospecific requirements through the use of N‐acyl‐phenylaminoalcohol analogs. J. Biol. Chem. 267: 18493–18497, 1992.
 25. Billah, M. M., and J. C. Anthes. The regulation and cellular functions of phosphatidylcholine hydrolysis. Biochem. J. 269: 281–291, 1990.
 26. Billah, M. M., S. Eckel, T. J. Mullmann, R. W. Egan, and M. I. Siegel. Phosphatidylcholine hydrolysis by phospholipase D determines phosphatidate and diglyceride levels in chemotactic peptide‐stimulated human neutrophils. Involvement of phosphatidate phosphohydrolase in signal transduction. J. Biol. Chem. 264: 17069–17077, 1989.
 27. Birnbaumer, L., X. Zhu, M. Jiang, G. Boulay, M. Peyton, B. Vannier, D. Brown, D. Platano, H. Sadeghi, E. Stefani, and M. Birnbaumer. On the molecular basis and regulation of cellular capacitative calcium entry: Roles for Trp proteins. Proc. Natl. Acad. Sci. U.S.A. 93: 15195–15202, 1996.
 28. Bishop, W. R., and R. M. Bell. Attenuation of sn‐1,2‐diacylglycerol second messengers. Metabolism of exogenous diacylglycerols by human platelets. J. Biol. Chem. 261: 12513–12519, 1986.
 29. Blackshear, P. J. The MARCKS family of cellular protein kinase substrates. J. Biol. Chem. 268: 1501–1504, 1993.
 30. Blank, J. L., K. A. Brattain, and J. H. Exton. Activation of cytosolic phosphoinoisitide phospholipase C by G‐protein βγ subunits. J. Biol. Chem. 267: 23069–23075, 1992.
 31. Blumer, K. J., and G. L. Johnson. Diversity in function and regulation of MAP kinase pathways. Trends Biochem. Sci. 19: 236–240, 1994.
 32. Bocckino, S. B., and J. H. Exton. Phosphatidic acid. In: Handbook of Lipid Research, edited by R. M. Bell, S. M. Prescott, and J. H. Exton. New York: Plenum, 1996, p. 75–124.
 33. Bocckino, S. B., P. B. Wilson, and J. H. Exton. Phosphatidate‐dependent protein phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 88: 6210–6213, 1991.
 34. Bogoyevitch, M. A., P. E. Glennon, M. B. Andersson, A. Clerk, A. Lazou, C. J. Marshall, P. J. Parker, and P. H. Sugden. Endothelin‐1 and fibroblast growth factors stimulate the mitogen‐activated protein kinase signaling cascade in cardiac myocytes. The potential role of the cascade in the integration of two signaling pathways leading to myocyte hypertrophy. J. Biol. Chem. 269: 1110–1119, 1994.
 35. Bootman, M. D., and M. J. Berridge. The elemental principles of calcium signalling. Cell 83: 675–678, 1995.
 36. Bourgoin, S., and S. Grinstein. Peroxides of vanadate induce activation of phospholipase D in HL‐60 cells. Role of tyrosine phosphorylation. J. Biol. Chem. 267: 11908–11916, 1992.
 37. Bourgoin, S., D. Harbour, Y. Desmarais, Y. Takai, and A. Beaulier. Low molecular weight GTP‐binding proteins in HL‐60 granulocytes. Assessment of the role of ARF and of a 50‐kDa cytosolic protein in phospholipase D activation. J. Biol. Chem. 270: 3172–3178, 1995.
 38. Bourne, H. R. How receptors talk to trimeric G proteins. Curr. Opin. Cell Biol. 9: 134–142, 1997.
 39. Bowman, E. P., D. J. Uhlinger, and J. D. Lambeth. Neutrophil phospholipase D is activated by a membrane‐associated Rho family small molecular weight GTP‐binding protein. J. Biol. Chem. 268: 21509–21512, 1993.
 40. Briscoe, C. P., A. Martin, M. Cross, and M.J.O. Wakelam. The roles of multiple pathways in regulating bombesin‐stimulated phospholipase D activity in Swiss 3T3 fibroblasts. Biochem. J. 306: 115–122, 1995.
 41. Brown, H. A., S. Gutowski, R. A. Kahn, and P. C. Sternweis. Partial purification and characterization of Arf‐sensitive phospholipase D from porcine brain. J. Biol. Chem. 270: 14935–14943, 1995.
 42. Brown, H. A., S. Gutowski, C. R. Moomaw, C. Slaughter, and P. C. Sternweis. ADP‐ribosylation factor, a small GTP‐dependent regulatory protein, stimulates phospholipase D activity. Cell 75: 1137–1144, 1993.
 43. Buchner, K. Protein kinase C in the transduction of signals toward and within the cell nucleus. Eur. J. Biochem. 228: 211–221, 1995.
 44. Bünemann, M., K. Liliom, B. K. Brandts, L. Pott, J‐L. Tseng, D. M. Desiderio, G. Sun, D. Miller, and G. Tigyi. A novel membrane receptor with high affinity for lysosphingomyelin and sphingosine 1‐phosphate in atrial myocytes. EMBO J. 15: 5527–5534, 1996.
 45. Burgering, B.M.T., and P. J. Coffer. Protein kinase B (c‐Akt) in phosphatidylinositol‐3‐OH kinase signal transduction. Nature 376: 599–602, 1995.
 46. Cai, H., P. Erhardt, J. Szeberenyi, M. T. Diaz‐Meco, T. Johansen, J. Moscat, and G. M. Cooper. Hydrolysis of phosphatidylcholine is stimulated by Ras proteins during mitogenic signal transduction. Mol. Cell. Biol. 12: 5329–5335, 1992.
 47. Carpenter, C. L., K. R. Auger, M. Chanudhur, M. Yoakim, B. Schaffhausen, S. Shoelson, and L. C. Cantley. Phosphoinositide 3‐kinase is activated by phosphopeptides that bind to the SH2 domains of the 85‐kDa subunit. J. Biol. Chem. 268: 9478–9483, 1993.
 48. Chabot, M. C., L. C. McPhail, R. L. Wykle, D. A. Kennerly, and C. E. McCall. Comparison of diglyceride production from choline‐containing phosphoglycerides in human neutrophils stimulated with N‐formylmethionyl‐leucylphenylalanine, ionophore A23187 or phorbol 12‐myristate 13‐acetate. Biochem. J. 286: 693–699, 1992.
 49. Cheatham, B., C. J. Vlahos, L. Cheatham, L. Wang, J. Blenis, and C. R. Kahn. Phosphatidylinositol 3‐kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol. Cell. Biol. 14: 4902–4911, 1994.
 50. Chen, C.‐S., A. G. Rosenwald, and R. E. Pagano. Ceramide as a modulator of endocytosis. J. Biol. Chem. 270: 13291–13297, 1995.
 51. Chen, H.‐C., and J.‐L. Guan. Association of focal adhesion kinase with its potential substrate phosphatidylinositol 3‐kinase. Proc. Natl. Acad. Sci. U.S.A. 91: 10148–10152, 1994.
 52. Chen, H.‐C., and J.‐L. Guan. Stimulation of phosphatidylinositol 3′‐kinase association with focal adhesion kinase by platelet‐derived growth factor. J. Biol. Chem. 269: 31229–31233, 1994.
 53. Chen, Y‐G., A. Siddhanta, C. D. Austin, S. M. Hammond, T‐C. Sung, M. A. Frohman, A. J. Morris, and D. Shields. Phospholipase D stimulates release of nascent secretory vesicles from the trans‐Golgi network. J. Cell Biol. 138: 495–504, 1997.
 54. Chow, S. C., and G. Powis. Mechanisms of platelet‐derived growth factor–induced arachidonic acid release in Swiss 3T3 fibroblasts: the role of a localized increase in free Ca2+ concentration beneath the plasma membrane and the activation of protein kinase C. Biochim. Biophys. Acta 1179: 81–88, 1993.
 55. Chuang, T.‐H., B. B. Bohl, and G. M. Bokoch. Biologically active lipids are regulators of Rac GDO complexation. J. Biol. Chem. 268: 26206–26211, 1993.
 56. Chung, J., T. C. Grammer, K. P. Lemon, A. Kazlauskas, and J. Blenis. PDGF‐and insulin‐dependent pp70S6K activation mediated by phosphatidylinositol‐3–OH kinase. Nature 370: 71–75, 1994.
 57. Chung, J., C. J. Kuo, G. R. Crabtree, and J. Blenis. Rapamycin‐FKBP specifically blocks growth‐dependent activation of and signalling by the 70 kDa S6 protein kinase. Cell 79: 1229–1236, 1992.
 58. Chung, J‐K., F. Sekiya, H‐S. Kang, C. Lee, J‐S. Han, S. R. Kim, Y. S. Bae, A. J. Morris, and S. G. Rhee. Synaptojanin inhibition of phospholipase D activity by hydrolysis of phosphatidylinositol 4,5‐bisphosphate. J. Biol. Chem. 272: 15980–15985, 1997.
 59. Claesson‐Welsh, L. Platelet‐derived growth factor receptor signals. J. Biol. Chem. 269: 32023–32026, 1994.
 60. Clapham, D. E. Calcium signalling. Cell 80: 259–268, 1995.
 61. Clapham, D. E., and E. J. Neer. New roles for G‐protein βγ‐dimers in transmembrane signalling. Nature 365: 403–406, 1993.
 62. Clark, E. A., and J. S. Brugge. Integrins and signal transduction pathways: the road taken. Science 268: 233–239, 1995.
 63. Clark, J. D., L.‐L. Lin, R. W. Kriz, C. S. Ramesha, L. A. Sultzman, A. Y. Lin, N. Milona, and J. L. Knopf. A novel arachidonic acid–selective cytosolic PLA2 contains a Ca2+‐dependent translocation domain with homology to PKC and GAP. Cell 65: 1043–1051, 1991.
 64. Clark, J. D., N. Milona, and J. L. Knopf. Purification of a 110‐kilodalton cytosolic phospholipase A2 from the human monocytic cell line U937. Proc. Natl. Acad. Sci. U.S.A. 87: 7708–7712, 1990.
 65. Clark, J. D., A. R. Schievella, E. A. Nalefski, and L.‐L. Lin. Cytosolic phospholipase A2. J. Lipid Mediat. Cell Signal. 12: 83–117, 1995.
 66. Clarke, J. F., P. W. Young, K. Yonezawa, M. Kasuga, and G. D. Holman. Inhibition of the translocation of GLUT1 and GLUT4 in 3T3–L1 cells by the phosphatidylinositol 3‐kinase inhibitor, wortmannin. Biochem. J. 300: 631–635, 1994.
 67. Cobb, M. H., and E. J. Goldsmith. How MAP kinases are regulated. J. Biol. Chem. 270: 14843–14846, 1995.
 68. Cockcroft, S. G‐protein‐regulated phospholipases C, D and A2‐mediated signalling in neutrophils. Biochim. Biophys. Acta 1113: 135–160, 1992.
 69. Cockcroft, S., G.M.H. Thomas, A. Fensome, B. Geny, E. Cunningham, I. Gout, I. Hiles, N. F. Totty, O. Truong, and J. J. Hsuan. Phospholipase D: a downstream effector of ARF in granulocytes. Science 263: 523–526, 1994.
 70. Colley, W. C., T.‐C. Sung, R. Roll, J. Jenco, S. M. Hammond, Y. Altshuller, D. Bar‐Sagi, A. J. Morris, and M. A. Frohman. Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr. Biol. 7: 191–201, 1997.
 71. Conklin, B. R., and H. R. Bourne. Structural elements of Gα subunits that interact with Gβγ, receptors, and effectors. Cell 73: 631–641, 1993.
 72. Conricode, K. M., K. A. Brewer, and J. H. Exton. Activation of phospholipase D by protein kinase C. Evidence for a phosphorylation‐independent mechanism. J. Biol. Chem. 267: 7199–7202, 1992.
 73. Conricode, K. M., J. L. Smith, D. J. Burns, and J. H. Exton. Phospholipase D activation in fibroblast membranes by the α and β isoforms of protein kinase C. FEBS Lett. 342: 149–153, 1994.
 74. Cook, S. J., and M.J.O. Wakelam. Analysis of the water‐soluble products of phosphatidylcholine breakdown by ion‐exchange chromatography. Bombesin and TPA (12–O‐‐tetradecanoylphorbol 13‐acetate) stimulate choline generation in Swiss 3T3 cells by a common mechanism. Biochem. J. 263: 581–587, 1989.
 75. Crespo, P., N. Xu, W. F. Simonds, and J. S. Gutkind. Ras‐dependent activation of MAP kinase pathway mediated by G‐protein βγ subunits. Nature 369: 418–420, 1994.
 76. Cross, D.A.E., D. R. Alessi, P. Cohen, M. Andjelkovich, and B. A. Hemmings. Inhibition of glycogen synthase kinase‐3 by insulin mediated by protein kinase B. Nature 378: 785–789, 1995.
 77. Cross, D.A.E., P. W. Watt, M. Shaw, J. van der Kaay, C. P. Downes, J. C. Holder, and P. Cohen. Insulin activates protein kinase B, inhibits glycogen synthase kinase‐3 and activates glycogen synthase by rapamycin‐insensitive pathways in skeletal muscle and adipose tissue. FEBS Lett. 406: 211–215, 1997.
 78. Cuadrado, A., A. Carnero, F. Dolfi, B. Jimenez, and J. C. Lacal. Phosphorylcholine: a novel second messenger essential for mitogenic activity of growth factors. Oncogene 8: 2959–2968, 1993.
 79. Daniel, L. W., G. W. Small, and J. D. Schmitt. Alkyl‐linked diglycerides inhibit protein kinase C activation by diacylglycerols. Biochem. Biophys. Res. Commun. 151: 291–297, 1988.
 80. Datta, K., A. Bellacosa, T. O. Chan, and P. N. Tsichlis. Akt is a direct target of the phosphatidylinositol 3‐kinase. Activation by growth factors, v‐src and v‐Ha‐ras, in Sf9 and mammalian cells. J. Biol. Chem. 271: 30835–30839, 1996.
 81. Day, C. P., and S. J. Yeaman. Physical evidence for the presence of two forms of phosphatidate phosphohydrolase in rat liver. Biochim. Biophys. Acta 1127: 87–94, 1992.
 82. Dbaibo, G. S., L. M. Obeid, and Y. A. Hannun. Tumor necrosis factor‐α (TNF‐α) signal transduction through ceramide. Dissociation of growth inhibitory effects of TNF‐α from activation of nuclear factor‐k. J. Biol. Chem. 268: 17762–17766, 1993.
 83. Dbaibo, G. S., M. Y. Pushkareva, S. Jayadev, J. K. Schwarz, J. M. Horowitz, L. M. Obeid, and Y. A. Hannun. Retinoblastoma gene product as a downstream target for a ceramide‐dependent pathway of growth arrest. Proc. Natl. Acad. Sci. U.S.A. 92: 1347–1351, 1995.
