Comprehensive Physiology Wiley Online Library

Cellular Localization of Receptors Mediating the Actions of Steroid Hormones

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Nuclear Localization of Most Unliganded Steroid Receptors
1.1 Basis for the Initial Two‐Step Translocation Model of Steroid Action and Location
1.2 Current Nuclear Localization Model for Most Steroid Receptors
1.3 Glucocorticoid Receptor Localization
2 Nuclear Import and Export of Steroid Receptors
2.1 Entry of Proteins Into the Nucleus
2.2 Nuclear Localization Signals
2.3 Mechanism of Nuclear Import
2.4 Nuclear Export and Nucleocytoplasmic Shuttling
2.5 Conclusions
3 Alternate Steroid Receptors and Nongenomic Steroid Responses
3.1 Estrogen Receptor‐β
3.2 Glucocorticoids
3.3 Mineralocorticoids
3.4 Progesterone
3.5 Estrogen
3.6 1,25‐Dihydroxyvitamin D3
3.7 Testosterone
4 Conclusions
Figure 1. Figure 1.

Nuclear receptor model (A) and translocation model (B) for steroid hormonal action. RNAP, RNA polymerase; TFs, transcription factors; SRE, steroid response element.

Figure 2. Figure 2.

Schematic map of the structural and functional organization of steroid receptors. Conserved regions C and E are indicated as boxes and a black bar illustrates regions A/B, D, and F. Domain functions are listed above and below NLS, nuclear localization signal; TAF, transcription activation function.

Figure 3. Figure 3.

Steps of the nuclear protein‐import cycle. Nuclear localization signal (NLS)‐containing proteins bind to the importin heterodimer (NLS receptor) in the cytosol. The NLS interacts primarily with the α‐subunit; the importin‐β‐binding domain of α mediates heterodimerization. Binding of NLS to α can precede α‐β interaction. The β‐subunit mediates docking of the complex at the nuclear pore complex. Translocation involves GTP hydrolysis by Ran and is probably a multistep process. The α‐β heterodimer dissociates, and α enters the nucleoplasm with the substrate. Dissociation of α from the nuclear protein must then occur. For a further round of import, the subunits of importin are returned to the cytoplasm, possibly separately.

[Reprinted with permission from D. Görlich and I. W. Mattaj 53. Science 271: 1513–1518. Copyright 1996, American Association for the Advancement of Science.]
Figure 4. Figure 4.

Inhibition of male sexual behavior. A: Latency of response to corticosterone. Males were injected with 32 nmol (11 μg) of corticosterone (filled circles) or vehicle (open squares), n = 14. Arrow indicates time of addition of females to tanks. Data are reported as cumulative percentage of claspers at 1 min intervals.* Males injected with corticosterone were inhibited significantly within 3 min of testing (Fisher's exact test, P = 0.025). B: Linear relationship between potency of steroids in inhibition of [3H]corticosterone binding (ordinate) and potency in inhibition of sexual behavior (abscissa). Males were injected with one of five to seven doses of steroid or vehicle (n = 24 for each dose of steroid, except n = 14 for RU 28362). Data were recorded as number of claspers in 20 min tests (except cortisol, for which 60 min tests were performed late in the breeding season).

[Reprinted with permission from M. Orchinik, T. F. Murray, and F. L. Moore 131. Science 252: 1848–1851. Copyright 1991, American Association for the Advancement of Science.]
Figure 5. Figure 5.

Dose response of progesterone; 5β‐pregnan‐3β‐ol‐20‐one (epipregnanolone); 5α‐pregnane‐3α‐21‐diol‐20‐one (5α‐THDOC); 5α‐pregnan‐3α‐ol‐11,20‐dione (alfaxalone); 5α‐pregnan‐3α‐ol‐20‐one (allopregnanolone); and 5β‐pregnan‐3α‐ol‐20‐one (pregnanolone) to elevate [Ca2+]i in human sperm. Sperm were loaded with fura‐2, and increases in [Ca2+]i induced by each steroid were determined by measuring the difference between the basal level of [Ca2+]i (before steroid addition) and the maximum level of [Ca2+]i attained (usually observed approximately 20 s after steroid addition). Each value shown is the mean of triplicate determinations. Data are expressed as percentage of effect observed with 10 μM progesterone (a maximally effective concentration).

[From P. F. Blackmore 10. Mol. Cell. Endocrinol. 104: 237–243, 1994. Reproduced by copyright permission of Elsevier Science Ireland Ltd.]
Figure 6. Figure 6.

Prolactin release in immunoseparated cell populations. “+” cells are membrane estrogen receptor‐enriched; “−” cells are membrane estrogen receptor‐depleted. Data are from three independent experiments; error bars are the standard of the mean. ctrl, control (ethanol vehicle); 17β‐E2, 17β‐estradiol; *, significantly different from the equivalent time control.

[From T. C. Pappas et al. Endocrine 3: 743–749, 1995. Reproduced by copyright permission of the Humana Press.]
Figure 7. Figure 7.

Effect of progestins and androgens on chicken granulosa cell [Ca2+]i. Granulosa cells were treated with progesterone (PROG; 10–10−5M; A), pregnenolone (PREG; 10−7–10−5 M; B), testosterone (T; 10−7–10−5 M; C), or androstenedione (ADIONE; 10−8–10−5 M; D) before stimulation with estradiol‐17β (E2, 10−7 M). Arrowheads indicate the time of addition of steroids.

[From P. Morley et al. 118 Endocrinology 131: 1305–1311, 1992. Reproduced by copyright permission of the Endocrine Society.]
Figure 8. Figure 8.

Effect of 1,25(OH)2D3, the phorbol ester 12‐O‐tetradecanoyl phorbol = 13‐acetate (TPA), and forskolin on the appearance of 45Ca2+ in the venous effluent of perfused duodena from normal chicks. Each duodenum, filled with 45CaCl2 (5 μCi/ml) in Grey's balanced saline solution (GBSS), was perfused vascularly (24° C) for the first 20 min with control medium (GBSS containing 0.125% bovine serum albumin and 0.5 μl/ml ethanol) and then with 130 pm 1,25 (OH)2D3 (open circles), 100 nm TPA (filled circles), 10 μM forskolin (open triangles), or control medium (open squares) for up to 30 min. Values are the mean ± SD of four duodena for each treatment.

[From A. R. de Boland and A. Norman 28. Endocrinology 127: 39–45, 1990. Reproduced by copyright permission of the Endocrine Society.]
Figure 9. Figure 9.

Effect of testosterone on 45Ca influx and efflux in ventricle cubes. Left panel: 45Ca influx. Cubes were preincubated in physiological salt solution at 37° C for 10 min. At zero time, 45Ca (≃ 1 μCi/ml) and 10−8 M testosterone (open circles) or vehicle (filled circles) were added, and incubations were terminated at given times. Right panel: 45Ca efflux. Cubes were preincubated with 45Ca (≃ 5 μCi/ml) in physiological salt solution for 20 min, washed, and incubated in fresh medium containing 10−8 M testosterone (open circles) or vehicle (filled circles). 45Ca efflux was determined at given times in supernatant samples and expressed as percentage of total 45Ca in ventricle cubes at the beginning of incubation. Data are mean ± SEM (n = 3). *P < 0.05; **P < 0.01 (vs. control).

