Comprehensive Physiology Wiley Online Library

Molecular Aspects of Insulin Signaling

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 The Insulin Receptor
2 Insulin Receptor Substrate 1
3 Role of Insulin Receptor Substrate 1 Sequence Polymorphisms in Humans and the Pathophysiology of Diabetes
4 Growing Family of Insulin Receptor Substrates
5 Complementary and Alternative Pathways in Insulin Signaling
6 A Polygenic Model of Non‐Insulin‐Dependent Diabetes Mellitus
7 Differential Subcellular Localization of Insulin Receptor Substrates 1 and 2
8 Insulin‐Stimulated Insulin Receptor Substrate Interactions
8.1 Src Homology‐2 Domain‐Mediated Interactions
8.2 Non‐Src Homology‐2 Domain‐Mediated Interactions
9 Serine/Threonine Protein Kinases and the Final Biological Effects of Insulin
10 Differential Regulation of Insulin Receptor Substrates 1 and 2 and Phosphatidylinositol‐3‐Kinase
11 Linking Early Steps in Insulin Action to Late Postreceptor Events
11.1 Insulin Stimulation of Glucose Transport
11.2 Coupling of Insulin Action to the Nucleus of the Cell
12 Cross‐Talk Between the Insulin‐Signaling Network and Other Hormonal Response Pathways
13 Future Perspectives
Figure 1. Figure 1.

Schematic diagram of the insulin signaling pathway. Insulin binding to the insulin receptor results in activation of receptor tyrosine kinase activity and, thus, autophosphorylation of the receptor, as well as phosphorylation of substrates of the insulin receptor (IRS) such as IRS proteins and Shc. Phosphorylation of IRS proteins results in recruitment of various signaling molecules which activate a variety of signaling pathways, including those of Ras/Raf/mitogen‐activated protein (MAP) kinase and phosphatidylinositol‐3‐kinase (PI 3‐kinase). The culmination of all of these signaling pathways results in insulin‐induced glucose uptake, protein synthesis, and cell proliferation. SOS, son of sevenless; MEK, MAP kinase kinase; SH2, Src homology‐2; GRB2, growth factor receptor‐binding protein‐2; SHP2, SH2 domain‐containing phosphotyrosine phosphatase.

Figure 2. Figure 2.

Schematic diagram of the insulin receptor. Insulin receptor α subunits are linked together and to a β subunit by disulfide bonds. The relative positions of the insulin‐binding domain, the cysteine‐rich region, the alternate exon 11, and the transmembrane‐spanning region are shown. A partial list of naturally‐occurring mutations in the insulin receptor is shown at the left. The numbering of amino acids pertains to the insulin receptor isoform that does not contain exon 11.

Figure 3. Figure 3.

Schematic diagram of insulin receptor substrate 1 (IRS‐1), highlighting its potential sites for tyrosine phosphorylation as well as proteins known to associate with it. Also included are two identified homology domains, the pleckstrin homology (PH) domain and the phosphotyrosine‐binding (PTB) domain, which are involved in interaction with the insulin receptor and potentially other molecules. PI‐3, phosphatidylinositol‐3, SHPTP2, Src homology‐2 domain‐containing phosphotyrosine phosphatase; GRB2, growth Factor receptor‐binding protein‐2; SERCA, sarco‐lendoplasmic reticular calcium ATPase.

Figure 4. Figure 4.

Schematic diagram of substrates of the insulin receptor (IRS), including the IRS family (IRS‐1, IRS‐2, IRS‐3, and IRS‐4), Grb2‐associated binder 1 (GAB‐1), and Shc. The conserved pleckstrin homology (PH) and phosphotyrosine‐binding (PTB) domains are illustrated. Note that GAB‐1 does not contain a PTB domain. Sites of interaction with various Src homology‐2 domain‐containing proteins are also indicated. GRB‐2 growth factor receptor‐binding protein‐2; PI 3‐K, phosphatidylinositol‐3‐kinase.

Figure 5. Figure 5.

Insulin binding to the insulin receptor results in tyrosine phosphorylation of insulin receptor substrate (IRS) proteins and recruitment and activation of phosphatidylinositol‐3‐kinase (PI‐3K). The catalytic 110 kd subunit of PI‐3K catalyzes the phosphorylation of phosphatidylinositol (PI), PI‐4‐P, and PI‐4,5‐P2 on the D‐3 position of the inositol ring to produce PI‐3‐P, PI‐3,4‐P2, and PI‐3,4,5‐P3. The phosphorylation of phosphatidylinositol to produce PI‐3‐P is illustrated here.

Figure 6. Figure 6.

Comparison of the various regulatory subunits of phosphatidylinositol‐3‐kinase, depicting the conserved structural domains: breakpoint cluster region (BCR) homology domain, Src homology‐2 (SH2) domains, and proline‐rich regions. p85α, AS53/p55α, and p50α are splicing variants of the same gene, whereas p55PIK/p50γ is the unique product of a different gene. The three products of the p85α gene, p85α, AS53/p55α, and p50α, undergo an alternative splicing event, which results in the insertion of nine amino acids in the inter‐SH2 domain, which encodes for two potential sites of serine phosphorylation. The serine labbeled 1 is the site of phosphorylation by the catalytic subunit of phosphatidylinositol‐3‐kinase. Phosphorylation of this residue creates a consensus sequence for phosphorylation by casein kinase II 1. Similarly, phosphorylation of this second serine results in a consensus sequence for glycogen synthase kinase‐3 2. The unique amino terminus of the AS53/p55α, p50α, and p55PIK/p50γ subunits is also depicted.

Figure 7. Figure 7.

Schematic model of insulin‐induced glucose transport. Insulin‐induced glucose uptake occurs by the specific recruitment of GLUT‐4 glucose transporters from an intracellular vesicular pool to the plasma membrane. These intracellular GLUT‐4‐containing vesicles also contain a number of accessory proteins, which play a role in the trafficking of these vesicles and are recycled following translocation of GLUT‐4 to the plasma membrane. Note that GLUT‐1 transporters are constitutively found in the plasma membrane and are not recycled in an insulin‐sensitive manner. VAMP‐2, vesicle‐associated membrane protein 2; SNARE, soluble N‐ethylmaleimide‐sensitive factor attachment protein receptor.

Figure 8. Figure 8.

Schematic model of the glucose transporter illustrating the 12 membrane‐spanning α‐helical domains. Both the amino and carboxy termini are on the intracellular side of the plasma membrane.



Figure 1.

Schematic diagram of the insulin signaling pathway. Insulin binding to the insulin receptor results in activation of receptor tyrosine kinase activity and, thus, autophosphorylation of the receptor, as well as phosphorylation of substrates of the insulin receptor (IRS) such as IRS proteins and Shc. Phosphorylation of IRS proteins results in recruitment of various signaling molecules which activate a variety of signaling pathways, including those of Ras/Raf/mitogen‐activated protein (MAP) kinase and phosphatidylinositol‐3‐kinase (PI 3‐kinase). The culmination of all of these signaling pathways results in insulin‐induced glucose uptake, protein synthesis, and cell proliferation. SOS, son of sevenless; MEK, MAP kinase kinase; SH2, Src homology‐2; GRB2, growth factor receptor‐binding protein‐2; SHP2, SH2 domain‐containing phosphotyrosine phosphatase.



Figure 2.

Schematic diagram of the insulin receptor. Insulin receptor α subunits are linked together and to a β subunit by disulfide bonds. The relative positions of the insulin‐binding domain, the cysteine‐rich region, the alternate exon 11, and the transmembrane‐spanning region are shown. A partial list of naturally‐occurring mutations in the insulin receptor is shown at the left. The numbering of amino acids pertains to the insulin receptor isoform that does not contain exon 11.



Figure 3.