 84. de Herreros, A. G., I. Dominguez, M. T. Diaz‐Meco, G. Graziani, M. E. Cornet, P. H. Guddal, T. Johansen, and J. Moscat. Requirement of phospholipase C‐catalyzed hydrolysis of phosphatidylcholine for maturation of Xenopus laevis oocytes in response to insulin and ras p21. J. Biol. Chem. 266: 6825–6829, 1991.
 85. DeMali, K. A., C. C. Whiteford, E. T. Ulug, and A. Kazlauskas. Platelet‐derived growth factor‐dependent cellular transformation requires either phospholipase Cγ or phosphatidylinositol 3 kinase. J. Biol. Chem. 272: 9011–9018, 1997.
 86. Dennis, E. A. Diversity of group types, regulation, and function of phospholipase A2. J. Biol. Chem. 269: 13057–13060, 1994.
 87. Dennis, E. A., S. G. Rhee, M. M. Billah, and Y. A. Hannun. Role of phospholipases in generating lipid second messengers in signal transduction. FASEB J. 5: 2068–2077, 1991.
 88. Desai, N., H. Zhang, A. Olivera, M. E. Mattie, and S. Spiegel. Sphingosine‐1–phosphate, a metabolite of sphingosine, increases phosphatidic acid levels by phospholipase D activation. J. Biol. Chem. 267: 23122–23128, 1992.
 89. Dewald, B., M. Thelen, and M. Baggiolini. Two transduction sequences are necessary for neutrophil activation by receptor agonists. J. Biol. Chem. 263: 16179–16184, 1988.
 90. Dhand, R., I. Hiles, G. Panayotou, S. Roche, M. J. Fry, I. Gout, N. F. Totty, O. Truong, P. Vicendo, K. Yonezasa, M. Kasuga, S. A. Courtneidge, and M. D. Waterfield. PI 3‐kinase is a dual specificity enzyme: autoregulation by an intrinsic protein‐serine kinase activity. EMBO J. 13: 522–533, 1994.
 91. Diaz‐Meco, M. T., I. Dominguez, L. Sanz, M. M. Municio, E. Berra, M. E. Cornet, A. G. de Herreros, T. Johansen, and J. Moscat. Phospholipase C‐mediated hydrolysis of phosphatidylcholine is a target of transforming growth factor β1 inhibitory signals. Mol. Cell. Biol. 12: 302–308, 1992.
 92. Didichenko, S. A., B. Tilton, B. A. Hemmings, K. Ballmer‐Hofer, and M. Thelen. Constitutive activation of protein kinase B and phosphorylation of p47phox by a membrane‐targeted phosphoinositide 3‐kinase. Curr. Biol. 6: 1271–1278, 1996.
 93. Ding, J., C. J. Vlahos, R. Liu, R. F. Brown, and J. A. Badwey. Antagonists of phosphtidylinositol 3‐kinase block activation of several novel protein kinases in neutrophils. J. Biol. Chem. 270: 11684–11691, 1995.
 94. Dinh, T. T., and D. A. Kennerly. Assessment of receptor‐dependent activation of phosphatidylcholine hydrolysis by both phospholipase D and phospholipase C. Cell Regul. 2: 229–309, 1991.
 95. Dobrowsky, R. T., and Y. A. Hannun. Ceramide stimulates a cytosolic protein phosphatase. J. Biol. Chem. 267: 5048–5051, 1992.
 96. Dobrowsky, R. T., G. M. Jenkins, and Y. A. Hannun. Neurotrophins induce sphingomyelin hydrolysis. Modulation by co‐expression of p75NTR with Trk receptors. J. Biol. Chem. 270: 22135–22142, 1995.
 97. Dobrowsky, R. T., C. Kamibayashi, M. C. Mumby, and Y. A. Hannun. Ceramide activates heterotrimeric protein phosphatase 2A. J. Biol. Chem. 268: 15523–15530, 1993.
 98. Dohlman, H. G., and J. Thorner. RGS proteins and signaling by heterotrimeric G proteins. J. Biol. Chem. 272: 3871–3874, 1997.
 99. Dominguez, K., M. S. Marshall, J. B. Gibbs, A. G. de Herreros, M. E. Cornet, G. Graziani, M. T. Diaz‐Meco, T. Johansen, F. McCormick, and J. Moscat. Role of GTPase activating protein in mitogenic signalling through phosphatidylcholine‐hydrolysing phospholipase C. EMBO J. 10: 3215–3220, 1991.
 100. Dressler, K. A., S. Mathias, and R. N. Kolesnick. Tumor necrosis factor‐α activates the sphingomyelin signal transduction pathway in a cell‐free system. Science 255: 1715–1718, 1992.
 101. Dubyak, G. R., S. J. Schomisch, D. J. Kusner, and M. Xie. Phospholipase D activity in phagocytic leucocytes is synergistically regulated by G‐protein‐ and tyrosine kinase‐based mechanisms. Biochem. J. 292: 121–128, 1993.
 102. Dudek, H., S. R. Datta, T. F. Franke, M. J. Birnbaum, R. Yao, G. M. Cooper, R. A. Segal, D. R. Kaplan, and M. E. Greenberg. Regulation of neuronal survival by the serine‐threonine protein kinase Akt. Science 275: 661–665, 1997.
 103. Durstin, M., S. Durstin, T.F.P. Molski, E. L. Becker, and R. I. Sha'afi. Cytoplasmic phospholipase A2 translocates to membrane fraction in human neutrophils activated by stimuli that phosphorylate mitogen‐activated protein kinase. Proc. Natl. Acad. Sci. U.S.A. 91: 3142–3146, 1994.
 104. Eldar, H., P. Ben‐Av, U.‐S. Schmidt, E. Livneh, and M. Liscovitch. Up‐regulation of phospholipase D activity induced by over‐expression of protein kinase C‐α. Studies in intact Swiss/3T3 cells and in detergent‐solubilized membranes in vitro. J. Biol. Chem. 268: 12560–12564, 1993.
 105. Exton, J. H. Signalling through phosphatidylcholine breakdown. J. Biol. Chem. 265: 1–4, 1990.
 106. Exton, J. H. Phosphatidylcholine breakdown and signal transduction. Biochim. Biophys. Acta 1212: 26–42, 1994.
 107. Exton, J. H. Regulation of phosphoinositide phospholipases by hormones, neurotransmitters and other agonists linked to G‐proteins. Annu. Rev. Pharmacol. Toxicol. 36: 481–509, 1996.
 108. Fallman, M., M. Gullberg, C. Hellberg, and T. Andersson. Complement receptor‐mediated phagocytosis is associated with accumulation of phosphatidylcholine‐derived diglyceride in human neutrophils. Involvement of phospholipase D and direct evidence for a positive feedback signal of protein kinase C. J. Biol. Chem. 267: 2656–2663, 1992.
 109. Fantl, W. J., J. A. Escobedo, G. A. Martin, C. W. Turck, M. del Rasario, F. McCormick, and L. T. Williams. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways. Cell 69: 413–423, 1992.
 110. Faure, M., T. A. Voyno‐Yasenetskaya, and H. R. Bourne. cAMP and βγ subunits of heterotrimeric G proteins stimulate the mitogen‐activated protein kinase pathway in COS‐7 cells. J. Biol. Chem. 269: 7851–7854, 1994.
 111. Feig, L. A. Guanine‐nucleotide exchange factors: a family of positive regulators of Ras and related GTPases. Curr. Opin. Cell Biol. 6: 204–211, 1994.
 112. Ferguson, J. E., and M. R. Hanley. Phosphatidic acid and lysophosphatidic acid stimulate receptor‐regulated membrane currents in the Xenopus laevis oocyte. Arch. Biochem. Biophys. 297: 388–392, 1992.
 113. Fernandez, B., M. A. Balboa, J. A. Solis‐Herruzo, and J. Balsinde. Phosphatidate‐induced arachidonic acid mobilization in mouse peritoneal macrophages. J. Biol. Chem. 269: 26711–26716, 1994.
 114. Ferris, C. D., and S. H. Snyder. Inositol 1,4,5‐trisphosphate‐activated calcium channels. Annu. Rev. Physiol. 54: 469–488, 1992.
 115. Fleming, I. N., C. M. Elliott, and J. H. Exton. Differential translocation of Rho family GTPases by lysophosphatidic acid, endothelin‐1, and platelet‐derived growth factor. J. Biol. Chem. 271: 33067–33073, 1996.
 116. Franke, T. F., D. R. Kalan, and L. C. Cantley. P13K: Downstream AKTion blocks apoptosis. Cell 88: 435–437, 1997.
 117. Franke, T. F., D. R. Kaplan, L. C. Cantley, and A. Toker. Direct regulation of the Akt proto‐oncogene product by phosphatidylinositol‐3,4‐bisphosphate. Science 275: 665–668, 1997.
 118. Franke, T. F., S‐I. Yang, T. O. Chan, K. Datta, A. Kazlauskas, D. K. Morrison, D. R. Kaplan, and P. N. Tsichlis. The protein kinase encoded by the Akt proto‐oncogene is a target of the PDGF‐activated phosphatidylinositol 3‐kinase. Cell 81: 727–736, 1995.
 119. Frech, M., M. Andjelkovic, E. Ingley, K. K. Reddy, J. R. Falck, and B. A. Hemmings. High affinity binding of inositol phosphates and phosphoinositides to the pleckstrin homology domain of RAC/protein kinase B and their influence on kinase activity. J. Biol. Chem. 272: 8474–8481, 1997.
 120. Freeman, E. J., G. M. Chisolm, and E. A. Tallant. Role of calcium and protein kinase C in the activation of phospholipase D by angiotensin II in vascular smooth muscle cells. Arch. Biochem. Biophys. 319: 84–92, 1995.
 121. Fry, M. J. Structure, regulation and function of phosphoinositide 3‐kinases. Biochim. Biophys. Acta 1226: 237–268, 1994.
 122. Fu, T., Y. Okano, and Y. Nozawa. Differential pathways (phospholipase C and phospholipase D) of bradykinin‐induced biphasic 1,2‐diacylglycerol formation in non‐transformed and K‐ras‐transformed NIH‐3T3 fibroblasts. Involvement of intracellular Ca2+ oscillations in phosphatidylcholine breakdown. Biochem. J. 283: 347–354, 1992.
 123. Ghosh, S., J. C. Strum, V. A. Sciorra, L. Daniel, and R. M. Bell. Raf‐1 kinase possesses distinct binding domains for PS and PA: phosphatidic acid regulates the translocation of Raf‐1 in TPA stimulated MDCK cells. J. Biol. Chem. 271: 8472–8480, 1996.
 124. Ghosh, T. K., J. Bian, and D. L. Gill. Intracellular calcium release mediated by sphingosine derivatives generated in cells. Science 248: 1653–1656, 1990.
 125. Godson, C., B. A. Weiss, and P. A. Insel. Differential activation of protein kinase C α is associated with arachidonate release in Madin‐Darby canine kidney cells. J. Biol. Chem. 265: 8369–8372, 1990.
 126. Goldberg, H. J., M. M. Viegas, B. L. Margolis, J. Schlessinger, and K. L. Skorecki. The tyrosine kinase activity of the epidermal‐growth‐factor receptor is necessary for phospholipase A2 activation. Biochem. J. 267: 461–465, 1990.
 127. Gomez‐Munoz, A., A. Martin, L. O'Brien, and D. N. Brindley. Cell‐permeable ceramides inhibit the stimulation of DNA synthesis and phospholipase D activity by phosphatidate and lysophosphatidate in rat fibroblasts. J. Biol. Chem. 269: 8937–8943, 1994.
 128. Goodemote, K. A., M. E. Mattie, A. Berger, and S. Spiegel. Involvement of a pertussis toxin–sensitive G protein in the mitogenic signaling pathways of sphingosine 1‐phosphate. J. Biol. Chem. 270: 10272–10277, 1995.
 129. Gould, G. W., T. J. Jess, G. C. Andrews, J. J. Herbst, R. J. Plevin, and E. M. Gibbs. Evidence for a role of phosphatidylinositol 3‐kinase in the regulation of glucose transport in Xenopus oocytes. J. Biol. Chem. 269: 26622–26625, 1994.
 130. Gronich, J. H., J. V. Bonventre, and R. A. Nemenoff. Purification of a high‐molecular‐mass form of phospholipase A2 from rat kidney activated at physiological calcium concentrations. Biochem. J. 271: 37–43, 1990.
 131. Guinebault, C., B. Payrastre, G. Mauco, M. Breton Rapid and transient translocation of PLC‐γ1 to the cytoskeleton of thrombin‐stimulated platelets. Evidence for a role of tyrosine kinases. Cell. Mol. Biol. (Noisyle‐grand) 40: 687–693, 1994.
 132. Guo, Z., K. Liliom, D. J. Fischer, I. C. Bathurst, L. D. Tomei, M. C. Kiefer, and G. Tigyi. Molecular cloning of a high‐affinity receptor for the growth factor‐like lipid mediator lysophosphatidic acid from Xenopus oocytes. Proc. Natl. Acad. Sci. U.S.A. 93: 14367–14372, 1996.
 133. Gutkind, J. S., and L. Vitale‐Cross. The pathway linking small GTP‐binding proteins of the Rho family to cytoskeletal components and novel signaling kinase cascades. Cell Dev. Biol. 7: 683–690, 1996.
 134. Gusovsky, F., J. E. Lueders, E. C. Kohn, and C. C. Felder. Muscarinic receptor‐mediated tyrosine phosphorylation of phospholipase C‐γ. Analternative mechanism for cholinergic‐induced phosphoinositide breakdown. J. Biol. Chem. 268: 7768–7772, 1993.
 135. Gustavsson, L., G. Moehren, M. E. Torres‐Marquez, C. Benistant, R. Rubin, and J. B. Hoek. The role of cytosolic Ca2 +, protein kinase C, and protein kinase A in hormonal stimulation of phospholipase D in rat hepatocytes. J. Biol. Chem. 269: 849–859, 1994.
 136. Ha, K.‐S., and J. H. Exton. Activation of actin polymerization by phosphatidic acid derived from phosphatidylcholine in IIC9 fibroblasts. J. Cell Biol. 123: 1789–1796, 1993.
 137. Ha, K.‐S., E.‐J. Yeo, and J. H. Exton. Lysophosphatidic acid activation of phosphatidylcholine‐hydrolysing phospholipase D and actin polymerization by a pertussis toxin–sensitive mechanism. Biochem. J. 303: 55–59, 1994.
 138. Halstead, J., K. Kemp, and R. A. Ignotz. Evidence for involvement of phosphatidylcholine‐phospholipase C and protein kinase C in transforming growth factor‐β signaling. J. Biol. Chem. 270: 13600–13603, 1995.
 139. Hammond, S. M., Y. M. Altshuller, T‐C. Sung, S. A. Rudge, K. Rose, J. Engebrecht, A. J. Morris, and M. A. Frohman. Human ADP‐ribosylation factor‐activated phosphatidylcholine‐specific phospholipase D defines a new and highly conserved gene family. J. Biol. Chem. 270: 29640–29643, 1995.
