Comprehensive Physiology Wiley Online Library

Insulin Gene Transcription: Factors Involved in Cell Type–Specific and Glucose‐Regulated Expression in Islet β Cells are Also Essential During Pancreatic Development

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Insulin Gene Expression
2 Principal Factors Regulating Insulin Gene Transcription
2.1 C2 Element
2.2 Z‐Element Region
2.3 A Elements
2.4 C1/RIPE3b1 Element
2.5 E Element
2.6 Other Key Pancreatic Cell Transcriptional Regulators
3 Targeted Disruption of Insulin Transcriptional Activators
3.1 PDX‐1 in Pancreatic Islet and Exocrine Cell Development
3.2 Isl‐1, Pax‐6, Pax‐4, and BETA2/NeuroD in Islet Endocrine Cell Development
3.3 Other Transcription Factors Necessary for Islet Cell Development
4 Factors Regulating pdx‐1 Gene Transcription
5 New Perspectives
6 Summary
Figure 1. Figure 1.

Enhancer‐promoter region of the insulin gene. The insulin enhancer region (boxed, −340 to −91 bp) mediates pancreatic β cell–specific and glucose‐regulated transcription. The cis elements and potential positive‐and/or negative‐acting regulatory factors are shown. Sites are labeled in accordance with the nomenclature proposed by German et al. 57. Glucose regulates through the Z, A3, C1, and E1 elements. Elements Zal and RIPE3b1 correspond to the glucose‐sensitive activator gel‐shift bands obtained with Z 159 and C1 171, 179 probes; the actual regulatory factors have not been isolated. The A4 element does not appear to be conserved in the human or rat insulin II genes 48, 189.

Figure 2. Figure 2.

Structure of the PDX‐1 homeodomain transcription factor. Diagrammatic representation of PDX‐1 showing the location of the activation domain (AD) and homeodomain (HD). The conserved amino acid sequences within the activation domain required for stimulation are shown 137. The conserved pentapeptide motif necessary for Pbx‐1 binding is located between amino acids 119 and 123 (FPWMK) 135.

Figure 3. Figure 3.

BETA2/NeuroD1‐mediated neurogenic and insulin E1 element activation requires sequences important in p300/cAMP‐response element‐binding protein binding protein (CBP) co‐activator binding. Diagrammatic representation of BETA2/NeuroD1 showing the basic helix‐loop‐helix (bHLH, amino acids 100 to 156) and activation domain (AD) region [AD1 (amino acids 189 to 299) and AD2 (amino acids 300 to 355); ref. 173]. C‐terminal regions involved in p300/CBP binding in transfected cells are shown. Amino acid sequences in each BETA2/NeuroD1 construct are listed. Amino acids between 156 and 251 are deleted in Δ156 to 251. The neurogenic activity of the wild‐type and mutant BETA2/NeuroD1 constructs in injected embryos was determined by immunohistochemical staining for neural cell adhesion molecule expression; transactivation was analyzed with an insulin E‐box reporter in transfected cells. The figure summarizes the results described by Sharma et al. 173 and imply that BETA2/NeuroD1 activation of neurogenesis and insulin expression is mediated through interactions with p300/CBP.

Figure 4. Figure 4.

Model of pancreatic determination and differentiation with reference to the expression domain of insulin gene transcription factors. A: The earliest endocrine progenitor cells are characterized by expression of pdx‐1 at 8.5 days postcoitum (dpc). Initially, all cells in pancreatic buds are PDX‐1‐positive 1, 128. The first glucagon‐ (GLU) and insulin‐ (INS) expressing cells are detected at 9.5 dpc, some of which do not produce PDX‐1. This factor is also co‐expressed during development with endocrine [INS, somatostatin (SOM), pancreatic polypeptide (PP)] and exocrine [amylase (AMY) markers 64]. Expression of the other islet transcription factors appears to occur in the following order: Isl‐1 [9 dpc 3], PAX‐6 [9 dpc 161, 194], Pax‐4 [9.5 dpc 185], and BETA2/NeuroD1 [BETA2, 9.5 dpc 125]. Isl‐1, BETA2, and Pax‐6 are expressed in all islet cell types, whereas PDX‐1 and Pax‐4 are enriched in β cells. PDX‐1 is also expressed in approximately 15% of δ cells 64 and at lower levels in acinar cells 221. The parentheses around PDX‐1 denote low‐level expression. B: Approximate time period during development that the defect is manifested in null mice. The model may be oversimplistic due to the absence of precise lineage relationships between cell types.

Figure 5. Figure 5.

Hypersensitive size 1 (HSS1) is the only area of significant sequence identity within the promoter region of the mouse, human, and chicken pdx‐1 genes. Diagram of the mouse, human, and chicken promoter region: HSS1, −2560 to −1880 bp; HSS2, −1330 to −800 bp; HSS3, −260 to +180 bp. Area 1, −2694 to −2561 bp; Area 2, −2139 to −1958 bp; Area 3, −1879 to −1799 bp. The percent identity of the human and chicken sequences to that of the mouse is shown. Mouse to human, −4500/−2694, 46%; Area 1, 89%; −2435/−2201, 45%; Area 2, 78%; −1957/1880, 33%; Area 3, 84%; −1799/364, 48%; HSS3, 72%; mouse to chicken, −1731/1265, 39%; Area 1, 86%; −1101/−687, 39% [numbering is relative to the S1 transcription‐start site 170]; Area 3, 78%; −608/+1, 39% (numbering is relative to the chicken protein coding ATG codon).

Figure 6. Figure 6.

Sequence identity within area 1, area 2, and area 3 of the mouse, human, and chicken pdx‐1 genes. Highlighted sequences are conserved between species. The hepatic nuclear factor‐3β binding sites within Area 1 and Area 2 are shown. Area 1, −2694 to −2561 bp; Area 2, −2139 to −1958 bp; Area 3, −1879 to −1799 bp.



Figure 1.

Enhancer‐promoter region of the insulin gene. The insulin enhancer region (boxed, −340 to −91 bp) mediates pancreatic β cell–specific and glucose‐regulated transcription. The cis elements and potential positive‐and/or negative‐acting regulatory factors are shown. Sites are labeled in accordance with the nomenclature proposed by German et al. 57. Glucose regulates through the Z, A3, C1, and E1 elements. Elements Zal and RIPE3b1 correspond to the glucose‐sensitive activator gel‐shift bands obtained with Z 159 and C1 171, 179 probes; the actual regulatory factors have not been isolated. The A4 element does not appear to be conserved in the human or rat insulin II genes 48, 189.



Figure 2.

Structure of the PDX‐1 homeodomain transcription factor. Diagrammatic representation of PDX‐1 showing the location of the activation domain (AD) and homeodomain (HD). The conserved amino acid sequences within the activation domain required for stimulation are shown 137. The conserved pentapeptide motif necessary for Pbx‐1 binding is located between amino acids 119 and 123 (FPWMK) 135.



Figure 3.

BETA2/NeuroD1‐mediated neurogenic and insulin E1 element activation requires sequences important in p300/cAMP‐response element‐binding protein binding protein (CBP) co‐activator binding. Diagrammatic representation of BETA2/NeuroD1 showing the basic helix‐loop‐helix (bHLH, amino acids 100 to 156) and activation domain (AD) region [AD1 (amino acids 189 to 299) and AD2 (amino acids 300 to 355); ref. 173]. C‐terminal regions involved in p300/CBP binding in transfected cells are shown. Amino acid sequences in each BETA2/NeuroD1 construct are listed. Amino acids between 156 and 251 are deleted in Δ156 to 251. The neurogenic activity of the wild‐type and mutant BETA2/NeuroD1 constructs in injected embryos was determined by immunohistochemical staining for neural cell adhesion molecule expression; transactivation was analyzed with an insulin E‐box reporter in transfected cells. The figure summarizes the results described by Sharma et al. 173 and imply that BETA2/NeuroD1 activation of neurogenesis and insulin expression is mediated through interactions with p300/CBP.



Figure 4.

Model of pancreatic determination and differentiation with reference to the expression domain of insulin gene transcription factors. A: The earliest endocrine progenitor cells are characterized by expression of pdx‐1 at 8.5 days postcoitum (dpc). Initially, all cells in pancreatic buds are PDX‐1‐positive 1, 128. The first glucagon‐ (GLU) and insulin‐ (INS) expressing cells are detected at 9.5 dpc, some of which do not produce PDX‐1. This factor is also co‐expressed during development with endocrine [INS, somatostatin (SOM), pancreatic polypeptide (PP)] and exocrine [amylase (AMY) markers 64]. Expression of the other islet transcription factors appears to occur in the following order: Isl‐1 [9 dpc 3], PAX‐6 [9 dpc 161, 194], Pax‐4 [9.5 dpc 185], and BETA2/NeuroD1 [BETA2, 9.5 dpc 125]. Isl‐1, BETA2, and Pax‐6 are expressed in all islet cell types, whereas PDX‐1 and Pax‐4 are enriched in β cells. PDX‐1 is also expressed in approximately 15% of δ cells 64 and at lower levels in acinar cells 221. The parentheses around PDX‐1 denote low‐level expression. B: Approximate time period during development that the defect is manifested in null mice. The model may be oversimplistic due to the absence of precise lineage relationships between cell types.