Schematic diagram of insulin receptor substrate 1 (IRS‐1), highlighting its potential sites for tyrosine phosphorylation as well as proteins known to associate with it. Also included are two identified homology domains, the pleckstrin homology (PH) domain and the phosphotyrosine‐binding (PTB) domain, which are involved in interaction with the insulin receptor and potentially other molecules. PI‐3, phosphatidylinositol‐3, SHPTP2, Src homology‐2 domain‐containing phosphotyrosine phosphatase; GRB2, growth Factor receptor‐binding protein‐2; SERCA, sarco‐lendoplasmic reticular calcium ATPase.



Figure 4.

Schematic diagram of substrates of the insulin receptor (IRS), including the IRS family (IRS‐1, IRS‐2, IRS‐3, and IRS‐4), Grb2‐associated binder 1 (GAB‐1), and Shc. The conserved pleckstrin homology (PH) and phosphotyrosine‐binding (PTB) domains are illustrated. Note that GAB‐1 does not contain a PTB domain. Sites of interaction with various Src homology‐2 domain‐containing proteins are also indicated. GRB‐2 growth factor receptor‐binding protein‐2; PI 3‐K, phosphatidylinositol‐3‐kinase.



Figure 5.

Insulin binding to the insulin receptor results in tyrosine phosphorylation of insulin receptor substrate (IRS) proteins and recruitment and activation of phosphatidylinositol‐3‐kinase (PI‐3K). The catalytic 110 kd subunit of PI‐3K catalyzes the phosphorylation of phosphatidylinositol (PI), PI‐4‐P, and PI‐4,5‐P2 on the D‐3 position of the inositol ring to produce PI‐3‐P, PI‐3,4‐P2, and PI‐3,4,5‐P3. The phosphorylation of phosphatidylinositol to produce PI‐3‐P is illustrated here.



Figure 6.

Comparison of the various regulatory subunits of phosphatidylinositol‐3‐kinase, depicting the conserved structural domains: breakpoint cluster region (BCR) homology domain, Src homology‐2 (SH2) domains, and proline‐rich regions. p85α, AS53/p55α, and p50α are splicing variants of the same gene, whereas p55PIK/p50γ is the unique product of a different gene. The three products of the p85α gene, p85α, AS53/p55α, and p50α, undergo an alternative splicing event, which results in the insertion of nine amino acids in the inter‐SH2 domain, which encodes for two potential sites of serine phosphorylation. The serine labbeled 1 is the site of phosphorylation by the catalytic subunit of phosphatidylinositol‐3‐kinase. Phosphorylation of this residue creates a consensus sequence for phosphorylation by casein kinase II 1. Similarly, phosphorylation of this second serine results in a consensus sequence for glycogen synthase kinase‐3 2. The unique amino terminus of the AS53/p55α, p50α, and p55PIK/p50γ subunits is also depicted.



Figure 7.

Schematic model of insulin‐induced glucose transport. Insulin‐induced glucose uptake occurs by the specific recruitment of GLUT‐4 glucose transporters from an intracellular vesicular pool to the plasma membrane. These intracellular GLUT‐4‐containing vesicles also contain a number of accessory proteins, which play a role in the trafficking of these vesicles and are recycled following translocation of GLUT‐4 to the plasma membrane. Note that GLUT‐1 transporters are constitutively found in the plasma membrane and are not recycled in an insulin‐sensitive manner. VAMP‐2, vesicle‐associated membrane protein 2; SNARE, soluble N‐ethylmaleimide‐sensitive factor attachment protein receptor.



Figure 8.

Schematic model of the glucose transporter illustrating the 12 membrane‐spanning α‐helical domains. Both the amino and carboxy termini are on the intracellular side of the plasma membrane.