 140. Hammond, S. M., J. M. Jenco, S. Nakashima, K. Cadwallader, Q‐m. Gu, S. Cook, Y. Nozawa, G. D. Prestwich, M. A. Frohman, and A. J. Morris. Characterization of two alternately spliced forms of phospholipase D1. Activation of the purified enzymes by phosphatidylinositol 4,5‐bisphospate, ADP‐ribosylation factor, and Rho family monomeric GTP‐binding proteins and protein kinase C‐α. J. Biol. Chem. 272: 3860–3868, 1997.
 141. Han, J‐S., J‐K. Chung, H‐S. Kang, J. Donaldson, Y. S. Bae, and S. G. Rhee. Multiple forms of phospholipase D inhibitor from rat brain cytosol. Purification and characterization of heat‐labile form. J. Biol. Chem. 271: 11163–11169, 1996.
 142. Hannun, Y. A. The sphingomyelin cycle and the second messenger function of ceramide. J. Biol. Chem. 269: 3125–3128, 1994.
 143. Hannun, Y. A. Functions of ceramide in coordinating cellular responses to stress. Science 274: 1855–1859, 1996.
 144. Hannun, Y. A., C. R. Loomis, A. H. Merill, Jr., and R.M. Bell. Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J. Biol. Chem. 261: 12604–12609, 1986.
 145. Hao, W., Z. Tan, K. Prasad, K. K. Reddy, J. Chen, G. D. Prestwich, J. R. Falck, S. B. Shears, and E. M. Lafer. Regulation of AP‐3 function by inositides. Identification of phosphatidyl‐inositol 3,4,5‐trisphosphate as a potent ligand. J. Biol. Chem. 272: 6393–6398, 1997.
 146. Hara, K., K. Yonezawa, H. Sakaue, A. Ando, K. Kotani, T. Kitamura, Y. Kitamura, H. Ueda, L. Stephens, T. R. Jackson, P. T. Hawkins, R. Dhand, A. E. Clark, G. D. Holman Waterfield, and M. Kasuga. 1‐Phosphatidylinositol 3‐kinase activity is required for insulin‐stimulated glucose transport but not for RAS activation in CHO cells. Proc. Natl. Acad. Sci. U.S.A. 91: 7415–7419, 1994.
 147. Hasegawa‐Sasaki, H., F. Lutz, and T. Sasaki. Pathway of phospholipase C activation initiated with platelet‐derived growth factor is different from that initiated with vasopressin and bombesin. J. Biol. Chem. 263: 12970–12976, 1988.
 148. Haslam, R. J., J. A. Lynham, and J.E.B. Fox. Effects of collagen, ionophore A23187 and prostaglandin E1 on the phosphorylation of specific proteins in blood platelets. Biochem. J. 178: 397–406, 1979.
 149. Hawkins, P. T., A. Eguinoa, R.‐G. Qiu, D. Stokoe, F. T. Cooke, R. Walters, S. Wennstrom, L. Claesson‐Welsh, T. Evans, M. Symons, and L. Stephens. PDGF stimulates an increase in GTP‐Rac via activation of phosphoinositide 3‐kinase. Curr. Biol. 5: 393–403, 1995.
 150. Hecht, J. H., J. A. Weiner, S. R. Post, and J. Chun. Ventricular Zone Gene‐1 (VZG‐1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J. Cell Biol. 135: 1071–1083, 1996.
 151. Heldin, C.‐H. Dimerization of cell surface receptors in signal transduction. Cell 80: 213–223, 1995.
 152. Hemmings, B. A. Akt signaling: Linking membrane events to life and death decisions. Science 275: 628–630, 1997.
 153. Hepler, J. R., D. M. Berman, A. G. Gilman, and T. Kozasa. RGS4 and GAIP are GTPase‐activating proteins for Gqα. and block activation of phospholipase Cβ by γ‐thio‐GTP‐Gqα. Proc. Natl. Acad. Sci. U.S.A. 94: 428–432, 1997.
 154. Herrera‐Velit, P., K. L. Knutson, and N. E. Reiner. Phosphatidylinositol 3‐kinase‐dependent activation of protein kinase C‐ in bacterial lipopolysaccharide‐treated human monocytes. J. Biol. Chem. 272: 16445–16452, 1997.
 155. Hess, J. A., A. H. Ross, R‐G. Qiu, M. Symons, and J. H. Exton. Role of Rho family proteins in phospholipase D activation by growth factors. J. Biol. Chem. 272: 1615–1620, 1997.
 156. Hokin, L. E., and M. R. Hokin. Effects of acetylcholine on the turnover of phosphoryl units in individual phospholipids of pancreas slices and brain cortex slices. Biochim. Biophys. Acta 18: 102–110, 1955.
 157. Hokin, M. R., and L. E. Hokin. Enzyme secretion and the incorporation of P32 into phospholipids of pancreas slices. J. Biol. Chem. 203: 967–977, 1953.
 158. Hordijk, P. L., I. Verlaan, E. J. van Corven, and W. H. Moolenar. Protein tyrosine phosphorylation induced by lysophosphatidic acid in rat‐1 fibroblasts. Evidence that phosphorylation of MAP kinase is mediated by the Gi‐p21ras pathway. J. Biol. Chem. 269: 645–651, 1994.
 159. Houle, M. G., R. A. Kahn, P. H. Naccache, and S. Bouirgoin. ADP‐ribosylation factor translocation correlates with potentiation of GTPγS‐stimulated phospholipase D activity in membrane fractions of HL‐60 cells. J. Biol. Chem. 270: 22795–22800, 1995.
 160. Howe, L. R., and C. J. Marshall. Lysophosphatidic acid stimulates mitogen‐activated protein kinase activation via a G‐protein‐coupled pathway requiring p21ras and p74raf‐1. J. Biol. Chem. 268: 20717–20720, 1993.
 161. Hu, P., and J. Schlessinger. Direct association of p110β phosphatidylinosiol 3‐kinase with p85 is mediated by an N‐terminal fragment of p110β. Mol. Cell. Biol. 14: 2577–2583, 1994.
 162. Hu, Q., A. Klippel, A. J. Muslin, W. J. Fantl, and L. T. Williams. Ras‐dependent induction of cellular responses by constitutively active phosphatidylinositol‐3 kinase. Science 268: 100–102, 1995.
 163. Huang, C., and M. C. Cabot. Phorbol diesters stimulate the accumulation of phosphatidate, phosphatidylethanol, and diacylglycerol in three cell types. Evidence for the indirect formation of phosphatidylcholine‐derived diacylglycerol by a phospholipase D pathway and direct formation of diacylglycerol by a phospholipase C pathway. J. Biol. Chem. 265: 14858–14863, 1990.
 164. Huang, J., M. Mohammadi, G. A. Rodrigues, and J. Schlessinger. Reduced activation of RAF‐1 and MAP kinase by a fibroblast growth factor receptor mutant deficient in stimulation of phosphatidylinositol hydrolysis. J. Biol. Chem. 270: 5065–5072, 1995.
 165. Huang, R., G. L. Kucera, and S. E. Rittenhouse. Elevated cytosolic Ca2+ activates phospholipase D in human platelets. J. Biol. Chem. 266: 1652–1655, 1991.
 166. Hunt, T. W., R. C. Carroll, and E. G. Peralta. Heterotrimeric G proteins containing Gαi3 regulate multiple effector enzymes in the same cell. Activation of phospholipase C and A2 and inhibition of adenylyl cyclase. J. Biol. Chem. 269: 29565–29570, 1994.
 167. Huwiler, A., J. Brunner, R. Hummel, M. Vervoordeldonk, S. Stabel, H. van den Bosch, and J. Pfeilschifter. Ceramide‐binding and activation defines protein kinase c‐Raf as a ceramide‐activated protein kinase. Proc. Natl. Acad. Sci. U.S.A. 93: 6959–6963, 1996.
 168. Imaoka, T., J. A. Lynham, and R. J. Haslam. Purification and characterization of the 47,000‐dalton protein phosphorylated during degranulation of human platelets. J. Biol. Chem. 258: 11404–11414, 1983.
 169. Isakoff, S. J., C. Taha, E. Rose, J. Marcusohn, A. Klip, and E. Y. Skolnik. The inability of phosphatidylinositol 3‐kinase activation to stimulate GLUT4 translocation indicates additional signaling pathways are required for insulin‐stimulated glucose uptake. Proc. Natl. Acad. Sci. U.S.A. 92: 10247–10251, 1995.
 170. Ito, Y., S. Nakashima, H. Kanoh, Y. Nozawa Implication of Ca2+‐dependent protein tyrosine phosphorylation in carbachol‐induced phospholipase D activation in rat pheochromocytoma PC12 cells. J. Neurochem. 68: 419–425, 1997.
 171. Ito, Y., S. Nakashima, and Y. Nozawa. Hydrogen peroxide‐induced phospholipase D activation in rat pheochromocytoma PC12 cells: Possible involvement of Ca2+‐dependent protein tyrosine kinase. J. Neurochem. 69: 729–736, 1997.
 172. Jackowski, S., and C. O. Rock. Stimulation of phosphtidylinositol 4,5‐bisphosphate phospholipase C activity by phosphatidic acid. Arch. Bichem. Biophys. 268: 516–524, 1989.
 173. Jalink, K., T. Hengeveld, S. Mulder, F. R. Postma, M.‐F. Simon, H. Chap, G. A. van der Marel, J. H. van Boom, W. J. van Blitterswijk, and W. H. Moolenaar. Lysophosphatidic acid‐induced Ca2+ mobilization in human A431 cells: structure–activity analysis. Biochem. J. 307: 609–616, 1995.
 174. Jalink, K., P. L. Hordijk, and W. H. Moolenaar. Growth factorlike effects of lysophosphatidic acid, a novel lipid mediator. Biochim. Biophys. Acta 1198: 185–196, 1994.
 175. Jalink, K., E. J. van Corven, and W.H. Moolenaar. Lysophosphatidic acid, but not phosphatidic acid, is a potent Ca2 + ‐mobilizing stimulus for fibroblasts. Evidence for an extracellular site of action. J. Biol. Chem. 265: 12232–12239, 1990.
 176. Jamal, Z., A. Martin, A. Gomez‐Munoz, and D. N. Brindley. Plasma membrane fractions from rat liver contain a phosphatidate phosphohydrolase distinct from that in the endoplasmic reticulum and cytosol. J. Biol. Chem. 266: 2988–2996, 1991.
 177. Jamil, H., A. K. Uital, and D. E. Vance. Evidence that cyclic AMP‐induced inhibition of phosphatidylcholine biosynthesis is caused by a decrease in cellular diacylglycerol levels in cultured rat hepatocytes. J. Biol. Chem. 267: 1752–1760, 1992.
 178. Jarpe, M. B., K. L. Leach, and D. M. Raben. α‐Thrombin‐induced nuclear sn‐1,2‐diacylglycerols are derived from phosphatidylcholine hydrolysis in cultured fibroblasts. Biochemistry 33: 526–534, 1994.
 179. Jayadev, S., B. Liu, A. E. Bielawska, J. Y. Lee, F. Nazaire, M. Y. Pushkareva, L. M. Obeid, and Y. A. Hannun. Role for ceramide in cell cycle arrest. J. Biol. Chem. 270: 2047–2052, 1995.
 180. Jimenez, B., L. del Peso, S. Montaner, P. Esteve, and J. C. Lacal. Generation of phosphorylcholine as an essential event in the activation of Raf‐1 and MAP‐kinases in growth factor‐induced mitogenic stimulation. J. Cell. Biochem. 57: 141–149, 1995.
 181. Johansen, T., G. Bjorkoy, A. Overvatn, M. T. Diaz‐Meco, T. Traavik, and J. Moscat. NIH 3T3 cells stably transfected with the gene encoding phosphatidylcholine‐hydrolyzing phospholipase C from Bacillus cereus acquire a transformed phenotype. Mol. Cell. Biol. 14: 646–654, 1994.
 182. Johnson, R. M., and J. C. Garrison. Epidermal growth factor and angiotensin II stimulate formation of inositol 1,4,5‐ and inositol 1,3,4‐trisphosphate in hepatocytes. Differential inhibition by pertussis toxin and phorbol 12‐myristate 13–acetate. J. Biol. Chem. 262: 17285–17293, 1987.
 183. Joly, M., A. Kazlauskas, and S. Corvera. Phosphatidylinositol 3‐kinase activity is required at a postendocytic step in platelet‐derived growth factor receptor trafficking. J. Biol. Chem. 270: 13225–13230, 1995.
 184. Joly, M., A. Kazlauskas, F. S. Fay, and S. Corvera. Disruption of PDGF receptor trafficking by mutation of its PI‐3 kinase binding sites. Science 263: 684–687, 1994.
 185. Jones, G. A., and G. Carpenter. The regulation of phospholipase C‐γ1 by phosphatidic acid. Assessment of kinetic parameters. J. Biol. Chem. 268: 20845–20850, 1993.
 186. Jones, M. J., and A. W. Murray. Evidence that ceramide selectively inhibits protein kinase C‐α translocation and modulates bradykinin activation of phospholipase D. J. Biol. Chem. 270: 5007–5013, 1995.
 187. Kahn, R. A., J. K. Yucei, and V. Malhotra. ARF signaling: a potential role for phospholipase D in membrane traffic. Cell 75: 1045–1048, 1993.
 188. Kalmar, G. B., R. J. Kay, A. Lachance, R. Aebersold, and R. B. Cornell. Cloning and expression of rat liver CTP:phosphocholine cytidylyltransferase: an amphipathic protein that controls phosphatidylcholine synthesis. Proc. Natl. Acad. Sci. U.S.A. 87: 6029–6033, 1990.
 189. Kamohara, S., H. Hayashi, M. Todaka, F. Kanai, K. Ishii, T. Imanaka, J. A. Escobedo, L. T. Williams, and Y. Ebina. Platelet‐derived growth factor triggers translocation of the insulin‐regulatable glucose transporter (type 4) predominantly through phosphatidylinositol 3‐kinase binding sites on the receptor. Proc. Natl. Acad. Sci. U.S.A. 92: 1077–1081, 1995.
 190. Kapeller, R., R. Chakrabarti, L. Cantley, F. Fay, and S. Corvera. Internalization of activated platelet‐derived growth factor receptor‐phosphatidylinositol‐3′ kinase complexes: potential interactions with the microtubule cytoskeleton. Mol. Cell. Biol. 13: 6052–6063, 1993.
 191. Kaplan, D. R., D. C. Pallas, W. Morgan, B. Schaffhausen, and T. M. Roberts. Mechanisms of transformation by polyoma virus middle T antigen. Biochim. Biophys. Acta 948: 345–364, 1988.
 192. Kast, R., G. Furstenberger, and F. Marks. Activation of cytosolic phospholipase A2 by transforming growth factor‐α in HEL‐30 keratinocytes. J. Biol. Chem. 268: 16795–16802, 1993.
 193. Kauffman‐Zeh, A., P. Rodriguez‐Viciana, E. Ulrich, C. Gilbert, P. Coffer, J. Downward, and G. Evan. Suppression of a c‐Myc‐induced apoptosis by Ras signaling through PIK and PKB. Nature 385: 544–548, 1997.