[From Koenig et al 88. Circ. Res. 64: 417–426, 1989. Reproduced by copyright permission of the American Heart Association.]


Figure 1.

Nuclear receptor model (A) and translocation model (B) for steroid hormonal action. RNAP, RNA polymerase; TFs, transcription factors; SRE, steroid response element.



Figure 2.

Schematic map of the structural and functional organization of steroid receptors. Conserved regions C and E are indicated as boxes and a black bar illustrates regions A/B, D, and F. Domain functions are listed above and below NLS, nuclear localization signal; TAF, transcription activation function.



Figure 3.

Steps of the nuclear protein‐import cycle. Nuclear localization signal (NLS)‐containing proteins bind to the importin heterodimer (NLS receptor) in the cytosol. The NLS interacts primarily with the α‐subunit; the importin‐β‐binding domain of α mediates heterodimerization. Binding of NLS to α can precede α‐β interaction. The β‐subunit mediates docking of the complex at the nuclear pore complex. Translocation involves GTP hydrolysis by Ran and is probably a multistep process. The α‐β heterodimer dissociates, and α enters the nucleoplasm with the substrate. Dissociation of α from the nuclear protein must then occur. For a further round of import, the subunits of importin are returned to the cytoplasm, possibly separately.

[Reprinted with permission from D. Görlich and I. W. Mattaj 53. Science 271: 1513–1518. Copyright 1996, American Association for the Advancement of Science.]


Figure 4.

Inhibition of male sexual behavior. A: Latency of response to corticosterone. Males were injected with 32 nmol (11 μg) of corticosterone (filled circles) or vehicle (open squares), n = 14. Arrow indicates time of addition of females to tanks. Data are reported as cumulative percentage of claspers at 1 min intervals.* Males injected with corticosterone were inhibited significantly within 3 min of testing (Fisher's exact test, P = 0.025). B: Linear relationship between potency of steroids in inhibition of [3H]corticosterone binding (ordinate) and potency in inhibition of sexual behavior (abscissa). Males were injected with one of five to seven doses of steroid or vehicle (n = 24 for each dose of steroid, except n = 14 for RU 28362). Data were recorded as number of claspers in 20 min tests (except cortisol, for which 60 min tests were performed late in the breeding season).

[Reprinted with permission from M. Orchinik, T. F. Murray, and F. L. Moore 131. Science 252: 1848–1851. Copyright 1991, American Association for the Advancement of Science.]


Figure 5.

Dose response of progesterone; 5β‐pregnan‐3β‐ol‐20‐one (epipregnanolone); 5α‐pregnane‐3α‐21‐diol‐20‐one (5α‐THDOC); 5α‐pregnan‐3α‐ol‐11,20‐dione (alfaxalone); 5α‐pregnan‐3α‐ol‐20‐one (allopregnanolone); and 5β‐pregnan‐3α‐ol‐20‐one (pregnanolone) to elevate [Ca2+]i in human sperm. Sperm were loaded with fura‐2, and increases in [Ca2+]i induced by each steroid were determined by measuring the difference between the basal level of [Ca2+]i (before steroid addition) and the maximum level of [Ca2+]i attained (usually observed approximately 20 s after steroid addition). Each value shown is the mean of triplicate determinations. Data are expressed as percentage of effect observed with 10 μM progesterone (a maximally effective concentration).

[From P. F. Blackmore 10. Mol. Cell. Endocrinol. 104: 237–243, 1994. Reproduced by copyright permission of Elsevier Science Ireland Ltd.]


Figure 6.

Prolactin release in immunoseparated cell populations. “+” cells are membrane estrogen receptor‐enriched; “−” cells are membrane estrogen receptor‐depleted. Data are from three independent experiments; error bars are the standard of the mean. ctrl, control (ethanol vehicle); 17β‐E2, 17β‐estradiol; *, significantly different from the equivalent time control.

[From T. C. Pappas et al. Endocrine 3: 743–749, 1995. Reproduced by copyright permission of the Humana Press.]


Figure 7.

Effect of progestins and androgens on chicken granulosa cell [Ca2+]i. Granulosa cells were treated with progesterone (PROG; 10–10−5M; A), pregnenolone (PREG; 10−7–10−5 M; B), testosterone (T; 10−7–10−5 M; C), or androstenedione (ADIONE; 10−8–10−5 M; D) before stimulation with estradiol‐17β (E2, 10−7 M). Arrowheads indicate the time of addition of steroids.

[From P. Morley et al. 118 Endocrinology 131: 1305–1311, 1992. Reproduced by copyright permission of the Endocrine Society.]


Figure 8.

Effect of 1,25(OH)2D3, the phorbol ester 12‐O‐tetradecanoyl phorbol = 13‐acetate (TPA), and forskolin on the appearance of 45Ca2+ in the venous effluent of perfused duodena from normal chicks. Each duodenum, filled with 45CaCl2 (5 μCi/ml) in Grey's balanced saline solution (GBSS), was perfused vascularly (24° C) for the first 20 min with control medium (GBSS containing 0.125% bovine serum albumin and 0.5 μl/ml ethanol) and then with 130 pm 1,25 (OH)2D3 (open circles), 100 nm TPA (filled circles), 10 μM forskolin (open triangles), or control medium (open squares) for up to 30 min. Values are the mean ± SD of four duodena for each treatment.

[From A. R. de Boland and A. Norman 28. Endocrinology 127: 39–45, 1990. Reproduced by copyright permission of the Endocrine Society.]


Figure 9.

Effect of testosterone on 45Ca influx and efflux in ventricle cubes. Left panel: 45Ca influx. Cubes were preincubated in physiological salt solution at 37° C for 10 min. At zero time, 45Ca (≃ 1 μCi/ml) and 10−8 M testosterone (open circles) or vehicle (filled circles) were added, and incubations were terminated at given times. Right panel: 45Ca efflux. Cubes were preincubated with 45Ca (≃ 5 μCi/ml) in physiological salt solution for 20 min, washed, and incubated in fresh medium containing 10−8 M testosterone (open circles) or vehicle (filled circles). 45Ca efflux was determined at given times in supernatant samples and expressed as percentage of total 45Ca in ventricle cubes at the beginning of incubation. Data are mean ± SEM (n = 3). *P < 0.05; **P < 0.01 (vs. control).