Figure 5.

Hypersensitive size 1 (HSS1) is the only area of significant sequence identity within the promoter region of the mouse, human, and chicken pdx‐1 genes. Diagram of the mouse, human, and chicken promoter region: HSS1, −2560 to −1880 bp; HSS2, −1330 to −800 bp; HSS3, −260 to +180 bp. Area 1, −2694 to −2561 bp; Area 2, −2139 to −1958 bp; Area 3, −1879 to −1799 bp. The percent identity of the human and chicken sequences to that of the mouse is shown. Mouse to human, −4500/−2694, 46%; Area 1, 89%; −2435/−2201, 45%; Area 2, 78%; −1957/1880, 33%; Area 3, 84%; −1799/364, 48%; HSS3, 72%; mouse to chicken, −1731/1265, 39%; Area 1, 86%; −1101/−687, 39% [numbering is relative to the S1 transcription‐start site 170]; Area 3, 78%; −608/+1, 39% (numbering is relative to the chicken protein coding ATG codon).



Figure 6.

Sequence identity within area 1, area 2, and area 3 of the mouse, human, and chicken pdx‐1 genes. Highlighted sequences are conserved between species. The hepatic nuclear factor‐3β binding sites within Area 1 and Area 2 are shown. Area 1, −2694 to −2561 bp; Area 2, −2139 to −1958 bp; Area 3, −1879 to −1799 bp.

