Comprehensive Physiology Wiley Online Library

Insulin and Protein Metabolism

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Molecular Basis of Insulin Action on Protein Metabolism
1.1 Protein Synthesis
1.2 Protein Breakdown
1.3 Transmembrane Amino Acid Transport
2 Physiological Effects of Insulin at the Whole‐Body Level
3 Effects of Insulin on Muscle Tissue
4 Physiological Effects of Insulin on Other Tissues
4.1 Liver
4.2 Gut
4.3 Heart
4.4 Skin
5 Effect of Insulin on Transport in vivo
6 Insulin Resistance
6.1 Diabetes
6.2 Critical Illness
7 Exercise
8 Conclusion
Figure 1. Figure 1.

Insulin regulation of gene transcription. Insulin activates or inhibits gene transcription through the activation by phosphorylation of nuclear proteins that bind IREs. The IREs can be positive or negative, that is, they can activate or inhibit the initiation of gene transcription. Several transduction pathways are likely to be involved in this process. Mitogen‐activated protein kinase (MAP K) pathway, through several intermediate steps (Shc, Grb‐2, sos, ras, raf‐1, MEK), and PI‐3K pathway, probably through protein kinase B (PKB), have been shown to be responsible for the regulation of gene transcription by insulin. Other pathways, such as tyrosine‐specific protein phosphatase (Syp), may also be involved. In addition, the internalized insulin‐receptor complex or internalized insulin itself could play a role in the insulin regulation of gene transcription.

Figure 2. Figure 2.

Insulin regulation of the initiation of mRNA translation. The probable mechanism for the stimulation of the initiation of mRNA translation by insulin is depicted in this figure. eIF‐4E binds directly to the 5' end of most eukaryotic mRNAs. The eIF‐4E‐mRNA complex then associates with eIF‐4G, which binds or is already bound to the 40S ribosomal subunit, acting as a bridge between mRNA and the 40S ribosomal subunit. The binding of eIF‐4E to eIF‐4G is prevented by the binding of 4E‐BP1, also known as PHAS‐I, to eIF‐4E 104. eIF‐4A has RNA helicase activity and probably plays a role in unwinding the secondary structure at the 5' end of mRNA, allowing the 40S subunit to bind and/or scan along the 5' untranslated region of the mRNA 121. Insulin determines the phosphorylation of the eukaryotic initiation factor 4E‐BP1 by activating PI‐3K through p70S6k. Multiple intermediate steps in the signal transduction pathway are depicted as broken lines. 4E‐BP1 dissociates from eIF‐4E. eIF‐4E is then free to bind eIF‐4G. eIF‐4A associates with the other two initiation factors to form eIF‐4F. eIF‐4F binds the mRNA at the 5' end through the eIF‐4G subunit, which acts as a bridge between the mRNA and the 40S ribosomal subunit. MRNA translation is then initiated.

Figure 3. Figure 3.

Insulin (43 ± 4 μU/ml) stimulates muscle FSR in rats when evaluated using the constant tracer infusion technique but not when using the flooding dose technique. Data are shown for rectus muscle in the fasting state; results were similar for quadriceps muscle.

[From McNulty el al. 89.]
Figure 4. Figure 4.

Comparable values are obtained for muscle protein synthesis when estimated by the FSR/FBR technique or by the A‐V/biopsy technique.

[From Zhang et al. 151.]
Figure 5. Figure 5.

Schematic diagram showing the relation between Ra and Rd determined by the traditional balance technique and actual rates of muscle protein synthesis and breakdown. Figure 5a represents the basal state, and Figure 5a represents a theoretical response to insulin. In this example, insulin stimulates protein synthesis and does not affect breakdown, while Rd remains constant and Ra decreases.

Figure 6. Figure 6.

Protein synthesis is highly correlated (p < .001) with the intracellular rate of appearance of amino acids. The intracellular rate of appearance is the sum of appearance from inward transport and protein breakdown. Protein synthesis is also correlated (although not as highly) with protein breakdown and inward transport.

[From Biolo et al. 18 and Biolo et al. 22.]
Figure 7. Figure 7.

The rate of leg blood flow is significantly correlated with the FSR of muscle protein. The FSR is determined by the rate of incorporation of a labeled precursor amino acid (in this case, phenylalanine) divided by the precursor enrichment.

[From Biolo et al. 17.]
Figure 8. Figure 8.

Schematic relationships between muscle protein breakdown (1), muscle protein synthesis (2), outward amino acid transport (3), and inward amino acid transport (4). Insulin directly stimulates the synthetic capacity of muscle (pathway 2). However, for an increase in the rate of synthesis to occur, more amino acids must become available. Since insulin either does not affect or decreases muscle breakdown 1, the outward efflux of amino acids must be reduced 3 and/or inward influx must be stimulated. Since there is a limit to the extent to which pathway 3 can be reduced, particularly if pathway 1 is reduced, the inward transport of amino acids usually must increase if a stimulatory effect of insulin on muscle protein synthesis is to be observed in response to insulin.



Figure 1.

Insulin regulation of gene transcription. Insulin activates or inhibits gene transcription through the activation by phosphorylation of nuclear proteins that bind IREs. The IREs can be positive or negative, that is, they can activate or inhibit the initiation of gene transcription. Several transduction pathways are likely to be involved in this process. Mitogen‐activated protein kinase (MAP K) pathway, through several intermediate steps (Shc, Grb‐2, sos, ras, raf‐1, MEK), and PI‐3K pathway, probably through protein kinase B (PKB), have been shown to be responsible for the regulation of gene transcription by insulin. Other pathways, such as tyrosine‐specific protein phosphatase (Syp), may also be involved. In addition, the internalized insulin‐receptor complex or internalized insulin itself could play a role in the insulin regulation of gene transcription.



Figure 2.