[From Koenig et al 88. Circ. Res. 64: 417–426, 1989. Reproduced by copyright permission of the American Heart Association.]
References
 1. Adam, E. H., and S. A. Adam. Identification of cytosolic factors required for nuclear location sequence‐mediated binding to the nuclear envelope. J. Cell Biol. 125: 547–555, 1994.
 2. Adam, S. A., and L. Gerace. Cytosolic proteins that specifically bind nuclear location signals are receptors for nuclear import. Cell 66: 837–847, 1991.
 3. Adam, S. A., R. Sterne Marr, and L. Gerace. Nuclear import in permeabilized mammalian cells requires soluble cytoplasmic factors. J. Cell Biol. 111: 807–816, 1990.
 4. Arriza, J. L., C. Weinberger, G. Cerelli, T. M. Glaser, B. L. Handelin, D. Hausman, and R. M. Evans. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 23: 268–275, 1987.
 5. Baran, D. T., and A. M. Kelly. Lysophosphatidylinositol: a potential mediator of 1,25‐dihydroxyvitamin D‐induced increments in hepatocyte cytosolic calcium. Endocrinology 122: 930–934, 1988.
 6. Barsony, J., and S. L. Marx. Receptor‐mediated rapid action of 1α,25‐dihydroxycholecalciferol: increase of intracellular cGMP in human skin fibroblast. Proc. Natl. Acad. Sci. U.S.A. 85: 1223–1226, 1988.
 7. Berthois, Y., N. Pourreau‐Schneider, P. Gandilhon, H. Mittre, N. Tubiana, and P. M. Martin. Estradiol membrane binding sites on human breast cancer cell lines. Use of a fluorescent estradiol conjugate to demonstrate plasma membrane binding system. J. Steroid Biochem. 25: 963–972, 1986.
 8. Bischoff, F. R., and H. Ponstingl. Mitotic regular protein RCC1 is complexed with a nuclear ras‐related polypeptide. Proc. Natl. Acad. Sci. V.S.A. 88: 10830–10834, 1991.
 9. Blackmore, P. F. Rapid non‐genomic actions of progesterone stimulate Ca2+ influx and the acrosome reaction in human sperm. Cell. Signal. 5: 531–538, 1993.
 10. Blackmore, P. F. The cell surface progesterone receptor which stimulates calcium influx in human sperm is unlike the A ring reduced steroid site on the GABAA receptor /chloride channel. Mol. Cell. Endocrinol. 104: 237–243, 1994.
 11. Blackmore, P. F., S. J. Beebe, D. R. Danforth, and N. Alexander. Progesterone and 17‐alpha hydroxyprogesterone. Novel stimulators of calcium influx in human sperm. J. Biol. Chem. 265: 1376–1380, 1990.
 12. Blackmore, P. F., and F. A. Lattaanzio. Cell surface localization of a novel non‐genomic progesterone receptor on the head of human sperm. Biochem. Biophys. Res. Commun. 181: 331–336, 1991.
 13. Bonner, W. Protein migration into nuclei. J. Cell Biol. 64: 431–437, 1975.
 14. Bonner, W. M. Protein migration and accumulation in nuclei. In: The Cell Nucleus, edited by H. Busch. New York: Academic, 1978, vol. 6, pt. C, p. 97–148.
 15. Borer, R. A., C. F. Lehner, H. M. Eppenberger, and E. A. Nigg. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 56: 379–390, 1989.
 16. Breeuwer, M., and D. Goldfarb. Facilitated nuclear transport of histone H1 and other small nucleophilic proteins. Cell 60: 999–1008, 1990.
 17. Brink, M., B. M. Humbel, E. R. De Kloet, and R. van Driel. The unliganded glucocorticoid receptor is localized in the nucleus, not in the cytoplasm. Endocrinology 130: 3575–3581, 1992.
 18. Chandran, U. R., and D. B. De Franco. Internuclear migration of chicken progesterone receptor, but not simian virus‐40 large tumor antigen, in transient heterokaryons. Mol. Endocrinol. 6: 837–844, 1992.
 19. Chi, N. C., E. J. H. Adam, and S. A. Adam. Sequence and characterization of cytoplasmic nuclear protein import factor p97. J. Cell Biol. 130: 265–274, 1995.
 20. Christ, M., K. Dauwes, C. Eisen, G. Bechtner, K. Theisen, and M. Wehling. Rapid effects of aldosterone on sodium transport in vascular smooth muscle cells. Hypertension 25: 117–123, 1995.
 21. Christ, M., C. Eisen, J. Aktas, K. Theisen, and M. Wehling. The inositol‐1,4,5‐trisphosphate system is involved in rapid effects of aldosterone in human mononuclear leukocytes. J. Clin. Endocrinol. Metab. 77: 1452–1457, 1993.
 22. Christ, M., C. Meyer, K. Sippel, and M. Wehling. Rapid aldosterone signaling in vascular smooth muscle cells: involvement of phospholipase C, diacylglycerol and protein kinase C α. Biochem. Biophys. Res. Commun. 213: 123–129, 1995.
 23. Christ, M., K. Sippel, C. Eisen, and M. Wehling. Non‐classical receptors 6for aldosterone in plasma membranes from pig kidneys. Mol. Cell. Endocrinol. 99: R31–R34, 1994.
 24. Civitelli, R., Y. S. Kim, S. L. Gunsten, A. Fujimori, M. Huskey, L. V. Avioli, and K. A. Hruska. Nongenomic activation of the calcium message system by vitamin D metabolites in osteoblast‐like cells. Endocrinology 127: 2253–2262, 1990.
 25. Dauvois, S., R. White, and M. G. Parker. The antiestrogen ICI182780 disrupts estrogen receptor nucleocytoplasmic shuttling. J. Cell Sci. 106: 1377–1388, 193.
 26. de Boland, A. R., V. Massheimer, and L. M. Fernandez. 1,25‐dihydroxyvitamin D3 affects calmodulin distribution among subcellular fractions of skeletal muscle. Calcif. Tissue Int. 43: 370–375, 1988.
 27. de Boland, A. R., I. Nemere, and A. W. Norman. Ca2+ agonist Bay K 8644 mimics 1,25(OH)2‐vitamin D3 rapid enhancement of Ca2+ in chick perfused duodenum. Biochem. Biophys. Res. Commun. 166: 217–221, 1990.
 28. de Boland, A. R., and A. Norman. Evidence for involvement of protein kinase C and cyclic adenosine 3′,5′ monophosphate‐dependent protein kinase in the 1,25‐dihydroxy‐vitamin D3‐mediated rapid stimulation of intestinal calcium transport (transcaltachia). Endocrinology 127: 39–45, 1990.
 29. De Franco, D. B., M. Qi, M. J. Borror, M. J. Garabedian, and D. L. Brautigan. Protein phosphatase types 1 and/or 2A regulate nucleocytoplasmic shuttling of glucocorticoid receptors. Mol. Endocrinol. 5: 1215–1228, 1991.
 30. Dingwall, C., and R. Laskey. The nuclear membrane. Science 258: 942–947, 1992.
 31. Dingwall, C., and R. A. Laskey. Protein import into the cell nucleus. Annu. Rev. Cell Biol. 1: 367–390, 1986.
 32. Dingwall, C., S. V. Sharnick, and R. A. Laskey. A polypeptide domain that specifies migration of nucleoplasmin into nucleus. Cell 30: 449–458, 1982.