References
 1. Ahlgren, U., J. Jonsson, and H. Edlund. The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX1‐deflcient mice. Development 122: 1409–1416, 1996.
 2. Ahlgren, U., J. Jonsson, L. Jonsson, K. Simu, and H. Edlund. Beta‐cell‐specific inactivation of the mouse lpf1/Pdx1 gene results in loss of the beta‐cell phenotype and maturity onset diabetes. Genes Dev. 12: 1763–1768, 1998.
 3. Ahlgren, U., S. L. Pfaff, T. M. Jessell, T. Edlund, and H. Edlund. Independent requirement for Isl‐1 in formation of pancreatic mesenchyme and islet cells. Nature 385: 257–260, 1997.
 4. Alonso, M. C., and C. J. Cabrera. The aschaete‐scute gene complex of Drosophila melanogaster comprises four homologous genes. EMBO J. 7: 2585–2591, 1988.
 5. Alpert, S., D. Hanahan, and G. Teitelman. Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell 53: 295–308, 1988.
 6. Alvarez‐Bolado, G., M. G. Rosenfeld, and L. W. Swanson. Model of forebrain regionalization based on spatiotemporal patterns of POU‐III homeobox expression, birthdates, and morphological features. J. Comp. Neurol. 355: 237–295, 1995.
 7. Apelqvist, A., U. Ahlgren, and H. Edlund. Sonic hedgehog directs specialized mesoderm differentiation in the intestine and pancreas. Curr. Biol. 7: 801–804, 1997.
 8. Aronheim, A., R. Shiran, A. Rosen, and M. D. Walker. The E2A gene product contains two separable and functionally distinct transcription activation domains. Proc. Natl. Acad. Sci. U.S.A. 90: 8063–8067, 1993.
 9. Ashcroft, S. J. H.. Glucoreceptor mechanisms and the control of insulin release and biosynthesis. Diabetologia 18: 5–15, 1980.
 10. Aspinwall, C. A., J. R. T. Lakey, and R. T. Kennedy. Insulin‐stimulated insulin secretion in single pancreatic beta cells. J. Biol. Chem. 274: 6360–6365, 1999.
 11. Bain, G., E. Maandag, D. Izon, D. Amsen, A. Kruisbeek, B. Weintraub, I. Krop, M. Schissel, A. Feeney, M. van Roon, M. van der Valk, H. te Riele, A Berns, and C. Murre. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79: 885–892, 1994.
 12. Bannister, A. J., and T. Kouzarides. The CBP co‐activator is a histone acetyltransferase. Nature 384: 641–643, 1996.
 13. Bartholoma, A., and K. A. Nave. NEX‐1: a novel brain‐specific helix‐loop‐helix protein with autoregulation and sustained expression in mature cortical neurons. Mech. Dev. 48: 217–228, 1994.
 14. Ben‐Arie, N., A. E. McCallm, S. Berkman, G. Eichele, H. J. Bellen, and H. Y. Zoghbi. Evolutionary conservation of sequence and expression of the bHLH protein Atonal suggests a conserved role in neurogenesis. Hum. Mol. Genet. 5: 1207–1216, 1996.
 15. Benezra, R., R. L. Davis, D. Lockshon, D. L. Turner, and H. Weintraub. The protein Id: a negative regulator of helix‐loop‐helix DNA binding proteins. Cell 61: 49–59, 1990.
 16. Boam, D. S. W., A. R. Clark, and K. Docherty. Positive and negative regulation of the human insulin gene by multiple trans‐acting factors. J. Biol. Chem. 265: 8285–8296, 1990.
 17. Bonny, C., R. Roduit, S. Gremlich, P. Nicod, B. Thorens, and G. Waeber. The loss of GLUT2 expression in the pancreatic β‐cells of diabetic db/db mice is associated with an impaired DNA‐binding activity of islet‐specific trans‐acting factors. Mol. Cell. Endocrinol. 135: 59–65, 1997.
 18. Bonny, C., N. Thompson, P. Nicod, and G. Waeber. Pancreatic‐specific expression of the glucose transporter type 2 gene: identification of cis‐elements and islet‐specific trans‐acting factors. Mol. Endocrinol. 9: 1413–1426, 1995.
 19. Bonny, C., P. Wood, and G. Waeber. Ib1, a JIP‐1‐related nuclear protein present in insulin‐secreting cells. J. Biol. Chem. 273: 1843–1846, 1998.
 20. Boulet, A. M., C. R. Erwin, and W. J. Rutter. Cell‐specific enhancers in the rat exocrine pancreas. Proc. Natl. Acad. Sci. U.S.A. 83: 3599–3603, 1986.
 21. Bramblett, D. E., H.‐P. Huang, and M.‐J. Tsai. Pancreatic islet development. In: Hormones and Signaling, edited by B. W. O'Malley. San Diego: Academic, 1999.
 22. Braun, T., G. Buschhausen‐Denker, E. Bober, E. Tannich, and H. H. Arnold. A novel human muscle factor related to but distinct from myoD1 induces myogenic conversation in 10T1/2 cells. EMBO J. 8: 701–709, 1989.
 23. Brennan, T. J., and E. N. Ohlsson. Myogenin resides in the nucleus and acquires high affinity for a conserved enhancer element on heterodimerization. Genes Dev. 4: 582–595, 1990.
 24. Bretherton‐Watt, D., N. Gore, and D. S. W. Boam. Insulin upstream factor 1 and a novel ubiquitous factor bind to the human islet amyloid polypeptide/amylin gene promoter. Biochem. J. 313: 495–502, 1996.
 25. Bucchini, D., O. Madsen, M.‐A. Stinnakre, P. Desbois, P. Lores, E. Monthioux, J. Absil, J.‐A. Lepesant, R. Pictet, and J. Jami. Pancreatic expression of the human insulin gene in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 83: 2511–2515, 1986.
 26. Bushkin, J. N., and S. D. Hauschka. Identification of a myocyte nuclear factor which binds to the muscle‐specific enhancer of the muscle creatine kinase gene. Mol. Cell. Biol. 9: 2627–2640, 1989.
 27. Cabrerra, C. J., A. Martinez‐Arias, and M. Bate. The expression of three members of the aschaete‐scute complex correlates with neuroblast segregation in Drosophila. Cell 50: 425–433, 1987.
 28. Carty, M. D., J. S. Lillquist, M. Peshavaria, R. Stein, and W. C. Soeller. Identification of cis‐and trans‐active factors regulating islet amyloid polypeptide expression in pancreatic β cells. J. Biol. Chem. 272: 11986–11993, 1997.
 29. Chan, S., L. Jaffe, M. Capovilla, J. Botas, and R. S. Mann. The DNA binding specificity of ultrabithorax is modulated by cooperative interactions with extradenticle, another homeoprotein. Cell 78: 603–615, 1994.
 30. Chawengsaksophak, K., R. James, V. E. Hammond, F. Kontgen, and F. Beck. Homeostasis and intestinal tumours in Cdx2 mutant mice. Nature 386: 84–87, 1997.
 31. Chen, H., Y. Lun, D. Ovchinnikov, H. Kukubo, K. C. Oberg, C. V. Pepicelli, L. Gan, B. Lee, and R. L. Johnson. Limb and kidney defects in Lim1b mutant mice suggest an involvement of Lmx1b in human nail patella syndrome. Nat. Genet. 19: 51–55, 1998.
 32. Cockell, M., B. J. Stevenson, M. Strubin, O. Hagenbuchle, and P. K. Wellauer. Identification of a cell‐specific DNA‐binding activity that interacts with a transcriptional activator of genes expressed in the acinar pancreas. Mol. Cell. Biol. 9: 2464–2476, 1989.
 33. Cordle, S. R., E. Henderson, H. Masuoka, P. A. Weil, and R. Stein. Pancreatic β‐cell‐type‐specific transcription of the insulin gene is mediated by basic helix‐loop‐helix DNA‐binding proteins. Mol. Cell. Boil. 11: 1734–1738, 1991.
 34. Crowe, D. T., and M. ‐J. Tsai. Mutagenesis of the rat insulin II 5′‐flanking region defines sequences important for expression in HIT cells. Mol. Cell. Boil. 9: 1784–1789, 1989.
 35. Cvekl, A., F. Kashanchi, C. M. Sax, J. N. Brady, and J. Piatigorsky. Transcriptional regulation of the mouse alpha A‐crystallin gene: activation dependent on a cyclic AMP‐responsive element (DE1/CRE) and a Pax‐6‐binding site. Mol. Cell. Biol. 15: 653–660, 1995.
 36. Cvekl, A., C. M. Sax, X. Li, J. B. McDermott, and J. Piatigorsky. Pax‐6 and lens‐specific transcription of the chicken delta 1‐cytalline gene. Proc. Natl. Acad. Sci. U.S.A. 92: 4681–4685, 1995.
 37. Davis, R. L., H. Weintraub, and A. B. Lassar. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51: 987–1000, 1987.
 38. DeFronzo, R. A.. Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes. Diabetes Rev. 5: 177–269, 1997.
 39. De Krijger, R. R., H. J. Aanstoot, G. Kranenburg, M. Reinhard, W. J. Visser, and G. J. Bruining. The midgestational human fetal pancreas contains cells co‐expressing islet hormones. Dev. Biol. 153: 368–375, 1992.
 40. Docherty, K., W. M. MacFarlane, M. L. Read, S. B. Smith, M. E. Wilson, I. Bujalska, and M. Gilligan. Regulation of insulin gene transcription by nutrients. Biochem. Soc. Trans. 24: 368–372, 1996.
 41. Dumonteil, E., B. Laser, I. Constant, and J. Philippe. Differential regulation of the glucagon and insulin I gene promoters by the basic helix‐loop‐helix transcription factors E47 and BETA2. J. Biol. Chem. 273: 19945–19954, 1998.
 42. Dutta, S., S. Bonner‐Weir, M. Montminy, and C. Wright. Regulatory factor linked of late‐onset diabetes? Nature 393: 560, 1998.