 194. Kazlauskas, A., and J. A. Cooper Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins. Cell 58: 1121–1133, 1989.
 195. Kazlauskas, A., A. Kashishian, J. A. Cooper, and M. Valius. GTPase‐activating protein and phosphatidylinositol 3‐kinase bind to distinct regions of the platelet‐derived growth factor receptor β subunit. Mol. Cell. Biol. 12: 2534–2544, 1992.
 196. Khan, W. A., G. C. Blobe, A. L. Richards, and Y. A. Hannun. Identification, partial purification, and characterization of a novel phospholipid‐dependent and fatty acid–activated protein kinase from human platelets. J. Biol. Chem. 269: 9729–9735, 1994.
 197. Kim, H. K., J. W. Kim, A. Zilberstein, B. Margolis, J. G. Kim, J. Schlessinger, and S. G. Rhee. PDGF stimulation of inositol phospholipid hydrolysis requires PLC‐γ1 phosphorylation on tyrosine residues 783 and 1254. Cell 65: 435–441, 1991.
 198. Kim, H. H., S. L. Sierke, and J. G. Koland. Epidermal growth factor–dependent association of phosphatidylinositol 3‐kinase with the erbB3 gene product. J. Biol. Chem. 269: 24747–24755, 1994.
 199. Kim, J. H., Y. J. Suh, T. G. Lee, Y. Kim, S. S. Bae, M. J. Kim, J. D. Lambeth, P‐G. Suh, and S. H. Ryu. Inhibition of phospholipase D by a protein factor from bovine brain cytosol. Partial purification and characterization of the inhibition mechanism. J. Biol. Chem. 271: 25213–25219, 1996.
 200. Kim, J. W., S. S. Sim, U.‐H. Kim, S. Nishibe, M. I. Wahl, G. Carpenter, and S. G. Rhee. Tyrosine residues in bovine phospholipase C‐γ phosphorylated by the epidermal growth factor receptor in vitro. J. Biol. Chem. 265: 3940–3943, 1990.
 201. Kim, M.‐Y., C. Linardic, L. Obeid, and Y. Hannun. Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor α and γ‐interferon. Specific role in cell differentiation. J. Biol. Chem. 266: 484–489, 1991.
 202. Kimura, K., M. Ito, M. Amano, K. Chihara, Y. Fukata, M. Nakafuku, B. Yamamori, J. Feng, T. Nakano, K. Okawa, A. Iwamatsu, and K. Kaibuchi. Regulation of myosin phosphatase by Rho and Rho‐associated kinase (Rho‐kinase). Science 273: 245–248, 1996.
 203. Kiss, Z., and W. B. Anderson. ATP stimulates the hydrolysis of phosphatidylethanolamine in NIH 3T3 cells. Potentiating effects of guanosine triphosphates and sphingosine. J. Biol. Chem. 265: 7345–7350, 1990.
 204. Klarlund, J. K., A. Guilherme, J. J. Holik, J. V. Virbasius, A. Chawla, and M. P. Czech. Signaling by phosphoinositide‐3,4,5‐trisphosphate through proteins containing pleckstrin and Sec7 homology domains. Science 275: 1927–1930, 1997.
 205. Klippel, A., J. A. Escobedo, M. Hirano, and L. T. Williams. The interaction of small domains between the subunits of phosphatidylinositol 3‐kinase determines enzyme activity. Mol. Cell. Biol. 14: 2675–2685, 1994.
 206. Klippel A., W. M. Kavanaugh, D. Pot, and L. T. Williams. A specific product of phosphatidylinositol 3‐kinase directly activates the protein kinase Akt through its pleckstrin homology domain. Mol. Cell. Biol. 17: 338–344, 1997.
 207. Klippel, A., C. Reinhard, W. M. Kavanaugh, G. Apell, M‐A. Escobedo, and L. T. Williams. Membrane localization of phosphatidylinositol 3‐kinase is sufficient to activate multiple signal‐transducing kinase pathways. Mol. Cell. Biol. 16: 4117–4127, 1996.
 208. Knaus, U. G., S. Morris, H.‐J. Dong, J. Chernoff, and G. M. Bokoch. Regulation of human leukocyte p21–activated kinases through G protein‐coupled receptors. Science 269: 221–223, 1995.
 209. Koch, W. J., B. E. Hawes, L. F. Allen, and R. J. Lefkowitz. Direct evidence that Gi‐coupled receptor stimulation of mitogen‐activated protein kinase is mediated by Gβγ activation of p21ras. Proc. Natl. Acad. Sci. U.S.A. 91: 12706–12710, 1994.
 210. Koch, W. J., B. E. Hawes, J. Inglese, L. M. Luttrell, and R. J. Lefkowitz. Cellular expression of the carboxyl terminus of a G protein‐coupled receptor kinase attenuates Gβγ‐mediated signaling. J. Biol. Chem. 269: 6193–6197, 1994.
 211. Kodaki, T., and S. Yamashita. Cloning, expression, and characterization of a novel phospholipase D complementary DNA from rat brain. J. Biol. Chem. 272: 11408–11413, 1997.
 212. Kohn, A. D., K. S. Kovacina, and R. A. Roth. Insulin stimulates the kinase activity of RAC‐PK, a pleckstrin homology domain containing ser/thr kinase. EMBO J. 14: 4288–4295, 1995.
 213. Kohn, A. D., Summers, S. A., M. J. Birnbaum, and R. A. Roth. Expression of a constitutively active Akt Ser/Thr kinase in 3T3‐L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J. Biol. Chem. 271: 31372–31378, 1996.
 214. Kolanus, W., W. Nagel, B. Schiller, L. Zeitlmann, S. Godar, H. Stockinger, and B. Seed. αLβ2 integrin/LFA‐1 binding to ICAM‐1 induced by cytohesin‐1, a cytoplasmic regulatory molecule. Cell 86: 233–242, 1996.
 215. Kolesnick, R., and D. W. Golde. The sphingomyelin pathway in tumor necrosis factor and interleukin‐1 signaling. Cell 77: 325–328, 1994.
 216. Kondo, T., H. Inui, F. Konishi, and T. Inagami. Phospholipase D mimics platelet‐derived growth factor as a competence factor in vascular smooth muscle cells. J. Biol. Chem. 267: 23609–23616, 1992.
 217. Kotani, K., K. Hara, K. Kotani, K. Yonezawa, and M. Kasuga. Phosphoinositide 3‐kinase as an upstream regulator of the small GTP‐binding protein Rac in the insulin signaling of membrane ruffling. Biochem. Biophys. Res. Commun. 208: 985–990, 1995.
 218. Kotani, K., K. Yonezawa, K. Hara, H. Ueda, Y. Kitamura, H. Sakaue, A. Ando, A. Chavanieu, B. Calas, F. Grigorescu, M. Nishiyama, M. D. Waterfield, and M. Kasuga. Involvement of phosphoinositide 3‐kinase in insulin‐ or IGF‐1–induced membrane ruffling. EMBO J. 13: 2313–2321, 1994.
 219. Kramer, R. M., E. F. Roberts, J. Manetta, and J. E. Putnam. The Ca2+‐sensitive cytosolic phospholipase A2 is a 100 kDa protein in human monoblast U937 cells. J. Biol. Chem. 266: 5268–5272, 1991.
 220. Kramer, R. M., E. F. Roberts, S. L. Um, A. G. Borsch‐Haubold, S. P. Watson, M. J. Fisher, and J. A. Jakubowski. p38 mitogen‐activated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin‐stimulated platelets. Evidence that proline‐directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2. J. Biol. Chem. 271: 27723–27729, 1996.
 221. Ktistakis, N. T., H. A. Brown, P. C. Sternweis, and M. G. Roth. Phospholipase D is present on Golgi‐enriched membranes and its activation by ADP ribosylation factor is sensitive to brefeldin A. Proc. Natl. Acad. Sci. U.S.A. 92: 4952–4956, 1995.
 222. Ktistakis, N. T., H. A. Brown, M. G. Waters, P. C. Sternweis, and M. G. Roth. Evidence that phospholipase D mediates ADP ribosylation factor‐dependent formation of Golgi coated vesicles. J. Cell Biol. 134: 295–306, 1996.
 223. Kuang, Y., Y. Wu, A. Smrcka, H. Jiang, and D. Wu. Identification of a phyospholipase C β2 region that interacts with Gβγ. Proc. Natl. Acad. Sci. U.S.A. 93: 2964–2968, 1996.
 224. Kumagai, N., N. Morri, K. Fujisawa, Y. Nemoto, and S. Narumiya. ADP‐ribosylation of rho p21 inhibits lysophosphatidic acid–induced protein tyrosine phosphorylation and phosphatidylinositol 3‐kinase activation in cultured Swiss 3T3 cells. J. Biol. Chem. 268: 24535–24538, 1993.
 225. Kumagai, N., N. Morii, K. Fujisawa, T. Yoshimasa, K. Nakao, and S. Narumiya. Lysophosphatidic acid induces tyrosine phosphorylation and activation of MAP‐kinase and focal adhesion kinase in cultured Swiss 3T3 cells. FEBS Lett. 329: 273–276, 1993.
 226. Kumagai, N., N. Morii, T. Ishizaki, N. Watanabe, K. Fukisawa, Y. Saito, and S. Narumiya. Lysophosphatidic acid–induced activation of protein Ser/Thr kinases in cultured rat 3Y1 fibroblasts. Possible involvement in rho p21–mediated signalling. FEBS Lett. 366: 11–16, 1995.
 227. Kuribara, H., K. Tago, T. Yokozeki, T. Sasaki, Y. Takai, N. Morii, S. Narumiya, T. Katada, and Y. Kanaho. Synergistic activation of rat brain phospholipase D by ADP‐ribosylation factor and rhoA p21, and its inhibition by Clostridium botulinum C3 exoenzyme. J. Biol. Chem. 270: 25667–25671, 1995.
 228. Kusner, D. J., S. J. Schomisch, and G. R. Dubyak. ATP‐induced potentiation of G‐protein‐dependent phospholipase D activity in a cell‐free system from U937 promonocytic leukocytes. J. Biol. Chem. 268: 19973–19982, 1993.
 229. Lam, K., C. L. Carpenter, N. B. Ruderman, J. C. Friel, and K. L. Kelly. The phosphatidylinositol 3‐kinase serine kinase phosphorylates IRS‐1. Stimulation by insulin and inhibition by wortmannin. J. Biol. Chem. 269: 20648–20652, 1994.
 230. Lambeth, J. D., J.‐Y. Kwak, E. P. Bowman, D. Perry, D. J. Uhlinger, and I. Lopez. ADP‐ribosylation factor functions synergistically with a 50‐kDa cytosolic factor in cell‐free activation of human neutrophil phospholipase D. J. Biol. Chem. 270: 2431–2434, 1995.
 231. Lambright, D. G., J. P. Noel, H. E. Hamm, and P. B. Sigler. Structural determinants for activation of the α‐subunit of a heterotrimeric G protein. Nature 369: 621–628, 1994.
 232. Larrodera, P., M. E. Cornet, M. T. Diaz‐Meco, M. Lopez‐Barahona, I. Diaz‐Laviada, P. H. Guddal, T. Johansen, and J. Moscat. Phospholipase C–mediated hydrolysis of phosphatidylcholine is an important step in PDGF‐stimulated DNA synthesis. Cell 61: 1113–1120, 1990.
 233. Lavie, Y., and M. Liscovitch. Activation of phospholipase D by sphingoid bases in NG108–15 neural‐derived cells. J. Biol. Chem. 265: 3868–3872, 1990.
 234. Lavie, Y., O. Piterman, and M. Liscovitch. Inhibition of phosphatidic acid phosphohydrolase activity by sphingosine. Dual action of sphingosine in diacylglycerol signal termination. FEBS Lett. 277: 7–10, 1990.
 235. Leach, K. L., V. A. Ruff, M. B. Jarpe, L. D. Adams, D. Fabbro, and D. M. Raben. α‐Thrombin stimulates nuclear diglyceride levels and differential localization of protein kinase C isozymes in IIC9 cells. J. Biol. Chem. 267: 21816–21822, 1992.
 236. Lee, C., H‐S. Kang, J‐K. Chung, F. Sekiya, J‐R. Kim, J‐S. Han, S. R. Kim, Y. S. Bae, A. J. Morris, and S. G. Rhee. Inhibition of phospholipase D by clathrin assembly protein 3 (AP3). J. Biol. Chem. 272: 15986–15992, 1997.
 237. Lee, C.‐W., D. J. Park, K.‐H. Lee, C. G. Kim, and S. G. Rhee. Purification, molecular cloning, and sequencing of phospholipase C‐β4. J. Biol. Chem. 268: 21318–21327, 1993.
 238. Lee, H. C. Cyclic ADP‐ribose: a new member of a super family of signalling cyclic nucleotides. Cell. Signal. 6: 591–600, 1994.
 239. Lee, M.‐H., and R. M. Bell. Supplementation of the phosphatidyl‐l‐serine requirement of protein kinase C with nonactivating phospholipids. Biochemistry 31: 5176–5182, 1992.
 240. Lee, S. B., and S. G. Rhee. Significance of PIP2 hydrolysis and regulation of phospholipase C isozymes. Curr. Opin. Cell Biol. 7: 183–189, 1995.
 241. Lee, T. G., J. B. Park, S. D. Lee, S. Hong, J. H. Kim, Y. Kim, K. S. Yi, S. Bae, Y. A. Hannun, L. M. Obeid, P‐G. Suh, and S. H. Ryu. Phorbol myristate acetate‐dependent association of protein kinase Cα with phospholipase D1 in intact cells. Biochim. Biophys. Acta 1347: 199–204, 1997.
 242. Lee, Y. H., H. S. Kim, J.‐K. Pai, S. H. Ryu, and P.‐G. Suh. Activation of phospholipase D induced by platelet‐derived growth factor is dependent upon the level of phospholipase C‐γ1. J. Biol. Chem. 269: 26842–26847, 1994.
 243. Leslie, C. C. Properties and regulation of cytosolic phospholipase A2. J. Biol. Chem. 272: 16709–16712, 1997.
 244. Leung, T., E. Manser, L. Tan, and L. Lim. A novel serine/threonine kinase binding the ras‐related RhoA GTPase which translocates the kinase to peripheral membranes. J. Biol. Chem. 270: 29051–29054, 1995.
 245. Lim, L., E. Manser, T. Leung, and C. Hall. Regulation of phosphorylation pathways by p21 GTPases. Eur. J. Biochem. 242: 171–185, 1996.
 246. Lim, L., C. Hall, and C. Monfries. Regulation of actin cyto‐skeleton by Rho‐family GTPases and their associated proteins. Cell Dev. Biol. 7: 699–706, 1996.
 247. Limatola, C., D. Schaap, W. H. Moolenaar, and W. J. van Blitterswijk Phosphatidic acid activation of protein kinase C‐ overexpressed in COS cells: comparison with other protein kinase C isotypes and other acidic lipids. Biochem. J. 394: 1001–1008, 1994.
 248. Lin, L.‐L., A. Y. Lin, and J. L. Knopf. Cytosolic phospholipase A2 is coupled to hormonally regulated release of arachidonic acid. Proc. Natl. Acad. Sci. U.S.A. 89: 6147–6151, 1992.