 33. Dluzen, D. E., and V. D. Ramirez. In‐vitro progesterone modulates amphetamine‐stimulated dopamine release from the corpus striatum of castrated male rats treated with estrogen. Neuroendocrinology 52: 517–520, 1990.
 34. Dreyfuss, G., M. J. Matunis, S. Pinol‐Roma, and C. G. Burd. hnRNP proteins and the biogenesis of mRNA. Annu. Rev. Biochem. 62: 289–321, 1993.
 35. Drivas, G. T., A. Shih, E. Coutavas, M. G. Rush, and P. Deustachio. Characterization of four nivel Ras‐like genes expressed in a human teratocarcinoma cell line. Mol. Cell. Biol. 10: 1793–1798, 1990.
 36. Dufy, B., J.‐D. Vincent, H. Fleury, P. D. Pasquier, D. Gourdji, and A. T. Vidal. Membrane effects of thyrotropin‐releasing hormone and estrogen shown by intracellular recording from pituitary cells. Science 204: 509–511, 1979.
 37. Dworetzky, S. I., R. E. Lanford, and C. M. Feldherr. The effects of variations in the number and sequence of targeting signals on nuclear uptake. J. Cell Biol. 107: 1279–1287, 1988.
 38. Ellis, R. J., and S. M. van der Vies. Molecular chaperones. Annu. Rev. Biochem. 60: 321–347, 1991.
 39. Feldman, D., T. A. McCain, M. A. Hirst, T. L. Chen, and K. W. Colston. Characterization of a cytoplasmic receptor‐like binder for 1α,25‐dihydroxycholecalciferol in rat intestinal mucosa. J. Biol. Chem. 254: 10378–10384, 1979.
 40. Fischer, U., E. Darzynkiewicz, S. M. Tahara, N. A. Dathan, R. Luhrmann, and I. W. Mattaj. Diversity in the signals required for nuclear accumulation of U snRNP's and variety in the pathways of nuclear transport. J. Cell Biol. 113: 705–714, 1991.
 41. Fuxe, K., A.‐C. Wikström, S. Okret, L. F. Agnati, A. Härfstrand, Z.‐Y. Yu, L. Granholm, M. Zoli, W. Vale, and J.‐A. Gustafsson. Mapping of glucocorticoid receptor immunoreactive neurons in the rat tel‐ and diencephalon using a monoclonal antibody against rat liver glucocorticoid receptor. Endocrinology 117: 1803–1812, 1985.
 42. Gametchu, B. Glucocorticoid receptor‐like antigen in lymphoma cell membranes: correlation to cell lysis. Science 236: 456–461, 1987.
 43. Gametchu, B., C. S. Watson, and D. Pasko. Size and steroid‐binding characterization of membrane‐associated glucocorticoid receptor in S‐49 lymphoma cells. Steroids 56: 402–410, 1991.
 44. Gametchu, B., C. S. Watson, C.‐Y. Shih, and B. Dashew. Studies on the arrangement of glucocorticoid receptors in the plasma membrane of S‐49 lymphoma cells. Steroids 56: 411–419, 1991.
 45. Garcia‐Bustos, J., J. Heitman, and M. N. Hall. Nuclear protein localization. Biochim. Biophys. Acta 1071: 83–101, 1991.
 46. Gasc, J., F. Delahaye, and E. Baulieu. Compared intracellular localization of the glucocorticoid and progesterone receptors: an immunocytochemical study. Exp. Cell Res. 181: 492–504, 1989.
 47. Gasc, J.‐M., J.‐M. Renoir, C. Radanyi, I. Joab, P. Tuohimaa, and E.‐E. Baulieu. Progesterone receptor in the chick oviduct: an immunohistochemical study with antibodies to distinct receptor components. J. Cell Biol. 99: 1193–1201, 1984.
 48. Gerace, L., and B. Burke. Functional organization of the nuclear envelope. Annu. Rev. Cell Biol. 4: 335–374, 1988.
 49. Goldfarb, D. S. Karyophilic peptides: applications to the study of nuclear transport. Cell Biol. Int. Rep. 12: 809–832, 1988.
 50. Goldfarb, D. S. Shuttling proteins go both ways. Curr. Biol. 1: 212–214, 1991.
 51. Goldfarb, D. S., J. Gariepy, G. Schoolnik, and R. D. Kornberg. Synthetic peptides as nuclear localization signals. Nature 322: 641–644, 1986.
 52. Görlich, D., S. Kostka, R. Kraft, C. Dingwall, R. A. Laskey, E. Hartman, and S. Prehn. Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Cur. Biol. 5: 383–392, 1995.
 53. Görlich, D., and I. W. Mattaj. Nucleocytoplasmic transport. Science 271: 1513–1518, 1996.
 54. Görlich, D., S. Prehn, R. A. Laskey, and E. Hartmann. Isolation of a protein that is essential for the first step of nuclear protein import. Cell 19: 767–778, 1994.
 55. Görlich, D., F. Vogel, A. D. Mills, E. Hartmann, and R. A. Laskey. Distinct functions for the two importin subunits in nuclear protein import. Nature 377: 246–248, 1995.
 56. Gorski, J., and F. Gannon. Current models of steroid hormone action: a critique. Annu. Rev. Physiol. 38: 425–450, 1976.
 57. Gorski, J., J. R. Malayer, D. W. Gregg, and S. G. Lundeen. Just where are the steroid receptors anyway? Endocr. J. 2: 99–100, 1994.
 58. Gorski, J., D. Toft, G. Shyamala, D. Smith, and A. Notides. Hormone receptors: studies on the interaction of estrogen with the uterus. Recent Prog. Horm. Res. 24: 45–80, 1968.
 59. Govindan, M. V. Immunofluorescence microscopy of the intracellular translocation of glucocorticoid‐receptor complexes in rat hepatoma (HTC) cells. Exp. Cell Res. 127: 293–297, 1980.
 60. Griffing, G. T. Dinosaurs and steroids. J. Clin. Endocrinol. Metab. 77: 1450–1451, 1993.
 61. Gronemeyer, H. Nuclear hormone receptors as transcriptional activators. In: Steroid Hormone Action, edited by M. G. Parker. New York: Oxford University Press, 1993, p. 94–117.
 62. Groyer, A., G. Schweizer‐Groyer, F. Cadepond, M. Mariller, and E.‐E. Baulieu. Antiglucocorticoid effects suggest why steroid hormone is required for receptor to bind DNA in vivo but not in vitro. Nature 328: 624–629, 1987.
 63. Guiochon‐Mantel, A., K. Delabre, P. Lescop, and E. Milgrom. Nuclear localization signals also mediate the outward movement of proteins from the nucleus. Proc. Natl. Acad. Sci. U.S.A. 91: 7179–7183, 1994.
 64. Guiochon‐Mantel, A., K. Delabre, P. Lescop, and E. Milgrom. Intracellular traffic of steroid hormone receptors. J. Steroid Biochem. Mol. Biol. 56: 3–9, 1996.
 65. Guiochon‐Mantel, A., P. Lescop, S. Christin‐Maitre, H. Loosfelt, M. Perrot‐Applanat, and E. Milgrom. Nucleocytoplasmic shuttling of the progesterone receptor. EMBO J. 10: 3851–3859, 1991.
 66. Guiochon‐Mantel, A., H. Loosfelt, P. Lescop, S. Sar, M. Atger, M. Perrot‐Applanat, and E. Milgrom. Mechanisms of nuclear localization of the progesterone receptor: evidence for interaction between monomers. Cell 57: 1147–1154, 1989.
 67. Hall, M. N., C. Craik, and Y. Hiraoka. Homeodomain of yeast repressor alpha‐2 contains a nuclear localization signal. Proc. Natl. Acad. Sci. U.S.A. 87: 6954–6958, 1990.