 43. Eckner, R.. p300 and CBP as transcriptional regulators and targets of oncogenes. Biol. Chem. 377: 685–688, 1997.
 44. Eckner, R., T.‐P. Yao, E. Oldread, and D. M. Livingston. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B‐cell differentiation. Genes Dev. 10: 2478–2490, 1996.
 45. Edlund, H.. Transcribing pancreas. Diabetes 47: 1817–1823, 1998.
 46. Edlund, T., M. D. Walker, P. J. Barr, and W. J. Rutter. Cell‐specific expression of the rat insulin gene: evidence for the role of two distinct 5′ flanking sequences. Science 230: 912–916, 1985.
 47. Efrat, S., M. Surana, and N. Fleischer. Glucose induces insulin gene transcription in a murine pancreatic β‐cell line. J. Biol. Chem. 266: 11141–11143, 1991.
 48. Emens, L. A., D. W. Landers, and L. G. Moss. Hepatocyte nuclear factor 1α is expressed in a hamster insulinoma line and transactivates the rat insulin I gene. Proc. Natl. Acad. Sci. U.S.A. 89: 7300–7304, 1992.
 49. Ephrussi, A., G. M. Church, S. Tonegawa, and W. Gilbert. B‐lineage specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science 227: 134–140, 1985.
 50. Froguel, P., M. Vaxillaire, M. F. Sun, G. Velho, H. Zouali, M. O. Butel, S. Lesage, N. Vionnet, K. Clement, F. Fougerousse, Y. Tanizawa, J. Weissenbach, J. S. Beckmann, G. M. Lathrop, P. Passa, M. A. Permutt, and D. Cohen. Close linkage of the glucokinase locus on chromosome 7p to early‐onset non‐insulin‐dependent diabetes mellitus. Nature 356: 162–164, 1992.
 51. Fromont‐Racine, M., D. Bucchini, O. Madsen, P. Desbois, S. Linde, J. H. Nielsen, C. Saulnier, M.‐A. Ripoehe, J. Jami, and R. Pictet. Effect of 5′‐flanking sequence deletions on expression of the human insulin gene in transgenic mice. Mol. Endocrinol 4: 669–777, 1990.
 52. Fujitani, Y., Y. Kajimoto, T. Yasuda, T. Matsuoka, H. Kaneto, Y. Umayahara, H. Watada, J. Miyazaki, Y. Yamasaki, and M. Hori. Identification of a portable repression domain and an Ela‐responsive activation domain in Pax4: a possible role of Pax4 as a transcriptional repressor in the pancreas. Mol. Cell. Biol. 19: 8281–8291, 1999.
 53. Gamer, L. W., and C. V. E. Wright. Autonomous endodermal determination in Xenopus: regulation of expression of the pancreatic gene XIHbox8. Dev. Biol. 171: 240–251, 1995.
 54. Gannon, M., and C. V. E. Wright. Endodermal patterning and organogenesis. In: Cell Fate and Lineage Determination, edited by S. Moody. San Diego: Academic, 1999, p. 583–615.
 55. Gehring, W. J.. Homeoboxes in the study of development. Science 236: 1245–1252, 1987.
 56. Gehring, W. J., M. Affolter, and T. Burglin. Homeodomain proteins. Annu. Rev. Biochem. 63: 487–526, 1994.
 57. German, M. S., S. Ashcroft, K. Docherty, H. Edlund, T. Edlund, S. Goodison, H. Imura, G. Kennedy, O. Madsen, D. Melloul, L. Moss, K. Olson, M. A. Permutt, J. Philippe, R. P. Robertson, W. J. Rutter, P. Serup, R. Stein, D. Steiner, M.‐J. Tsai, and M. D. Walker. The insulin promoter: a simplified nomenclature. Diabetes 44: 1002–1004, 1995.
 58. German, M. S., M. A. Blanar, C. Nelson, L. G. Moss, and W. J. Rutter. Two related helix‐loop‐helix proteins participate in separate cell‐specific complexes that bind the insulin enhancer. Mol. Endocrinol. 5: 292–299, 1991.
 59. German, M. S., L. G. Moss, J. Wang, and W. J. Rutter. The insulin and islet amyloid polypeptide genes contain similar cell‐specific promoter elements that bind identical β‐cell nuclear complexes. Mol. Cell. Biol. 12: 1777–1788, 1992.
 60. German, M. S., and J. Wang. The insulin gene contains multiple transcriptional elements that respond to glucose. Mol. Cell. Biol. 14: 4067–4075, 1994.
 61. German, M. S., J. Wang, R. B., Chadwick, and W. J. Rutter. Synergistic activation of the insulin gene by a LIM‐homeodomain protein and a basic helix‐loop‐helix protein: building a functional insulin minienhancer complex. Genes Dev. 6: 2165–2176, 1992.
 62. Gremlich, S., C. Bonny, G. Waeber, and B. Thorens. Fatty acids decrease IDX‐1 expression in rat pancreatic islets and reduce GLUT2, glucokinase, insulin, and somatostatin levels. J. Biol. Chem. 272: 30261–30269, 1997.
 63. Gu, W., X.‐L. Shi, and R. C. Roeder. Synergistic activation of transcription by CBP and p53. Nature 387: 819–822, 1997.
 64. Guz, Y., M. R. Montminy, R. Stein, J. Leonard, L. W. Gamer, C. V. E. Wright, and G. Teitelman. Expression of murine STF‐1, a putative insulin gene transcription factor, in β‐cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development 121: 11–18, 1995.
 65. Habener, J. F., and D. A. Stoffers. A newly discovered role of transcription factors involved in pancreas development and the pathogenesis of diabetes mellitus. Proc. Assoc. Amer. Physicians. 110: 12–19, 1998.
 66. Hanahan, D.. Heritable formation of pancreatic β‐cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315: 115–122, 1985.
 67. Harmon, J. S., Y. Tanaka, L. K. Olson, and R. P. Robertson. Reconstitution of glucotoxic HIT‐T15 cells with somatostatin transcription factor‐1 partially restores insulin promoter activity. Diabetes 47: 900–904, 1998.
 68. Hattersley, A. T.. Maturity‐onset diabetes of the young: clinical heterogeneity explained by genetic heterogeneity. Diabet. Med. 15: 15–24, 1998.
 69. Hebrok, M., S. K. Kim, and D. A. Melton. Notochord repression of endodermal sonic hedgehog permits pancreas development. Genes Dev. 12: 1705–1713, 1998.
 70. Hedeskov, C. J.. Mechanism of glucose‐induced insulin secretion. Physiol. Rev. 60: 442–509, 1980.
 71. Henderson, E., and R. Stein. c‐Jun inhibits transcriptional activation by the insulin enhancer, and the insulin control element is the target of control. Mol. Cell. Biol. 14: 655–662, 1994.
 72. Henthorn, P., M. Kiledijian, and T. Kadesch. Two transcription factors that bind to the immunoglobulin enhancer μE5/κE2 motif. Science 247: 467–470, 1990.
 73. Hill, R. E., J. Favor, B. L. Hogan, C. C. Ton, G. F. Saunders, I. M. Hanson, J. Prosser, T. Jordan, N. D. Hastie, and V. van Heyningen. Mouse small eye results from mutations in a paired‐like homeobox containing gene. Nature 354: 522–525, 1991.
 74. Hogan, B. L., E. M. Hirst, G. Horsburgh, and C. M. Hetherington. Small eye (Sey): a mouse model for the genetic analysis of craniofacial abnormalities. Development 103: 115–119, 1988.
 75. Horikawa, Y., N. Iwasaki, M. Hara, H. Furuta, Y. Hinokio, and B. N. Cockburn. Mutation in hepatocyte nuclear factor‐β (TCF2) associated with MODY. Nat. Genet. 17: 384–385, 1997.
 76. Hussain, M. A., J. Lee, C. P. Miller, and J. F. Habener. POU domain transcription factor brain 4 confers pancreatic alpha‐cell‐specific expression of the proglucagon gene through interactions with a novel promoter G1 element. Mol. Cell. Biol. 17: 7186–7194, 1997.
 77. Inagaki, N., T. Maekawa, T. Sudo, S. Ishii, Y. Seino, and H. Imura. c‐Jun represses the human insulin promoter activity that depends on multiple cAMP response elements. Proc. Natl. Acad. Sci. U.S.A. 89: 1045–1049, 1992.
 78. Itkinansari, P., G. Bain, G. M. Beattie, C. Murre, A. Hayek, and F. Levine. E2A gene products are not required for insulin gene expression. Endocrinology 137: 3540–3543, 1996.
 79. Jensen, J., P. Serup, C. Karlsen, T. F. Nielsen, and O. D. Madsen. mRNA profiling of rat islet tumors reveals Nkx 6.1 as a β‐cell‐specific homeodomain transcription factor. J. Biol. Chem. 271: 18749–18758, 1996.
 80. Jin, T., and D. J. Drucker. Activation of proglucagon gene transcription through a novel promoter element by the caudal‐related homeodomain protein cdx‐2/3. Mol. Cell. Biol. 16: 19–28, 1996.
 81. Jonsson, J., L. Carlsson, T. Edlund, and H. Edlund. Insulin‐promoter‐factor 1 is required for pancreas development in mice. Nature 371: 606–609, 1994.
 82. Johnson, J., D. W. Zhang, A. Rudwick, W. J. Rutter, and M. S. German. Transcriptional synergy between LIM‐homeodomain proteins and basic helix‐loop‐helix proteins: the LIM2 domain determines specificity. Mol. Cell. Biol. 17: 3488–3496, 1997.
 83. Johnson, R. S., B. van Lingen, V. E. Papaioannon, and B. M. Spiegelman. A null mutation at the c‐jun locus causes embryonic lethality and retarded cell growth in culture. Genes Dev. 7: 1309–1317, 1993.