References
 1. Accili, D., J. Drago, E. J. Lee, M. D. Johnson, M. H. Cool, P. Salvatore, L. D. Asico, P. A. Jose, S. I. Taylor, and H. D. Westphal. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat. Genet. 12: 106–109, 1996.
 2. Aitken, A.. 14–3–3 proteins on the MAP. Trends Biochem. Sci. 20: 95–97, 1995.
 3. Alessi, D. R., S. R. James, C. P. Downes, A. B. Holmes, P. R. J. Gaffney, C. B. Reese, and P. Cohen. Characterization of a 3‐phosphoinositide‐dependent protein kinase which phosphorylates and activates protein kinase Ba. Curr. Biol. 7: 261–269, 1997.
 4. Algenstaedt, P., D. A. Antonetti, M. B. Yaffe, and C. R. Kahn. Insulin receptor substrate proteins create a link between the tyrosine phosphorylation cascade and the Ca++‐ATPases in muscle and heart. J. Biol. Chem. 272: 23696–23702, 1997.
 5. Almind, K., C. Bjorbaek, H. Vestergaard, T. Hansen, S. M. Echwald, and O. Pedersen. Amino acid polymorphisms of insulin receptor substrate‐1 in non‐insulin‐dependent diabetes mellitus. Lancet 342: 828–832, 1993.
 6. Amatruda, J. M., J. N. Livingston, and D. H. Lockwood. Cellular mechanisms in selected states of insulin resistance: human obesity, glucocorticoid excess and chronic renal failure. Diabetes. Metab. Rev. 3: 293–317, 1985.
 7. Araki, E., B. L. Haag III, and C. R. Kahn. Cloning of the mouse insulin receptor substrate‐1 (IRS‐1) gene and complete sequence of mouse IRS‐1. Biochim. Biophys. Acta 1221: 353–356, 1994.
 8. Araki, E., M. A. Lipes, M. E. Patti, J. C. Brüning, B. L. Haag III, R. S. Johnson, and C. R. Kahn. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS‐1 gene. Nature 372: 186–190, 1994.
 9. Araki, E., X. J. Sun, B. L. Haag III, Y. Zhang, L. M. Chuang, T. Yang‐Feng, M. F. White, and C. R. Kahn. Human skeletal muscle insulin receptor substrate‐1: characterization of the cDNA, gene and chromosomal localization. Diabetes 42: 1041–1054, 1993.
 10. Argetsinger, L. S., G. W. Hsu, M. G. Myers, Jr, N. Billestrup, M. F. White, and C. Carter‐Su. Growth hormone, interferon‐gamma, and leukemia inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate‐1. J. Biol. Chem. 270: 14685–14692, 1995.
 11. Avruch, J., X. F. Zhang, and J. M. Kyriakis. Raf meets Ras: completing the framework of a signal transduction pathway. Trends Biochem. Sci. 19: 279–284, 1994.
 12. Azpiazu, I., A. R. Saltiel, A. A. De Roach, and J. C. Lawrence, Jr.. Regulation of both glycogen synthase and PHAS‐I by insulin in rat skeletal muscle involves mitogen‐activated protein kinase‐independent and rapamycin‐sensitive pathways. J. Biol. Chem. 271: 5033–5039, 1996.
 13. Backer, J. M., C. R. Kahn, D. A. Cahill, A. Ullrich, and M. F. White. Receptor‐mediated internalization of insulin requires a 12‐amino acid sequence in the juxtamembrane region of the insulin receptor β‐subunit. J. Biol. Chem. 265: 16450–16454, 1990.
 14. Backer, J. M., M. G. Myers, Jr, S. E. Shoelson, D. J. Chin, X. J. Sun, M. Miralpeix, P. Hu, B. Margolis, E. Y. Skolnik, J. Schlessinger, and M. F. White. Phosphatidylinositol 3‐kinase is activated by association with IRS‐1 during insulin stimulation. EMBO J. 11: 3469–3479, 1992.
 15. Baker, J., J. P. Liu, E. J. Robertson, and A. Efstratiadis. Role of insulin‐like growth factors in embryonic and postnatal growth. Cell 75: 73–82, 1993.
 16. Baxter, J. D., and P. Forsham. Tissue effects of glucocorticoids. Am. J. Med. 53: 573–577, 1972.
 17. Beitner‐Johnson, D., V. A. Blakesley, Z. Shen‐Orr, M. Jimenez, B. Stannard, L. M. Wang, J. H. Pierce, and D. LeRoith. The protooncogene product c‐Crk associates with insulin receptor substrate‐1 and 4PS. J. Biol. Chem. 271: 9287–9290, 1996.
 18. Berlanga, J. J., O. Gualillo, H. Buteau, M. Applanat, P. A. Kelly, and M. Edery. Prolactin activates tyrosyl phosphorylation of insulin receptor substrate 1 and phosphatidylinositol‐3‐OH kinase. J. Biol. Chem. 272: 2050–2052, 1997.
 19. Blenis, J.. Signal transduction via the MAP kinases: proceed at your own RSK. Proc. Natl. Acad. Sci. U.S.A. 9089: 5889–5892, 1993.
 20. Bonnefoy‐Berard, N., Y. C. Liu, M. von Willebrand, A. Sung, C. Elly, T. Mustelin, H. Yoshida, K. Ishizaka, and A. Altman. Inhibition of phosphatidylinositol 3‐kinase activity by association with 14–3–3 proteins in T cells. Proc. Natl. Acad. Sci. U.S.A. 92: 10142–10146, 1995.
 21. Bradley A.. Production and analysis of chimeric mice. In: Robertson EJ. Teratocarcinomas and embryonic stem cells: A practical approach. Oxford: IRL Press, 1987: 113–151.
 22. Braselmann, S., and F. McCormick. Bcr and Raf form a complex in vivo via 14–3–3 proteins. EMBO J. 14: 4839–4848, 1995.
 23. Brown, E. J., P. A. Beal, C. T. Keith, J. Chen, T. B. Shin, and S. L. Schreiber. Control of p70 S6 kinase by kinase activity of FRAP in vivo. Nature 377: 441–446, 1995.
 24. Brown, E. J., and S. L. Schreiber. A signaling pathway to translational control. Cell 86: 517–520, 1996.
 25. Brüning, J. C., J. Winnay, S. Bonner‐Weir, S. I. Taylor, D. Accili, and C. R. Kahn. Development of a novel polygenic model of non‐insulin‐dependent diabetes mellitus in mice heterozygous for insulin receptor and IRS‐1 null alleles. Cell 88: 561–772, 1997.
 26. Bruuning, J. C., J. Winnay, B. Cheatham, and C. R. Kahn. Differential signaling by insulin receptor substrate 1 (IRS‐1) and IRS‐2 in IRS‐1‐deficient cells. Mol. Cell. Biol. 17: 1513–1521, 1997.
 27. Brunn, G. J., P. Fadden, T. A. J. Haystead, and J. C. Lawrence, Jr.. The mammalian target of rapamycin phosphorylates sites having a (Ser/Thr)‐Pro motif and is activated by antibodies to a region near its COOH terminus. J. Biol. Chem. 272: 32547–32550, 1997.
 28. Brunn, G. J., C. C. Hudson, A. Sekulic, J. M. Williams, H. Hosoi, P. J. Houghton, J. C. Lawrence, Jr., and R. T. Abraham. Phosphorylation of the translational repressor PHAS‐I by the mammalian target of rapamycin. Science 277: 99–101, 1997.
 29. Burgering, B. M., and P. J. Coffer. Protein kinase B (c‐Akt) in phosphatidylinositol‐3‐OH kinase signal transduction. Nature 376: 599–602, 1995.
 30. Cahill, G. F., Jr.. Action of adrenal cortex steroids on carbohydrate metabolism. In: The Human Adrenal Cortex, edited by N. P. Christy. New York: Harper and Row, 1971 p. 205–238.
 31. Caro, J. F., and J. M. Amatruda. Glucocorticoid‐induced insulin resistance. J. Clin. Invest. 69: 866–875, 1982.
 32. Cheatham, B., C. J. Vlahos, L. Cheatham, L. Wang, J. Blenis, and C. R. Kahn. Phosphatidylinositol 3‐kinase activation is required for insulin stimulation of pp70 S6 kinase DNA synthesis and glucose transporter translocation. Mol. Cell. Biol. 14: 4902–4911, 1994.
 33. Cheatham, B., A. Volchuk, C. R. Kahn, L. Wang, C. J. Rhodes, and A. Klip. Insulin‐stimulated translocation of GLUT4 glucose transporters requires SNARE‐complex proteins. Proc. Natl. Acad. Sci. U.S.A. 93: 15169–15173, 1996.