 68. Hamy, F., N. Heibecque, and J.‐P. Henichart. Comparison between synthetic nuclear localization signal peptides from the steroid/thyroid hormone receptors superfamily. Biochem. Biophys. Res. Commun. 182: 289–293, 1992.
 69. Homo, F., D. Duval, J. Hatzfeld, and C. Evarard. Glucocorticoid sensitive and resistant cell population in the mouse thymus. J. Steroid Biochem. 13: 135–143, 1980.
 70. Homo‐Delarche, F. Glucocorticoid receptors and steroid sensitivity in normal and neoplastic human lymphoid tissues: a review. Cancer Res. 44: 431–437, 1984.
 71. Imamoto, N., Y. Matsuoka, T. Kurihara, K. Kohno, M. Miyagi, F. Sakiyama, Y. Okada, S. Tsunasawa, and Y. Yoneda. Antibodies against 70‐kD heat shock cognate protein inhibit mediated nuclear import of karyophilic proteins. J. Cell Biol. 119: 1047–1061, 1992.
 72. Imamoto, N., T. Shimamoto, T. Kose, T. Takao, T. Tachibana, M. Matsubae, T. Sekimoto, Y. Shimonishi, and Y. Yoneda. The nuclear pore‐targeting complex binds to nuclear pores after association with a karyophile. FEBS Lett. 368: 415–419, 1995.
 73. Imamoto, N., T. Shimamoto, T. Takao, T. Tachibana, S. Kose, M. Matsubae, T. Sekimoto, Y. Shimonishi, and Y. Yoneda. In vivo evidence for involvement of a 58 kDa component of nuclear pore‐targeting complex in nuclear protein import. EMBO J. 14: 3617–3626, 1995.
 74. Imamoto, N., T. Tachibana, M. Matsubae, and Y. Yoneda. A karyophilic protein forms a stable complex with cytoplasmic components prior to nuclear pore binding. J. Biol. Chem. 270: 8559–8565, 1995.
 75. Jensen, E. V., T. Suzuki, T. Kawashima, W. E. Stumpf, P. W. Jungblut, and E. De Sombre. A two‐step mechanism for the interaction of estradiol with rat uterus. Proc. Natl. Acad. Sci. U.S.A. 59: 632–638, 1968.
 76. Jenster, G., J. Trapman, and A. O. Brinkmann. Nuclear import of the human androgen receptor. Biochem. J. 293: 761–768, 1993.
 77. Judy, B. M., G. L. Greene, and W. V. Welshons. Characterization of non‐nuclear estrogen receptors (ERNN) in MCF‐7 human breast cancer cells by antibody‐binding and sedimentation analysis. Proc. 10th Int. Congr. Endocrinol., San Francisco, 1996. Amsterdam: Excerpta Medica, 1996, p. 575.
 78. Kalderon, D., W. D. Richardson, A. F. Markham, and A. E. Smith. Sequence requirements for nuclear localization of simian virus 40 large‐T antigen. Nature 311: 33–38, 1984.
 79. Kalderon, D., B. L. Roberts, W. D. Richardson, and A. E. Smith. A short amino acid sequence able to specify nuclear location. Cell 39: 499–509, 1984.
 80. Kambach, C., and I. W. Mattaj. Intracellular distribution of the U1A protein depends on active transport and nuclear binding to U1 snRNA. J. Cell Biol. 118: 11–21, 1992.
 81. Karthikeyan, N., and R. V. Thampan. The nuclear estrogen receptor R‐II of the goat uterus: distinct possibility that the R‐II is the deglycosylated form of the nonactivated estrogen receptor (naER). Arch. Biochem. Biophys. 321: 442–452, 1995.
 82. Karthikeyan, N., and R. V. Thampan. Plasma membrane is the primary site of localization of the nonactivated estrogen receptor in the goat uterus: hormone binding causes receptor internalization. Arch. Biochem. Biophys. 325: 47–57, 1996.
 83. Ke, F.‐C., and V. D. Ramirez. Membrane mechanism mediates progesterone stimulatory effect on LHRH release from superfused rat hypothalami in vitro. Neuroendocrinology 45: 514–517, 1987.
 84. Ke, F.‐C., and V. D. Ramirez. Binding of progesterone to nerve cell membranes of rat brain using progesterone conjugated to 125I‐bovine serum albumin as a ligand. J. Neurochem. 54: 467–472, 1990.
 85. Khare, S., X.‐Y. Tien, D. Wilson, R. K. Wali, B. M. Bissonnette, B. Scaglione‐Sewell, M. D. Sitrin, and T. A. Brasitus. The role of protein kinase‐C‐alpha in the activation of particulate guanylate cyclase by 1‐alpha,25‐dihydroxy vitamin D‐3 in Caco‐2 cells. Endocrinology 135: 277–283, 1994.
 86. Khare, S., D. M. Wilson, X.‐Y. Tien, P. K. Dudeja, R. K. Wali, M. D. Sitrin, and T. A. Brasitus. 1,25‐Dihydroxycholecalciferol rapidly activates rat colonic particulate guanylate cyclase via a protein kinase C‐dependent mechanism. Endocrinology 133: 2213–2219, 1993.
 87. King, W. J., and G. L. Greene. Monoclonal antibodies localize oestrogen receptor in the nuclei of target cells. Nature 307: 745–747, 1984.
 88. Koenig, H., C.‐C. Fan, A. D. Goldstone, C. Y. Lu, and J. J. Trout. Polyamines mediate androgenic stimulation of calcium fluxes and membrane transport in rat heart myocytes. Circ. Res. 64: 415–426, 1989.
 89. Kuiper, G. G., E. Enmark, M. Pelto‐Huikko, S. Nilsson, and J.‐Å. Gustafsson. Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc. Natl. Acad. Sci. U.S.A. 93: 5925–5930, 1996.
 90. Kumar, V., S. Green, G. Stack, M. Berry, J. R. Jin, and P. Chambon. Functional domains of the human estrogen receptor. Cell 51: 941–951, 1987.
 91. Lan, N. C., M. B. Bolger, and K. W. Gee. Identification and characterization of a pregnane steroid recognition site that is functionally coupled to an expressed GABAA receptor. Neurochem. Res. 18: 347–356, 1991.
 92. Landford, R. E., P. Kanda, and R. C. Kennedy. Induction of nuclear transport with a synthetic peptide homologous to the SV40 antigen transport signal. Cell 46: 575–582, 1986.
 93. Lieberherr, M., B. Grosse, M. Kachkache, and S. Balsan. Cell signalling and estrogen in female rat osteoblasts. J. Bone Miner. Res. 8: 1365–1376, 1993.
 94. Lippman, M. E., G. K. Yarbro, and B. G. Leventhal. Clinical implications of glucocorticoid receptor in human leukemia. Cancer Res. 38: 4251–4256, 1978.
 95. Madan, A. P., and D. B. De Franco. Bidirectional transport of glucocorticoid receptors across the nuclear envelope. Proc. Natl. Acad. Sci. U.S.A. 90: 3588–3592, 1993.
 96. Mandell, R. B., and C. M. Feldherr. Identification of two HSP70‐related Xenopus oocyte proteins that are capable of recycling across the nuclear envelope. J. Cell Biol. 111: 1775–1783, 1990.
 97. Matsumoto, T., O. Fontaine, and H. Rasmussen. Effect of 1,25‐dihydroxyvitamin D3 on phosphlipid metabolism in chick duodenal mucosal cell. J. Biol. Chem. 256: 3354–3360, 1981.
 98. McClellan, M. C., N. B. West, D. E. Tacha, G. L. Greene, and R. M. Brenner. Immunocytochemical localization of estrogen receptors in the macaque reproductive tract with monoclonal antiestrophilins. Endocrinology 114: 2002–2014, 1984.
