Comprehensive Physiology Wiley Online Library

Regulation of Muscle Glucose Uptake In Vivo

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Methodologies for Measurement of Skeletal Muscle Glucose Uptake
1.1 Theories of Metabolic Control
1.2 Kinetic Theory of Intact Organs
1.3 Arteriovenous Differences
1.4 Muscle Biopsies
1.5 Positron Emission Tomography
1.6 Nuclear Magnetic Resonance Spectroscopy
1.7 Multiple Tracer Dilution Technique
1.8 Measurement of Whole Body Glucose Metabolism
2 Mechanism of Insulin Action at Skeletal Muscle
2.1 Insulin Signaling In Vivo
2.2 Glucose Transport and Phosphorylation in Skeletal Muscle
2.3 Glycogen Synthesis, Glycolysis, and Glucose Oxidation in Skeletal Muscle
2.4 Effect of Insulin on Blood Flow
2.5 Transport of Insulin Across the Endothelial Barrier Time‐Limiting Steps in Insulin Action
2.6 Modulation of Insulin‐Stimulated Skeletal Muscle Glucose Uptake by Nonesterified Fatty Acid Availability
3 Exercise and Muscle Glucose Uptake
3.1 Mechanism of the Exercise‐Induced Increase in Muscle Glucose Uptake
3.2 Modulation of Glucose Uptake by the Working Muscle by the Internal Milieu
3.3 Muscle Glucose Uptake in the Postexercise State
4 Conclusion
Figure 1. Figure 1.

Simplified diagram of muscle glucose metabolism. Note that while glucose transport, being a process of facilitated diffusion, is a bidirectional step, hexokinase (HK) II catalyzes an irreversible conversion of glucose to glucose‐6‐phosphate (G6P). Downstream of G6P, glucose metabolism divides into two pathways: glycogen synthesis and glycolysis. Formation of glycogen is not an irreversible phenomenon, although, for the sake of simplicity, this is not shown in the figure. Glycogen can be broken down by the enzyme glycogen phosphorylase to glucose‐l‐phosphate and, hence, G6P, which can be again reutilized to form glycogen or channeled to glycolysis. In contrast, the entry into the glycolytic pathway is an irreversible step catalyzed by phosphofructokinase.

Figure 2. Figure 2.

Plot showing the relationship between plasma insulin levels and forearm glucose uptake in healthy individuals, analyzed according to eq. 2. This empirical relationship is best fitted by a second‐order polynomial (R2 = 0.783, p < .001). According to the principles of sensitivity analysis, net sensitivity of forearm (muscle) glucose uptake to insulin is given by the first derivative of this function.

[Data Bonadonna et al. 42.]
Figure 3. Figure 3.

Net sensitivity function of forearm (muscle) glucose uptake to plasma insulin levels derived from the data shown in Figure 2. Note that net sensitivity is not a constant, but changes monotonically with the changes in plasma insulin levels. Note also the logarithmic scale of the x‐axis. If the x‐axis were in a linear scale, the net sensitivity to insulin would be described by an exponential function.

Figure 4. Figure 4.

Control strength values of glucose transporters and HK (shaded bars) in vivo on glucose uptake of human skeletal muscle in healthy individuals (n = 7) in the basal state (left panel) and during systemic physiological (˜ 75 μU/ml) hyperinsulinemia (right panel). In the postabsorptive state, HK plays the predominant role in determining muscle glucose uptake. Insulin reverses this situation and gives a prominent role to glucose transporters. These control strength values were calculated utilizing the rates of transmembrane inward and outward glucose transport, the rate of glucose phosphorylation, and extracellular and intracellular glucose concentrations.

[Data from Bonadonna et al. 41 and Saccomani et al. 276.]
Figure 5. Figure 5.

Simplified diagram of muscle glucose metabolism showing the potential role of blood flow and capillary exchange in affecting muscle glucose uptake in a capillary‐tissue unit. Blood flow plays a dual role: its acceleration increases the glucose supply but also decreases the time during which the glucose molecules can be exchanged with the interstitium. According to the theory of transcapillary exchanges, the former phenomenon is always quantitatively more relevant than the latter, which only at the asymptotically highest blood flows can completely offset the increase in glucose supply.

Figure 6. Figure 6.