 249. Lin, L.‐L., M. Wartmann, A. Y. Lin, J. L. Knopf, A. Seth, and R. J. Davis. cPLA2 is phosphorylated and activated by MAP kinase. Cell 72: 269–278, 1993.
 250. Linardic, C. M., S. Jayadev, and Y. A. Hannun. Brefeldin A promotes hydrolysis of sphingomyelin. J. Biol. Chem. 267: 14909–14911, 1992.
 251. Liscovitch, M., V. Chalifa, P. Pertile, C.‐S. Chen, and L. C. Cantley. Novel function of phosphatidylinositol 4,5‐bisphosphate as a cofactor for brain membrane phospholipase D. J. Biol. Chem. 269: 21403–21406, 1994.
 252. Lopez, I., D. J. Burns, and J. D. Lambeth. Regulation of phospholipase D by protein kinase C in human neutrophils. Conventional isoforms of protein kinase C phosphorylate a phospholipase D‐related component in the plasma membrane. J. Biol. Chem. 270: 19465–19472, 1995.
 253. Lopez‐Barahona, M., P. L. Kaplan, M. E. Cornet, M. T. Diaz‐Meco, P. Larrodera, I. Diaz‐Laviada, A. M. Municio, and J. Moscat. Kinetic evidence of a rapid activation of phosphatidylcholine hydrolysis by Ki‐ras oncogene. Possible involvement in late steps of the mitogenic cascade. J. Biol. Chem. 265: 9022–9026, 1990.
 254. Lukowski, S., M‐C. Lecomte, J‐P. Mira, P. Marin, H. Gautero, F. Russo‐Marie, and B. Geny. Inhibition of phospholipase D activity by fodrin. An active role for the cytoskeleton. J. Biol. Chem. 271: 24164–24171, 1996.
 255. Ma, Y.‐H., H. P. Reusch, E. Wilson, J. A. Escobedo, W. J. Fantzl, L. T. Williams, and H. E. Ives. Activation of Na+/H+ exchange by platelet‐derived growth factor involves phosphatidylinositol 3′–kinase and phospholipase Cγ. J. Biol. Chem. 269: 30734–30739, 1994.
 256. McGlade, J., B. Brunkhorst, D. Anderson, G. Mbamalu, J. Settleman, S. Dedhar, M. Rozakis‐Adcock, L. B. Chen, and T. Pawson. The N‐terminal region of GAP regulates cytoskeletal structure and cell adhesion. EMBO J. 12: 3073–3081, 1993.
 257. Machleidt, T., K. Wiegmann, T. Henkel, S. Schutze, P. Baeuerle, and M. Kronke. Sphingomyelinase activates proteolytic IB‐α degradation in a cell‐free system. J. Biol. Chem. 269: 13760–13765, 1994.
 258. McKenzie, F. R., K. Seuwen, and J. Pouyssegur. Stimulation of phosphatidylcholine breakdown by thrombin and carbachol but not by tyrosine kinase receptor ligands in cells transfected with M1 muscarinic receptors. Rapid desensitization of phosphocholine‐specific (PC) phospholipase D but sustained activity of PC‐phospholipase C. J. Biol. Chem. 267: 22759–22769, 1992.
 259. McPhail, L. C., D. Qualliotine‐Mann, and K. A. Waite. Cell‐free activation of neutrophil NADPH oxidase by a phosphatidic acid–regulated protein kinase. Proc. Natl. Acad. Sci. USA 92: 7931–7935, 1995.
 260. McPherson, P. S., and K. P. Campbell. The ryanodine receptor/Ca2+ release channel. J. Biol. Chem. 268: 13765–13768, 1993.
 261. Malarkey, K., C. M. Belham, A. Paul, A. Graham, A. McLess, P. H. Scott, and R. Plevin. The regulation of tyrosine kinase signalling pathways by growth factor and G‐protein‐coupled receptors. Biochem. J. 309: 361–375, 1995.
 262. Malcolm, K. C., C. M. Elliott, and J. H. Exton. Evidence for RhoA‐mediated agonist stimulation of phospholipase D in rat 1 fibroblasts. Effects of Clostridium botulinum C3 exoenzyme. J. Biol. Chem. 271: 13135–13139, 1996.
 263. Malcolm, K. C., A. H. Ross, R.‐G. Qie, M. Symons, and J. H. Exton. Activation of rat liver phosphoplipase D by the small GTP‐binding protein RhoA. J. Biol. Chem. 269: 25951–25954, 1994.
 264. Manser, E., T. Leung, H. Salihuddin, L. Tan, and L. Lim. A non‐receptor tyrosine kinase that inhibits the GTPase activity of p21cdc42. Nature 363: 364–367, 1993.
 265. Manser, E., T. Leung, H. Salihuddin, Z.‐s. Zhao, and L. Lim. A brain serine‐threonine protein kinase activated by Cdc42 and Rac1. Nature 367: 40–46, 1994.
 266. Margolis, B. L., B. J. Holub, D. A. Troyer, and K. L. Skorecki. Epidermal growth factor stimulates phospholipase A2 in vasopressin‐treated rat glomerular mesangial cells. Biochem. J. 256: 469–474, 1988.
 267. Maroney, A. C., and I. G. Macara. Phorbol ester‐induced translocation of diacylglycerol kinase from cytosol to the membrane in Swiss 3T3 fibroblasts. J. Biol. Chem. 264: 2537–2544, 1989.
 268. Marrero, M. B., W. G. Paxton, J. L. Duff, B. C. Berk, and K. E. Bernstein. Angiotensin II stimulates tyrosine phosphorylation of phospholipase C‐γ1 in vascular smooth muscle cells. J. Biol. Chem. 269: 10935–10939, 1994.
 269. Marrero, M. B., B. Schieffer, W. G. Paxton, E. Schieffer, and K. E. Bernstein. Electroporation of pp60c‐src antibodies inhibits the angiotensin II activation of phospholipase C‐γ1 in rat aortic smooth muscle cells. J. Biol. Chem. 270: 15734–15738, 1995.
 270. Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal‐regulated kinase activation. Cell 80: 179–185, 1995.
 271. Martin, G. A., G. Bollag, F. McCormick, and A. Abo. A novel serine kinase activated by rac1/CDC42Hs‐dependent autophosphorylation is related to PAK65 and STE20. EMBO J. 14: 1970–1978, 1995.
 272. Martin, S. S., T. Haruta, A. J. Morris, A. Klippel, L. T. Williams, and J. M. Olefsky. Activated phosphatidylinositol 3‐kinase is sufficient to mediate actin rearrangement and GLUT4 translocation in 3T3‐L1 adipocytes. J. Biol. Chem. 271: 17605–17608, 1996.
 273. Martinson, E. A., D. Goldstein, and J. H. Brown. Muscarinic receptor activation of phosphatidylcholine hydrolysis. Relationship to phosphoinositide hydrolysis and diacylglycerol metabolism. J. Biol. Chem. 264: 14748–14754, 1989.
 274. Martinson, E. A., S. Scheible, and P. Presek. Inhibition of phospholipase D of human platelets by protein tyrosine kinase inhibitors. Cell. Mol. Biol. (Noisy‐le‐grand) 40: 627–634, 1994.
 275. Martys, J. L., C. Wjasow, D. M. Gangi, M. C. Kielian, T. E. McGraw, and J. M. Backer. Wortmannin‐sensitive trafficking pathways in Chinese hamster ovary cells. Differential effects on endocytosis and lysosomal sorting. J. Biol. Chem. 271: 10953–10962, 1996.
 276. Massenburg, D., J.‐S. Han, M. Liyanage, W. A. Patton, S. G. Rhee, J. Moss, and M. Vaughan. Activation of rat brain phospholipase D by ADP‐ribosylation factors 1,5, and 6: separation of ADP‐ribosylation factor–dependent and oleate‐dependent enzymes. Proc. Natl. Acad. Sci. U.S.A. 91: 11718–11722, 1994.
 277. Mathias, S., K. A. Dressler, and R. N. Lolesnick. Characterization of a ceramide‐activated protein kinase: stimulation by tumor necrosis factor α. Proc. Natl. Acad. Sci. U.S.A. 88: 10009–10013, 1991.
 278. Mathias, S., A. Younes, C.‐C. Kan, I. Orlow, C. Joseph, and R. N. Kolesnick. Activation of the sphingomyelin‐signaling pathway in intact EL4 cells and in a cell‐free system by IL‐1β. Science 259: 519–522, 1993.
 279. Mattie, M., G. Brooker, and S. Spiegel. Sphingosine‐1–phosphate, a putative second messenger, mobilizes calcium from internal stores via an inositol trisphosphate‐independent pathway. J. Biol. Chem. 269: 3181–3188, 1994.
 280. Matuoka, L., F. Shibasaki, M. Shibata, and T. Takenawa. Ash/Grb‐2, a SH2/SH3–containing protein, couples to signaling for mitogenesis and cytoskeletal reorganization by EGF and PDGF. EMBO J. 12: 3467–3473, 1993.
 281. Meldrum, E., P. J. Parker, and A. Carozzi. The PtdIns‐PLC superfamily and signal transduction. Biochim. Biophys. Acta 1092: 49–71, 1991.
 282. Merrill, Jr., A. H., A. M. Sereni, V. L. Stevens, Y. A. Hannun, R. M. Bell, and J. M. Kinkade, Jr. Inhibition of phorbol ester‐dependent differentiation of human promyelocytic leukemic (HL‐60) cells by sphinganine and other long‐chain bases. J. Biol. Chem. 261: 12610–12615, 1986.
 283. Mikoshiba, K. Inositol 1,4,5‐trisphosphate receptor. Trends Pharmacol. Sci. 14: 86–89, 1993.
 284. Mitchell, R. H. Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta 415: 81–147, 1975.
 285. Mitchell, R. H., and M. J. O. Wakelam. Sphingolipid signalling. Cur. Biol. 4: 370–373, 1994.
 286. Mohammadi, M., C. A. Dionne, W. Li, N. Li, T. Spivak, A. M. Honegger, M. Jaye, and J. Schlessinger. Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis. Nature 358: 681–684, 1992.
 287. Moolenaar, W. H. Lysophosphatidic acid, a multifunctional phospholipid messenger. J. Biol. Chem. 270: 12949–12952, 1995.
 288. Moolenaar, W. H. Lysophosphatidic acid signaling. Curr. Opin. Cell Biol. 7: 203–210, 1995.
 289. Moolenaar, W. H., O. Kranenburg, F. R. Postma, and G.C.M. Zondag. Lysophosphatidic acid: G‐protein signalling and cellular responses. Curr. Opin. Cell. Biol. 9: 168–173, 1997.
 290. Moritz, A., P. N. E. DeGraan, W. H. Gispen, and K.W.A. Wirtz. Phosphatidic acid is a specific activator of phosphatidylinositol‐4–phosphate kinase. J. Biol. Chem. 267: 7207–7210, 1992.
 291. Moss, J., and M. Vaughan. Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport processes. J. Biol. Chem. 270: 12327–12330, 1995.
 292. Mullman, T. J., M. I. Siegel, R. W. Egan, and M. M. Billah. Sphingosine inhibits phosphatidate phosphohydrolase in human neutrophils by a protein kinase C–independent mechanism. J. Biol. Chem. 266: 2013–2016, 1991.
 293. Musial, A., A. Mandal, E. Coroneos, and M. Kester. Interleukin‐1 and endothelin stimulate distinct species of diglycerides that differentially regulate protein kinase C in mesangial cells. J. Biol. Chem. 270: 21632–21638, 1995.
 294. Nakanishi, H., K. A. Brewer, and J. H. Exton. Activation of the isozyme of protein kinase C by phosphatidylinositol 3,4,5‐trisphosphate. J. Biol. Chem. 268: 13–16, 1993.
 295. Nakanishi, H., and J. H. Exton. Purification and characterization of the isoform of protein kinase C from bovine kidney. J. Biol. Chem. 267: 16347–16354, 1992.
 296. Nakanishi, O., F. Shibasaki, M. Hidaka, Y. Monna, and T. Takenawa. Phospholipase C‐γ1 associates with viral and cellular src kinases. J. Biol. Chem. 268: 10754–10759, 1993.
 297. Nalefski, E. A., L. A. Sultzman, D. M. Martin, R. W. Kriz, P. S. Towler, J. L. Knopf, and J. D. Clark. Delineation of two functionally distinct domains of cytosolic phospholipase A2, a regulatory Ca2+ ‐dependent lipid‐binding domain and a Ca2+ ‐independent catalytic domain. J. Biol. Chem. 269: 18239–18249, 1994.
 298. Nanberg, E., and E. Rozengurt. Temporal relationship between inositol polyphosphate formation and increases in cytosolic Ca2+ in quiescent 3T3 cells stimulated by platelet‐derived growth factor, bombesin and vasopressin. EMBO J. 7: 2741–2747, 1988.
 299. Nemenoff, R. A., S. Winitz, N.‐X. Qian, V. V. Putten, G. L. Johnson, and L. E. Heasley. Phosphorylation and activation of a high molecular weight form of phospholipase A2 by p42 microtubule‐associated protein 2 kinase and protein kinase C. J. Biol. Chem. 268: 1960–1964, 1993.
 300. Nishimura, R., W. Li, A. Kashishian, A. Mondino, M. Zhou, J. Cooper, and J. Schlessinger. Two signaling molecules share a phosphotyrosine‐containing binding site in the platelet‐derived growth factor receptor. Mol. Cell. Biol. 13: 6889–6896, 1993.
 301. Nishizuka, Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308: 693–698, 1984.
 302. Nishizuka, Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258: 607–612, 1992.
 303. Nishizuka, Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 9: 484–496, 1995.
 304. Nobes, C. D., P. Hawkins, L. Stephens, and A. Hall. Activation of the small GTP‐binding proteins rho and rac by growth factor receptors. J. Cell Sci. 108: 225–233, 1995.
 305. Narumiya, S. The small GTPase Rho: Cellular functions and signal transduction. J. Biochem. 120: 215–228, 1996.
 306. Obeid, L. M., C. M. Linardic, L. A. Karolak, and Y. A. Hannun. Programmed cell death induced by ceramide. Science 259: 1769–1771, 1993.
 307. Obermeier, A., H. Halfter, K.‐H. Wiesmuller, G. Jung, J. Schlessinger, and A. Ullrich. Tyrosine 785 is a major determinant of Trk–substrate interaction. EMBO J. 12: 933–941, 1993.
 308. Obermeier, A., R. Lammers, K.‐H. Wiesmuller, G. Jung, J. Schlessinger, and A. Ullrich. Identification of Trk binding sites for SHC and phosphatidylinositol 3′‐kinase and formation of a multimeric signaling complex. J. Biol. Chem. 268: 22963–22966, 1993.
 309. Ohguchi, K., Y. Banno, S. Nakashima, and Y. Nozawa. Activation of membrane‐bound phospholipase D by protein kinase C in HL60 cells: synergistic action of a small GTP‐binding protein RhoA. Biochem. Biophys. Res. Commun. 211: 306–311, 1995.