 99. McEwen, B. S. Non‐genomic and genomic effects of steroids on neural activity. Trends Pharmacol. Sci. 12: 141–147, 1991.
 100. Mehlin, H., B. Daneholt, and U. Skoglund. Translocation of a specific premessenger ribonucleoprotein particle through the nuclear pore studied with electron microscope tomography. Cell 69: 605–613, 1992.
 101. Mehlin, H., B. Daneholt, and U. Skoglund. Structural interaction between the nuclear pore complex and a specific translocating RNP particle. J. Cell Biol. 129: 1205–1215, 1995.
 102. Meier, U. T., and G. Blobel. A nuclear localization signal binding protein in the nucleolus. J. Cell Biol. 111: 2235–2245, 1990.
 103. Meier, U. T., and G. Blobel. Nopp140 shuttles on tracks between nucleolus and cytoplasm. Cell 70: 127–138, 1992.
 104. Melchior, F., B. Paschal, J. Evans, and L. Gerace. Inhibition of nuclear protein import by nonhydrolyzable analogues of GTP and identification of the small GTPase Ran/TC4 as an essential transport factor. J. Cell Biol. 123: 1649–1659, 1993.
 105. Meyer, C., M. Christ, and M. Wehling. Characterization and solubilization of novel aldosterone‐binding proteins in porcine liver microsomes. Eur. J. Biochem. 229: 736–740, 1995.
 106. Meyer, J. W., and D. F. Bohr. Mechanism responsible for the pressure elevation in sodium‐dependent mineralocorticoid hypertension. In: Endocrinology of Hypertension, edited by F. Mantero, E. G. Biglieri, and C. R. W. Edwards. New York: Raven, 1985, p. 131–148.
 107. Michael, W. M., M. Choi, and G. Dreyfuss. A nuclear export signal in hnRNP A1: a signal‐mediated, temperature‐dependent nuclear protein export pathway. Cell 83: 415–422, 1995.
 108. Michaud, N., and D. Goldfarb. Multiple pathways in nuclear transport: the import of U2 snRNP occurs by a novel kinetic pathway. J. Cell Biol. 112: 215–223, 1991.
 109. Milgrom, E. Activation of steroid‐receptor complexes. In: Biochemical action of Hormones, edited by L. G. Litwack. New York: Academic, 1981, p. 465–492.
 110. Minghetti, P. P., and A. W. Norman. Vitamin D3 receptors: gene regulation and genetic circuitry. FASEB J. 2: 3043–3053, 1988.
 111. Moore, F. L., C. A. Lowry, and J. D. Rose. Steroid‐neuropeptide interactions that control reproductive behaviors in an amphibian. Psychoneuroendocrinology 19: 581–592, 1994.
 112. Moore, F. L., and L. J. Miller. Stress‐induced inhibition of sexual behavior: corticosterone inhibits courtship behaviors of a male amphibian (Taricha granulosa). Horm. Behav. 18: 400–410, 1984.
 113. Moore, F. L., and M. Orchinik. Membrane receptors for corticosterone: a mechanism for rapid behavioral responses in an amphibian. Horm. Behav. 28: 512–519, 1994.
 114. Moore, F. L., M. Orchinik, and C. Lowry. Functional studies of corticosterone receptors in neuronal membranes. Receptor 5: 21–28, 1995.
 115. Moore, M. S., and G. Blobel. The two steps of nuclear import, targeting to the nuclear envelope and translocation through the nuclear pore, require different cytosolic factors. Cell 69: 939–950, 1992.
 116. Moore, M. S., and G. Blobel. The GTP‐binding protein Ran‐TC4 is required for protein import into the nucleus. Nature 365: 661–663, 1993.
 117. Moore, M. S., and G. Blobel. Purification of a Ran‐interacting protein that is required for protein import into nucleus. Proc. Natl. Acad. Sci. U.S.A. 91: 10212–10216, 1994.
 118. Morley, P., F. F. Whitfield, B. C. Vanderhyden, B. K. Tsang, and J. L. Schwartz. A new, nongenomic estrogen action: the rapid release of intracellular calcium. Endocrinology 131: 1305–1312, 1992.
 119. Moroianu, J., M. Hijkata, G. Blobel, and A. Radu. Mammalian karyopherin alpha‐1‐beta and alpha‐2‐beta heterodimers: alpha‐1 or alpha‐2 subunit binds nuclear localization signal and beta subunit interacts with peptide repeat‐containing nucleoporins. Proc. Natl. Acad. Sci. U.S.A. 92: 6532–6536, 1995.
 120. Mueller, G. C., A. M. Herranen, and K. F. Jervell. Studies on the mechanism of action of estrogens. Recent Progr. Horm. Res. 14: 95–139, 1958.
 121. Nemere, I., and A. W. Norman. Rapid action of 1,25‐dihydroxyvitamin D3 on calcium transport in perfused chick duodenum: effect of inhibitors. J. Bone Miner. Res. 2: 99–103, 1987.
 122. Nemere, I., and A. W. Norman. The rapid hormonally stimulated transport of calcium (transcaltachia). J. Bone Miner. Res. 2: 167–172, 1987.
 123. Nemere, I., and C. M. Szego. Early action of parathyroid hormone and 1,25‐dihydroxycholecalciferol on isolated epithelial cells from rat intestine. 1. Limited lysosomal enzyme release and calcium uptake. Endocrinology 108: 1450–1462, 1981.
 124. Nemere, I., Y. Yoshimoto, and A. V. Norman. Calcium transport in perfused duodena from normal chicks: enhancement within fourteen minutes of exposure to 1,25‐dihydroxyvitamin D3. Endocrinology 115: 1476–1483, 1984.
 125. Nenci, T., G. Fabris, E. Marchetti, and A. Marzola. Cytochemical evidence for steroid binding sites in the plasma membrane of target cells. In: Perspectives in Steroid Receptor Research, edited by F. Bresciani. New York: Raven, 1980, p. 61–72.
 126. Newmeyer, D. D., and D. J. Forbes. Nuclear import can be separated into distinct steps in vitro: nuclear pore binding and translocation. Cell 52: 641–653, 1988.
 127. Nigg, E. A. Signal transduction to the cell nucleus. Adv. Mol. Cell. Biol. 4: 103–131, 1992.
 128. Norman, A. W., J. Roth, and L. Orci. The vitamin D endocrine system: steroid metabolism hormone receptors and biological response. Endocr. Rev. 3: 331–336, 1982.
 129. O'Doherty, P. J. A. 1,25‐Dihydroxyvitamin D3 increases the activity of the intestinal phosphatidylcholine deacylation‐reacylation cycle. Lipids 14: 75–80, 1979.
 130. Orchinik, M., T. F. Murray, P. H. Franklin, and F. L. Moore. Guanyl nucleotides modulate binding to steroid receptors in neuronal membranes. Proc. Natl. Acad. Sci. U.S.A. 89: 3830–3834, 1992.
 131. Orchinik, M., T. F. Murray, and F. L. Moore. A corticosteroid receptor in neuronal membranes. Science 252: 1848–1851, 1991.