Plot showing the dependence of transcapillary glucose exchange on blood flow in human muscle in vivo at low (8 ml/min/kg) and average (20 ml/min/kg) values of capillary PS for glucose. It can be seen that within the range of insulin‐mediated increases in muscle blood flow and in the absence of capillary recruitment, blood flow per se has a minor impact on the amount of glucose exchanged with the interstitium. The average value of 20 ml/min/kg of capillary PS in human muscle was extrapolated from reference 44.

Figure 7. Figure 7.

The model utilized for the analysis of FDG‐PET experimental data. The time course of arterial FDG concentration is independently measured. The time course of 18F radioactivity is assumed to be the sum of three components: arterial FDG activity, cellular FDG, and FDG‐6‐phosphate irreversibly trapped inside the cell. The rate constant k1 represents transport of FDG inside the cell; the rate constant k2 quantifies the transport of FDG outside the cell, and the rate constant k3 quantifies the phosphorylation of FDG. See text for more details.

Figure 8. Figure 8.

Washout curves of an intravascular indicator and 3H2O in the deep forearm vein of a representative healthy human subject after a pulse injection of the two indicators at time = 0 into the brachial artery. Although the fractional extraction of water in human muscle is quite high (˜0.70), it is much lower than the values (>0.96) reported in the brain and in the heart.

Figure 9. Figure 9.

Washout curves of [1‐3H]‐D‐mannitol, 3‐O‐[14C]‐methyl‐D‐glucose, and [3‐3H]‐D‐glucose in the deep forearm vein of a representative healthy human subject after a pulse injection of three substances at time = 0 into the brachial artery. The difference in concentration between D‐mannitol (a nontransportable, nonmetabolizable glucose analogue) and 3‐O‐methyl‐D‐glucose (a transportable, nonmetabolizable glucose analogue) reflects the activity of transmembrane glucose transport, whereas the difference between 3‐O‐methyl‐D‐glucose and D‐glucose, which can also be metabolized, reflects the activity of phosphorylation.

Figure 10. Figure 10.

The compartmental model developed to analyze multiple tracer dilution data such as those presented in Figure 9. Three paths (compartments 2 to 7) with different speeds (fast, intermediate, and slow) are necessary and sufficient to describe D‐mannitol kinetics. There is also an irreversible exit from the injection pool (artery) because, as the forearm is drained by several veins and blood is sampled in only one of them, a variable amount of the three indicators is not recovered in the sampling pool. To these three pathways, intracellular pools 9 to 14 in bidirectional exchange (transmembrane transport of 3‐O‐methyl‐D‐glucose and D‐glucose) with the extracellular volume are appended. From these intracellular pools, D‐glucose (but not 3‐O‐methyl‐D‐glucose) can be irreversibly lost (unidirectional arrows) through the process of phosphorylation. Application of this model to experimental data such as those presented in Figure 9 allows one to compute the fluxes of glucose transport into and out of the cell, the flux of intracellular phosphorylation, and extracellular (tissue), and intracellular glucose concentrations 41, 276.

Figure 11. Figure 11.

This figure shows a typical euglycemic clamp experiment. The upper panel shows that the plasma glucose concentration (closed circles) is tightly maintained at a plasma glucose concentration of about 90 mg/dl. The lower panel shows the plasma insulin concentrations that result from a primed, continuous infusion of insulin at a rate of 1 mU/kg · min. The upper panel also shows the rate of infusion of glucose required to keep the plasma glucose constant during hyperinsulinemia.

[From DeFronzo et al. 87.]
Figure 12. Figure 12.

This figure demonstrates the ability of insulin to increase HK II, but not HK I or GS mRNA abundance, in human skeletal muscle. In this experiment 203, a euglycemic hyperinsulinemica clamp was performed in nine subjects. Needle biopsies of the vastus lateralis muscle were performed before and after 4 h of physiological hyperinsulinemia (approximately 65 μU/ml). RNA isolated from the biopsy samples was used in RNase protection assays to quantify the mRNA level of GS, HK I, and HK II. Hexokinase II mRNA was increased by threefold over basal values, but HK I and GS mRNA were not increased.

Figure 13. Figure 13.