Insulin regulation of the initiation of mRNA translation. The probable mechanism for the stimulation of the initiation of mRNA translation by insulin is depicted in this figure. eIF‐4E binds directly to the 5' end of most eukaryotic mRNAs. The eIF‐4E‐mRNA complex then associates with eIF‐4G, which binds or is already bound to the 40S ribosomal subunit, acting as a bridge between mRNA and the 40S ribosomal subunit. The binding of eIF‐4E to eIF‐4G is prevented by the binding of 4E‐BP1, also known as PHAS‐I, to eIF‐4E 104. eIF‐4A has RNA helicase activity and probably plays a role in unwinding the secondary structure at the 5' end of mRNA, allowing the 40S subunit to bind and/or scan along the 5' untranslated region of the mRNA 121. Insulin determines the phosphorylation of the eukaryotic initiation factor 4E‐BP1 by activating PI‐3K through p70S6k. Multiple intermediate steps in the signal transduction pathway are depicted as broken lines. 4E‐BP1 dissociates from eIF‐4E. eIF‐4E is then free to bind eIF‐4G. eIF‐4A associates with the other two initiation factors to form eIF‐4F. eIF‐4F binds the mRNA at the 5' end through the eIF‐4G subunit, which acts as a bridge between the mRNA and the 40S ribosomal subunit. MRNA translation is then initiated.



Figure 3.

Insulin (43 ± 4 μU/ml) stimulates muscle FSR in rats when evaluated using the constant tracer infusion technique but not when using the flooding dose technique. Data are shown for rectus muscle in the fasting state; results were similar for quadriceps muscle.

[From McNulty el al. 89.]


Figure 4.

Comparable values are obtained for muscle protein synthesis when estimated by the FSR/FBR technique or by the A‐V/biopsy technique.

[From Zhang et al. 151.]


Figure 5.

Schematic diagram showing the relation between Ra and Rd determined by the traditional balance technique and actual rates of muscle protein synthesis and breakdown. Figure 5a represents the basal state, and Figure 5a represents a theoretical response to insulin. In this example, insulin stimulates protein synthesis and does not affect breakdown, while Rd remains constant and Ra decreases.



Figure 6.

Protein synthesis is highly correlated (p < .001) with the intracellular rate of appearance of amino acids. The intracellular rate of appearance is the sum of appearance from inward transport and protein breakdown. Protein synthesis is also correlated (although not as highly) with protein breakdown and inward transport.

[From Biolo et al. 18 and Biolo et al. 22.]


Figure 7.

The rate of leg blood flow is significantly correlated with the FSR of muscle protein. The FSR is determined by the rate of incorporation of a labeled precursor amino acid (in this case, phenylalanine) divided by the precursor enrichment.

[From Biolo et al. 17.]


Figure 8.

Schematic relationships between muscle protein breakdown (1), muscle protein synthesis (2), outward amino acid transport (3), and inward amino acid transport (4). Insulin directly stimulates the synthetic capacity of muscle (pathway 2). However, for an increase in the rate of synthesis to occur, more amino acids must become available. Since insulin either does not affect or decreases muscle breakdown 1, the outward efflux of amino acids must be reduced 3 and/or inward influx must be stimulated. Since there is a limit to the extent to which pathway 3 can be reduced, particularly if pathway 1 is reduced, the inward transport of amino acids usually must increase if a stimulatory effect of insulin on muscle protein synthesis is to be observed in response to insulin.