 34. Chin, J. E., M. Dickens, J. M. Tavare, and R. A. Roth. Over‐expression of protein kinase C isoenzymes alpha, beta I, gamma, and epsilon in cells overexpressing the insulin receptor. Effects on receptor phosphorylation and signaling. J. Biol. Chem. 268: 6338–6347, 1993.
 35. Chin, J. E., F. Liu, and R. A. Roth. Activation of protein kinase C gamma inhibits insulin‐stimulated tyrosine phosphorylation of insulin receptor substrate‐1. Mol. Endocrinol. 8: 51–58, 1994.
 36. Chou, C. K., T. J. Dull, D. S. Russell, R. Gherzi, D. E. Lebwohl, A. Ullrich, and O. M. Rosen. Human insulin receptors mutated at the ATP‐binding site lack protein tyrosine kinase activity and fail to mediate postreceptor effects of insulin. J. Biol. Chem. 262: 1842–1847, 1987.
 37. Chuang, L. M., T. Y. Tai, R. C. Kahn, H. P. Wu, S. C. Lee, and B. J. Lin. Signal transduction pathways for interleukin 4 and insulin in human hepatoma cells. J. Biochem. 120: 111–116, 1996.
 38. Chung, J., C. J. Kuo, G. R. Crabtree, and J. Blenis. Rapamycin‐FKBP specifically blocks growth‐dependent activation of and signaling by the 70 kd S6 protein kinase. Cell 69: 1227–1236, 1992.
 39. Chuthaputti, A., and H. P. Fletcher. Effect of hydrocortisone on terbutaline stimulated insulin release from isolated pancreatic islets. Res. Commun. Chem. Pathol. Pharmacol. 57: 329–341, 1987.
 40. Cobb, M., and E. J. Goldsmith. How MAP kinases are regulated. J. Biol. Chem. 270: 14843–14846, 1995.
 41. Cobb, M. H., B. C. Sang, R. Gonzalez, E. J. Goldsmith, and L. Ellis. Autophosphorylation activates the soluble cytoplasmic domain of the insulin receptor in an intermolecular reaction. J. Biol. Chem. 264: 18701–18706, 1989.
 42. Cohen, P.. Dissection of the protein phosphorylation cascades involved in insulin and growth factor action. Biochem. Soc. Trans. 21: 555–567, 1993.
 43. Cushman, S. W., and I. A. Simpson. Integral membrane protein translocations in the mechanism of insulin action. Biochem. Soc. Symp. 50: 127–149, 1985.
 44. De Fea, K., and R. A. Roth. Modulation of insulin receptor substrate‐1 tyrosine phosphorylation and function by mitogen‐activated protein kinase. J. Biol. Chem. 272: 31400–31406, 1997.
 45. Delaunay, F., A. Khan, A. Cintra, B. Davani, Z. C. Ling, A. Andersson, C. G. Ostenson, J. Gustafsson, S. Efendic, and S. Okret. Pancreatic β cells are important targets for the diabetogenic effects of glucocorticoids. J. Clin. Invest. 100: 2094–2098, 1997.
 46. Deng C, Capecchi. MR. Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol Cell Biol. 1992; 12: 3365–3371.
 47. Denton, R. M., and J. M. Tavare. Does mitogen‐activated protein kinase have a role in insulin action? The cases for and against. Eur. J. Biochem. 227: 597–611, 1995.
 48. Dimitriadis, G., B. Leighton, M. Parry‐Billings, S. Sasson, M. Young, U. Krause, S. Bevan, T. Piva, G. Wegener, and E. A. Newsholme. Effects of glucocorticoid excess on the sensitivity of glucose transport and metabolism to insulin in rat skeletal muscle. Biochem. J. 321: 707–712, 1997.
 49. Dobson, S. P., C. Livingstone, G. W. Gould, and J. M. Tavare. Dynamics of insulin‐stimulated translocation of GLUT4 in single living cells visualised using green fluorescent protein. Growth Regul. 393: 179–184, 1996.
 50. Downward, J.. Regulatory mechanisms for ras proteins. Bioessays 14: 177–184, 1992.
 51. Ebina, Y., E. Araki, M. Taira, F. Shimada, M. Mori, C. S. Craik, K. Siddle, S. B. Pierce, R. A. Roth, and W. J. Rutter. Replacement of lysine residue 1030 in the putative ATP‐binding region of the insulin receptor abolishes insulin‐and antibody‐stimulated glucose uptake and receptor kinase activity. Proc. Natl. Acad. Sci. U.S.A. 84: 704–708, 1987.
 52. Ebina, Y., L. Ellis, K. Jarnagin, M. Edery, L. Graf, E. Clauser, J. H. Ou, F. Masiar, Y. W. Kan, I. D. Goldfine, R. A. Roth, and W. J. Rutter. The human insulin receptor cDNA: the structural basis for hormone activated transmembrane signalling. Cell 40: 747–758, 1985.
 53. Eck, M. J., S. Dhe‐Paganon, T. Trub, R. T. Nolte, and S. E. Shoelson. Structure of the IRS‐1 PTB domain bound to the juxtamembrane region of the insulin receptor. Cell 85: 695–705, 1996.
 54. Escobedo, J. A., S. Navankasattusas, W. M. Kavanaugh, D. Milfay, V. A. Fried, and L. T. Williams. cDNA cloning of a novel 85 kd protein that has SH2 domains and regulates binding of PI3‐kinase to the PDGF β‐receptor. Cell 65: 75–82, 1991.
 55. Ewart, H. S., R. Somwar, and A. Klip. Dexamethasone stimulates the expression of GLUT1 and GLUT4 proteins via different signalling pathways in L6 skeletal muscle cells. Growth Regul. 425: 179–183, 1998.
 56. Exton, J. H., T. B. Miller, Jr, S. C. Harper, and C. R. Park. Carbohydrate metabolism in perfused livers of adrenalectomized and steroid‐replaced rats. Am. J. Physiol. 230: 163–170, 1976.
 57. Fantl, W. J., A. J. Muslin, A. Kikuchi, J. A. Martin, A. M. MacNicol, R. W. Gross, and L. T. Williams. Activation of Raf‐1 by 14–3–3 proteins. Nature 371: 612–614, 1994.
 58. Feener, E. P., J. M. Backer, G. L. King, P. A. Wilden, X. J. Sun, C. R. Kahn, and M. F. White. Insulin stimulates serine and tyrosine phosphorylation in the juxtamembrane region of the insulin receptor. J. Biol. Chem. 268: 11256–11264, 1993.
 59. Fei, Z. L., C. D'Ambrosio, S. Li, E. Surmacz, and R. Baserga. Association of insulin receptor substrate 1 with simian virus 40 large T antigen. Mol. Cell. Biol. 15: 4232–4239, 1995.
 60. Fischer, B., U. Rausch, P. Wollny, H. Westphal, J. Seitz, and G. Aumuller. Immunohistochemical localization of the glucocorticoid receptor in pancreatic β‐cells of the rat. Endocrinology 126: 2635–2641, 1990.
 61. Flier, J. S. Lilly. lecture: Syndromes of insulin resistance. From patient to gene and back again. Diabetes 41: 1207–1219, 1992.
 62. Folli, F., C. R. Kahn, H. Hansen, J. L. Bouchie, and E. P. Feener. Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels: a potential role for serine phosphorylation in insulin/angiotensin II “crosstalk.” J. Clin. Invest. 100: 2158–2169, 1997.
 63. Fratalli, A. L., J. L. Treadway, and J. E. Pessin. Transmembrane signaling by the human insulin receptor kinase. Relationship between intramolecular b subunit trans‐and cis‐autophosphorylation and substrate kinase activation. J. Biol. Chem. 267: 19521–19528, 1992.
 64. Freed, E., M. Symons, S. G. Macdonald, F. McCormick, and R. Ruggieri. Binding of 14–3–3 proteins to the protein kinase Raf and effects on its activation. Science 265: 1713–1716, 1994.
 65. Fruman, D. A., L. C. Cantley, and C. L. Carpenter. Structural organization and alternative splicing of the murine phosphoinositide 3‐kinase p85a gene. Genomics 37: 113–121, 1996.