This figure illustrates the variability in the pathways of insulin‐stimulated leg muscle glucose metabolism in humans. The full height of each bar represents insulin‐stimulated leg glucose uptake (mmoles of glucose per minute · 100 ml leg tissue) for each of seven healthy male subjects (a‐g). The components of leg glucose metabolism are shown within each bar. Glucose oxidation is shown as the hatched bar, nonoxidized glycolysis (net release of lactate and alanine) is the stippled area, and glucose storage (glycogen formation) is the open area. There is more than a twofold difference among these normal volunteers in the magnitude of total leg glucose metabolism. It can be appreciated that variability in leg muscle glucose storage as glycogen is the primary determinant of the variability in overall glucose uptake.

[From Kelley et al. 171.]
Figure 14. Figure 14.

This figure illustrates how insulin and G6P increase GS activity. Glucose‐6‐phosphate binds allosterically to GS and increases its activity. The physiological range of G6P is shown as a shaded area, and it can be seen that small changes in the G6P concentration can have a large impact on GS activity. Insulin results in dephosphorylation of the enzyme and a resultant shift in the G6P dose‐response curve to the left. As a result, GS activity at a given G6P concentration is increased by insulin. This effect is especially pronounced within the physiological range of G6P concentrations.

Figure 15. Figure 15.

Hindlimb glucose uptake (left), glucose + lactate oxidation (middle) and nonoxidative glucose + lactate metabolism (right) versus plasma glucose concentration during rest and exercise in chronically catheterized dogs. The glucose clamp technique was used to maintain glucose at one of four glucose levels. Exercise samples were obtained during the last 40 min of a 90 min work period. Insulin levels were fixed at basal using somatostatin and intraportal insulin replacement. Oxidative and nonoxidative metabolism were calculated including 14C‐lactate specific activity when net limb lactate uptake is present. Five samples show a glucose level of 5.0 mM, and four samples represent all other glucose levels. Data are mean ± SE.

[Modified from Zinker et al. 347.]
Figure 16. Figure 16.

Effect of exercise alone (n = 19) and exercise plus somatostatin with (n = 8) and without (n = 6) insulin replacement on whole body glucose disappearance in dogs. Data are mean ± SE.

[Modified from Wasserman et al. 321.]
Figure 17. Figure 17.

Comparison of the effect of 1 μM wortmannin on basal and insulin‐ and contraction‐stimulated skeletal muscle glucose transport. Intact soleus muscles were preincubated with or without wortmannin for 10 min and then studied during a second incubation using the same medium under basal, insulin‐stimulated, or contraction‐stimulated conditions. p < .01 vs. a corresponding experiment performed in the absence of wortmannin.

[Modified from Lund et al. 198.]


Figure 1.

Simplified diagram of muscle glucose metabolism. Note that while glucose transport, being a process of facilitated diffusion, is a bidirectional step, hexokinase (HK) II catalyzes an irreversible conversion of glucose to glucose‐6‐phosphate (G6P). Downstream of G6P, glucose metabolism divides into two pathways: glycogen synthesis and glycolysis. Formation of glycogen is not an irreversible phenomenon, although, for the sake of simplicity, this is not shown in the figure. Glycogen can be broken down by the enzyme glycogen phosphorylase to glucose‐l‐phosphate and, hence, G6P, which can be again reutilized to form glycogen or channeled to glycolysis. In contrast, the entry into the glycolytic pathway is an irreversible step catalyzed by phosphofructokinase.



Figure 2.

Plot showing the relationship between plasma insulin levels and forearm glucose uptake in healthy individuals, analyzed according to eq. 2. This empirical relationship is best fitted by a second‐order polynomial (R2 = 0.783, p < .001). According to the principles of sensitivity analysis, net sensitivity of forearm (muscle) glucose uptake to insulin is given by the first derivative of this function.

[Data Bonadonna et al. 42.]


Figure 3.

Net sensitivity function of forearm (muscle) glucose uptake to plasma insulin levels derived from the data shown in Figure 2. Note that net sensitivity is not a constant, but changes monotonically with the changes in plasma insulin levels. Note also the logarithmic scale of the x‐axis. If the x‐axis were in a linear scale, the net sensitivity to insulin would be described by an exponential function.



Figure 4.