 310. Ohguchi, K., Y. Banno, S. Nakashima, and Y. Nozawa. Regulation of membrane‐bound phospholipase D by protein kinase C in HL60 cells. Synergistic action of small GTP‐binding protein RhoA. J. Biol. Chem. 271: 4366–4372, 1996.
 311. Okada, T., Y. Kawano, T. Sakakibara, O. Hazeki, and M. Ui. Essential role of phosphatidylinositol 3‐kinase in insulin‐induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J. Biol. Chem. 269: 3568–3573, 1994.
 312. Okada, T., L. Sakuma, Y. Fukui, O. Hazeki, and M. Ui. Blockage of chemotactic peptide‐induced stimulation of neutrophils by wortmannin as a result of selective inhibition of phosphatidylinositol 3‐kinase. J. Biol. Chem. 269: 3563–3567, 1994.
 313. Okamura, S.‐I., and S. Yamashita. Purification and characterization of phosphatidylcholine phospholipase D from pig lung. J. Biol. Chem. 269: 31207–31213, 1994.
 314. Okazaki, T., R. M. Bell, and Y. A. Hannun. Sphingomyelin turnover induced by vitamin D3 in HL‐60 cells. Role in cell differentiation. J. Biol. Chem. 264: 19076–19080, 1989.
 315. Okazaki, T., A. Bielawska, R. M. Bell, and Y. A. Hannun. Role of ceramide as a lipid mediator of 1α,25‐dihydroxyvitamin D3‐induced HL‐60 cell differentiation. J. Biol. Chem. 265: 15823–15831, 1990.
 316. Olivera, A., and S. Spiegel. Sphingosine‐1–phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365: 557–560, 1993.
 317. Pachter, J. A., J.‐K. Pai, R. Mayer‐Ezell, J. M. Petrin, E. Dobek, and W. R. Bishop. Differential regulation of phosphoinositide and phosphatidylcholine hydrolysis by protein kinase C‐β1 overexpression. Effects on stimulation by α‐thrombin, guanosine 5′‐O‐(thiotriphosphate), and calcium. J. Biol. Chem. 267: 9826–9830, 1992.
 318. Pagano, R. E., and K. J. Longmuir. Phosphorylation, transbilayer movement, and facilitated intracellular transport of diacylglycerol are involved in the uptake of a fluorescent analog of phosphatidic acid by cultured fibroblasts. J. Biol. Chem. 260: 1909–1916, 1985.
 319. Pai, J.‐K., E. A. Dobek, and W. R. Bishop. Endothelin‐1 activates phospholipase D and thymidine incorporation in fibroblasts overexpressing protein kinase C1. Cell Regul. 2: 897–903, 1991.
 320. Palmer, R. H., L. V. Dekker, R. Woscholski, J. A. Le Good, R. Gigg, and P. J. Parker. Activation of PRK1 by phosphatidylinositol 4,5‐bisphosphate and phosphatidylinositol 3,4,5‐trisphosphate. A comparison with protein kinase C isotypes. J. Biol. Chem. 270: 22412–22416, 1995.
 321. Park, S‐K., J. J. Provost, C. D. Bae, W‐T. Ho, and J. H. Exton. Cloning and characterization of phospholipase D from rat brain. J. Biol. Chem. In press.
 322. Parker, P. J. PI 3‐kinase puts GTP on the Rac. Curr. Biol. 5: 577–579, 1995.
 323. Parker, P. J., and M. D. Waterfield. Phosphatidylinositol 3‐kinase: a novel effector. Cell Growth Differ. 3: 747–752, 1992.
 324. Pawson, T. Protein modules and signalling networks. Nature 373: 573–580, 1995.
 325. Pelech, S. L., and D. E. Vance. Regulation of phosphatidylcholine biosynthesis. Biochim. Biophys. Acta 779: 217–251, 1984.
 326. Penner, R., C. Fasolato, and M. Hoth. Calcium influx and its control by calcium release. Curr. Opin. Neurobiol. 3: 368–374, 1993.
 327. Peppelenbosch, M. P., R.‐G. Qiu, A.M.M. de Vries‐Smits, L.G.J. Tertoolen, S. W. de Laat, F. McCormick, A. Hall, M. H. Symons, and J. L. Bos. Rac mediates growth factor–induced arachidonic acid release. Cell 81: 849–856, 1995.
 328. Perianin, A., C. Combadiere, E. Pedruzzi, B. Djerdjouri, and J. Hakim. Staurosporine stimulates phospholipase D activation in human polymorphonuclear leukocytes. FEBS Lett. 315: 33–37, 1993.
 329. Perry, D. K., V. L. Stevens, T. S. Widlanski, and J. D. Lambeth. A novel ecto‐phosphatidic acid phosphohydrolase activity mediates activation of neutrophil superoxide generation by exogenous phosphatidic acid. J. Biol. Chem. 268: 25302–25310, 1993.
 330. Pete, M. J., and J. H. Exton. Purification of a lysophospholipase from bovine brain that selectively deacylates arachidonoyl‐substituted lysophosphatidylcholine. J. Biol. Chem. 271: 18114–18121, 1996.
 331. Pete, M. J., D. W. Wu, and J. H. Exton. Subcellular fractions of bovine brain degrade phosphatidylcholine by sequential deacylation of the sn‐1 and sn‐2 positions. Biochim. Biophys. Acata 1299: 325–332, 1996.
 332. Peters, K. G., J. Marie, E. Wilson, H. E. Ives, J. Escobedo, M. Del Rosario, D. Merda, and L. T. Williams. Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but not mitogenesis. Nature 358: 678–681, 1992.
 333. Piccione, E., R. D. Chase, S. M. Domchek, P. Hu, M. Chaudhuri, J. M. Backer, J. Schlessinger, and S. E. Shoelson. Phosphatidylinositol 3‐kinase p85 SH2 domain specificity defined by direct phosphopeptide/SH2 domain binding. Biochemistry 32: 3197–3202, 1993.
 334. Pitcher, J. A., K. Touhara, E. S. Payne, and R. J. Lefkowitz. Pleckstrin homology domain–mediated membrane association and activation of the β‐adrenergic receptor kinase requires coordinate interaction with Gβγ subunits and lipid. J. Biol. Chem. 270: 11707–11710, 1995.
 335. Plevin, R., and M. J. O. Wakelam. Rapid desensitization of vasopressin‐stimulated phosphatidylinositol 4,5‐bisphosphate and phosphatidylcholine hydrolysis questions the role of these pathways in sustained diacylglycerol formation in A10 vascular smooth‐muscle cells. Biochem. J. 285: 759–766, 1992.
 336. Prescott, S. M., and P. W. Majerus. Characterization of 1,2‐diacylglycerol hydrolysis in human platelets. Demonstration of an arachidonoyl‐monacylglycerol intermediate. J. Biol. Chem. 258: 764–769, 1983.
 337. Provost, J. J., J. Fudge, S. Israelit, A. R. Siddiqi, and J. H. Exton. Tissue specific distribution and subcellular distribution of phospholipase D in rat. Evidence for distinct RhoA‐ and ARF‐regulated isozymes. Biochem. J. 319: 285–291, 1996.
 338. Putney, J. W., Jr., and G. S. J. Bird. The signal for capacitative calcium entry. Cell 75: 199–201, 1993.
 339. Pyne, S., and N. J. Pyne. Bradykinin‐stimulated phosphatidate and 1,2‐diacylglycerol accumulation in guinea‐pig airway smooth muscle: evidence for regulation “down‐stream” of phospholipases. Cell. Signal. 6: 269–277, 1994.
 340. Qiu, Z.‐H., M. S. de Carvalho, and C. C. Leslie. Regulation of phospholipase A2 activation by phosphorylation in mouse peritoneal macrophages. J. Biol. Chem. 268: 24506–24513, 1993.
 341. Qiu, Z.‐H., and C. C. Leslie. Protein kinase C–dependent and –independent pathways of mitogen‐activated protein kinase activation in macrophages by stimuli that activate phospholipase A2. J. Biol. Chem. 269: 19480–19487, 1994.
 342. Qualliotine‐Mann, D., D. E. Agwu, M. D. Ellenburg, C. E. McCall, and L. C. McPhail. Phosphatidic acid and diacylglycerol synergize in a cell‐free system for activation of NADPH oxidase from human neutrophils. J. Biol. Chem. 268: 23843–23849, 1993.
 343. Qian, D., and A. Weiss. T cell antigen receptor signal transduction. Curr. Opin. Cell Biol. 9: 205–212, 1997.
 344. Ji, Q‐S., G. E. winnier, K. D. Niswender, D. Horstman, R. Wisdom, M. A. Magnuson, and G. Carpenter. Essential role of the tyrosine kinase substrate phospholipase C‐γ1 in mammalian growth and development. Proc. Natl. Acad. Sci. U.S.A. 94: 2999–3003, 1997.
 345. Randriamampita, C., and R. Y. Tsien. Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates C influx. Nature 364: 809–814, 1993.
 346. Rankin, S., N. Morii, S. Narumiya, and E. Rozengurt. Botulinum C3 exoenzyme blocks the tyrosine phosphorylation of p125FAK and paxillin induced by bombesin and endothelin. FEBS Lett. 354: 315–319, 1994.
 347. Rao, G. N., B. Lassegue, R. W. Alexander, and K. K. Griendling. Angiotensin II stimulates phosphorylation of high‐molecular‐mass cytosolic phospholipase A2 in vascular smooth‐muscle cells. Biochem. J. 299: 197–201, 1994.
 348. Rhee, S. G., and K. D. Choi. Regulation of inositol phospholipid‐specific phospholipase C isozymes. J. Biol. Chem. 267: 12393–12396, 1992.
 349. Ridley, A. J., and A. Hall. The small GTP‐binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70: 389–399, 1992.
 350. Ridley, A. J., H. F. Paterson, C. L. Johnston, D. Diekmann, and A. Hall. The small GTP‐binding protein rac regulates growth factor–induced membrane ruffling. Cell 70: 401–410, 1992.
 351. Roche, S., M. Koegl, and S. A. Courtneidge. The phosphatidylinositol 3‐kinase α is required for DNA synthesis induced by some, but not all, growth factors. Proc. Natl. Acad. Sci. U.S.A. 91: 9185–9189, 1994.
 352. Rodriguez‐Viciana, P., P. H. Warne, R. Dhand, B. Vanhaesebroeck, I. Gout, M. J. Fry, M. D. Waterfield, and J. Downward. Phosphatidylinositol‐3–OH kinase as a direct target of Ras. Nature 370: 527–532, 1994.
 353. Rodriguez‐Viciana, P., P. H. Warne, A. Khwaja, B. M. Marte, D. Pappin, P. Das, M. D. Waterfield, A. Ridley, and J. Downward. Role of phosphoinositide 3‐OH kinase in cell transformation and control of the actin cytoskeleton by ras. Cell 89: 457–467, 1997.
 354. Roldan, E. R. S., and T. Murase. Polyphosphoinositide‐derived diacylglycerol stimulates the hydrolysis of phosphatidylcholine by phospholipase C during exocytosis of the ram sperm acrosome. Effect is not mediated by protein kinase C. J. Biol. Chem. 269: 23583–23589, 1994.
 355. Ronnstrand, L., S. Mori, A.‐K. Arridsson, A. Eriksson, C. Wernstedt, U. Hellman, L. Claesson‐Welsh, and C.‐H. Heldin. Identification of two C‐terminal autophosphorylation sites in the PDGF β‐receptor: involvement in the interaction with phospholipase C‐γ. EMBO J. 11: 3911–3919, 1992.
 356. Rosenwald, A. G., and R. E. Pagano. Inhibition of glycoprotein traffic through the secretory pathway by ceramide. J. Biol. Chem. 268: 4577–4579, 1993.
 357. Roshak, A., G. Sathe, and L. A. Marshall. Suppression of monocyte 85‐kDa phospholipase A2 by antisense and effects on endotoxin‐induced prostaglandin biosynthesis. J. Biol. Chem. 269: 25999–26005, 1994.
 358. Rossi, F., M. Grzeskowiak, V. D. Bianca, F. Calzetti, and G. Gandini. Phosphatidic acid and not diacylglycerol generated by phospholipase D is functionally linked to the activation of the NADPH oxidase by FMLP in human neutrophils. Biochem. Biophys. Res. Commun. 168: 320–327, 1990.
 359. Rumenapp, U., M. Geiszt, F. Wahn, M. Schmidt, and K. H. Jakobs. Evidence for ADP‐ribosylation‐factor‐mediated activation of phospholipase D by m3 muscarinic acetylcholine receptor. Eur. J. Biochem. 234: 240–244, 1995.
 360. Sa, G., and P. L. Fox. Basic fibroblast growth factor–stimulated endothelial cell movement is mediated by a pertussis toxin–sensitive pathway regulation phospholipase A2 activity. J. Biol. Chem. 269: 3219–3225, 1994.
 361. Sa, G., G. Murugesan, M. Jaye, Y. Ivashchenko, and P. L. Fox. Activation of cytosolic phospholipase A2 by basic fibroblast growth factor via p42 mitogen‐activated protein kinase–dependent phosphorylation pathway in endothelial cells. J. Biol. Chem. 270: 2360–2366, 1995.
 362. Sakaue, H., K. Hara, T. Noguchi, T. Matozaki, K. Kotani, W. Ogawa, K. Yonezawa, M. D. Waterfield, and M. Kasuga. Ras‐independent and wortmannin‐sensitive activation of glycogen synthase by insulin in Chinese hamster ovary cells. J. Biol. Chem. 270: 11304–11309, 1995.
 363. Saleem, A., S. Kharbanda, Z.‐M. Yuan, and D. Kufe. Monocyte colony‐stimulating factor stimulates binding of phosphatidylinositol 3‐kinase to Grb2.Sos complexes in human monocytes. J. Biol. Chem. 270: 10380–10383, 1995.
 364. Santana, P., L. A. Pena, A. Haimovitz‐Friedman, S. Martin, D. Green, M. McLoughlin, C. Cordon‐Cardo, E. H. Schuchman, Z. Fuks, and R. Kolesnick. Acid sphingomyelinase‐deficient human lymphoblasts and mice are defective in radiation‐induced apoptosis. Cell 86: 189–199, 1996.
 365. Sato, T., T. Ishimot, S. Akiba, and T. Fujii. Enhancement of phospholipase A2 activation by phosphatidic acid endogenously formed through phospholipase D action in rat peritoneal mast cell. FEBS Lett. 323: 23–26, 1993.
 366. Savarese, T. M., and C. M. Fraser. In vitro mutagenesis and the search for structure–function relationships among G protein–coupled receptors. Biochem. J. 283: 1–19, 1992.
 367. Savitsky, K., A. Bar‐Shira, S. Gilad, G. Rotman, Y. Ziv, L. Vanagaite, D. A. Tagle, S. Smith, T. Uziel, S. Sfez, M. Ashkenazi, I. Pecker, M. Frydman, R. Harnik, S. R. Patanjali, A. Simmons, G. A. Clines, A. Sartiel, R. A. Gatti, L. Chessa, O. Sanai, M. F. Lavin, N. G. J. Jaspers, A.M.R. Taylor, C. F. Arlett, T. Miki, S. M. Weissman, M. Lovett, F. S. Collins, and Y. Shiloh. A single ataxia telangiectasia gene with a product similar to PI‐3 kinase. Science 268: 1749–1753, 1995.