References
 1. Antonetti, D. A., S. R. Kimball, R. L. Horetsky, and L. S. Jefferson. Regulation of rDNA transcription by insulin in primary cultures of rat hepatocytes. J. Biol. Chem. 268: 25277–25284, 1993.
 2. Arfviddsson, B., H. Zachrisson, A. C. Möller‐Loswick, A. Hyltander, R. Sandström, and K. Lundholm. Effect of systemic hyperinsulinemia on amino acid flux across human legs in postabsorptive state. Am. J. Physiol. 260 (Endocrinol. Metab. 23): E46–E52, 1991.
 3. Ashford, A. J., and V. M. Pain. Effect of diabetes on the rates of synthesis and degradation of ribosomes in rat muscle and liver in vivo. J. Biol. Chem. 261: 4059–4065, 1986.
 4. Atchley, D. W., R. F. Loeb, D. W. Richards, E. M. Benedict, and M. E. Driscoll. On diabetic acidosis: a detailed study of electrolyte balances following the withdrawal and reestablishment of insulin therapy. J. Clin. Invest. 12: 297–326, 1933.
 5. Bailey, J. L., X. Wang, B. K. England, S. R. Price, X. Ding, and W. E. Mitch. 1996. The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP‐dependent ubiquitin‐proteasome pathway. J. Clin. Invest. 97: 1447–1453, 1996.
 6. Balon, T. W., A. Zorzano, J. L. Treadway, M. N. Goodman, and N. B. Ruderman. Effect of insulin on protein synthesis and degradation in skeletal muscle after exercise. Am. J. Physiol. 258: E92–E97, 1990
 7. Baracos, V. E., C. De Vivo, D. H. Hoyle, and A. L. Goldberg. Activation of the ATP‐ubiquitin‐proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma. Am. J. Physiol. 268: E996–E1006, 1995.
 8. Baron, A. D.. Hemodynamic actions of insulin. Am. J. Physiol. 267: E187–E202, 1994.
 9. Baron, A. D., H. Steinberg, G. Brechtel, and A. Johnson. Skeletal muscle blood flow independently modulates insulin‐mediated glucose uptake. Am. J. Physiol. E248–E253, 1994.
 10. Baumann, P. Q., W. S. Stirewalt, B. D. O'Rourke, D. Howard, and K. S. Nair. Precursor pools of protein synthesis: a stable isotope study in a swine model. Am. J. Physiol. 267 (Endocrinol. Metab. 30): E203–E209, 1994.
 11. Baxter, J. D., and P. H. Forsham. Tissue effects of glucocorticoids. Am. J. Med. 53: 573–589, 1972.
 12. Bennet, W. M., A. A. Connacher, R. T. Jung, P. Stehle, and M. J. Rennie. Effects of insulin and amino acids on leg protein turnover in IDDM patients. Diabetes 40: 499–595, 1991.
 13. Bennet, W. M., A. A. Connacher, C. M. Scringeour, R. T. Jung, and M. J. Rennie. Euglycemic hyperinsulinemia augments amino acid uptake by human leg tissues during hyperaminoacidemia. Am. J. Physiol. 259: E185–E194, 1990.
 14. Bennet, W. M., A. A. Connacher, K. Smith, R. T. Jung, and M. J. Rennie. Inability to stimulate skeletal muscle or whole body protein synthesis in Type 1 (insulin‐dependent) diabetic patients by insulin‐plus‐glucose during amino acid infusion: studies of incorporation and turnover of tracer L‐[1–13C]leucine. Diabetologia 33: 43–51, 1990.
 15. Bergrstrom, J., F. Furst, L. Noree, and E. Vinnars. Intracellular free amino acid concentrations in human muscle tissue. J. Appl. Physiol. 36: 693–697, 1974.
 16. Biol, G., D. Chinkes, X. J. Zhang, and R. R. Wolfe. A new model to determine in vivo the relationship between amino acid transmembrane transport and protein kinetics in muscle. JPEN 16: 305–315, 1992.
 17. Biolo, G., R. Y. D. Fleming, and R. R. Wolfe. Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. J. Clin. Invest. 95: 811–819, 1995.
 18. Biolo, G., A. Gastaldelli, X‐J. Zhang, and R. R. Wolfe. Protein synthesis and breakdown in skin and muscle: a leg model of amino acid kinetics. Am. J. Physiol. 267 (Endocrinol. Metab. 30): E467–E474, 1994.
 19. Biolo, G., S. P. Maggi, R. Y. D. Flemming, D. N. Herndon and R. R. Wolfe. Relationship between transmembrane amino acid transport and protein kinetics in muscle tissue of severely burned patients. J. Clin. Nutr. 12: 4, 1993.
 20. Biolo, G., S. P. Maggi, B. D. Williams, K. Tipton, and R. R. Wolfe. Increased rates of muscle protein turnover and amino acid transport following resistance exercise in humans. Am. J. Physiol. 268 (Endocrinol. Metab. 31): E514–E520, 1995.
 21. Biolo, G., P. Tessari, S. Inchiostro, D. Bruttomesso, L. Sabadin, C. Fonger, G. Panebianco, M. G. Fratton, and A. Tiengo. Fasting and postmeal phenylalanine metabolism in mild type 2 diabetes. Am. J. Physiol. 263 (Endocrinol. Metab. 26): E877–E883, 1992.
 22. Biolo, G., K. D. Tipton, S. Klein, and R. R. Wolfe. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am. J. Physiol. 273 (Endocrinol. Metab. 36): E122–E129, 1997.
 23. Biolo, G., B. D. Williams, R. V. D. Fleming, and R. R. Wolfe. Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes, 48: 949–957, 1999.
 24. Biolo, G., and R. R. Wolfe. Relationship between plasma amino acid kinetics and tissue protein synthesis and breakdown. In: Proceedings of the IFAC Symposium on Modeling and Control in Biological Systems, edited by B. W. Patterson. Madison: Omnipress, p. 358–359, 1994.
 25. Black, P. R., D. C. Brooks, P. Q. Bessey, R. R. Wolfe, and D. W. Wilmore. Mechanisms of insulin resistance following injury. Ann. Surg. 196 (4): 420–435, 1982.
 26. Blommaart, E. F., J. J. Luiken, and A. J. Meijer. Autophagic proteolysis: control and specificity. Histochem. J. 29: 365–385, 1997.