 84. Karlsson, O., S. Thor, T. Norberg, and T. Edlund. Insulin gene enhancer binding protein Isl‐1 is a member of a novel class of proteins containing both a homeo‐ and a Cys‐His domain. Nature 344: 879–882, 1990.
 85. Kim, S. K., M. Hebrok, and D. A. Melton. Notochord to endoderm signaling is required for pancreas development. Development 124: 4243–4252, 1997.
 86. Knepel, W., M. Vallejo, J. A. Chafitz, and J. F. Habener. The pancreatic islet‐specific glucagon G3 transcription factors recognize control elements in the somatostatin and insulin‐I genes. Mol. Endocrinol. 5: 1457–1466, 1991.
 87. Knofler, M., A. Krapp, O. Hagenbuchle, and P. K. Wellauer. Constitutive expression of the gene for the cell‐specific p48 DNA‐binding subunit of pancreas transcription factor 1 in culture cells is under the control of binding sites for transcription factors Spl and alpha Cbf. J. Biol. Chem. 271: 21993–22002, 1996.
 88. Krapp, A., M. Knofler, S. Frutiger, G. H. Hughes, O. Hagenbuchle, and P. K. Wellauer. The p48 DNA‐binding subunit of transcription factor PTF1 is a new exocrine pancreas‐specific basic helix‐loop‐helix protein. EMBO J. 15: 4317–4329, 1996.
 89. Krapp, A., M. Knofler, B. Ledermann, K. Burki, C. Berney, N. Zoerkler, O. Hagenbuchle, and P. K. Wellauer. The bHLH protein PTF‐p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev. 12: 3752–3763, 1998.
 90. Krumlauf, F.. Hox genes in vertebrate development. Cell 78: 191–201, 1994.
 91. Kulkarni, R. N., J. C. Bruning, J. N. Winnay, C. Postic, M. A. Magnuson, and C. R. Kahn. Tissue‐specific knockout of the insulin receptor in the pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96: 329–339, 1998.
 92. Larrson, L. I., O. Madsen, P. Serup, J. Jonsson, and H. Edlund. Pancreatic‐duodenal homeobox‐1—role in gastric endocrine patterning. Mech. Dev. 60: 175–184, 1996.
 93. Laser, B., P. Meda, I. Constant, and J. Philippe. The caudal‐related homeodomain protein cdx‐2/3 regulates glucagon gene expression in islet cells. J. Biol. Chem. 271: 28964–28994, 1996.
 94. Lassar, A. B., J. N. Bushkin, D. Lockshon, R. L. Davis, S. Apone, S. D. Hauschka, and H. Weintraub. MyoD is a sequence‐specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell 58: 823–831, 1989.
 95. Leahy, J. L., S. Bonner‐Weir, and G. C. Weir. Beta‐cell dysfunction induced by chronic hyperglycemia. Current ideas on the mechanism of impaired glucose‐induced insulin secretion. Diabetes Care 15: 442–455, 1992.
 96. Leahy, J. L., and G. C. Weir. Beta‐cell dysfunction in hyperglycaemic rat models: recovery of glucose‐induced insulin secretion with lowering of the ambient glucose level. Diahetologia 34: 640–647, 1991.
 97. Lee, J. E., S. M. Hollenberg, L. Snider, D. L. Turner, N. Lipnick, and H. Weintraub. Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix‐loop‐helix protein. Science 268: 836–844, 1995.
 98. Lee, Y. H., B. Saurer, and F. J. Gonzalez. Laron dwarfism and non‐insulin‐dependent diabetes mellitus in the HNF‐1 alpha knockout mice. Mol. Cell. Biol. 18: 3059–3068, 1997.
 99. Leibiger, I. B., B. Leibiger, T. Moede, and P. O. Berggren. Exocytosis of insulin promotes insulin gene transcription via the insulin receptor/PI‐3 kinase/p70 s6 kinase and CaM kinase pathways. Mol. Cell 1: 933–938, 1998.
 100. Le Moine, C., and W. S. Young III. RHS2, a POU domain‐containing gene and its expression in developing and adult rat. Proc. Natl. Acad. Sci. U.S.A. 89: 3285–3289, 1992.
 101. Lenardo, M., J. W. Pierce, and D. Baltimore. Protein‐binding sites in lg enhancers determine transcriptional activity and inducibility. Science 236: 1573–1577, 1987.
 102. Leonard, J., P. Serup, G. Gonzalez, T. Edlund, and M. Montminy. The LIM family transcription factor Isl‐1 requires cAMP response element binding protein to promote somatostatin expression in pancreatic islet cells. Proc. Natl. Acad. Sci. U.S.A. 89: 6247–6251, 1992.
 103. Leonard, J., B. Peers, T. Johnson, K. Ferrere, S. Lee, and M. Montminy. Characterization of Somatostatin Transactivating Factor‐1, a novel homeobox factor that stimulates somatostatin expression in pancreatic islet cells. Mol. Endo. 7: 1275–1283, 1993.
 104. Lu, M., C. P. Miller, and H. F. Habener. Functional regions of the homeodomain protein IDX‐1 required for transactivation of the rat somatostatin gene. Endocrinology 137: 2959–2967, 1996.
 105. Lu, M., J. Seufert, and J. F. Habener. Pancreatic β‐cell‐specific repression of insulin gene transcription by CAAAT/enhancerbinding protein β. J. Biol. Chem. 272: 28349–28359, 1997.
 106. Lukinius, A., J. L. E. Ericsson, L. Grimelius, and O. Korsgren. Electron microscopic immunocytochemical study of the ontogeny of fetal human and porcine endocrine pancreas, with special reference to co‐localization of the four major islet hormones. Dev. Biol. 153: 376–385, 1992.
 107. Lundblad, J. R., R. P. S. Kwok, M. E. Laurance, M. L. Harter, and R. H. Goodman. Adenoviral E1A‐associated protein p300 as a functional homologue of the transcriptional co‐activator CBP. Nature 374: 85–88, 1995.
 108. MacFarlane, W. M., C. M. McKinnon, Z. A. Felton‐Edkins, H. Cragg, R. F. L. James, and K. Docherty. Glucose stimulates translocation of the homeodomain transcription factor PDX1 from the cytoplasm to the nucleus in pancreatic β‐cells. J. Biol. Chem. 274: 1011–1016, 1999.
 109. MacFarlane, W. M., M. L. Read, M. Gilligan, I. Bujalska, and K. Docherty. Glucose modulates the binding activity of the β‐cell transcription factor IUF1 in a phosphorylation‐dependent manner. Biochem. J. 303: 625–631, 1994.
 110. MacFarlane, W. M., S. B. Smith, R. F. James, A. D. Clifton, Y. N. Doza, P. Cohen, and K. Docherty. The p38/reactivating kinase mitogen‐activated protein kinase cascade mediates the activation of the transcription factor insulin upstream factor 1 and insulin gene transcription by high glucose in pancreatic beta‐cells. J. Biol. Chem. 272: 20936–20944, 1997.
 111. Marshak, S., H. Totary, E. Cerasi, and D. Melloul. Purification of the beta‐cell glucose‐sensitive factor that transactivates the insulin gene differentially in normal and transformed islet cells. Proc. Natl. Acad. Sci. U.S.A. 93: 15057–15062, 1996.
 112. Mathis, J. M., D. M. Simmons, X. He, L. W. Swanson, and M. G. Rosenfeld. Brain‐4: a novel mammalian POU domain transcription factor exhibiting restricted brain‐specific expression. EMBO J. 11: 2551–2561, 1992.
 113. Matschinsky, F. M.. Glucokinase as glucose sensor and metabolic signal generator in pancreatic β‐cells and hepatocytes. Diabetes 39: 647–652, 1990.
 114. Matsuo, T., N. Osumi‐Yamashita, S. Noji, H. Ohuchi, E. Koyama, F. Myokai, N. Matsuo, S. Taniguchi, H. Doi, S. Iseki, Y. Ninomiya, M. Fujiwara, T. Watanabe, and K. Eto. A mutation in the Pax‐6 gene in rat small eye is associated with impaired migration of midbrain crest cells. Nat. Genet. 3: 299–304, 1993.
 115. Matsuoka, T., Y. Kajimoto, H. Watada, H. Kaneto, M. Kishimoto, Y. Umayahara, Y. Fujitani, T. Kamada, R. Kawamori, and Y. Yamasaki. Glycation‐dependent, reactive oxygen species‐mediated suppression of the insulin gene promoter in HIT cells. J. Clin. Invest. 99: 144–150, 1997.
 116. McCormick, M. B., R. M. Tamimi, L. Snider, A. Asakura, D. Bergstrom, and S. J. Tapscott. NeuroD2 and NeuroD3: distinct activation potentials within the neuroD gene family. Mol. Cell. Biol. 16: 5792–5800, 1996.
 117. McGarry, J. D.. What if Minkowski had been ageusic? An alternative angle on diabetes. Science 258: 766–770, 1992.
 118. Melloul, D., Y. Ben‐Neriah, and E. Cerasi. Glucose modulates the binding of an islet‐specific factor to a conserved sequence within the rat I and the human insulin promoters. Proc. Natl. Acad. Sci. U.S.A. 90: 3865–3869, 1993.
 119. Milewski, W. M., S. J. Duguay, S. J. Chan, and D. F. Steiner. Conservation of PDX‐1 structure, function, and expression in zebrafish. Endocrinology 139: 1440–1449, 1998.
 120. Miller, C. P., R. E. McGehee, Jr., and J. F. Habener. IDX‐1: a new homeodomain transcription factor expressed in rat pancreatic islets and duodenum that transactivates the somatostatin gene. EMBO J. 13: 1145–1156, 1994.
 121. Morel, C., M. Cordier‐Bussat, and J. Philippe. The upstream promoter element of the glucagon gene G1 confers pancreatic alpha cell‐specific expression. J. Biol. Chem. 270: 3046–3055, 1995.