 66. Fu, H., K. Xia, D. C. Palla, C. Cui, K. Conroy, R. P. Narsimhan, H. Mamon, R. J. Collier, and T. M. Roberts. Interaction of the protein kinase raf‐1 with 14–3–3 proteins. Science 266: 126–129, 1994.
 67. Garvey, W. T., T. P. Hucksteadt, and M. J. Birnbaum. Pretranslational suppression of an insulin responsive glucose transporter in rats with diabetes mellitus. Science 245: 60–63, 1992.
 68. Gingras, A. C., S. G. Kennedy, M. A. O'Leary, N. Sonenberg, and N. Hay. 4E‐BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 12: 502–513, 1998.
 69. Gremlich, S., R. Roduit, and B. Thorens. Dexamethasone induces posttranslational degradation of GLUT2 and inhibition of insulin secretion in isolated pancreatic beta cells. Comparison with the effects of fatty acids. J. Biol. Chem. 272: 3216–3222, 1997.
 70. Grill, V., and M. Rundfeldt. Abnormalities of insulin responses after ambient and previous exposure to glucose in streptozotocin‐diabetic and dexamethasone‐treated rats. Role of hyperglycemia and increased B‐cell demands. Diabetes 35: 44–51, 1986.
 71. Gustavsson, J., S. Parpal, and P. Stralfors. Insulin‐stimulated glucose uptake involves the transition of glucose transporters to a caveolae‐rich fraction within the plasma membrane: implications for type II diabetes. Mol. Med. 2: 367–372, 1996.
 72. Hall, M. N.. The TOR signalling pathway and growth control in yeast. Biochem. Soc. Trans. 24: 234–239, 1996.
 73. Heffetz, D., and Y. Zick. Receptor aggregation is necessary for activation of the soluble insulin receptor kinase. J. Biol. Chem. 261: 889–894, 1986.
 74. Heller‐Harrison, R. A., M. Morin, A. Guilherme, and M. P. Czech. Insulin‐mediated targeting of phosphatidylinositol 3‐kinase to GLUT4‐containing vesicles. J. Biol. Chem. 271: 10200–10204, 1996.
 75. Herbst, R., P. M. Carroll, J. D. Allard, J. Schilling, T. Raabe, and M. A. Simon. Daughter of sevenless is a substrate of the phosphotyrosine phosphatase corkscrew and functions during sevenless signaling. Cell 85: 899–909, 1996.
 76. Heyworth, P. G., B. P. Bohl, G. M. Bokoch, and J. T. Curnutte. Rac translocates independently of the neutrophil NADPH oxidase components p47phox and p67phox J. Biol. Chem. 269: 30749–30752, 1994.
 77. Hoekstra, M. F.. Responses to DNA damage and regulation of cell cycle checkpoints by the ATM protein kinase family. Curr. Opin. Genet. Dev. 7: 170–175, 1997.
 78. Holcomb, B., P. Hsieh, J. P. Hoeffler, and B. Draznin. Insulin inhibits nuclear phosphatase pp‐2a to promote phosphorylation of the transcription factors ATF‐1 and CREB. Clin. Res. 41: 210A 1993.
 79. Holgado‐Madruga, M., D. R. Emlet, D. K. Moscatello, A. K. Godwin, and A. J. Wong. A Grb2‐associated docking protein in EGF‐and insulin‐receptor signalling. Nature 379: 560–563, 1996.
 80. Holman, G. D., L. L. Leggio, and S. W. Cushman. Insulin‐stimulated GLUT4 glucose transporter recycling: a problem in membrane protein subcellular trafficking through multiple pools. J. Biol. Chem. 269: 17516–17524, 1994.
 81. Hotamisligil, G. S., P. Peraldi, A. Budvari, R. W. Ellis, M. F. White, and B. M. Spiegelman. IRS‐1 mediated inhibition of insulin receptor tyrosine kinase activity in TNF‐α‐and obesity‐induced insulin resistance. Science 271: 665–668, 1996.
 82. Hresko, R. C., R. D. Hoffman, J. R. Flores‐Riveros, and M. D. Lane. Insulin receptor tyrosine kinase‐catalyzed phosphorylation of 422(aP2) protein. J. Biol. Chem. 265: 21075–21085, 1990.
 83. Hubbard, S. R.. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16: 5572–5581, 1997.
 84. Inoue, G., B. Cheatham, R. Emkey, and C. R. Kahn. Dynamics of insulin signaling in 3T3‐L1 adipocytes: differential compartmentalization and trafficking of IRS‐1 and IRS‐2. J. Biol. Chem. (in press), 1998.
 85. Inoue, G., B. Cheatham, and C. R. Kahn. Differential subcellular signaling by IRS‐1 and IRS‐2 [Abstract]. Diabetes 46: 1997.
 86. Inukai, K., M. Funaki, T. Ogihara, H. Katagiri, A. Kanda, M. Anai, Y. Fukushima, T. Hosaka, M. Suzuki, B. C. Shin, K. Takata, Y. Yazaki, M. Kikuchi, Y. Oka, and T. Asano. p85a gene generates three isoforms of regulatory subunit for phosphatidylinositol 3‐kinase (PI 3‐kinase), p50a, p55a, and p85a, with different PI 3‐kinase activity elevating responses to insulin. J. Biol. Chem. 272: 7873–7882, 1997.
 87. Irie, K., Y. Gotoh, B. M. Yashar, B. Errede, E. Nishida, and K. Matsumoto. Stimulatory effects of yeast and mammalian 14–3–3 proteins on the Raf protein kinase. Science 265: 1716–1719, 1994.
 88. James, D. E., R. Brown, J. Navarro, and P. F. Pilch. Insulin regulatable tissues express a unique insulin‐sensitive glucose transport protein. Nature 333: 183–185, 1988.
 89. Jarrett, L., F. Kieche, L. Macaulay, J. Parker, and K. Kelley. Molecular Basis of Insulin Action, edited by M. P. Czech. New York: Plenum, 1985 p. 183–198.
 90. Jhun, B. H., J. L. Meinkoth, J. W. Leitner, B. Draznin, and J. M. Olefsky. Insulin and insulin‐like growth factor‐I signal transduction requires p21ras. J. Biol. Chem. 269: 5699–5704, 1994.
 91. Johnson, R. S., B. M. Spiegelman, and V. Papaioannou. Pleiotropic effects of null mutation in the c‐fos proto‐oncogene. Cell 71: 1–20, 1992.
 92. Joyner, A. L.. Gene Targeting: A Practical Approach. Oxford: Oxford University Press, 1993.
 93. Kaburagi, Y., K. Momomura, R. Yamamoto‐Honda, K. Tobe, Y. Tamori, H. Sakura, Y. Akanuma, Y. Yazaki, and T. Kadowaki. Site‐directed mutagenesis of the juxtamembrane domain of the human insulin receptor. J. Biol. Chem. 268: 16610–16622, 1993.
 94. Kadowaki, T., H. Tamemoto, K. Tobe, Y. Terauchi, K. Ueki, Y. Kaburagi, T. Yamauchi, S. Satoh, H. Sekihara, S. Aizawa, and Y. Yazaki. Insulin resistance and growth retardation in mice lacking insulin receptor substrate‐1 and identification of insulin receptor substrate‐2. Diabet. Med. 13: S103–S108, 1996.
 95. Kahn, C. R., K. L. Baird, D. B. Jarett, and J. S. Flier. Direct demonstration that receptor cross‐linking or aggregation is important in insulin action. Proc. Natl. Acad. Sci. U.S.A. 75: 4209–4213, 1976.
 96. Kapeller, R., K. S. Chem, M. Yoakim, B. S. Schaffhausen, J. M. Backer, M. F. White, L. C. Cantley, and N. B. Ruderman. Mutations in the juxtamembrane region of the insulin receptor impair activation of phosphatidylinositol 3‐kinase by insulin. Mol. Endocrinol. 5: 769–777, 1991.
 97. Kasuga, M., F. A. Karlsson, and C. R. Kahn. Insulin stimulates the phosphorylation of the 95,000‐dalton subunit of its own receptor. Science 215: 185–187, 1982.
 98. Kerouz, N. J., D. Horsch, S. Pons, and C. R. Kahn. Differential regulation of insulin receptor substrates‐1 and‐2 (IRS‐1 and IRS‐2) and phosphatidylinositol 3‐kinase isoforms in liver and muscle of the obese diabetic (ob/ob) mouse. J. Clin. Invest. 100: 3164–3172, 1997.