 132. Osman, R. A., M. L. Andria, A. D. Jones, and S. Meizel. Steroid induced exocytosis: the human sperm acrosome reaction. Biochem. Biophys. Res. Commun. 160: 828–833, 1989.
 133. Papamichail, M., C. Ioannidis, N. Tsawdaroglou, and C. E. Sekeris. Translocation of glucocorticoid receptor from the cytoplasm into the nucleus of phytohemmaglutinin‐stimulated human lymphocytes in the absence of the hormone. Exp. Cell Res. 133: 461–465, 1981.
 134. Pappas, T. C., B. Gametchu, and C. S. Watson. Membrane estrogen receptor‐enriched GH3/B6 cells have an enhanced nongenomic response to estrogen. Endocrine 3: 743–749, 1995.
 135. Pappas, T. C., B. Gametchu, and C. S. Watson. Membrane estrogen receptors identified by multiple antibody labeling and impeded‐ligand binding. FASEB J. 9: 404–410, 1995.
 136. Pappas, T. C., B. Gametchu, J. Yannariello‐Brown, T. J. Collins, and C. S. Watson. Membrane estrogen receptors in GH3/B6 cells are associated with rapid estrogen‐induced release of prolactin. Endocrine 2: 813–822, 1994.
 137. Paschal, B. M., and L. Gerace. Identification of NTF2, a cytosolic factor for nuclear import that interacts with nuclear pore complex protein p62. J. Cell Biol. 129: 925–937, 1995.
 138. Pekki, A., J. Koistinaho, P. Vilja, H. Westphal, and P. Tuohimaa. Subcellular location of unoccupied and occupied glucocorticoid receptor by a new immunohistochemical technique. J. Steroid Biochem. Mol. Biol. 41: 753–756, 1992.
 139. Perrot‐Applanat, M., F. Logeat, M. T. Groyer‐Picard, and E. Milgrom. Immunocytochemical study of mammalian progesterone receptor using monoclonal antibodies. Endocrinology 116: 1473–1484, 1985.
 140. Petitti, N., and A. M. Etgen. Progesterone promotes rapid desensitization of α1 adrenergic receptor augmentation of cAMP formation in rat hypothalamic slices. Neuroendocrinology 55: 1–8, 1992.
 141. Picard, D., V. Kumart, P. Chambon, and K. R. Yamamoto. Signal transduction by steroid hormones nuclear localization is differentially regulated in estrogen and glucocorticoid receptors. Cell Regul. 1: 291–300, 1990.
 142. Picard, D., S. J. Salser, and K. R. Yamamoto. A movable and regulable inactivation function within the steroid binding domain of the glucocorticoid receptor. Cell 54: 1073–1080, 1988.
 143. Picard, D., and K. R. Yamamoto. Two signals mediate hormone‐dependent nuclear localization of the glucocorticoid receptor. EMBO J. 6: 3333–3340, 1987.
 144. Pietras, R. J., and C. M. Szego. Metabolic and proliferative responses to estrogen by hepatocytes selected for plasma membrane binding sites specific for estradiol‐17β. J. Cell Physiol. 98: 145–160, 1979.
 145. Pinol‐Roma, S., and G. Dreyfuss. Shuttling of pre‐mRNA binding proteins between nucleus and cytoplasm. Nature 355: 730–732, 1992.
 146. Pinol‐Roma, S., and G. Dreyfuss. hnRNP proteins: localization and transport between the nucleus and the cytoplasm. Trends Cell Biol. 3: 151–155, 1993.
 147. Radu, A., G. Blobel, and M. S. Moore. Identification of a protein complex that is required for nuclear‐protein import and mediates docking of import substrate to distinct nucleoporins. Proc. Natl. Acad. Sci. U.S.A. 92: 1769–1773, 1995.
 148. Ramirez, V. D., K. Kim, and D. E. Dluzen. Progesterone action on the LHRH and the nigrostriatal dopamine neuronal systems: in vitro and in vivo studies. Recent Prog. Horm. Res. 41: 421–472, 1985.
 149. Ravindra, R., and R. S. Aronstam. Progesterone, testosterone and estradiol‐17β inhibit gonadotropin‐releasing hormone stimulation of G protein GTPase activity in plasma membranes from rat anterior pituitary lobe. Acta Endocrinol. 126: 345–349, 1992.
 150. Richardson, W. D., A. D. Mills, S. M. Dilworth, R. A. Laskey, and C. Dingwall. Nuclear protein migration involves two steps: rapid binding at the nuclear envelope followed by slower translocation through nuclear pores. Cell 52: 655–664, 1988.
 151. Rihs, H. P., and R. Peters. Nuclear transport kinetics depend on phosphorylation‐site‐containing sequences flanking the karyophilic signal of the simian virus 40 T‐antigen. EMBO J. 8: 1479–1484, 1989.
 152. Robbins, J., S. M. Dilworth, R. A. Laskey, and C. Dingwall. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64: 615–623, 1991.
 153. Roberts, B. Nuclear localization signal‐mediated protein transport. Biochim. Biophys. Acta 1008: 263–280, 1989.
 154. Rout, M. P., and S. R. Wente. Pores for thought: nuclear pore complex proteins. Trends Cell Biol. 4: 357–365, 1994.
 155. Sanchez, E. R., D. O. Toft, M. J. Schlesinger, and W. B. Pratt. The 90kD non‐steroid binding phosphoprotein that binds to the untransformed gliucocorticoid receptor in molybdate‐stabilized L‐cell cytosol is the murine 90kD heat shock protein. J. Biol. Chem. 260: 12398–12401, 1985.
 156. Schmidt‐Zachmann, M. S., C. Dargemont, L. C. Kuhn, and E. A. Nigg. Nuclear export of proteins: the role of nuclear retention. Cell 74: 493–504, 1993.
 157. Schmidt‐Zachmann, M. S., B. Hugle‐Dorr, and W. W. Franfe. A constitutive nucleolar protein identified as a member of the nucleoplasmin family. EMBO J. 6: 1881–1890, 1987.
 158. Sheridan, P. J., J. M. Buchanan, V. C. Anselmo, and P. M. Martin. Equilibrium: the intracellular distribution of steroid receptors. Nature 282: 579–582, 1979.
 159. Sheridan, P. J., J. M. Buchanan, V. C. Anselmo, and P. M. Martin. Unbound progesterone receptors are in equilibrium between the nucleus and cytoplasm in cells of the rat uterus. Endocrinology 108: 1533–1537, 1981.
 160. Shyamala, G., and J. Gorski. Estrogen receptors in the rat uterus. Studies on the interaction of cytosol and nuclear binding sites. J. Biol. Chem. 244: 1097–1103, 1969.
 161. Silver, P. A. How proteins enter the nucleus. Cell 64: 489–497, 1991.
 162. Simental, J. A., M. Sar, M. V. Lane, F. S. French, and E. M. Wilson. Transcriptional activation and nuclear targeting signals of the human androgen receptor. J. Biol. Chem. 266: 510–518, 1991.
 163. Siomi, H., and G. Dreyfuss. A nuclear localization domain in the hnRNP A1 protein. J. Cell Biol. 129: 551–560, 1995.
 164. Stevens, J., and Y. W. Stevens. Glucocorticoid receptors in human leukemia and lymphoma: quantitative and clinical significance. In: Hormonally Responsive Tumors, edited by V. P. Hollander. San Diego: Academic, 1985, p. 156–182.