Control strength values of glucose transporters and HK (shaded bars) in vivo on glucose uptake of human skeletal muscle in healthy individuals (n = 7) in the basal state (left panel) and during systemic physiological (˜ 75 μU/ml) hyperinsulinemia (right panel). In the postabsorptive state, HK plays the predominant role in determining muscle glucose uptake. Insulin reverses this situation and gives a prominent role to glucose transporters. These control strength values were calculated utilizing the rates of transmembrane inward and outward glucose transport, the rate of glucose phosphorylation, and extracellular and intracellular glucose concentrations.

[Data from Bonadonna et al. 41 and Saccomani et al. 276.]


Figure 5.

Simplified diagram of muscle glucose metabolism showing the potential role of blood flow and capillary exchange in affecting muscle glucose uptake in a capillary‐tissue unit. Blood flow plays a dual role: its acceleration increases the glucose supply but also decreases the time during which the glucose molecules can be exchanged with the interstitium. According to the theory of transcapillary exchanges, the former phenomenon is always quantitatively more relevant than the latter, which only at the asymptotically highest blood flows can completely offset the increase in glucose supply.



Figure 6.

Plot showing the dependence of transcapillary glucose exchange on blood flow in human muscle in vivo at low (8 ml/min/kg) and average (20 ml/min/kg) values of capillary PS for glucose. It can be seen that within the range of insulin‐mediated increases in muscle blood flow and in the absence of capillary recruitment, blood flow per se has a minor impact on the amount of glucose exchanged with the interstitium. The average value of 20 ml/min/kg of capillary PS in human muscle was extrapolated from reference 44.



Figure 7.

The model utilized for the analysis of FDG‐PET experimental data. The time course of arterial FDG concentration is independently measured. The time course of 18F radioactivity is assumed to be the sum of three components: arterial FDG activity, cellular FDG, and FDG‐6‐phosphate irreversibly trapped inside the cell. The rate constant k1 represents transport of FDG inside the cell; the rate constant k2 quantifies the transport of FDG outside the cell, and the rate constant k3 quantifies the phosphorylation of FDG. See text for more details.



Figure 8.

Washout curves of an intravascular indicator and 3H2O in the deep forearm vein of a representative healthy human subject after a pulse injection of the two indicators at time = 0 into the brachial artery. Although the fractional extraction of water in human muscle is quite high (˜0.70), it is much lower than the values (>0.96) reported in the brain and in the heart.



Figure 9.

Washout curves of [1‐3H]‐D‐mannitol, 3‐O‐[14C]‐methyl‐D‐glucose, and [3‐3H]‐D‐glucose in the deep forearm vein of a representative healthy human subject after a pulse injection of three substances at time = 0 into the brachial artery. The difference in concentration between D‐mannitol (a nontransportable, nonmetabolizable glucose analogue) and 3‐O‐methyl‐D‐glucose (a transportable, nonmetabolizable glucose analogue) reflects the activity of transmembrane glucose transport, whereas the difference between 3‐O‐methyl‐D‐glucose and D‐glucose, which can also be metabolized, reflects the activity of phosphorylation.



Figure 10.

The compartmental model developed to analyze multiple tracer dilution data such as those presented in Figure 9. Three paths (compartments 2 to 7) with different speeds (fast, intermediate, and slow) are necessary and sufficient to describe D‐mannitol kinetics. There is also an irreversible exit from the injection pool (artery) because, as the forearm is drained by several veins and blood is sampled in only one of them, a variable amount of the three indicators is not recovered in the sampling pool. To these three pathways, intracellular pools 9 to 14 in bidirectional exchange (transmembrane transport of 3‐O‐methyl‐D‐glucose and D‐glucose) with the extracellular volume are appended. From these intracellular pools, D‐glucose (but not 3‐O‐methyl‐D‐glucose) can be irreversibly lost (unidirectional arrows) through the process of phosphorylation. Application of this model to experimental data such as those presented in Figure 9 allows one to compute the fluxes of glucose transport into and out of the cell, the flux of intracellular phosphorylation, and extracellular (tissue), and intracellular glucose concentrations 41, 276.



Figure 11.

This figure shows a typical euglycemic clamp experiment. The upper panel shows that the plasma glucose concentration (closed circles) is tightly maintained at a plasma glucose concentration of about 90 mg/dl. The lower panel shows the plasma insulin concentrations that result from a primed, continuous infusion of insulin at a rate of 1 mU/kg · min. The upper panel also shows the rate of infusion of glucose required to keep the plasma glucose constant during hyperinsulinemia.

[From DeFronzo et al. 87.]