 368. Schalkwijk, C. G., E. de Vet, J. Pfeilschifter, and H. van den Bosch Interleukin‐1β and transforming growth factor‐β2 enhance cytosolic high‐molecular‐mass phospholipase A2 activity and induce prostaglandin E2 formation in rat mesangial cells. Eur. J. Biochem. 210: 169–176, 1992.
 369. Schmidt, M., S. M. Huwe, B. Fasselt, D. Homann, U. Rumenapp, J. Sandmann, and K. H. Jakobs. Mechanisms of phospholipase D stimulation by m3 muscarinic acetylcholine receptors. Evidence for involvement of tyrosine phosphorylation. Eur. J. Biochem. 225: 667–675, 1994.
 370. Schutze, S., K. Potthoff, T. Machleidt, D. Berkovic, K. Wiegmann, and M. Kronke. TNF activates NF‐kB by phosphatidylcholine‐specific phospholipase C‐induced “acidic” sphingomyelin breakdown. Cell 71: 765–776, 1992.
 371. Schwinn, D. A., J. W. Lomasney, W. Lorenz, P. J. Szklut, R. T. Fremeau, Jr., T. L. Yang‐Feng, M. G. Caron, R. J. Lefkowitz, and S. Cotecchia. Molecular cloning and expression of the cDNA for a novel α1‐adrenergic receptor subtype. J. Biol. Chem. 265: 8183–8189, 1990.
 372. Seckl, M. J., N. Morii, S. Narumiya, and E. Rozengurt. Guanosine 5′‐3–O‐(Thio)triphosphate stimulates tyrosine phosphorylation of p125FAK and paxillin in permeabilized Swiss 3T3 cells. Role of p21rho. J. Biol. Chem. 270: 6984–6990, 1995.
 373. Seedorf, K., B. Millauer, G. Kostka, J. Schlessinger, and A. Ullrich. Differential effects of carboxyl‐terminal sequence deletions on platelet‐derived growth factor receptor signaling activities and interactions with cellular substrates. Mol. Cell. Biol. 12: 4347–4356, 1992.
 374. Seger, R., and E. G. Krebs. The MAPK signaling cascade. FASEB J. 9: 726–735, 1995.
 375. Seki, K., H.‐C., Chen, and K.‐P., Huang Dephosphorylation of protein kinase C substrates, neurogranin, neuromodulin, and MARCKS, by calcineurin and protein phosphatases 1 and 2A. Arch. Biochem. Biophys. 316: 673–679, 1995.
 376. Seufferlelin, T., and E. Rozengurt. Lysophosphatidic acid stimulates tyrosine phosphorylation of focal adhesion kinase, paxillin, and p130. Signaling pathways and cross‐talk with platelet‐derived growth factor. J. Biol. Chem. 269: 9345–9351, 1994.
 377. Seufferlelin, T., and E. Rozengurt. Sphingosine induces p125FAK and paxillin tyrosine phosphorylation, actin stress fiber formation, and focal contact assembly in Swiss 3T3 cells. J. Biol. Chem. 269: 27610–27617, 1994.
 378. Sharp, J. D., D. L. White, X. G. Chiou, T. Goodson, G. C. Gamboa, D. McClure, S. Burgett, J. Hoskins, P. L. Skatrud, J. R. Sportsman, G. W. Becker, L. H. Kang, E. F. Roberts, and R. M. Kramer. Molecular cloning and expression of human Ca2+ ‐sensitive cytosolic phospholipse A2. J. Biol. Chem. 266: 14850–14853, 1991.
 379. Shears, S. B. Metabolism of inositol phosphates. Adv. Second Messenger and Phosphoprotein Res. 26: 63–92, 1992.
 380. Shibasaki, F., K. Fukami, Y. Fukui, and T. Takenawa. Phosphatidylinositol 3‐kinase binds to α‐actinin through the p85 subunit. Biochem. J. 302: 551–557, 1994.
 381. Shirakabe, K., K. Yamaguchi, H. Shibuya, K. Irie, S. Matsuda, T. Moriguchi, Y. Gotoh, K. Matsumoto, and E. Nishida. TAK1 mediates the ceramide signaling to stress‐activated protein kinase/c‐Jun N‐terminal kinase. J. Biol. Chem. 272: 8141–8144, 1997.
 382. Shpetner, H., M. Joly, D. Hartley, and S. Corvera. Potential sites of PI‐3 kinase function in the endocytic pathway revealed by the PI‐3 kinase inhibitor, wortmannin. J. Cell. Biol. 132: 595–605, 1996.
 383. Siddiqi, A. R., J. L. Smith, A. H. Ross, R.‐G. Qiu, M. Symons, and J. H. Exton. Regulation of phospholipase D in HL60 cells. Evidence for a cytosolic phospholipase D. J. Biol. Chem. 270: 8466–8473, 1995.
 384. Simon, M. I., M. P. Strathmann, and N. Gautam. Diversity of G proteins in signal transduction. Science 252: 802–808, 1991.
 385. Singer, W. D., H. A. Brown, G. M. Bokoch, and P. C. Sternweis. Resolved phospholipase D activity is modulated by cytosolic factors other than Arf. J. Biol. Chem. 270: 14944–14950, 1995.
 386. Singer, W. D., H. A. Brown, X. Jiang, and P. C. Sternweis. Regulation of phospholipase D by protein kinase C is synergistic with ADP‐ribosylation factor and independent of protein kinase activity. J. Biol. Chem. 271: 4504–4510, 1996.
 387. Sitsapesan, R., S. J. McGarry, and A. J. Williams. Cyclic ADP‐ribose, the ryanodine receptor and Ca2+ release. Trends Pharmacol. Sci. 16: 386–391, 1995.
 388. Soler, C., L. Beguinot, and G. Carpenter. Individual epidermal growth factor receptor autophosphorylation sites do not stringently define association motifs for several SH2–containing proteins. J. Biol. Chem. 269: 12320–12324, 1994.
 389. Soltoff, S., and L. C. Cantley. p120cbl is a cytosolic adapter protein that associates with phosphoinositide 3‐kinase in response to epidermal growth factor in PC12 and other cells. J. Biol. Chem. 271: 563–567, 1996.
 390. Soltoff, S. P., K. L. Carraway III, S. A. Prigent, W. G. Gullick, and L. C. Cantley. ErbB3 is involved in activation of phosphatidylinositol 3‐kinase by epidermal growth factor. Mol. Cell. Biol. 14: 3550–3558, 1994.
 391. Spaargaren, M., S. Wissink, L.H.K. Defize, S. W. de Laat, and J. Boonstsra. Characterization and identification of an epidermal‐growth‐factor‐activated phospholipase A2. Biochem. J. 287: 37–43, 1992.
 392. Stehno‐Bittle, L., G. Krapivinsky, L. Krapivinsky, C. Perez‐Terzie, and D. E. Clapham. The G protein βγ subunit transduces the muscarinic receptor signal for Ca2+ release in Xenopus oocytes. J. Biol. Chem. 270: 30068–30074, 1995.
 393. Stephens, L., A. Smrcka, F. T. Cooke, T. R. Jackson, P. C. Sternweis, and P. T. Hawkins. A novel phosphoinositide 3 kinase activity in myeloid‐derived cells is activated by G protein βγ subunits. Cell 77: 83–93, 1994.
 394. Stephens, L. R., T. R. Jackson, and P. T. Hawkins. Agonist‐stimulated synthesis of phosphatidylinositol ,,‐trisphosphate: a new intracellular signalling system? Biochim. Biophys. Acta 1179: 27–75, 1993.
 395. Sternweis, P. C. The active role of βγ in signal transduction. Curr. Opin. Cell Biol. 6: 198–203, 1994.
 396. Stoyanov, B., S. Volinia, T. Hanck, I. Rubio, M. Loubtchenkov, D. Malek, S. Stoyanova, B. Banhaesebroeck, R. Dhand, B. Nurnberg, P. Gierschik, K. Seedorf, J. J. Hsuan, M. D. Waterfield, and R. Wetzker. Cloning and characterization of a G protein‐activated human phosphoinositide‐3 kinase. Science 269: 690–693, 1995.
 397. Streb, H., R. F. Irvine, M. J. Berridge, and I. Schulz. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol‐1,4,5‐trisphosphate. Nature 306: 67–69, 1983.
 398. Strum, J. C., A. B. Nixon, L. W. Daniel, and R. L. Wykle. Evaluation of phospholipase C and D activity in stimulated human neutrophils using a phosphono analog of choline phosphoglyceride. Biochim. Biophys. Acta 1169: 25–29, 1993.
 399. Sugiyama, T., T. Sakai, Y. Nozawa, and N. Oka. Prostaglandin F2α‐stimulated phospholipase D activation in osteoblast‐like MC3t#‐E1 cells: involvement in sustained 1,2‐diacylglycerol production. Biochem. J. 298: 479–484, 1994.
 400. Suzuki, A., J. Shinoda, Y. Oiso, and O. Kozawa. Tyrosine kinase is involved in angiotensin II‐stimulated phospholipase D activation in aortic smooth muscle cells: Function of Ca2+ influx. Atherosclerosis 121: 119–127, 1996.
 401. Taki, T., and J. N. Kanfer. Partial purification and properties of a rat brain phospholipase D. J. Biol. Chem. 254: 9761–9765, 1979.
 402. Takuwa, N., M. Kumada, K. Yamashita, and Y. Takuwa. Mechanisms of bombesin‐induced arachidonate mobilization in Swiss 3T3 fibroblasts. J. Biol. Chem. 266: 14237–14243, 1991.
 403. Taniguchi, T. Cytokine signaling through nonreceptor protein tyrosine kinases. Science 268: 251–255, 1995.
 404. Tanti, J‐F., T. Gremeaux, S. Grillo, V. Calleja, A. Klippel, L. T. Williams, E. Van Obberghen, and Y. Le Marchand‐Brustel Overexpression of a constitutively active form of phosphatidylinositol 3‐kinase is sufficient to promote Glut 4 translocation in adipocytes. J. Biol. Chem. 271: 25227–25232, 1996.
 405. Tate, B. F., and S. E. Rittenhouse. Thrombin activation of human platelets causes tyrosine phosphorylation of PLC‐γ2. Biochim. Biophys. Acta 1178: 281–285, 1993.
 406. Tepper, C. G., S. Jayadev, B. Liu, A. Bielawska, R. Wolff, S. Yonehara, Y. A. Hannun, and M. F. Seldin. Role for ceramide as an endogenous mediator of Fas‐induced cytotoxicity. Proc. Natl. Acad. Sci. U.S.A. 92: 8443–8447, 1995.
 407. Thomas, D., and M. R. Hanley. Evaluation of calcium influx factors from stimulated jurkat T‐lymphocytes by microinjection into Xenopus oocytes. J. Biol. Chem. 270: 6429–6432, 1995.
 408. Thomason, P. A., S. R. James, P. J. Casey, and C. P. Downes. A G‐protein βγ‐subunit‐responsive phosphoinositide 3‐kinase activity in human platelet cytosol. J. Biol. Chem. 269: 16525–16528, 1994.
 409. Thomson, F. J., and M. A. Clark. Purification of a phosphatidic‐acid‐hydrolysing phospholipase A2 from rat brain. Biochem. J. 306: 305–309, 1995.
 410. Thomson, F. J., L. Perkins, D. Ahern, and M. Clark. Identification and characterization of a lysophosphatidic acid receptor. Mol. Pharmacol. 45: 718–723, 1994.
 411. Thurston, A. W., Jr., S. G. Rhee, and S. D. Shukla. Role of guanine nucleotide‐binding protein and tyrosine kinase in platelet‐activating factor activation of phospholipase C in A431 cells: proposal for dual mechanisms. J. Pharmacol. Exp. Ther. 266: 1106–1112, 1993.
 412. Tigyi, G., D. L. Dyer, and R. Miledi. Lysophosphatidic acid possesses dual action in cell proliferation. Proc. Natl. Acad. Sci. U.S.A. 91: 1908–1912, 1994.
 413. Toker, A., M. Meyer, K. K. Reddy, J. R. Falck, R. Aneja, S. Aneja, A. Parra, D. J. Burns, L. M. Ballas, and L. C. Cantley. Activation of protein kinase C family members by the novel polyphosphoinositides PtdIns‐3,4,‐P2 and PtdIns‐3,4,5‐P3. J. Biol. Chem. 269: 32358–32367, 1994.
 414. Tolias, K. F., L. C. Cantley, and C. L. Carpenter. Rho family GTPases bind to phosphoinositide kinases. J. Biol. Chem. 270: 17656–17659, 1995.
 415. Tomic, S., U. Greiser, R. Lammers, A. Kharitonenkov, E. Imyanitov, A. Ullrich, and F.D. Bohmer. Association of SH2 domain protein tyrosine phosphatases with the epidermal growth factor receptor in human tumor cells. Phosphatidic acid activates receptor dephosphorylation by PTP1C. J. Biol. Chem. 270: 21277–21284, 1995.
 416. Tsai, C.‐L., F.‐S. Wie, and D. W. Stacy. The effect of GTPase activating protein upon Ras is inhibited by mitogenically responsive lipids. Science 243: 522–526, 1989.
 417. Uings, I. J., N. T. Thompson, R. W. Randall, G. D. Spacey, R. W. Bonser, A. T. Hudson, and L. G. Garland. Tyrosine phosphorylation is involved in receptor coupling to phospholipase D but not phospholipase C in the human neutrophil. Biochem. J. 281: 597–600, 1992.
 418. Valius, M., C. Bazenet, and A. Kazlauskas. Tyrosines 1021 and 1009 are phosphorylation sites in the carboxyl terminus of the platelet‐derived growth factor receptor β subunit and are required for binding of phospholipase Cγ and a 64‐kilodalton protein, respectively. Mol. Cell. Biol. 13: 133–143, 1993.
 419. Valius, M., and A. Kazlauskas. Phospholipase C‐γ1 and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor's mitogenic signal. Cell 73: 321–334, 1993.
 420. van Corven, E.J., A. Groenink, K. Jalink, T. Eichholtz, and W.H. Moolenaar. Lysophosphatidate‐induced cell proliferation: identification and dissection of signaling pathways mediated by G proteins. Cell 59: 45–54, 1989.
 421. van Corven, E. J., A. Van Rijswijk, K. Jalink, R. L. van der Bend, W. J. van Blitterswijk, and W. H. Moolenaar. Mitogenic action of lysophosphatidic acid and phosphatidic acid on fibroblasts. Dependence on acyl‐chain length and inhibition by suramin. Biochem. J. 281: 163–169, 1992.
 422. van der Bend, R. L., J. Brunner, K. Jalink, E. J. van Corven, W. H. Moolenaar, and W. J. van Blitterswijk Identification of a putative membrane receptor for the bioactive phospholipid, lysophosphatidic acid. EMBO J. 11: 2495–2501, 1992.