 165. Stochaj, U., and P. A. Silver. A conserved phosphoprotein that specifically binds nuclear localization sequences is involved in nuclear transport. J. Cell Biol. 117: 473–482, 1992.
 166. Stumpf, W. E., and L. J. Roth. High resolution autoradiography with dry mounted, freeze‐dried frozen sections. Comparative study of six methods using two diffusable compounds 3H‐estradiol and 3H‐mesobilirubinogen. J. Histochem. Cytochem. 14: 274–287, 1966.
 167. Tischkau, S. A., and V. D. Ramirez. A specific membrane binding protein for progesterone in rat brain: sex differences and induction by estrogen. Proc. Natl. Acad. Sci. U.S.A. 90: 1285–1289, 1993.
 168. Towle, A. C., and P. Y. Sze. Steroid binding to synaptic plasma membrane: differential binding of glucocorticoids and gonadal steroids. J. Steroid Biochem. 18: 135–143, 1983.
 169. Wali, R. K., C. L. Baum, M. D. Sitrin, and T. A. Brasitus. 1,25(OH)2 Vitamin D3 stimulates membrane phosphoinositide turnover, activates protein kinase C, and increases cytosolic calcium in rat colonic epithelium. J. Clin. Invest. 85: 1296–1303, 1990.
 170. Wali, R. K., M. J. G. Bolt, X.‐Y. Tien, T. A. Brasitus, and M. D. Sitrin. Differential effect of 1,25‐dihydroxycholecalciferol on phosphoinositide turnover in the antipodal plasma membranes of colonic epithelial cells. Biochem. Biophys. Res. Commun. 187: 1128–1134, 1992.
 171. Wasserman, W. J., L. H. Pinto, C. M. O'Connor, and D. Smith. Progesterone induces an increase in [Ca2+]in of Xenopus laevis oocytes. Proc. Natl. Acad. Sci. U.S.A. 77: 1534–1536, 1980.
 172. Webster, J. C., C. M. Jewell, M. Sar, and J. A. Cidlowski. The glucocorticoid receptor: maybe not all steroid receptors are nuclear. Endocrine J. 2: 967–969, 1994.
 173. Wehling, M. Nongenomic aldosterone effects: the cell membrane as a specific target of mineralocorticoid action. Steroids 60: 153–156, 1995.
 174. Wehling, M., D. Armanini, T. Strasser, and P. C. Weber. Effect of aldosterone on sodium and potassium concentration in human mononuclear leukocytes. Am. J. Physiol. 252 (Endocrinol. Metab. 15): E505–E508, 1987.
 175. Wehling, M., M. Christ, and K. Theisen. Membrane receptors for aldosterone: a novel pathway for mineralocorticoid action. Am. J. Physiol. 263 (Endocrinol. Metab. 26): E974–E979, 1992.
 176. Wehling, M., C. Eisen, and M. Christ. Aldosterone‐specific membrane receptors and rapid non‐genomic actions of mineralocorticoids. Mol. Cell. Endocrinol. 90: C5–C9, 1992.
 177. Wehling, M., J. Kasmayr, and K. Theisen. Rapid effects of mineralocorticoids on sodium‐proton exchanger: genomic or nongenomic pathway? Am. J. Physiol. 260 (Endocrinol. Metab. 23): E719–E726, 1991.
 178. Wehling, M., S. Kuhlas, and D. Armanini. Volume regulation of human lymphocytes by aldosterone in isotonic media. Am. J. Physiol. 257 (Endocrinol. Metab. 20): E170–E174, 1989.
 179. Wehling, M., C. B. Neylon, M. Fullerton, A. Bobik, and J. W. Funder. Nongenomic effects of aldosterone on intracellular Ca2+ in vascular smooth muscle cells. Circ. Res. 76: 973–979, 1995.
 180. Wehling, M., A. Ulsenheimer, M. Schneider, C. Neylon, and M. Christ. Rapid effects of aldosterone on free intracellular calcium in vascular smooth muscle and endothelial cells: subcellular localization of calcium elevations by single cell imaging. Biochem. Biophys. Res. Commun. 204: 475–481, 1994.
 181. Weis, K., I. W. Mattaj, and A. I. Lamond. Identification of hSRP1a as a functional receptor for nuclear localization signals. Science 268: 1049–1053, 1995.
 182. Welshons, W. V., E. M. Cormier, V. C. Jordan, and J. Gorski. Biochemical evidence for the exclusive nuclear localization of the estrogen receptor. In: Gene Regulation by Steroid Hormones, edited by A. K. Roy and J. H. New York: Springer‐Verlag, 1987, vol. III, p. 1–20.
 183. Welshons, W. V., and J. Gorski. Nuclear location of estrogen receptors. In: The Receptors, edited by P. M. Conn. Orlando, FL: Academic, 1986, vol. IV, p. 97–147.
 184. Welshons, W. V., and B. M. Judy. Nuclear vs. translocating steroid receptor models and the excluded middle. Endocrine 3: 1–4, 1995.
 185. Welshons, W. V., B. M. Judy, R. L. Strnad, and L. H. Grady. Cytoplasmic, non‐nucleophilic estrogen receptors in cytoplasts from MCF‐7 human breast cancer cells. In: 75th Annual Meeting of the Endocrine Society, Las Vegas, N. V. Bethesda, MD: Endocrine Society Press, p. 517, 1993.
 186. Welshons, W. V., L. H. Grady, B. M. Judy, V. C. Jordon, and D. E. Preziosi. Subcellular compartmentalization of MCF‐7 estrogen receptor synthesis and degradation. Mol. Cell. Endocrinol. 94: 183–194, 1993.
 187. Welshons, W. V., B. M. Judy, R. L. Strnad, L. H. Grady, and E. M. Curran. Non‐nuclear estrogen receptors (ERNN) in MCF‐7 human breast cancer cells. 76th Annual Meeting of the Endocrine Society, Anaheim, C. A. Bethesda, MD: Endocrine Society Press, p. 628, 1994.
 188. Welshons, W. V., B. M. Krummel, and J. Gorski. Nuclear localization of unoccupied receptors for glucocorticoids, estrogens and progesterone in GH3 cells. Endocrinology 117: 2140–2147, 1985.
 189. Welshons, W. V., M. E. Lieberman, and J. Gorski. Nuclear localization of unoccupied oestrogen receptors. Nature 307: 747–749, 1984.
 190. Wikström, A.‐C., O. Bakke, S. Okret, M. Brönnegård, and J.‐A. Gustafsson. Intracellular localization of glucocorticoid receptor: evidence for cytoplasmic and nuclear localization. Endocrinology 120: 1232–1242, 1987.
 191. Ylikomi, T., M. T. Bocquel, M. Berry, H. Gronemeyer, and P. Chambon. Cooperation of proto‐signals for nuclear accumulation of estrogen and progesterone receptors. EMBO J. 11: 3681–3694, 1992.
 192. Zhou, Z. X., M. Sar, J. A. Simental, M. V. Lane, and E. M. Wilson. A ligand dependent bipartite nuclear targeting signal in human androgen receptor. J. Biol. Chem. 269: 13115–13123, 1994.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Barbara M. Judy, Wade V. Welshons. Cellular Localization of Receptors Mediating the Actions of Steroid Hormones. Compr Physiol 2011, Supplement 20: Handbook of Physiology, The Endocrine System, Cellular Endocrinology: 437-460. First published in print 1998. doi: 10.1002/cphy.cp070117