Figure 12.

This figure demonstrates the ability of insulin to increase HK II, but not HK I or GS mRNA abundance, in human skeletal muscle. In this experiment 203, a euglycemic hyperinsulinemica clamp was performed in nine subjects. Needle biopsies of the vastus lateralis muscle were performed before and after 4 h of physiological hyperinsulinemia (approximately 65 μU/ml). RNA isolated from the biopsy samples was used in RNase protection assays to quantify the mRNA level of GS, HK I, and HK II. Hexokinase II mRNA was increased by threefold over basal values, but HK I and GS mRNA were not increased.



Figure 13.

This figure illustrates the variability in the pathways of insulin‐stimulated leg muscle glucose metabolism in humans. The full height of each bar represents insulin‐stimulated leg glucose uptake (mmoles of glucose per minute · 100 ml leg tissue) for each of seven healthy male subjects (a‐g). The components of leg glucose metabolism are shown within each bar. Glucose oxidation is shown as the hatched bar, nonoxidized glycolysis (net release of lactate and alanine) is the stippled area, and glucose storage (glycogen formation) is the open area. There is more than a twofold difference among these normal volunteers in the magnitude of total leg glucose metabolism. It can be appreciated that variability in leg muscle glucose storage as glycogen is the primary determinant of the variability in overall glucose uptake.

[From Kelley et al. 171.]


Figure 14.

This figure illustrates how insulin and G6P increase GS activity. Glucose‐6‐phosphate binds allosterically to GS and increases its activity. The physiological range of G6P is shown as a shaded area, and it can be seen that small changes in the G6P concentration can have a large impact on GS activity. Insulin results in dephosphorylation of the enzyme and a resultant shift in the G6P dose‐response curve to the left. As a result, GS activity at a given G6P concentration is increased by insulin. This effect is especially pronounced within the physiological range of G6P concentrations.



Figure 15.

Hindlimb glucose uptake (left), glucose + lactate oxidation (middle) and nonoxidative glucose + lactate metabolism (right) versus plasma glucose concentration during rest and exercise in chronically catheterized dogs. The glucose clamp technique was used to maintain glucose at one of four glucose levels. Exercise samples were obtained during the last 40 min of a 90 min work period. Insulin levels were fixed at basal using somatostatin and intraportal insulin replacement. Oxidative and nonoxidative metabolism were calculated including 14C‐lactate specific activity when net limb lactate uptake is present. Five samples show a glucose level of 5.0 mM, and four samples represent all other glucose levels. Data are mean ± SE.

[Modified from Zinker et al. 347.]


Figure 16.

Effect of exercise alone (n = 19) and exercise plus somatostatin with (n = 8) and without (n = 6) insulin replacement on whole body glucose disappearance in dogs. Data are mean ± SE.

[Modified from Wasserman et al. 321.]


Figure 17.

Comparison of the effect of 1 μM wortmannin on basal and insulin‐ and contraction‐stimulated skeletal muscle glucose transport. Intact soleus muscles were preincubated with or without wortmannin for 10 min and then studied during a second incubation using the same medium under basal, insulin‐stimulated, or contraction‐stimulated conditions. p < .01 vs. a corresponding experiment performed in the absence of wortmannin.