 99. Khan, A., C. G. Ostenson, P. O. Berggren, and S. Efendic. Glucocorticoid increases glucose cycling and inhibits insulin release in pancreatic islets of ob/ob mice. Am. J. Physiol. 263 (Endocrinol. Metab. 26): E663–E666, 1992.
 100. Kim, S. J., and C. R. Kahn. Insulin stimulates phosphorylation of c‐Jun, c‐Fos, and Fos‐related proteins in cultured adipocytes. J. Biochem. 269): 11887–11892, 1994.
 101. Kim, S. J., and C. R. Kahn. Insulin regulation of mitogen‐activated protein kinase kinase (MEK), mitogen‐activated protein kinase and casein kinases in the cell nucleus: a possible role in regulation of gene expression. Biochem. J. 323: 621–627, 1997.
 102. Klip, A., T. Ramlal, D. A. Young, and J. O. Holloszy. Insulin‐induced translocation of glucose transporters in rat hindlimb muscles. Growth Regul. 224: 224–230, 1987.
 103. Kohn, A. D., S. A. Summers, M. J. Birnbaum, and R. A. Roth. Expression of a constitutively active Akt Ser/Thr kinase in 3T3‐L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J. Biol. Chem. 271: 31372–31378, 1996.
 104. Korn, L. J., C. W. Siebel, F. McCormick, and R. A. Roth. Ras p21 as a potential mediator of insulin action in Xenopus oocytes. Science 236: 840–843, 1987.
 105. Kosaki, A., K. Yamada, J. Suga, A. Otaka, and H. Kuzuya. 14–3–3 beta protein associates with insulin receptor substrate 1 and decreases insulin‐stimulated phosphatidylinositol 3'‐kinase activity in 3T3L1 adipocytes. J. Biol. Chem. 273: 940–944, 1998.
 106. Kublaoui, B., J. Lee, and P. F. Pilch. Dynamics of signaling during insulin‐stimulated endocytosis of its receptor in adipocytes. J. Biol. Chem. 270: 59–65, 1995.
 107. Lambillotte, C., P. Gilon, and J. C. Henquin. Direct glucocorticoid inhibition of insulin secretion. An in vitro study of dexamethasone effects in mouse islets. J. Clin. Invest. 99: 414–423, 1997.
 108. Lavan, B. E., V. R. Fantin, E. T. Chang, W. S. Lane, S. R. Keller, and G. E. Lienhard. A novel 160‐kDa phosphotyrosine protein in insulin‐treated embryonic kidney cells is a new member of the insulin receptor substrate family. J. Biol. Chem. 272: 21403–21407, 1997.
 109. Lavan, B. E., W. S. Lane, and G. E. Lienhard. The 60‐k Daphosphotyrosine protein in insulin‐treated adipocytes is a new member of the insulin receptor substrate family. J. Biol. Chem. 272: 11439–11443, 1997.
 110. Lazar, D. F., R. J. Wiese, M. J. Brady, C. C. Mastick, S. B. Waters, K. Yamauchi, J. E. Pessin, P. Cuatrecasas, and A. R. Saltiel. Mitogen‐activated protein kinase kinase inhibition does not block the stimulation of glucose utilization by insulin. J. Biol. Chem. 270: 20801–20807, 1995.
 111. Lee, C. H., W. Li, R. Nishimura, M. Zhou, A. G. Batzer, M. G. Myers, Jr, M. F. White, J. Schlessinger, and E. Y. Skolnik. Nck associates with the SH2 domain docking proteins IRS‐1 in insulin stimulated cells. Proc. Natl. Acad. Sci. U.S.A. 90: 11713–11717, 1993.
 112. Lee, J., T. O'Hare, P. F. Pilch, and S. E. Shoelson. Insulin receptor autophosphorylation occurs asymmetrically. J. Biol. Chem. 268: 4092–4098, 1993.
 113. Leventhal, P. S., E. A. Shelden, B. Kim, and E. L. Feldman. Tyrosine phosphorylation of paxillin and focal adhesion kinase during insulin‐like growth factor‐1‐stimulated lemellipodial advance. J. Biol. Chem. 272: 5214–5218, 1997.
 114. Lewis, R. E., L. Cao, D. Perregaux, and M. P. Czech. Threonine 1336 of the human insulin receptor is a major target for phosphorylation by protein kinase C. Biochemistry 29: 1807–1813, 1990.
 115. Lewis, R. E., G. P. Wu, R. G. MacDonald, and M. P. Czech. Insulin‐sensitive phosphorylation of serine 1293/1294 on the human insulin receptor by a tightly associated serine kinase. J. Biol. Chem. 265: 947–954, 1990.
 116. Li, S., P. Janosch, M. Tanji, G. C. Rosenfeld, J. C. Waymire, H. Mischak, W. Kolch, and J. M. Sedivy. Regulation of Raf‐1 kinase activity by the 14–3–3 family of proteins. EMBO J. 14: 685–696, 1995.
 117. Maegawa, H., D. A. McClain, G. Freidneberg, J. M. Olefsky, M. Napier, T. Lipari, T. J. Dull, J. Lee, and A. Ullrich. Properties of a human insulin receptor with a COOH‐terminal truncation. II. Truncated receptors have normal kinase activity but are defective in signaling metabolic effects. J. Biol. Chem. 263: 8912–8917, 1988.
 118. Malaisse, W. J., F. Malaisse‐Lagae, E. F. McCraw, and P. H. Wright. Insulin secretion in vitro by pancreatic tissue from normal, adrenalectomized, and cortisol‐treated rats. Proc. Soc. Exp. Biol. Med. 124: 924–928, 1967.
 119. Margolis, R. N., M. J. Schell, S. I. Taylor, and A. L. Hubbard. Hepatocyte plasma membrane ecto‐ATPase (pp120/HA4) is a substrate for tyrosine kinase activity of the insulin receptor. Biochem. Biophys. Res. Commun. 166: 562–566, 1990.
 120. Martin, L. B., A. Shewan, C. A. Millar, G. W. Gould, and D. E. James. Vesicle‐associated membrane protein 2 plays a specific role in the insulin‐dependent trafficking of the facilitative glucose transporter GLUT4 in 3T3‐L1 adipocytes. J. Biol. Chem. 273: 1444–1452, 1998.
 121. Martin, S., J. Tellam, C. Livingstone, J. W. Slot, G. W. Gould, and D. E. James. The glucose transporter (GLUT‐4) and vesicle‐associated membrane protein‐2 (VAMP‐2) are segregated from recycling endosomes in insulin‐sensitive cells. J. Cell Biol. 134: 625–635, 1996.
 122. Massague, J., P. F. Pilch, and M. P. Czech. Electrophoretic resolution of three major insulin receptor structures with unique subunit stoichiometries. Proc. Natl. Acad. Sci. U.S.A. 77: 7137–7141, 1981.
 123. Matthes, H., A. Kaiser, U. Stier, E. O. Riecken, and S. Rosewicz. Glucocorticoid receptor gene expression in the exocrine and endocrine rat pancreas. Endocrinology 135: 476–479, 1994.
 124. Mayer, B. J., R. Ren, C. K. Clark, and D. Baltimore. A putative modular domain present in diverse signaling molecules. Cell 73: 629–630, 1993.
 125. Michaud, N. R., J. R. Fabian, K. D. Mathes, and D. K. Morrison. 14–3–3 is not essential for raf‐1 function: identification of raf‐1 proteins that are biologically activated in a 14–3–3‐ and ras‐independent manner. Mol. Cell. Biol. 15: 3390–3397, 1995.
 126. Moser, B. A., P. B. Dennis, N. Pullen, R. B. Pearson, N. A. Williamson, R. E. Wettenhall, S. C. Kozma, and G. Thomas. Dual requirement for a newly identified phosphorylation site in p70s6k. Mol. Cell. Biol. 17: 5648–5655, 1997.
 127. Mothe, I., and E. Van Obberghen. Phosphorylation of insulin receptor substrate‐1 on multiple serine residues, 612, 662, and 731, modulates insulin action. J. Biol. Chem. 271: 11222–11227, 1996.
 128. Myers, M. G., Jr., J. M. Backer, X. J. Sun, S. E. Shoelson, P. Hu, J. Schlessinger, M. Yoakim, B. Schaffhausen, and M. F. White. IRS‐1 activates the phosphatidylinositol 3'‐kinase by associating with the src homology 2 domains of p85. Proc. Natl. Acad. Sci. U.S.A. 89: 10350–10354, 1992.