 423. van der Bend, J. De Widt, E. J. van Corven, W. H. Moolenaar, and W. J. van Blitterswijk Metabolic conversion of the biologically active phospholipid, lysophosphatidic acid, in fibroblasts. Biochim. Biophys. Acta 1125: 110–112, 1992.
 424. van der Bend, R. L., J. De Widt, E. J. Van Corven, W. H. Moolenaar, and W. J. Van Blitterswijk The biologically active phospholipid, lysophosphatidic acid, induces phosphatidylcholine breakdown in fibroblasts via activation of phospholipase D. Comparison with the response to endothelin. Biochem. J. 285: 235–240, 1992.
 425. van der Geer, P., and T. Hunter. Mutation of Tyr697, a GRB2‐binding site, and Tyr721, a PI 3‐kinase binding site, abrogates signal transduction by the murine CSF‐1 receptor expressed in rat‐2 fibroblasts. EMBO J. 12: 5161–5172, 1993.
 426. van Dijk, M.C.M., F J.G. Muriana, J. de Widt, H. Hilkmann, and W. J. van Blitterswijk Involvement of phosphatidylo‐choline‐specific phospholipase C in platelet‐derived growth factor‐induced activation of the mitogen‐activated protein kinase pathway in rat‐1 fibroblasts. J. Biol. Chem. 272: 11011–11016, 1997.
 427. Vanmhaesebroeck, B.M.J. Welham, K. Kotani, R. Stein, P. H. Warne, M. J. Zvelebil, K. Higashi, S. Volinia, J. Downward, and M. D. Waterfield. p110δ, a novel phosphoinositide 3‐kinase in leukocytes. Proc. Natl. Acad. Sci. U.S.A. 94: 4330–4335, 1997.
 428. Venable, M. E., G. C. Blobe, and L. M. Obeid. Identification of a defect in the phospholipase D/diacylglycerol pathway in cellular senescence. J. Biol. Chem. 269: 26040–26044, 1994.
 429. Venable, M. E., J. Y. Lee, M. J. Smyth, A. Bielawska, and L. M. Obeid. Role of ceramide in cellular senescence. J. Biol. Chem. 270: 30701–30708, 1995.
 430. Venkatakrishnan, G., and J. H. Exton. Identification of determinants in the α subunit of Gq required for phospholipase C activation. J. Biol. Chem. 271: 5066–5074, 1996.
 431. Verheij, M., R. Bose, X. H. Lin, B. Yao, W. D. Jarvis, S. Grant, M. J. Birrer, E. Szabo, L. I. Zon, J. M. Kyriakis, A. Halmovitz‐Friedman, Z. Fuks, and R. N. Kolesnick. Requirement for ceramide‐initiated SAPK/JNK signalling in stress‐induced apoptosis. Nature 380: 75–79, 1996.
 432. Vilcek, J., and T. H. Lee. Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions. J. Biol. Chem. 266: 7313–7316, 1991.
 433. Vinggaard, A. M., and H. S. Hansen. Characterization and partial purification of phospholipase D from human placenta. Biochim. Biophys. Acta 1258: 169–176, 1995.
 434. Vlahos, C. J., W. F. Matter, K. Y. Hui, and R. F. Brown. A specific inhibitor of phosphatidylinositol 3‐kinase, 2‐(4‐morpholinyl)‐8‐phenyl‐4H‐1‐benzopyran‐4‐one (LY294002). J. Biol. Chem. 269: 5241–5248, 1994.
 435. Ward, D. T., J. Ohanian, A. M. Heagerty, and V. Ohanian. Phospholipase D‐induced phosphatidate production in intact small arteries during noradrenaline stimulation: involvement of both G‐protein and tyrosine‐phosphorylation‐linked pathways. Biochem. J. 307: 451–456, 1995.
 436. Warner, L. C., N. Hack, S. E. Egan, H. J. Goldberg, R. A. Weinberg, and K. L. Skorecki. RAS is required for epidermal growth factor‐stimulated arachidonic acid release in rat‐1 fibroblasts. Oncogene 8: 3249–3255, 1993.
 437. Watanabe, T., I. Waga, Z.‐i. Honda, K. Kurokawa, and T. Shimizu. Prostaglandin F2α stimulates formation of p21ras‐GTP complex and mitogen‐activated protein kinase in NIH‐. 3T3 cells via Gq‐protein‐coupled pathway. J. Biol. Chem. 270: 8984–8990, 1995.
 438. Weng, Q.‐P., K. Andrabi, A. Klippel, M. T. Kozlowski, L. T. Williams, and J. Avruch. Phosphatidylinositol 3‐kinase signals activation of p70 S6 kinase in situ through site‐specific p70 phosphorylation. Proc. Natl. Acad. Sci. USA 92: 5744–5748, 1995.
 439. Wennstrom, S., P. Hawkins, F. Cooke, K. Hara, K. Yonezawa, M. Kasuga, T. Jackson, L. Claesson‐Welsh, and L. Stephens. Activation of phosphoinositide 3‐kinase is required for PDGF‐stimulated membrane ruffling. Curr. Biol. 4: 385–393, 1994.
 440. Wess, J. G‐protein‐coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G‐protein regulation. FASEB J. 11: 346–354, 1997.
 441. Westwick, J. K., A. E. Bielawska, G. Dhaibo, Y. A. Hannun, and D. A. Brenner. Ceramide activates the stress‐activated protein kinases. J. Biol. Chem. 270: 22689–22692, 1995.
 442. Wijkander, J., and R. Sundler. Regulation of arachidonate‐mobilizing phospholipase A2 by phosphorylation via protein kinase C in macrophages. FEBS Lett. 311: 299–301, 1992.
 443. Wilcox, R. A., and S. R. Nahorski. Does Ins,,,P4 play a role in Ca2+ signaling. In: Signal‐Activated Phospholipases, edited by M. Liscovitch, R. G. Landes, 1994, p. 189–212.
 444. Wilkes, L. C., V. Patel, J. R. Purkiss, and M. R. Boarder. Endothelin‐1 stimulated phospholipase D in A10 vascular smooth muscle derived cells is dependent on tyrosine kinase. FEBS Lett. 322: 147–150, 1993.
 445. Wilson, E., M. C. Olcott, R. M. Bell, A. H. Merrill, Jr., and J. D. Lambeth. Inhibition of the oxidative burst in human neutrophils by sphingoid long‐chain bases. Role of protein kinase C in activation of the burst. J. Biol. Chem. 261: 12616–12623, 1986.
 446. Wilson, M., A. R. Burt, G. Milligan, and N. G. Anderson. Wortmannin‐sensitive activation of p70s6k by endogenous and heterologously expressed Gi‐coupled receptors. J. Biol. Chem. 271: 8537–8540, 1996.
 447. Winitz, S., S. K. Gupta, N.‐X. Qian, L. E. Heasley, R. A. Nemenoff, and G. L. Johnson. Expression of a mutant Gi2 α subunit inhibits ATP and thrombin stimulation of cytoplasmic phospholipase A2‐mediated arachidonic acid release independent of Ca2+ and mitogen‐activated protein kinase regulation. J. Biol. Chem. 269: 1889–1895, 1994.
 448. Wolff, R. A., R. T. Dobrowsky, A. Bielawska, L. M. Obeid, and Y. A. Hannun. Role of ceramide‐activated protein phosphatase in ceramide‐mediated signal transduction. J. Biol. Chem. 269: 19605–19609, 1994.
 449. Worthen, G. S., N. Avdi, A. M. Buhl, N. Suzuki, and G. L. Johnson. FMLP activates Ras and Raf in human neutrophils. Potential role in activation of MAP kinase. J. Clin. Invest. 94: 815–823, 1994.
 450. Wymann, M., and A. Arcaro. Platelet‐derived growth factor‐induced phosphatidylinositol 3–kinase activation mediates actin rearrangements in fibroblasts. Biochem. J. 298: 617–620, 1994.
 451. Xing, M., and R. Mattera. Phosphorylation‐dependent regulation of phospholipase A2 by G‐proteins and Ca2+ in HL60 granulocytes. J. Biol. Chem. 267: 25966–25975, 1992.
 452. Xing, M., P. L. Wilkins, B. K. McConnell, and R. Mattera. Regulation of phospholipase A2 activity in undifferentiated and neutrophil‐like HL60 cells. Lineage between impaired responses to agonists and absence of protein kinase C‐dependent phosphorylation of cytosolic phospholipase A2. J. Biol. Chem. 269: 3117–3124, 1994.
 453. Xu, X.‐X., C. O. Rock, Z.‐H. Qiu, C. C. Leslie, and S. Jackowski. Regulation of cytosolic phospholipase A2 phosphorylation and eicosanoid production by colony‐stimulating factor 1. J. Biol. Chem. 269: 31693–31700, 1994.
 454. Yamamoto‐Hondo, R., K. Tobe, Y. Kaburagi, K. Ueki, S. Asai, M. Yachi, M. Shirouzu, J. Yodoi, Y. Akanuma, S. Yokoyama, Y. Yazaki, and T. Kadowski. Upstream mechanisms of glycogen synthase activation by insulin and insulin‐like growth factor‐I. Glycogen synthase activation is antagonized by wortmannin or ly204–2 but not by rapamycin or by inhibiting p21ras. J. Biol. Chem. 270: 2729–2734, 1995.
 455. Yamauchi, K., K. Holt, and J.E. Pessin. Phosphatidylinositol 3‐kinase functions upstream of Ras and Raf in mediating insulin stimulation of c‐fos transcription. J. Biol. Chem. 268: 14597–14600, 1993.
 456. Yang, Z., M. Costanzo, D. W. Golde, and R. N. Kolesnick. Tumor necrosis factor activation of the sphingomyelin pathway signals nuclear factor kB translocation in intact HL‐60 cells. J. Biol. Chem. 268: 20520–20523, 1993.
 457. Yano, H., S. Nakanishi, K. Kimura, N. Hanai, Y. Saitoh, Y. Fukui, Y. Nonomura, and Y. Matsuda. Inhibition of histamine secretin by wortmannin through the blockade of phosphatidylinositol 3‐kinase in RBL‐2H3 cells. J. Biol. Chem. 268: 25846–25856, 1993.
 458. Yao, B., Y. Zhang, S. Delilkat, S. Mathias, S. Basu, and R. Kolesnick. Phosphorylation of Raf by ceramide‐activated protein kinase. Nature 378: 307–310, 1995.
 459. Yao, R., and G. M. Cooper. Requirement for phosphatidylinositol‐3 kinase in the prevention of apoptosis by nerve growth factor. Science 267: 2003–2006, 1995.
 460. Yao, R., and G. M. Cooper. Growth factor‐dependent survival of rodent fibroblasts requires phosphatidylinositol 3‐kinase but is independent of pp70S6K activity. Oncogene 13: 343–351, 1996.
 461. Yatomi, Y., Y. Igarashi, L. Yang, N. Hisano, R. Qi, N. Asazuma, K. Satoh, Y. Ozaki, and S. Kume. Sphingosine 1‐phosphate, a bioactive sphingolipid abundantly stored in platelets, is a normal constituent of human plasma and serum. J. Biochem. 121: 969–973, 1997.
 462. Yeo, E.‐J., and J. H. Exton. Stimulation of phospholipase D by epidermal growth factor requires protein kinase C activation in Swiss 3T3 cells. J. Biol. Chem. 270: 3980–3988, 1995.
 463. Yeo, E.‐J., A. Kazlauskas, and J. H. Exton. Activation of phospholipase C‐γ is necessary for stimulation of phospholipase D by platelet‐derived growth factor. J. Biol. Chem. 269: 27823–27826, 1994.
 464. Yu, H., X. Li, G. S. Marchetto, R. Dy, D. Hunter, B. Calvo, T. L. Dawson, M. Wilm, R. J. Anderegg, L. M. Graves, and H. S. Earp. Activation of a novel calcium‐dependent protein‐tyrosine kinase. Correlation with c‐Jun N‐terminal kinase but not mitogen‐activated protein kinase activation. J. Biol. Chem. 271: 29993–29998, 1996.
 465. Zhang, G.‐F., W. A. Patton, F.‐J. S. Lee, M. Liyanage, J.‐S. Han, S. G. Rhee, J. Moss, and M. Vaughan. Different ARF domains are required for the activation of cholera toxin and phospholipase D. J. Biol. Chem. 270: 21–24, 1995.
 466. Zhang, H., N. E. Buckley, K. Gibson, and S. Spiegel. Sphingosine stimulates cellular proliferation via a protein kinase C‐independent pathway. J. Biol. Chem. 265: 76–81, 1990.
 467. Zhang, H., N. N. Desai, J. M. Murphey, and S. Spiegel. Increases in phosphatidic acid levels accompany sphingosine‐stimulated proliferation of quiescent Swiss 3T3 cells. J. Biol. Chem. 265: 21309–21316, 1990.
 468. Zhang, H., N. N. Desai, A. Olivera, T. Seki, G. Brooker, and S. Spiegel. Sphingosine‐1‐phosphate, a novel lipid, involved in cellular proliferation. J. Cell. Biol. 114: 155–167, 1991.
 469. Zhang, J., W. G. King, S. Dillon, A. Hall, L. Feig, and S. E. Rittenhouse. Activation of platelet phosphatidylinositide 3‐kinase requires the small GTP‐binding protein Rho. J. Biol. Chem. 268: 22251–22254, 1993.
 470. Zhang, J., J. Zhang, J. L. Benovic, M. Sugai, R. Wetzker, I. Gout, and S. E. Rittenhouse. Sequestration of a G‐protein βγ subunit or ADP‐ribosylation of Rho can inhibit thrombin‐induced activation of platelet phosphoinositide 3‐kinases. J. Biol. Chem. 270: 6589–6594, 1995.
 471. Zhang, S., J. Han, M. A. Sells, J. Chernoff, U. G. Knaus, R. J. Ulevitch, and G. M. Bokoch. Rho family GTPases regulate p38 mitogen‐activated protein kinase through the downstream mediator Pak1. J. Biol. Chem. 270: 23934–23936, 1995.
 472. Zhang, Y., and R. Kolesnick. Signaling through the sphingomyelin pathway. Endocrinology 136: 4157–4160, 1995.
 473. Zhao, Z., S.‐H. Shen, and E. H. Fischer. Stimulation by phospholipids of a protein‐tyrosine‐phosphatase containing two src homology 2 domains. Proc. Natl. Acad. Sci. U.S.A. 90: 4251–4255, 1993.
 474. Zheng, Y., S. Bagrodia, and R. A. Cerione. Activation of phosphoinositide 3‐kinase activity by Cdc42Hs binding to p85. J. Biol. Chem. 269: 18727–18730, 1994.
 475. Zubiaur, M., J. Sancho, C. Terhorst, and D. V. Faller. A small GTP‐binding protein, Rho, associates with the platelet‐derived growth factor type‐β receptor upon ligand binding. J. Biol. Chem. 270: 17221–17228, 1995.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

John H. Exton. Phospholipid‐Derived Second Messengers. Compr Physiol 2011, Supplement 20: Handbook of Physiology, The Endocrine System, Cellular Endocrinology: 255-291. First published in print 1998. doi: 10.1002/cphy.cp070111