[Modified from Lund et al. 198.]
References
 1. Achike, F. I., and H. J. Ballard. Influence of stimulation parameters on the release of adenosine, lactate, and CO2 from contracting dog gracilis muscle. J. Physiol. 463: 107–121, 1993.
 2. Ader, M., and R. Bergman. Importance of transcapillary insulin transport to dynamics of insulin action after intravenous glucose. Am. J. Physiol. 226: E17–E25, 1994.
 3. Ader, M., R. Poulin, Y. Yang, and R. Bergman. Dose‐response relationship between lymph insulin and glucose uptake reveals enhanced insulin sensitivity of peripheral tissues. Diabetes 41: 241–253, 1992.
 4. Ahlborg, G., and P. Felig. Lactate and glucose exchange across the forearm, legs, and splanchnic bed during after prolonged leg exercise. J. Clin. Invest. 69: 45–54, 1982.
 5. Ahlborg, G., P. Felig, L. Hagenfeldt, R. Hendler, and J. Wahren. Substrate turnover during prolonged exercise in man. J. Clin. Invest. 53: 1080–1090, 1974.
 6. Ahlborg, G., and M. Jensen‐Urstad. Metabolism in exercising arm vs leg muscle. Clin. Physiol. 11: 459–468, 1991.
 7. Ahlborg, G., and A. Juhlin‐Dannfelt. Effect of beta‐receptor blockade on splanchnic and muscle metabolism during prolonged exercise in men. J. Appl. Physiol. 76: 1037–1042, 1994.
 8. Ahn, N.. The MAP kinase cascade. Discovery of a new signal transduction pathway. Mol. Cell. Biochem. 127/128: 201–209, 1993.
 9. Andersen, P., S. Lund, H. Vestergaard, S. Junker, B. Kahn, and O. Pedersen. Expression of the major insulin regulatable glucose transporter (GLUT4) in skeletal muscle of noninsulin‐dependent diabetic patients and healthy subjects before and after insulin infusion. J. Clin. Endocrinol. Metab. 77: 27–32, 1993.
 10. Andersen, P. H., and B. Saltin. Maximal perfusion of skeletal muscle in man. J. Physiol. [Lond.] 366: 233–249, 1985.
 11. Andreasson, K., D. Galuska, A. Thorne, T. Sonnenfeld, and H. Wallberg‐Hendriksson. Decreased insulin‐stimulated 3‐O methyl‐glucose transport in in vitro incubated muscle strips from type II diabetic subjects. Acta Physiol. Scand. 142: 255–260, 1991.
 12. Araki, E., M. Lipes, M. Patti, J. Bruning, B. Haag, R. Johnson, and C. R. Kahn. Alternative pathways of insulin signalling in mice with targeted disruption of the IRS‐1 gene. Nature 372: 186–190, 1994.
 13. Armstrong, R. B., and M. H. Laughlin. Blood flows within and among rat muscles as a function of time during high‐speed treadmill exercise. J. Physiol. [Lond.] 344: 189–208, 1983.
 14. Arner, P., T. Pollare, H. Lithell, and J. Livingstone. Defective insulin receptor kinase in human skeletal muscle in obesity and type II (non‐insulin‐dependent) diabetes mellitus. Diabetologia 30: 437–440, 1987.
 15. Asp, S., J. R. Daugaard, and E. A. Richter. Eccentric exercise decreases GLUT4 protein in human skeletal muscle. J. Physiol. [Lond.] 482: 705–712, 1995.
 16. Asp, S., T. Rohde, and E. A. Richter. Impaired muscle glycogen resynthesis after a marathon is not caused by decreased muscle GLUT‐4 content. J. Appl. Physiol. 83: 1482–1485, 1997.
 17. Backer, J., M. Myers, S. Shoelson, D. Chin, X. Sun, M. Miralpeix, B. Hu, B. Margolis, E. Skolnik, J. Schlessinger, and M. White. Phosphatidylinositol 3′‐kinase is activated by association with IRS‐1 during insulin stimulation. EMBO J. 11: 3469–3479, 1992.
 18. Bak, J., U. Jacobsen, F. Jorgensen, and O. Pedersen. Insulin receptor function and glycogen synthase activity in skeletal muscle biopsies from patients with insulin‐dependent diabetes mellitus: effects of physical training. J. Clin. Endocrinol. Metab. 69: 158–164, 1989.
 19. Balon, T. W., and J. L. Nadler. Nitric oxide release is present from incubated skeletal muscle preparations. J. Appl. Physiol. 77 (6): 2519–2521, 1994.
 20. Baltensperger, K., L. Kozma, A. Cherniack, J. Klarlund, A. Chawla, U. Banerjee, and M. Czech. Binding of the ras activator son‐of‐sevenless to insulin receptor substrate‐1 signaling complexes. Science 260: 1950–1952, 1993.