 27. Bonadonna, R. C., M. P. Saccomani, C. Cobelli, and R. A. De Fronzo. Effect of insulin on system A amino acid transport in human skeletal muscle. J. Clin. Invest. 91 (2): 514–521, 1993.
 28. Campos, S. P., Y. Wang, A. Koj, and H. Baumann. Insulin cooperates with IL‐1 in regulating expression of alpha 1‐acid glycoprotein gene in rat hepatoma cells. Cytokine 6: 485–492, 1994.
 29. Castellino, P., L. Luzi, D. C. Simonson, M. Haymond, and R. A. De Fronzo. Effect of insulin and plasma amino acid concentration on leucine metabolism in man: role of substrate availability on estimates of whole body protein synthesis. J. Clin. Invest. 80: 1784–1793, 1987.
 30. Cheatham, B., and C. R. Kahn. Insulin action and the insulin signaling network. Endocrinol. Rev. 16: 117–142, 1995.
 31. Christ, B., and A. Nath. The glucagon‐insulin antagonism in the regulation of cytosolic protein binding to the 3′ end of phosphoenolpyruvate carboxykinase mRNA in cultured rat hepatocytes. Possible involvement in the stabilization of the mRNA. Eur. J. Biochem. 215: 541–547, 1993.
 32. Christensen, H. N.. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol. Rev. 70: 43–77, 1980.
 33. Chu, D. T., C. M. Davis, N. B. Chrapkiewicz, and D. K. Granner. Reciprocal regulation of gene transcription by insulin. Inhibition of the phosphoenolpyruvate carboxykinase gene and stimulation of gene 33 in a single cell type. J. Biol. Chem. 263: 13007–13011, 1988.
 34. De Duve, C. In: Lysosomes in Biology and Pathology, edited by J. T. Dingle and H. Fell. Amsterdam: Elsevier North‐Holland, 1969, p. 3–4.
 35. De Feo, P., M. Gan Gaisano, and M. W. Haymond. Differential effects of insulin deficiency on albumin and fibrinogen synthesis in humans. J. Clin. Invest. 88: 833–840, 1991.
 36. De Feo, P., E. Volpi, P. Lucidi, G. Cruciani, G. Reboldi, D. Siepi, E. Mannarino, F. Santeusanio, P. Brunetti, and G. B. Bolli. Physiological increments in plasma insulin concentrations have selective and different effects on synthesis of hepatic proteins in normal humans. Diabetes 42: 995–1002, 1993.
 37. Decaux, J. F., B. Antoine, and A. Kahn. Regulation of the expression of the L‐type pyruvate kinase gene in adult rat hepatocytes in primary culture. J. Biol. Chem. 264: 11584–11590, 1989.
 38. Denne, S. C., E. A. Liechty, Y. M. Liu, G. Grechtel, and A. D. Baron. Proteolysis in skeletal muscle and whole body in response to euglycemia hyperinsulinemia in normal adults. Am. J. Physiol. 261: E809–E814, 1991.
 39. Dillmann, W. H.. Diabetes mellitus‐induced changes in the concentrations of specific mRNAs and proteins. Diabetes Metab. Rev. 4: 789–797, 1988.
 40. Doiron, B., M. H. Cuif, A. Kahn, and M. J. Diaz‐Guerra. Respective roles of glucose, fructose, and insulin in the regulation of the liver‐specific pyruvate kinase gene promoter. J. Biol. Chem. 269: 10213–10216, 1994.
 41. Dunn, W. A., Jr.. Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J. Cell. Biol. 110: 1923–1933, 1990.
 42. Ernst, E.. Plasma fibrinogen—an independent cardiovascular risk factor. J. Intern. Med. 227: 365–372, 1990.
 43. Fagan, J. M., L. Waxman, and A. L. Goldberg. Skeletal muscle and liver contain a soluble ATP + ubiquitin‐dependent proteolytic system. Biochem. J. 243: 335–343, 1987.
 44. Ferrando, A. A., D. L. Chinkes, S. E. Wolfe, S. Matin, D. N. Herndon, and R. R. Wolfe. A submaximal dose of insulin promotes net skeletal muscle protein synthesis in patients with severe burns. Ann. Surg., 229: 11–18.
 45. Flores‐Riveros, J. R., J. C. McLenithan, O. Ezaki, and M. D. Lane. Insulin downregulates expression of the insulin‐responsive glucose transporter (GLUT4) gene: effects on transcription and mRNA turnover. Proc. Natl. Acad. Sci. USA 90: 512–516, 1993.
 46. Fryburg, D. A., L. A. Jahn, S. A. Hill, D. M. Oliveras, and E. J. Barrett. Insulin and insulin‐like growth factor‐1 enhance skeletal muscle protein anabolism during hyperaminoacidemia by different mechanisms. J. Clin. Invest. 96: 1722–1727, 1995.
 47. Fukagawa, N. K., K. L. Minaker, J. W. Rowe, M. N. Goodman, D. E. Matthews, D. M. Bier, and V. R. Young. Insulin‐mediated reduction of whole‐body protein breakdown. Dose‐response effects on leucine metabolism in postabsorptive men. J. Clin. Invest. 76: 2306–2311, 1985.
 48. Furuno, K., and A. L. Goldberg. The activation of protein degradation in muscle by Ca++ or muscle injury does not involve a lysosomal mechanism. Biochem. J. 237: 859–864, 1986.
 49. Garlick, P. J., and I. Grant. Amino acid infusion increases the sensitivity of muscle protein synthesis in vivo to insulin. Biochem. J. 254: 579–584, 1988.
 50. Garlick, P. J., J. Wernerman, M. A. McNurlan, P. Essen, G. E. Lobley, E. Milne, G. A. Calder, and E. Vinnars. Measurement of the rate of protein synthesis in muscle of postabsorptive young men by injection of “flooding dose” of [1–13C]leucine. Clin. Sci. (Colch) 77: 329–336, 1989.
 51. Gelfand, R. A., and E. J. Barrett. Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. J. Clin. Invest. 80: 1–6, 1987.
 52. Goldstain, R. H., C. F. Poliks, P. F. Pilch, B. D. Smith, and A. Dine. Stimulation of collagen formation by insulin and insulin‐like growth factor in cultures of human lung fibroblasts. Endocrinology 124: 964–970, 1989.
 53. Gore, D. C., D. Honeycutt, F. Jahoor, R. R. Wolfe, and D. N. Herndon. Effect of exogenous growth hormone on whole‐body and isolated‐limb protein kinetics in burned patients. Arch. Surg. 126: 38–43, 1991.