 129. Noguchi, T., T. Matozaki, K. Horita, Y. Fujioka, and M. Kasuga. Role of SH‐PTP2, a protein‐tyrosine phosphatase with Src homology 2 domains, in insulin‐stimulated ras activation. Mol. Cell. Biol. 14: 6674–6682, 1994.
 130. O'Brien, R. M., and D. K. Granner. PEPCK gene as model of inhibitory effects of insulin on gene expression. Diabetes Care 13: 327–339, 1990.
 131. O'Brien, R. M., and D. K. Granner. Regulation of gene expression by insulin. Physiol. Rev. 76: 1109–1161, 1996.
 132. O'Brien, T. D., P. Westermark, and K. H. Johnson. Islet amyloid polypeptide and insulin secretion from isolated perfused pancreas of fed, fasted, glucose‐treated, and dexamethasone‐treated rats. Diabetes 40: 1701–1706, 1991.
 133. Oemar, B. S., N. M. Law, and S. A. Rosenzweig. Insulin‐like growth factor‐1 induces tyrosyl phosphorylation of nuclear proteins. J. Biol. Chem. 266: 24241–24244, 1991.
 134. Ogawa, A., J. H. Johnson, M. Ohneda, C. T. McAllister, L. Inman, T. Alam, and R. H. Unger. Roles of insulin resistance and β‐cell dysfunction in dexamethasone‐induced diabetes. J. Clin. Invest. 90: 497–504, 1992.
 135. Ogihara, T., T. Isobe, T. Ichimura, M. Taoka, M. Funaki, H. Sakoda, Y. Onishi, K. Inukai, M. Anai, Y. Fukushima, M. Kikuchi, Y. Yazaki, Y. Oka, and T. Asano. 14–3–3 protein binds to insulin receptor substrate‐1, one of the binding sites of which is in the phosphotyrosine binding domain. J. Biol. Chem. 272: 25267–25274, 1997.
 136. Olefsky, J. M.. Effect of dexamethasone on insulin binding, glucose transport and glucose oxidation of isolated rat adipocytes. J. Clin. Invest. 56: 1499–1508, 1975.
 137. Pallas, D. C., H. Fu, L. C. Haehnel, W. Weller, R. J. Collier, and T. M. Roberts. Association of polyomavirus middle tumor antigen with 14–3–3 proteins. Science 265: 535–537, 1994.
 138. Patti, M. E., X. J. Sun, J. C. Bruning, E. Araki, M. A. Lipes, M. F. White, and C. R. Kahn. 4PS/IRS‐2 is the alternative substrate of the insulin receptor in IRS‐1 deficient mice. J. Biol. Chem. 270: 24670–24673, 1995.
 139. Pawson, T.. Protein modules and signalling networks. Nature 373: 573–580, 1995.
 140. Paz, K., R. Hemi, D. LeRoith, A. Karasik, E. Elhanany, H. Kanety, and Y. Zick. A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS‐1 and IRS‐2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin‐induced tyrosine phosphorylation. J. Biol. Chem. 272: 29911–29918, 1997.
 141. Pedersen, O., C. R. Kahn, J. S. Flier, and B. B. Kahn. High fat feeding causes insulin resistance and marked decrease in the expression of glucose transporters (GLUT4) in fat cells of rats. Endocrinology 129: 771–777, 1991.
 142. Peraldi, P., G. S. Hotamisligil, W. A. Buurman, M. F. White, and B. M. Spiegelman. Tumor necrosis factor (TNF)‐α inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase. J. Biol. Chem. 271: 13018–13022, 1996.
 143. Pons, S., T. Asano, E. M. Glasheen, M. Miralpeix, Y. Zhang, T. L. Fisher, M. G. Myers, Jr., X. J. Sun, and M. F. White. The structure and function of p55PIK reveals a new regulatory subunit for the phosphatidylinositol‐3 kinase. Mol. Cell. Biol. 15: 4453–4465, 1995.
 144. Price, D. J., J. R. Grove, V. Calvo, J. Avruch, and B. E. Bierer. Rapamycin‐induced inhibition of the 70 kilodalton S6 protein kinase. Science 257: 973–977, 1992.
 145. Pronk, G. J., J. McGlade, G. Pelicci, T. Pawson, and J. L. Bos. Insulin‐induced phosphorylation of the 46‐and 52‐kDa Shc proteins. J. Biol. Chem. 268: 5748–5753, 1993.
 146. Reif, K., B. M. Burgering, and D. A. Cantrell. Phosphatidylinositol 3‐kinase links the interleukin‐2 receptor to protein kinase B and p70 S6 kinase. J. Biol. Chem. 272: 14426–14433, 1997.
 147. Reuther, G. W., H. Fu, L. D. Cripe, R. J. Collier, and A. M. Pendergast. Association of the protein kinases c‐Bcr and Bcr‐Abl with proteins of the 14–3–3 family. Science 266: 129–133, 1994.
 148. Rothenberg, P. L., W. S. Lane, A. Karasik, J. M. Backer, M. White, and C. R. Kahn. Purification and partial sequence analysis of pp185, the major cellular substrate of the insulin receptor tyrosine kinase. J. Biol. Chem. 266: 8302–8311, 1991.
 149. Ruderman, N., R. Kapeller, M. F. White, and L. C. Cantley. Activation of phosphatidylinositol‐3‐kinase by insulin. Proc. Natl. Acad. Sci. U.S.A. 87: 1411–1415, 1990.
 150. Saad, M. J. A., F. Folli, J. A. Kahn, and C. R. Kahn. Modulation of insulin receptor, insulin receptor substrate‐1, and phosphatidylinositol 3‐kinase in liver and muscle of dexamethasone‐treated rats. J. Clin. Invest. 92: 2065–2072, 1993.
 151. Schlessinger, J., and A. Ullrich. Growth factor signaling by receptor tyrosine kinases. Neuron 9: 383–391, 1992.
 152. Sciacchitano, S., and S. I. Taylor. Cloning, tissue expression, and chromosomal localization of the mouse IRS‐3 gene. Endocrinology 138: 4931–4940, 1997.
 153. Seino, S., M. Sieno, and G. I. Bell. Human insulin‐receptor gene. Diabetes 39: 129–133, 1990.
 154. Shiba, T., K. Tobe, O. Koshio. Concanavalin A‐induced receptor aggregation stimulates the tyrosine kinase activity of the insulin receptor in intact cells. Biochem. J. 267: 787–794, 1990.
 155. Shoelson, S. E., S. Chatterjee, M. Chaudhuri, and M. F. White. YMXM motifs of IRS‐1 define the substrate specificity of the insulin receptor kinase. Proc. Natl. Acad. Sci. U.S.A. 89: 2027–2031, 1992.
 156. Shoelson, S. E., M. F. White, and C. R. Kahn. Tryptic activation of the insulin receptor: proteolytic truncation of the b‐subunit releases the b‐subunit from inhibitory control. J. Biol. Chem. 263: 4852–4860, 1988.
 157. Skolnik, E. Y., B. Margolis, M. Mohammadi, E. J. Lowenstein, R. Fischer, A. Drepps, A. Ullrich, and J. Schlessinger. Cloning of PI3 kinase‐associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 65: 83–90, 1991.
 158. Smith‐Hall, J., S. Pons, M. E. Patti, D. J. Burks, L. Yenush, X. J. Sun, C. R. Kahn, and M. F. White. The 60‐kDa insulin receptor substrate functions like an IRS‐protein (pp60IRS3 in adipose cells. Biochemistry 36: 8304–8310, 1997.
 159. Soriano, P., C. Montgomery, R. Geske, and A. Bradley. Targeted disruption of the c‐src proto‐oncogene leads to osteopetrosis in mice. Cell 64: 693–702, 1991.
 160. Stagsted, J., S. Ziebe, S. Satoh, G. D. Holman, S. W. Cushman, and L. Olsson. Insulinomimetic effect on glucose transport by epidermal growth factor when combined with a major histocompatibility complex class I‐derived peptide. J. Biol. Chem. 268: 1770–1774, 1993.
 161. Stokoe, D., L. R. Stephens, T. Copeland, P. R. Gaffney, C. B. Reese, G. F. Painter, A. B. Holmes, F. McCormick, and P. T. Hawkins. Dual role of phosphatidylinositol‐3,4,5‐triphosphate in the activation of protein kinase B. Science 277: 567–570, 1997.
 162. Sun, X. J., D. L. Crimmins, M. G. Myers, Jr, M. Miralpeix, and M. F. White. Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS‐1. Mol. Cell. Biol. 13: 7418–7428, 1993.