 122. Morrow, E. M., T. Furukawa, and C. L. Cepko. Vertebrate photoreceptor development and disease. Trends Cell Biol. 8: 353–358, 1998.
 123. Murre, C., P. S. McCaw, H. Vaessin, M. Gaudy, L. Y. Jan, Y. N. Jan, C. V. Cabrera, J. Buskin, S. D. Hauschka, A. B. Lassar, H. Weintraub, and D. Baltimore. Interactions between heterologous helix‐loop‐helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58: 537–544, 1989.
 124. Mutoh, H., B. P. Fung, F. Naya, M. J. Tsai, J. Nishitani, and A. B. Leiter. The basic helix‐loop‐helix transcription factor BETA2/NeuroD is expressed in mammalian enteroendocrine cells and activates secretin gene expression. Proc. Natl. Acad. Sci. U.S.A. 94: 3560–3564, 1997.
 125. Mutoh, H., F. J. Naya, M.‐J. Tsai, and A. B. Leiter. The basic helix‐loop‐helix protein BETA2 interacts with p300 to coordinate differentiation of secretin‐expressing enteroendocrine cells. Genes Dev. 12: 820–830, 1998.
 126. Naya, F. J., H.‐P. Huang, Y. Qiu, H. Mouth, F. J. DeMayo, A. B. Leiter, and M. J. Tsai. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/NeuroD‐deficient mice. Genes Dev. 11: 2323–2334, 1997.
 127. Naya, F. J., C. M. M. Stellrecht, and M.‐J. Tsai. Tissue‐specific regulation of the insulin gene by a novel basic helix‐loop‐helix‐transcription factor. Genes Dev. 9: 1009–1019, 1995.
 128. Odagari, H., J. Wang, and M. S. German. Function of the human insulin promoter in primary cultured islet cells. J. Biol. Chem. 271: 1909–1915, 1996.
 129. Offield, M. F., T. L. Jetton, R. Stein, T. Labosky, M. Ray, M. Magnuson, B. Hogan, and C. V. E. Wright. PDX‐1 is required for development of the pancreas and differentiation of the rostral duodenum. Development 122: 938–955, 1996.
 130. Ogryzko, V. V., R. L. Schiltz, V. Russanova, B. H. Howard, and Y. Nakatani. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87: 953–959, 1996.
 131. Ohsson, H., K. Karlsson, and T. Edlund. IPF‐1, a homeodomain‐containing transactivator of the insulin gene. EMBO J. 12: 4251–4259, 1993.
 132. Ohlsson, H., S. Thor, and T. Edlund. Novel insulin promoter‐ and enhancer‐binding proteins that discriminate between pancreatic α‐ and β‐cells. Mol. Endocrinol. 5: 897–904, 1991.
 133. Olson, L. K., J. Qian, and V. Poitout. Glucose rapidly and reversibly decreases INS‐1 cell insulin gene transcription via decrements in STF‐1 and C1 activator transcription factor activity. Mol. Endocrinol. 12: 207–219, 1998.
 134. Olson, L. K., A. Sharma, C. V. E. Wright, H. C. Towle, R. P. Robertson, and R. Stein. Reduction of insulin gene transcription in HIT‐T15 β cells chronically exposed to a supraphysiological glucose concentration is associated with loss of STF‐1 transcription factor expression. Proc. Natl. Acad. Sci. U.S.A. 92: 9127–9131, 1995.
 135. Peers, B., J. Leonard, S. Sharma, G. Teitelman, and M. R. Montminy. Insulin expression in pancreatic islet cells relies on cooperative interactions between the helix loop helix factor E47 and the homeobox factor STF‐1. Mol. Endocrinol. 8: 1798–1806, 1994.
 136. Peers, B., S. Sharma, T. Johnson, M. Kamps, and M. R. Montiminy. The pancreatic islet factor STF‐1 binds cooperatively with Pbx to a regulatory element in the somatostatin promoter: importance of the FPWMK motif and of the homeodomain. Mol. Cell. Biol. 15: 7091–7097, 1995.
 137. Peshavaria, M., L. Gamer, E. Henderson, G. Teitelman, C. V. E. Wright, and R. Stein. XIHbox 8, an endoderm‐specific Xenopus homeodomain protein, is closely related to a mammalian insulin gene transcription factor. Mol. Endocrinol. 8: 806–816, 1994.
 138. Peshavaria, M., E. Henderson, A. Sharma, C. V. E. Wright, and R. Stein. Functional characterization of the transactivation properties of the PDX‐1 homeodomain protein. Mol. Cell. Biol. 17: 3987–3996, 1997.
 139. Petersen, H. V., M. Peshavaria, A. A. Pedersen, J. Philippe, R. Stein, O. Madsen, and P. Serup. Glucose stimulates the activation domain potential of the PDX‐1 homeodomain transcription factor. FEBS Lett. 431: 362–366, 1998.
 140. Petersen, H. V., P. Serup, J. Leonard, B. K. Michelsen, and O. D. Madsen. Transcriptional regulation of the human insulin gene is dependent on the homeodomain proteins STF1/IPF1 acting through the CT boxes. Proc. Natl. Acad. Sci. U.S.A. 91: 10465–10469, 1994.
 141. Peyton, M., L. Moss, and M.‐J. Tsai. Two distinct class A helix‐loop‐helix transcription factors, E2A and BETA1, form separate DNA‐binding complexes on the insulin E‐box. J. Biol. Chem. 269: 25936–25941, 1994.
 142. Peyton, M., C. M. M. Stellrecht, F. J. Naya, H.‐P. Huang, P. J. Samora, and M.‐J. Tsai. BETA3, a novel helix‐loop‐helix protein, can act as negative regulator of BETA2 and MyoD‐responsive genes. Mol. Cell. Biol. 16: 626–633, 1996.
 143. Pfaff, S. L., M. Mendelsohn, C. L. Stewart, T. Edlund, and T. M. Jessell. Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron‐dependent step in interneuron differentiation. Cell 84: 309–320, 1996.
 144. Pictet, R., and W. J. Rutter. Development of the embryonic endocrine pancreas. Endocrinology. Endocrine Pancreas, In: Handbook of Physiology. edited by D. F. Steiner and N. Freinkel. Washington D.C.: Am. Physiol. Soc, 1972, sect. 7, vol. I, p. 25–66.
 145. Poitout, V., L. K. Olson, and R. P. Robertson. Chronic exposure of betaTC‐6 cells to supraphysiologic concentrations of glucose decreases binding of the RIPE3b1 insulin gene transcription activator. J. Clin. Invest. 97: 1041–1046, 1996.
 146. Poulin, G., B. Turgeon, and J. Drouin. NeurolD1/BETA2 contributes to cell‐specific transcription of the proopiomelanocortin gene. Mol. Cell. Biol. 17: 6673–6682, 1997.
 147. Puri, P., L. V. Sartorelli, X.‐J. Yang, Y. Hamamori, V. V. Ogryzko, B. H. Howard, L. Kedes, Y. Y. Y. Wang, A. Graessmann, Y. Nakatani, and M. Levrero. Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol. Cell. 1: 35–45, 1997.
 148. Qiu, Y., A. Sharma, and R. Stein. p300 mediates transcriptional stimulation by the basic helix‐loop‐helix activators of the insulin gene. Mol. Cell. Biol. 18: 2957–2964, 1998.
 149. Rafiq, I., H. J. Kennedy, and G. A. Rutter. Glucose‐dependent translocation of insulin promoter factor‐1 (IPF‐1) between the nuclear periphery and the nucleoplasm of single MIN6 beta‐cells. J. Biol. Chem. 273: 23241–23247, 1998.
 150. Rijli, F. M., A. Gavalas, and P. Chambon. Segmentation and specification in the branchial region of the head: the role of Hox selector genes. Int. J. Dev. Biol. 42: 393–401, 1998.
 151. Ritz‐Laser, B., A. Estreicher, N. Klages, S. Aaule, and J. Phillippe. Pax‐6 and Cdx‐1/3 interact to activate glucagon gene expression on the G1 control element. J. Biol. Chem. 274: 4124–4132, 1999.
 152. Robertson, R. P., L. K. Olson, and H. J. Zhang. Differentiating glucose toxicity from glucose desensitization: a new message from the insulin gene. Diabetes 43: 1085–1089, 1994.
 153. Robinson, G. L. W. G., E. Henderson, M. E. Massari, C. Murre, and R. Stein. c‐Jun inhibits insulin control element mediated transcription by affecting the transactivation potential of the E2A gene products. Mol. Cell. Biol. 15: 1398–1404, 1995.
 154. Robinson, G. L. W. G., M. Peshavaria, E. Henderson, S.‐Y. Shieh, M.‐J. Tsai, G. Teitelman, and R. Stein. Analysis of transcription regulatory signals of the insulin gene: expression of the trans‐active factor that stimulates insulin control element mediated expression precedes insulin gene transcription. J. Biol. Chem. 269: 2452–2460, 1994.
 155. Robinson, G. W., P. F. Johnson, L. Hennighausen, and E. Sterneck. The C/EBPβ transcription factor regulates epithelial cell proliferation and differentiation in the mammary gland. Genes Dev. 12: 1907–1916, 1998.
 156. Roux, E., M. Strubin, O. Hagenbuchle, and P. K. Wellauer. The cell‐specific transcription factor PTF1 contains two different subunits that interact with the DNA. Genes Dev. 3: 1613–1624, 1989.
 157. Roztocil, T., L. Matter‐Sadzinski, C. Alliod, M. Balliver, and J. M. Matter. NeuroM., a neural helix‐loop‐helix transcription factor, defines a new transition stage in neurogenesis. Development 124: 3263–3272, 1997.
 158. Rudnick, A., T. Y. Ling, H. Odagiri, W. J. Rutter, and M. S. German. Pancreatic beta cells express a diverse set of homeobox genes. Proc. Natl. Acad. Sci. U.S.A. 91: 12203–12207, 1992.