 54. Guidotti, G. G., A. F. Borghetti, and G. C. Gazzola. The regulation of amino acid transport in animal cells. Biochim. Biophys. Acta 515: 329–366, 1978.
 55. Guidotti, G. G., and G. C. Gazzola. Amino acid transports: systemic approach and principles of controls. In: Mammalian Amino Acid Transport, edited by M. S. Kilberg and D. Haussinger. New York: Plenum Publishing Corp., p. 3–29, 1992.
 56. Hamel, F. G., R. G. Bennett, K. S. Harmon, and W. C. Duckworth. Insulin inhibition of proteasome activity in intact cells. Biochem. Biophys. Res. Commun. 234: 671–674, 1997.
 57. Hammond, M. L., and L. H. Bowman. Insulin stimulates the translation of ribosomal proteins and the transcription of rDNA in mouse myoblasts. J. Biol. Chem. 263: 17785–17791, 1988.
 58. Heslin, M. J., E. Newman, R. F. Wolfe, P. W. T. Pisters, and M. F. Brennan. Effect of hyperinsulinemia on whole body and skeletal muscle leucine carbon kinetics in humans. Am. J. Physiol. 262: E911–E918, 1992.
 59. Hibbert, J. M., L. Broemeling, J. N. Isenberg, and R. R. Wolfe. Determinants of total free‐living energy expenditure in lean and obese women measured by the doubly‐labeled water method. J. Obesity 2 (1): 44–53, 1994.
 60. Hillier, T. A., D. A. Fryburg, L. A. Jahn, and E. J. Barrett. Extreme hyperinsulinemia unmasks insulin effect to stimulate protein synthesis in the human forearm. Am. J. Physiol. 274: E1067–E1074, 1998.
 61. Hourani, H., P. Williaims, J. A. Morris, M. E. May, and N. N. Abumred. Effect of insulin‐induced hypoglycemia on protein metabolism in vivo. Am. J. Physiol. 259: E342–350, 1990.
 62. Hsu, C. J., S. R. Kimball, D. A. Antonetti, and L. S. Jefferson. Effects of insulin on total RNA, poly(A)+ RNA, and mRNA in primary cultures of rat hepatocytes. Am. J. Physiol. 263: E1106–E1112, 1992.
 63. Hundal, H. S., M. J. Rennie, and P. W. Watt. Characteristics of L‐glutamine transport in perfused rat skeletal muscle. J. Physiol. 393: 283–305, 1987.
 64. Hutson, N. J., C. E. Lloyd, and G. E. Mortimore. Regulation of hepatic protein breakdown by food intake in streptozotocin diabetic mice. Federation Proc. 40: 1692, 1981.
 65. Iannaccone, S. T., K. X. Li, N. Sperelakis, and D. A. Lathrop. Insulin‐induced hyperpolarization in mammalian skeletal muscle. Am. J. Physiol. 256: C368–C674, 1989.
 66. Inchiostro, S., G. Biolo, D. Bruttomesso, C. Fongher, L. Sabadin, M. Carlini, E. Duner, A. Tiengo, and P. Tessari. Effects of insulin and amino acid infusion on leucine and phenylalanine kinetics in type 1 diabetes. Am. J. Physiol. 262 (Endocrinol. Metab. 25): E203–E210, 1992.
 67. Jahoor, F., R. E. Shangraw, H. Miyoshi, H. Wallafish, D. N. Herndon, and R. R. Wolfe. Role of insulin and glucose oxidation in mediating the protein catabolism of burns and sepsis. Am. J. Physiol. 257 (Endocrinol. Metab.) E323–E331, 1989.
 68. Jefferson, L. S., D. E. Rannels, B. L. Munger, and H. E. Morgan. Insulin in the regulation of protein turnover in heart and skeletal muscle. Federation Proc. 33: 1098–1104, 1974.
 69. Jonsson, A., and J. K. Wales. Blood glycoprotein levels in diabetes mellitus. Diabetologia 12: 245–250, 1976.
 70. Kesperek, S. J., G. R. Conway, D. S. Krayeski, and J. J. Lohne. A reexamination of the effect of exercise on rate of muscle protein degradation. Am. J. Physiol. 263: E1144–E1150, 1992.
 71. Kettelhut, I. C., S. S. Wing, and A. L. Goldberg. Endocrine regulation of protein breakdown in skeletal muscle. Diabetes Metab. Rev. 4: 751–772, 1988.
 72. Kilberg, M. S., E. F. Barber, and M. E. Handlogten. Characteristics and hormonal regulation of amino acid transport system A in isolated rat hepatocytes. Curr. Top. Cell. Regul. 25: 133–163, 1985.
 73. Kimball, S. R., K. E. Flaim, D. E. Peavy, and L. S. Jefferson. Protein metabolism. In: Diabetes Mellitus, Theory and Practice. 4th ed., edited by M. Ellemberg and M. Rifkin. New York, Amsterdam, London: Elsevier, p. 41–50, 1989.
 74. Kimball, S. R., R. L. Horetsky, and L. S. Jefferson. Hormonal regulation of albumin gene expression in primary cultures of rat hepatocytes. Am. J. Physiol. 268: E6–E14, 1995.
 75. Kimball, S. R., R. L. Horetsky, and L. S. Jefferson. Signal transduction pathways involved in the regulation of protein synthesis by insulin in L6 myoblasts. Am. J. Physiol. 274: C221–C228, 1998.
 76. Kimball, S. R., C. V. Jurasinski, J. C. Lawrence, Jr., and L. S. Jefferson. Insulin stimulates protein synthesis in skeletal muscle by enhancing the association of eIF‐4E and eIF‐4G. Am. J. Physiol. 272: C754–C759, 1997.
 77. Kimball, S. R., T. C. Vary, and L. S. Jefferson. Regulation of protein synthesis by insulin. Annu. Rev. Physiol. 56: 321–348, 1994.
 78. Lloyd, C. E., J. E. Kalinyak, S. M. Hutson, and L. S. Jefferson. Stimulation of albumin gene transcription by insulin in primary cultures of rat hepatocytes. Am. J. Physiol. 252: C205–C214, 1987.
 79. Louard, R. J., D. A. Fryburg, R. A. Gelvord, and E. J. Barrett. Insulin sensitivity of protein and glucose metabolism in human forearm skeletal muscle. J. Clin. Invest. 90: 2348–2354, 1992.
 80. Lowell, B. B., N. B. Ruderman, and M. N. Goodman. Evidence that lysosomes are not involved in the degradation of myofibrillar proteins in rat skeletal muscle. Biochem. J. 234: 237–240, 1986.