 163. Sun, X. J., M. Miralpeix, M. G. Myers, Jr, E. M. Glasheen, J. M. Backer, C. R. Kahn, and M. F. White. The expression and function of IRS‐1 in insulin signal transmission. J. Biol. Chem. 267: 22662–22672, 1992.
 164. Sun, X. J., P. L. Rothenberg, C. R. Kahn, J. M. Backer, E. Araki, P. A. Wilden, D. A. Cahill, B. J. Goldstein, and M. F. White. The structure of the insulin receptor substrate IRS‐1 defines a unique signal transduction protein. Nature 352: 73–77, 1991.
 165. Sun, X. J., L. M. Wang, Y. Zhang, L. Yenush, M. G. Myers, Jr, E. M. Glasheen, W. S. Lane, J. H. Pierce, and M. F. White. Role of IRS‐2 in insulin and cytokine signalling. Nature 377: 173–177, 1995.
 166. Tanti, J. F., T. Gremeaux, E. Van Obberghen, and Y. Le Marchand‐Brustel. Serine/threonine phosphorylation of insulin receptor substrate 1 modulates insulin receptor signaling. J. Biol. Chem. 269: 6051–6057, 1994.
 167. Tavare, J. M., and R. M. Denton. Studies on the autophosphorylation of the insulin receptor from human placenta. Biochem. J. 252: 607–615, 1988.
 168. Tavare, J. M., R. M. O'Brien, K. Siddle, and R. M. Denton. Analysis of insulin receptor phosphorylation sites in intact cells by two‐dimensional phosphopeptide mapping. Biochem. J. 253: 783–788, 1988.
 169. Tavare, J. M., and K. Siddle. Mutational analysis of insulin receptor function: consensus and controversy. Biochim. Biophys. Acta 1178: 21–39, 1993.
 170. Taylor, S. I., A. Cama, D. Accili. Mutations in the insulin receptor gene. Endocr. Rev. 3: 566–595, 1992.
 171. Terauchi, Y., H. Sakura, K. Yasuda, K. Iwamoto, N. Takahashi, K. Ito, H. Kasai, H. Suzuki, O. Ueda, N. Kamada, K. Jishage, K. Komeda, M. Noda, Y. Kanazawa, S. Taniguchi, I. Miwa, Y. Akanuma, T. Kodama, Y. Yazaki, and T. Kadowaki. Pancreatic β‐cell‐specific targeted disruption of glucokinase gene. J. Biol. Chem. 270: 30253–30256, 1995.
 172. Terauchi, Y., S. Satoh, H. Minoura. Hypoglycemia due to increased glucose transport in peripheral tissues in mice lacking p85a PI 3‐kinase. Diabetes 46 (Suppl. 1): 207A, 1997.
 173. Timmers, K. I., A. E. Clark, M. Omatsu‐Kanbe, S. W. Whiteheart, M. K. Bennett, G. D. Holman, and S. W. Cushman. Identification of SNAP receptors in rat adipose cell membrane fractions and in SNARE complexes co‐immunoprecipitated with epitope‐tagged N‐ethylmaleimide‐sensitive fusion protein. Biochem. J. 320: 429–436, 1996.
 174. Tornqvist, H. E., and J. Avruch. Relationship of site‐specific tyrosine autophosphorylation to insulin activation of the insulin receptor (tyrosine) protein kinase activity. J. Biol. Chem. 263: 4593–4601, 1988.
 175. Tranisijevik, M., M. G. Myers, Jr, R. S. Thoma, D. Crimmons, M. F. White, and D. Sacks. Phosphorylation of the insulin receptor substrate IRS‐1 by casein kinase II. J. Biol. Chem. 268: 18157–18166, 1993.
 176. Ueki, K., R. Yamamoto‐Honda, Y. Kaburagi, T. Yamauchi, K. Tobe, B. M. Burgering, P. J. Coffer, I. Komuro, Y. Akanuma, Y. Yazaki, and T. Kadowaki. Potential role of protein kinase B in insulin‐induced glucose transport, glycogen synthesis, and protein synthesis. J. Biol. Chem. 273: 5315–5322, 1998.
 177. Ullrich, A., J. R. Bell, E. Y. Chen, R. Herrera, L. M. Petruzzelli, T. J. Dull, A. Gray, L. Coussens, Y. C. Liao, M. Tsubokawa, A. Mason, P. H. Seeburg, C. Grunfeld, O. M. Rosen, and J. Ramachandran. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313: 756–761, 1985.
 178. Ura, S., E. Araki, H. Kishikawa, T. Shirotani, M. Todaka, S. Isami, S. Shimoda, R. Yoshimura, K. Matsuda, S. Motoyoshi, N. Miyamura, C. R. Kahn, and M. Shichiri. Molecular scanning of the IRS‐1 gene in Japanese patients with non‐insulin‐dependent diabetes mellitus: identification of five novel mutations in IRS‐1 gene. Diabetologia 39: 600–608, 1996.
 179. Velloso, L. A., F. Folli, X. J. Sun, M. F. White, M. J. A. Saad, and C. R. Kahn. Cross‐talk between the insulin and angiotensin signaling system. Proc. Natl. Acad. Sci. U.S.A. 93: 12490–12495, 1996.
 180. von Manteuffel, S. R., P. B. Dennis, N. Pullen, A. C. Gingras, N. Sonenberg, and G. Thomas. The insulin‐induced signalling pathway leading to S6 and initiation factor 4E binding protein 1 phosphorylation bifurcates at a rapamycin‐sensitive point immediately upstream of p70s6k. Mol. Cell. Biol. 17: 5426–5436, 1997.
 181. Weinstein, S. P., C. M. Wilson, A. Pritsker, and S. W. Cushman. Dexamethasone inhibits insulin‐stimulated recruitment of GLUT4 to the cell surface in rat skeletal muscle. Metabolism 47: 3–6, 1998.
 182. White, M. F., J. N. Livingston, J. M. Backer, V. Lauris, T. J. Dull, A. Ullrich, and C. R. Kahn. Mutation of the insulin receptor at tyrosine 960 inhibits signal transmission but does not affect its tyrosine kinase activity. Cell 54: 641–649, 1988.
 183. White, M. F., R. Maron, and C. R. Kahn. Insulin rapidly stimulates tyrosine phosphorylation of a Mr 185,000 protein in intact cells. Nature 318: 183–186, 1985.
 184. White, M. F., S. E. Shoelson, H. Keutmann, and C. R. Kahn. A cascade of tyrosine autophosphorylation in the b‐subunit activates the insulin receptor. J. Biol. Chem. 263: 2969–2980, 1988.
 185. White, M. F., E. W. Stegmann, T. J. Dull, A. Ullrich, and C. R. Kahn. Characterization of an endogenous substrate of the insulin receptor in cultured cells. J. Biol. Chem. 262: 9769–9777, 1987.
 186. Whitman, M., C. P. Downes, M. Keeler, T. Keller, and L. C. Cantley. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol‐3‐phosphate. Nature 332: 644–646, 1988.
 187. Wilden, P. A., K. Siddle, E. Haring, J. M. Backer, M. F. White, and C. R. Kahn. The role of insulin receptor kinase domain autophosphorylation in receptor‐mediated activities. J. Biol. Chem. 267: 13719–13727, 1992.
 188. Withers, D. J., J. C. Sanchez‐Gutierrez, H. Towery, J. M. Ren, D. J. Burks, S. Previs, Y. Zhang, D. Bernal, S. Pons, G. I. Shulman, S. Bonner‐Weir, and M. F. White. Disruption of IRS‐2 causes type 2 diabetes in mice. Nature 391: 900–903, 1998.
 189. Yamamori, B., S. Kuroda, K. Shimizu, K. Fukui, T. Ohtsuka, and Y. Takai. Purification of a ras‐dependent mitogen‐activated protein kinase kinase kinase from bovine brain cytosol and its identification as a complex of B‐raf and 14–3–3 proteins. J. Biol. Chem. 270: 11723–11726, 1995.
 190. Yamanashi, Y., and D. Baltimore. Identification of the Abl‐and rasGAP‐associated 62 kDa protein as a docking protein, Dok. Cell 88: 205–211, 1997.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Renee Emkey, C. Ronald Kahn. Molecular Aspects of Insulin Signaling. Compr Physiol 2011, Supplement 21: Handbook of Physiology, The Endocrine System, The Endocrine Pancreas and Regulation of Metabolism: 413-433. First published in print 2001. doi: 10.1002/cphy.cp070212