 159. Sander, M., and M. S. German. The beta cell transcription factors and development of the pancreas. J. Mol. Med. 75: 327–340, 1997.
 160. Sander, M., S. C. Griffen, J. Huang, and M. S. German. A novel glucose‐responsive element in the human insulin gene functions uniquely in primary cultured islets. Proc. Natl. Acad. Sci. U.S.A. 95: 11572–11577, 1998.
 161. Sander, M., J. Kalamaras, and M. S. German. The homeobox gene Nkx6.1 is essential for differentiation of insulin‐producing β‐cells in the mouse pancreas [abstract]. In: Program, The Keystone Symposium on Vertebrate Development, Steamboat Springs, Colorado, April 3–8, 1998.
 162. Sander, M., A. Neubuser, J. Kalamaras, H. C. Ee, G. R. Martin, and M. S. German. Genetic analysis reveals that PAX6 is required for normal transcription of pancreatic hormone genes and islet development. Genes Dev. 11: 1662–1673, 1997.
 163. Sartorelli, V., J. Huang, Y. Hamamori, and L. Kedes. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol. Cell. Biol. 17: 1010–1026, 1997.
 164. Scott, M. P., J. W. Tamkun, and G. W. Hartzell III. The structure and function of the homeodomain. Biochim. Biophys. Acta 989: 25–48, 1989.
 165. Screpanti, I., L. Romani, P. Musiani, A. Modesti, E. Fattori, D. Lazzaro, C. Sellitto, S. Scarpa, D. Bellavia, G. Lattanzio, F. Bistoni, L. Frati, R. Cortese, A. Gulino, G. Ciliberto, F. Constantini, and V. Poli. Lymphoproliferative disorder and imbalanced T‐helper response in C/EBPβ‐deficient mice. EMBO J. 14: 1932–1941, 1995.
 166. Seagroves, T. N., S. Krnacik, B. Raught, J. Gay, B. Burgess‐Beusse, G. J. Darlington, and J. M. Rosen. C/EBPβ but not C/EBPα, is essential for ductal morphogenesis, lobuloalveolar proliferation, and functional differentiation in the mouse mammary gland. Genes Dev. 12: 1917–1928, 1998.
 167. Selden, F. S., M. J. Skoskiewicz, K. B. Howie, P. S. Russel, and H. M. Goodman. Regulation of human insulin gene expression in transgenic mice. Nature 321: 525–528, 1986.
 168. Serup, P., J. Jensen, F. G. Andersen, M. C. Jorgensen, N. Blume, J. J. Hoist, and O. D. Madsen. Induction of insulin and islet amyloid polypeptide production in pancreatic islet glucagonoma cells by insulin promoter factor 1. Proc. Natl. Acad. Sci. U.S.A. 93: 9015–9020, 1996.
 169. Serup, S., H. V. Petersen, E. E. Pedersen, H. Edlund, J. Leonard, J. S. Petersen, L. I. Larsson, and O. D. Madsen. The homeodomain protein IPF‐1/STF‐1 is expressed in a subset of islet cells and promotes rat insulin 1 gene expression dependent on an intact E1 helix‐loop‐helix factor binding site. Biochem. J. 310: 997–1003, 1995.
 170. Seufert, J., G. C. Weir, and J. F. Habener. Differential expression of the insulin gene transcriptional repressor CCAAT/enhancer‐binding protein β and the transactivator islet duodenum homeobox‐1 in rat pancreatic β cells during the development of diabetes mellitus. J. Clin. Invest. 101: 2528–2539, 1998.
 171. Shah, S. C., J. I. Malone, and N. E. Simpson. A randomized trial of intensive therapy in newly diagnosed insulin‐dependent diabetes mellitus. N. Engl. J. Med. 320: 550–554, 1989.
 172. Sharma, S., J. Leonard, H. Chapman, E. Leiter, and M. Montminy. M. 1996. Pancreatic islet restricted expression of the homeobox factor STF‐1 relies on an E‐box motif which binds USF. J. Biol. Chem. 271: 2294–2299, 1996.
 173. Sharma, A., D. Fucho‐DeMane, E. Henderson, S. Efrat, and R. Stein. The role of the ICE and RIPE3b1 activators in glucose‐stimulated transcription of the insulin gene. Mol. Endocrinol. 9: 1468–1476, 1995.
 174. Sharma, A., E. Henderson, L. Gamer, Y. Zhuang, and R. Stein. Analysis of the role of E2A‐encoded proteins in insulin gene transcription. Mol. Endocrinol. 11: 1608–1617, 1997.
 175. Sharma, A., M. Moore, E. Marcora, J. E. Lee, Y. Qiu, S. S. Samaras, and R. Stein. The NeuroD1/BETA2 sequences essential for insulin gene transcription colocalize with those necessary for neurogenesis and p300/CREB binding protein binding. Mol. Cell. Biol. 18: 704–713, 1999.
 176. Sharma, A., L. K. Olson, R. P. Robertson, and R. Stein. Inhibition of insulin gene transcription in HIT T‐15 β cells by high glucose is mediated by the RIPE3b1 and STF‐1 activators. Mol. Endocrinol. 9: 1127–1134, 1995.
 177. Sharma, A., and R. Stein. Glucose‐induced transcription of the insulin gene is mediated by factors required for β‐cell‐type‐specific expression. Mol. Cell. Biol. 14: 871–879, 1994.
 178. Sharma, S., U. S. Jhala, T. Johnson, K. Ferreri, J. Leonard, and M. Montminy. Hormonal regulation of an islet‐specific enhancer in the pancreatic homeobox gene STF‐1. Mol. Cell. Biol. 17: 2598–2604, 1997.
 179. Shi, Y., and C. Mello. A CBP/p300 homolog specifies multiple differentiation pathways in Caenorhabditis elegans. Genes Dev. 12: 943–955, 1998.
 180. Shieh, S.‐Y., M. M. Stellrecht, and M.‐J. Tsai. Molecular characterization of the rat insulin enhancer‐binding complex 3b2. J. Biol. Chem. 270: 21503–21508, 1995.
 181. Shieh, S.‐Y., and M.‐J. Tsai. Cell‐specific and ubiquitous factors are responsible for the enhancer activity of the rat insulin II gene. J. Biol. Chem. 266: 16708–16714, 1991.
 182. Shikama, N., J. Lyon, and N. B. La Thangue. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol. 7: 230–236, 1997.
 183. Slack, J. M.. Developmental biology of the pancreas. Development 121: 1569–1580, 1995.
 184. Soares, M. B., E. Schon, A. Henderson, S. K. Karathanasis, R. Cate, S. Zeitlin, J. Chirgwin, and A. Efstradiatis. RNA mediated gene duplication: the rat preproinsulin I gene is a functional retroposon. Mol. Cell. Biol. 5: 2090–2103, 1985.
 185. Sommer, L., O. Hagenbuchle, P. K. Wellauer, and M. Strubin. Nuclear targeting of the transcription factor PTF1 is mediated by a protein subunit that does not bind to the PTF1 cognate sequences. Cell 67: 987–994, 1991.
 186. Sommer, L., Q. Ma, and D. J. Anderson. Neurogenins, a novel family of atonal‐related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol. Cell. NeuroSci. 8: 221–241, 1996.
 187. Sosa‐Pineda, B., K. Chowdhury, M. Torres, G. Oliver, and P. Gruss. The Pax4 gene is essential for differentiation of insulin‐producing β cells in the mammalian pancreas. Nature 386: 399–402, 1997.
 188. Stein, R.. Factors regulating insulin gene transcription. Trends Endocrinol. Metab. 4: 96–100, 1993.
 189. Stein, Pi., M. Corrigan, P. Yaciuk, J. Whelan, and E. Moran. Analysis of E1a‐mediated growth regulation functions: binding of the 300Kda cellular product correlates with E1a enhancer repression function and DNA synthesis inducing activity. J. Virol. 64: 4421–4427, 1990.
 190. Stein, R. W., and J. Whelan. Insulin gene enhancer activity is inhibited by adenovirus 5 E1a gene products. Mol. Cell. Biol. 9: 4531–4534, 1989.
 191. Steiner, D. F., S. J. Chan, J. M. Welsh, and S. C. K. Kwok. Structure and evolution of the insulin gene. Annu. Rev. Genet. 19: 463–484, 1985.
 192. Stellrecht, M. M., F. J. DeMayo, M.‐J. Finegold, and M.‐J. Tsai. Tissue‐specific and developmental regulation of the rat insulin II gene enhancer, RIPE3, in transgenic mice. J. Biol. Chem. 270: 21503–21508, 1997.
 193. Stoffers, D. A., J. Ferrer, W. L. Clarke, and J. F. Habener. Early onset type II diabetes (MODY4) linked to IPF‐1. Nat. Genet. 17: 138–139, 1997.
 194. Stoffers, D. A., V. Stanojevic, and J. F. Habener. Insulin promoter factor‐1 gene mutation linked to early‐onset type 2 diabetes mellitus directs expression of a dominant negative isoprotein. J. Clin. Invest. 102: 232–241, 1998.
 195. Stoffers, D. A., N. T. Zinkin, V. Stanojevec, W. L. Clarke, and J. F. Habener. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat. Genet. 15: 107–110, 1997.
 196. St‐Onge, L., B. Sosa‐Pineda, K. Chowdhury, A. Mansouri, and P. Gruss. Pax6 is required for differentiation of glucagon‐producing α‐cells in mouse pancreas. Nature 387: 406–409, 1997.
 197. Sussel, L., J. Kamamaras, D. J. Hartigan‐O'Connor, J. J. Meneses, R. A. Pedersen, J. L. Rubenstein, and M. S. German. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development 125: 2213–2221, 1998.
 198. Swift, G. H., C. S. Craik, S. J. Stary, C. Quinto, R. G. Lahaie, W. J. Rutter, and R. J. MacDonald. Structure of the two related elastase genes expressed in the rat pancreas. J. Biol. Chem. 259: 14271–14278, 1984.