 81. Lucas, P. C., and D. K. Granner. Hormone response domains in gene transcription. Annu. Rev. Biochem. 61: 1131–1173, 1992.
 82. Luzi, L., P. Castellino, D. C. Simonson, A. S. Petrides, and R. A. De Fronzo. Leucine metabolism in IDDM. Role of insulin and substrate availability. Diabetes 39: 38–48, 1990.
 83. Maher, F., and L. C. Harrison. Stabilization of glucose transporter mRNA by insulin/IGF‐1 and glucose deprivation. Biochem. Biophys. Res. Commun. 171: 210–215, 1990.
 84. Manzella, J. M., W. Rychlik, R. E. Rhoads, J. W. Hershey, and P. J. Blackshear. Insulin induction of ornithine decarboxylase. Importance of mRNA secondary structure and phosphorylation of eucaryotic initiation factors eIF‐4B and eIF‐4E. J. Biol. Chem. 266: 2383–2389, 1991.
 85. Marten, N. W., E. J. Burke, J. M. Hayden, and D. S. Straus. Effect of amino acid limitation on the expression of 19 genes in rat hepatoma cells. FASEB J. 8: 538–544, 1994.
 86. McCullough, A. J., and A. S. Tavill. Disordered energy and protein metabolism in liver disease. Semin. Liver Dis. 11: 265–277, 1991.
 87. McMillan, D. E.. Changes in serum proteins and protein‐bound carbohydrates in diabetes mellitus. Diabetologia 6: 597–604, 1970.
 88. McNulty, P. H., R. J. Louard, L. I. Deckelbaum, B. L. Zaret, and L. H. Young. Hyperinsulinemia inhibits myocardial protein degradation in patients with cardiovascular disease and insulin resistance. Circulation 92 (8): 2151–2156, 1995.
 89. McNulty, P. H., L. H. Young, and E. J. Barrett. Response of rat heart and skeletal muscle protein in vivo to insulin and amino acid infusion. Am. J. Physiol. 254: E958–E965, 1993.
 90. McNurlan, M. A., and P. J. Garlic. Protein synthesis in liver and small intestine in protein deprivation and diabetes. Am. J. Physiol. 241 (Endocrinol. Metab. 4): E238–E245, 1981.
 91. McNurlan, M. A., P. Essen, A. Thorell, A. G. Calder, S. E. Anderson, O. Ljungquist, A. Sandgreen, I. Grant, I. Tjader, P. E. Ballmer, J. Wernerman, and P. J. Gorlick. Response of protein synthesis in human skeletal muscle to insulin: an investigation with L‐[2H5]phenylalanine. Am. J. Physiol. 267: E102–E108, 1994.
 92. Medina, R., S. S. Wing, and A. L. Goldberg. Increase in levels of polyubiquitin and proteasome mRNA in skeletal muscle during starvation and denervation atrophy. Biochem. J. 307: 631–637, 1995.
 93. Mellgren, R.. Ca++‐dependent proteases: an enzyme system active at cellular membranes. FASEB J. 1: 110–115, 1987.
 94. Millword, D. J., P. C. Bates, G. K. Gimble, J. G. Brown, M. Nathan, and M. J. Rennie. Quantitative importance of nonskeletal‐muscle sources of 3‐methylhistidine in urine. Biochem. J. 190: 225–228, 1980.
 95. Mitch, W. E., R. Medina, S. Grieber, R. C. May, B. K. England, S. R. Price, J. L. Bailey, and A. L. Goldberg. Metabolic acidosis stimulates muscle protein degradation by activating the adenosine triphosphate‐dependent pathway involving ubiquitin and proteasomes. J. Clin. Invest. 93: 2127–2133, 1994.
 96. Moller‐Loswick, A. C., H. Zachrisson, A. Hyltander, U. Korner, D. E. Matthews, and K. Lundholm. Insulin selectively alternates breakdown of nonmyofibrillar proteins in peripheral tissues of normal man. Am. J. Physiol. 266: E645–E652, 1994.
 97. Morley, S. J., and V. M. Pain. Hormone‐induced meiotic maturation in Xenopus oocytes occurs independently of p70s6k activation and is associated with enhanced initiation factor (eIF)‐4F phosphorylation and complex formation. J. Cell Sci. 108: 1751–1760, 1995.
 98. Mortimore, G. E., and C. E. Mondon. Inhibition by insulin of valine turnover in liver. Evidence for a general control of proteolysis. J. Biol. Chem. 245: 2375–2383, 1970.
 99. Mortimore, G. E., A. R. Poso, M. Kadowaki, and J. J. Wert. Multiphasic control of hepatic protein degradation by regulatory amino acids. General features and hormonal modulation. J. Biol. Chem. 262: 16322–16327, 1983.
 100. Mortimore, G. A., W. F. Ward, and C. M. Schworer. Lysosomal processing of intracellular proteins in rat liver and its general regulation by amino acids and insulin. In: Protein Turnover and Lysosome Function, H. L. Segal and D. J. Dole, editors. New York: Academic Press, p. 67–87, 1978.
 101. Moustaid, N., R. S. Beyer, and H. S. Sul. Identification of an insulin response element in the fatty acid synthase promoter. J. Biol. Chem. 269: 5629–5634, 1994.
 102. Nair, K. S., G. C. Ford, and D. Halliday. Effect of intravenous insulin treatment on in vivo whole‐body leucine kinetics and oxygen consumption in insulin‐deprived type 1 diabetic patients. Metabolism 36: 491–495, 1987.
 103. Nair, K. S., J. S. Garrow, C. Ford, R. F. Mahler, and D. Halliday. Effect of poor diabetic control and obesity on whole‐body protein metabolism in man. Diabetologia 25: 400–403, 1983.
 104. Nasrin, N., L. Ercolani, M. Denaro, X. F. Kong, I. Kang, and M. Alexander. An insulin response element in the glyceraldehyde‐3‐phosphate dehydrogenase gene binds a nuclear protein induced by insulin in cultured cells and by nutritional manipulations in vivo. Proc. Natl. Acad. Sci. USA 87: 5273–5277, 1990.
 105. Neely, A. N., J. R. Cox, J. A. Fortney, C. M. Schworer, and G. E. Mortimore. Alterations of lysosomal size and density during rat liver perfusion. Suppression by insulin and amino acids. J. Biol. Chem. 252: 6948–6954, 1977.
 106. Newman, E., M. J. Heslin, R. R. Wolf, P. W. Pisters, and M. F. Brennen. The effect of insulin on glucose and protein metabolism in the forearm of cancer patients. Surg. Oncol. 1 (4): 257–267, 1992.
 107. Newman, E., M. J. Heslin, R. F. Wolf, P. W. Pisters, and M. F. Brennen. The effect of systemic hyperinsulinemia with concomitant amino acid infusion on skeletal muscle protein turnover in human forearm. Metabolism 43: 70–78, 1994.
 108. O'Brien, R. M., and D. K. Granner. Regulation of gene expression by insulin. Biochem. J. 278: 609–619, 1991.
 109. O'Brien, R. M., and D. K. Granner. Regulation of gene expression by insulin. Physiol. Rev. 76: 1109–1161, 1996.
 110. O'Brien, R. M., P. C. Lucas, C. D. Forest, M. A. Magnuson, and D. K. Granner. Identification of a sequence in the PEPCK gene that mediates a negative effect of insulin on transcription. Science 249: 533–537, 1990.
 111. Pacy, P. J., K. S. Nair, C. Ford, and D. Halliday. Failure of insulin infusion to stimulate fractional muscle protein synthesis in type 1 diabetic patients. Anabolic effect of insulin and decreased proteolysis. Diabetes 38: 618–624, 1989.
 112. Pain, W. M., E. C. Albertse, and P. J. Garlick. Protein metabolism in skeletal muscle, diaphragm and heart of diabetic rats. Am. J. Physiol. 245 (Endocrinol. Metab. 6): E604–E610, 1983.
 113. Pain, W. M., and P. J. Garlic. Effect of streptozotocin diabetes and insulin treatment on the rate of protein synthesis in tissues of the rat in vivo. J. Biol. Chem. 249: 4510–4514, 1974.
 114. Pause, A., G. J. Belsham, A. C. Gingras, O. Donze, T. A. Lin, J. C. Lawrence, Jr., and N. Sonenberg. Insulin‐dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′‐cap function. Nature 371: 762–767, 1994.
 115. Pepato, M. T., R. H. Migliorini, A. L. Goldberg, and I. C. Kettelhut. Role of different proteolytic pathways in degradation of muscle protein from streptozotocin‐diabetic rats. Am. J. Physiol. 271: E340–E347, 1996.
 116. Petrides, and R. A. De Fronzo. Glucose metabolism in cirrhosis: a review with some perspectives for the future. Diabetes Metab. Rev. 5: 691–709, 1989.
 117. Philippe, J.. Insulin regulation of the glucagon gene is mediated by an insulin‐responsive DNA element. Proc. Natl. Acad. Sci. USA 88: 7224–7227, 1991.
 118. Pozefsky, T., P. Felig, J. D. Tobin, J. Stuart‐Soeldner, and G. F. Cahill. Amino acid balance across tissues of the forearm in postabsorptive man. Effects of insulin at two dose levels. J. Clin. Invest. 48: 2273–2282, 1969.
 119. Price, S. R., J. L. Bailey, X. Wang, C. Jurkovitz, B. K. England, X. Ding, L. S. Phillips, and W. E. Mitch. Muscle wasting in insulinopenic rats results from activation of the ATP‐dependent, ubiquitin‐proteasome proteolytic pathway by a mechanism including gene transcription. J. Clin. Invest. 98: 1703–1708, 1996.
 120. Proud, C. G.. Protein phosphorylation in translational control. Curr. Top. Cell. Regul. 32: 243–369, 1992.
 121. Rhoads, R. E., B. Joshi, and W. B. Minich. Participation of initiation factors in the recruitment of mRNA to ribosomes. Biochimie 76: 831–838, 1994.
 122. Richter, E. A., L. P. Garelto, M. N. Grodman, and N. B. Ruderman. Muscle glucose metabolism following exercise in the rat: increased sensitivity to insulin. J. Clin. Invest. 69: 785–793, 1982.
 123. Rizza, R. A., L. J. Mandarino, and J. E. Gerich. Cortisol‐induced insulin resistance in man: impaired suppression of glucose production and stimulation of glucose utilization due to a post‐receptor defect of insulin action. J. Clin. Endocrinol. Metab. 54: 131–137, 1982, 1982.
 124. Rogert, J. J., B. Beaufrere, J. Koziet, J. F. Desjeux, D. M. Bier, and V. R. Young. Whole‐body de novo amino acid synthesis in type 1 (insulin‐dependent) diabetes studied with stable isotope‐labeled leucine, alanine and glycine. Diabetes 34: 67–73, 1985.
 125. Sakurai, Y., A. Aarsland, D. N. Herndon, D. L. Chinkes, E. Pierre, T. T. Nguyen, B. W. Patterson, and R. R. Wolfe. Stimulation of muscle protein synthesis by long‐term insulin infusion in severely burned patients. Ann. Surg. 222 (3): 283–297, 1995.
 126. Shangraw, R. E., F. Jahoor, H. Miyoshi, W. A. Neff, C. A. Stuart, D. N. Herndon, and R. R. Wolfe. Differentiation between septic and post‐burn insulin resistance. Metabolism 38: 983–989, 1989.
 127. Shangraw, R. E., C. A. Stuart, M. J. Prince, E. J. Peters, and R. R. Wolfe. Insulin responsiveness of protein metabolism in vivo following bed rest in humans. Am. J. Physiol. 255: E548–E558, 1988.
 128. Shotwell, M. A., M. S. Kilberg, and D. L. Oxender. The regulation of neutral amino acid transport in mammalian cells. Biochim. Biophys. Acta 737: 267–284, 1983.
 129. Smith, K., N. Reynolds, S. Downie, A. Patel, and M. J. Rennie. Effects of flooding amino acids on incorporation of labeled amino acids into human muscle protein. Am. J. Physiol. 38: E73–E78, 1998.
 130. Staten, M. A., D. A. Mattews, and D. M. Bier. Leucine metabolism in type 2 diabetes mellitus. Diabetes 35: 1249–1253, 1986.
 131. Suwanickul, A., S. L. Morris, and D. R. Powell. Identification of an insulin‐responsive element in the promoter of the human gene for insulin‐like growth factor binding protein‐1. J. Biol. Chem. 268: 17063–17068, 1993.