 199. Swift, G. H., Y. Liu, S. D. Rose, L. J. Bischof, S. Steelman, A. M. Buchberg, C. V. Wright, and R. J. MacDonald. An endocrine–exocrine switch in the activity of the pancreatic homeodomain protein PDX1 through formation of a trimeric complex with PBX1b and MRG1 (MEIS2). Mol. Cell. Biol. 18: 5109–5120, 1998.
 200. Tanaka, T., S. Akira, K. Yoshida, M. Umemoto, Y. Yoneda, N. Shirafuji, H. Fujiwara, S. Suematsu, N. Yoshida, and T. Kishimoto. Target disruption of the NF‐IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages. Cell 80: 353–361, 1995.
 201. Tapscott, S. J., R. L. Davis, M. J. Thayer, P. F. Cheng, H. Weintraub, and A. D. Lassar. MyoD: a nuclear phosphoprotein requiring a myc homology region to convert fibroblasts to myoblasts. Science 242: 405–411, 1988.
 202. Teitelman, G.. Cellular and molecular analysis of pancreatic islet cell lineages and differentiation. Recent Prog. Horm. Res. 47: 259–297, 1991.
 203. Teitelman, G., S. Alpert, J. M. Polak, A. Martinez, and D. Hanahan. Precursor cells of mouse endocrine pancreas co‐express insulin, glucagon, and the neuronal proteins tyrosine hydroxylase and neuropeptide Y, but not pancreatic polypeptide. Development 118: 1031–1039, 1993.
 204. Thor, S., J. Ericson, T. Brannstrom, and T. Edlund. The homeodomain LIM protein Isl‐1 is expressed in subsets of neurons and endocrine cells in the adult rat. Neuron 7: 881–889, 1991.
 205. Unger, R. H.. Lipotoxicity in the pathogenesis of obesity‐dependent NIDDM. Genetic and clinical implications. Diabetes 44: 863–870, 1996.
 206. Van Dijk, M., and C. Murre. Extradenticle raises the DNA binding specificity of homeotic selector proteins. Cell 78: 616–624, 1994.
 207. Villares, R., and C. J. Cabrera. The aschaete‐scute complex of D. melanogaster. conserved domains in a subset of genes required for neurogenesis and their homology to myc. Cell 50: 415–424, 1987.
 208. Waeber, G., T. Pedrazzini, O. Bonny, C. Bonny, M. Steinmann, P. Nicod, and J. ‐A. Haefliger. A 338‐bp proximal fragment of the glucose transporter type 2 (GLUT2) promoter drives reporter gene expression in pancreatic islet of transgenic mice. Mol. Cell. Endocrinol. 114: 205–215, 1995.
 209. Waeber, G., N. Thompson, P. Nicod, and C. Bonny. Transcriptional activation of the GLUT2 gene by the IPF‐1/STF‐1/IDX‐1 homeobox factor. Mol. Endocrinol. 10: 1327–1334, 1996.
 210. Wang, H., P. Maechler, K. A. Hagenfeldt, and C. B. Wollheim. Dominant‐negative suppression of HNF‐1α function results in defective insulin gene transcription and impaired metabolism–secretion coupling in a pancreatic β‐cell line. EMBO J. 17: 6701–6713, 1998.
 211. Wang, M., and D. J. Drucker. The LIM domain homeobox gene isl‐1 is a positive regulator of islet cell‐specific proglucagon gene transcription. J. Biol. Chem. 270: 12646–12652, 1995.
 212. Wang, M., and D. J. Drucker. Activation of amylin gene transcription by the LIM domain homeobox gene isl‐1. Mol. Endocrinol. 10: 243–251, 1996.
 213. Watada, H., Y. Kajimoto, H. Kaneto, T. Matsuoka, Y. Fujitani, J. Miyazaki, and Y. Yamasaki. Involvement of the homeodomain‐containing transcription factor PDX‐1 in islet amyloid polypeptide gene transcription. Biochem. Biophys. Res. Commun. 229: 746–751, 1996.
 214. Watada, H., Y. Kajimoto, J. Miyagwa, T. Hanafusa, K. Hamaguchi, T. Matsuoka, K. Yamamoto, Y. Matsuzawa, R. Kawamori, and Y. Yamasaki. PDX‐1 induces insulin and glucokinase gene expression in alphaTC1 clone 6 cells in the presence of betacellulin. Diabetes 45: 1826–1831, 1996.
 215. Weinreich, S. L., A. Meister, and W. J. Rutter. Exocrine pancreas transcription factor 1 binds to a bipartite enhancer element and activates transcription of acinar genes. Mol. Cell. Biol. 11: 4985–4997, 1991.
 216. Weintraub, H.. The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell 75: 1241–1244, 1993.
 217. Welsh, M., N. Schrerberg, R. Gilmore, and D. F. Steiner. Translational control of insulin biosynthesis. Evidence for regulation of elongation, initiation, and signal‐recognition‐particle‐mediated translational arrest by glucose. Biochem. J. 235: 13590–13594, 1986.
 218. Wessels, N. K., and J. H. Cohen. Ultrastructural studies of early morphogenesis and cytodifferentiation in the embryonic pancreas. Dev. Biol. 17: 413–446, 1968.
 219. Whelan, J., S. R. Cordle, E. Henderson, P. A. Weil, and R. Stein. Identification of a pancreatic β‐cell insulin gene transcription factor that binds to and appears to activate cell‐type‐specific expression: its possible relationship to other cellular factors that bind to a common insulin gene sequence. Mol. Cell. Biol. 10: 1564–1572, 1990.
 220. Whelan, J., D. Poon, P. A. Weil, and R. Stein. Pancreatic β‐cell‐type‐specific expression of the rat insulin II gene is controlled by positive and negative transcriptional elements. Mol. Cell. Biol. 9: 3253–3259, 1989.
 221. Withers, D. J., J. S. Gutierrez, H. Towery, D. J. Burks, J. M. Ren, S. Previs, Y. Zhang, D. Bernal, S. Pon, G. I. Shulman, S. Bonner‐Weir, and M. F. White. Disruption of IRS‐2 causes type 2 diabetes in mice. Nature 391: 900–904, 1998.
 222. Wright, C. V. E., P. Schnegelsberg, and E. M. De Robertis. XIH‐box 8: a novel Xenopus homeoprotein restricted to a narrow band of endoderm. Development 104: 787–794, 1988.
 223. Wu, K.‐L., M. Peshavaria, M. Gannon, E. Henderson, M. F. Offield, L. W. Gamer, E. Henderson, M. Ray, A. Marks, L. W. Gamer, C. V. E. Wright, and R. Stein. HNF3β is involved in pancreatic β cell‐specific transcription of the pdx‐1 gene. Mol. Cell. Biol. 17: 6002–6013, 1997.
 224. Xu, W., and L. J. Murphy. Isolation and characterization of the mouse beta 2/neuroD gene promoter. Biochem. Biophys. Res. Commun. 247: 814–818, 1998.
 225. Yamagata, K., H. Furuta, N. Oda, P. J. Kaisaki, S. Menzel, N. J. Cox, S. S. Fajans, S. Signorini, M. Stoffel, and G. I. Bell. Mutations in the hepatocyte nuclear factor‐4α gene in maturity‐onset diabetes of the young (MODY1). Nature 384: 458–460, 1996.
 226. Yamagata, K., N. Oda, P. J. Kaisaki, S. Menzel, H. Furuta, M. Vaxillaire, L. Southam, R. D. Cox, G. M. Lathrop, V. V. Boriraj, Z. Chen, N. J. Cox, Y. Oda, H. Yano, M. M. Le Beau, S. Yamada, N. Nishigori, J. Tekeda, S. S. Fajans, A. T. Hattersley, N. Iwasaki, T. Hansen, O. Pedersen, K. S. Polonsky, R. C. Turner, G. Velho, J.‐C. Chevre, P. Froguel, and G. I. Bell. Mutations in the hepatocyte nuclear factor‐1α gene in maturity‐onset diabetes of the young (MODY3). Nature 384: 455–458, 1996.
 227. Yan, W., A. Z. Young, V. C. Soares, R. Kelley, R. Benezra, and Y. Huang. High incidence of T‐cell tumors in E2A‐null and E2A/Id1 double‐knockout mice. Mol. Cell. Biol. 17: 7317–7327, 1997.
 228. Yang, X.‐J., V. V. Ogryzko, J. Nishikawa, B. H. Howard, and Y. Nalatani. A p300/CBP‐associated factor that competes with the adenoviral oncoprotein E1A. Nature 382: 319–324, 1996.
 229. Yao, T.‐P., S. P. Oh, M. Fuchs, N.‐D. Zhou, L.‐E. Ch'ng, D. Newsome, R. T. Bronson, D. M. Livingston, and R. Eckner. Gene dosage–dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93: 361–372, 1998.
 230. Yuan, W., G. Condorelli, M. Caruso, A. Felsani, and A. Giordano. Human p300 protein is a coactivator for the transcription factor MyoD. J. Biol. Chem. 271: 9009–9013, 1996.
 231. Zaret, K. S.. Molecular genetics of early liver development. Annu. Rev. Physiol. 58: 231–251, 1996.
 232. Zhuang, Y., P. Cheng, and H. Weintraub. B‐lymphocyte development is regulated by the combined dosage of three basic helix‐loop‐helix genes, E2A, E2–2, and HEB. Mol. Cell. Biol. 16: 2898–2905, 1996.
 233. Zhuang, Y., P. Soiano, and H. Weintraub. The helix‐loop‐helix gene E2A is required for B cell formation. Cell 79: 875–884, 1994.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Roland Stein. Insulin Gene Transcription: Factors Involved in Cell Type–Specific and Glucose‐Regulated Expression in Islet β Cells are Also Essential During Pancreatic Development. Compr Physiol 2011, Supplement 21: Handbook of Physiology, The Endocrine System, The Endocrine Pancreas and Regulation of Metabolism: 25-47. First published in print 2001. doi: 10.1002/cphy.cp070202