 132. Tawa, N. E., Jr., I. C. Kettelhut, and A. L. Goldberg. Dietary protein deficiency reduces lysosomal and nonlysosomal ATP‐dependent proteolysis in muscle. Am. J. Physiol. 263: E326–E334, 1992.
 133. Tessari, P., G. Biolo, S. Inchiostro, L. Saccà, R. Nosadini, M. T. Boscarato, R. Travisan, S. Vigili De Kreutzenberg, and A. Tiengo. Effects of insulin on whole body and forearm leucine and KIC metabolism in type 1 diabetes. Am. J. Physiol. 259 (Endocrinol. Metab. 22): E96–E103, 1990.
 134. Tessari, P., S. Inchiostro, G. Biolo, R. Trevisan, G. Fantin, M. C. Marescotti, E. Iori, A. Tiengo, and G. Crepaldi. 1987. Differential effects of hyperinsulinemia on leucine‐carbon metabolism in vivo. Evidence for distinct mechanisms in regulation of net amino acid deposition. J. Clin. Invest. 79: 1062–1069, 1987.
 135. Tessari, P., S. Inchiostro, G. Biolo, E. Vincenti, and L. Sabadin. Effects of acute systemic hyperinsulinemia on forearm muscle proteolysis in healthy man. J. Clin. Invest. 88: 27–33, 1991.
 136. Tessari, P., R. Nosadini, R. Trevisan, S. Vigili de Kreutzenberg, E. Duner, M. C. Marescotti, A. Tiengo, and G. Crepaldi. Defective suppression by insulin of leucine‐carbon appearance and oxidation in type 1, insulin dependent diabetes mellitus: evidence for insulin resistance involving glucose and amino acid metabolism. J. Clin. Invest. 77: 1797–1804, 1986.
 137. Tessari, P., R. Trevisan, S. Inchiostro, S. Vigili de Kreutzenberg, G. Biolo, E. Duner, A. Tiengo, and G. Crepaldi. Dose‐response curves of the effects of insulin on leucine kinetics in man. Am. J. Physiol. 251: E334–E343, 1986.
 138. Tiao, G., J. M. Fagan, N. Samuels, J. H. James, K. Hudson, M. Lieberman, J. E. Fischer, and P. O. Hasselgren. Sepsis stimulates nonlysosomal, energy‐dependent proteolysis and increases ubiquitin mRNA levels in rat skeletal muscle. J. Clin. Invest. 94: 2225–2264, 1994.
 139. Todaka, M., T. Nishiyama, T. Murakami, S. Saito, K. Ito, F. Kanai, M. Kan, K. Ishii, H. Hayashi, M. Shichiri, et al. The role of insulin in activation of two enhancers in the mouse GLUT1 gene. J. Biol. Chem. 269: 29265–29270, 1994.
 140. Umpleby, A. M., M. A. Boroujerdi, P. M. Brown, E. R. Carson, and P. H. Sönksen. The effect of metabolic control on leucine metabolism in type 1 (insulin‐dependent) diabetic patients. Diabetologia 29: 131–141, 1986.
 141. Volpi, E., P. Lucidi, F. Monacchia, G. Cruciani, G. Reboldi, F. Santeusanio, P. Brunetti, G. B. Bolli, and P. de Feo. Contribution of amino acids and insulin to protein anabolism during meal absorption. Diabetes 45: 1245–1252, 1996.
 142. von Manteuffel, S. R., A. C. Gingras, X. F. Ming, N. Sonenberg, and G. Thomas. 4E‐BP1 phosphorylation is mediated by the FRAP‐p70s6k pathway and is independent of mitogen‐5activated protein kinase. Proc. Natl. Acad. Sci. USA 93: 4076–4080, 1996.
 143. Wolf, R. F., M. J. Heslin, E. Newman, D. B. Pearlstone, A. Gonenne, and M. F. Brennan. Growth hormone and insulin combine to improve whole body and skeletal muscle protein kinetics. Surgery 112: 284–292, 1992.
 144. Wolfe, R. R.. Radioactive and Stable Isotope Tracers in Biomedicine. Principles and Practice of Kinetic Analysis. New York: Wiley‐Liss, 1992.
 145. Wolfe, R. R., M. J. Durkot, J. R. Allsop, and J. F. Burke. Glucose metabolism in severely burned patients. Metabolism 28: 1031–1039, 1979.
 146. Wolfe, R. R., F. Jahoor, and W. H. Hartl. Protein and amino acid metabolism after injury. Diabetes Metab. Rev. 5: 149–164, 1989.
 147. Woodside, K. H., and G. E. Mortimore. Suppression of protein turnover by amino acids in the perfused rat liver. J. Biol. Chem. 247: 6474–6481, 1972.
 148. Yap, S. H., R. K. Strair, and D. A. Shafritz. Effect of a short term fast on the distribution of cytoplasmic albumin messenger ribonucleic acid in rat liver. Evidence for formation of free albumin messenger ribonucleoprotein particles. J. Biol. Chem. 253: 4944–4950, 1978.
 149. Young, V. R., and H. N. Munro. Use of 3‐methylhistidine to measure muscle catabolism. Federation Proc. 37: 2291–2300, 1978.
 150. Zhang, X‐J., D. L. Chinkes, D. J. Doyle, and R. R. Wolfe. Metabolism of Skin and muscle protein metabolism is regulated differently in response to nutrition. Am. J. Physiol, 274 (Endocrinol. Metab): E484–E492.
 151. Zhang, X‐J., D. L. Chinkes, Y. Sakurai, and R. R. Wolfe. An isotopic method for measurement of muscle protein fractional breakdown rate in vivo. Am. J. Physiol., 270 (Endocrinol. Metab. 33): E759–E767, 1996.
 152. Zhang, X‐J., D. L. Chinkes, S. Wolf, and R. R. Wolfe. Insulin but not growth hormone stimulates protein anabolism in skin wound and muscle. Am. J. Physiol., 276 (Endocrinol Metab): E712–E720.
 153. Zhang X‐J., J. Cortiella, D. J. Doyle, and R. R. Wolfe. Ketamine anesthesia causes greater muscle catabolism in rabbits than does propofol. Nutr. Biochem. 8: 133–139, 1997.
 154. Zhang, X‐J., Y. Sakurai, and R. R. Wolfe. An animal model for measurement of protein metabolism in the skin. Surgery 119: 326–332, 1996.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Robert R. Wolfe, Elena Volpi. Insulin and Protein Metabolism. Compr Physiol 2011, Supplement 21: Handbook of Physiology, The Endocrine System, The Endocrine Pancreas and Regulation of Metabolism: 735-757. First published in print 2001. doi: 10.1002/cphy.cp070224