 21. Baron, A., and G. Brechtel. Insulin differentially regulates systemic and skeletal muscle vascular resistance. Am. J. Physiol. 265: E61–E67, 1993.
 22. Baron, A., H. Steinberg, G. Brechtel, and A. Johnson. Skeletal muscle blood flow independently modulates insulin‐mediated glucose uptake. Am. J. Physiol. 266: E248–E253, 1994.
 23. Baron, A. D.. Hemodynamic actions of insulin. Am. J. Physiol. 267: E187–E202, 1994.
 24. Baron, A. D.. The coupling of glucose metabolism and perfusion in human skeletal muscle. The potential role of endothelium‐derived nitric oxide. Diabetes 45 (Suppl. 1): 5105–5109, 1996.
 25. Baron, A. D., H. O. Steinberg, H. Chaker, R. Leaming, A. Johnson, and G. Brechtel. Insulin‐mediated skeletal muscle vasodilation contributes to both insulin sensitivity and responsiveness in lean humans. J. Clin. Invest. 96: 786–792, 1995.
 26. Bass, L., and P. J. Robinson. Capillary permeability of heterogeneous organs: a parsimonious interpretation of indicator diffusion data. Clin. Expr. Pharmacol. Physiol. 9: 363–388, 1982.
 27. Bassingthwaighte, J. B., F. P. Chinard, C. Crone, C. A. Goresky, N. A. Lassen, R. S. Reneman, and K. L. Zierler. Terminology for mass transport and exchange. Am. J. Physiol. 250: H539–H545, 1986.
 28. Bassingthwaighte, J. B., and C. A. Goresky. Modeling in the analysis of solute and water exchange in the microvasculature. In: The Cardiovascular System. Microcirculation. Bethesda, MD: American Physiological Society, p. 549–626, 1984.
 29. Benjamin, N., A. Claver, B. Robinson, P. Vallance, and D. Webb. Measuring forearm blood flow and interpreting the responses to drugs and mediators. Hypertension 25: 918–923, 1995.
 30. Benn, J. J., P. M. Brown, L. J. Beckwith, M. Farebrother, and P. H. Sonksen. Glucose turnover in type 1 diabetic subjects during exercise. Diabetes Care 15 (Suppl 4): 1721–1726, 1992.
 31. Bergman, R. N., G. M. Steil, and D. Bradley. Modeling of insulin action in vivo. Annu. Rev. Physiol. 54: 861–883, 1992.
 32. Bergmann, S. R., K. A. Fox, A. L. Rand, K. D. McElvany, J. Markham, and B. E. Sobel. Quantification of regional myocardial blood flow in vivo with H2150. Circulation 70: 724–733, 1984.
 33. Bessman, S. P., and P. J. Geiger. Compartmentation of hexokinase and creatine phosphokinase, cellular regulation, and insulin action. Curr. Top. Cell. Regul. 16: 55–86, 1980.
 34. Bjornholm, M., Y. Kawano, M. Lehtihet, and J. R. Zierath. Insulin receptor substrate‐1 phosphorylation and phosphatidylinositol 3‐kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation. Diabetes 46: 524–527, 1997.
 35. Boden, G., and X. Chen. Effects of fat on glucose uptake and utilization in patients with non‐insulin‐dependent diabetes. J. Clin. Invest. 96: 1261–1268, 1995.
 36. Boden, G., X. Chen, J. Ruiz, J. V. White, and L. Rossetti. Mechanisms of fatty acid‐induced inhibition of glucose uptake. J. Clin. Invest. 93: 2438–2446, 1994.
 37. Boden, G., F. Jadali, J. White, Y. Liang, M. Mozzoli, X. Chen, E. Coleman, and C. Smith. Effects of fat on insulin‐stimulated carbohydrate metabolism in normal men. J. Clin. Invest. 88: 960–966, 1991.
 38. Boden, G., T. Ray, R. Smith, and O. Owen. Carbohydrate oxidation and storage in obese non‐insulin‐dependent diabetic patients. Diabetes 32: 982–987, 1983.
 39. Bogardus, C., S. Lillioja, K. Stone, and D. Mott. Correlation between muscle glycogen synthase activity and in vivo insulin action in man. J. Clin. Invest. 73: 1185–1190, 1984.
 40. Bogardus, C., P. Thuillez, E. Ravussin, B. Vasquez, M. Narimiga, and S. Azhar. Effect of muscle glycogen depletion on in vivo insulin action in man. J. Clin. Invest. 72: 1605–1610, 1983.
 41. Bonadonna, R., S. D. Prato, E. Bonora, M. Saccomani, G. Gulli, A. Natali, S. Frascerra, N. Pecori, E. Ferrannini, D. Bier, C. Cobelli, and R. Defronzo. Roles of glucose transport and glucose phosphorylation in muscle insulin resistance of NIDDM. Diabetes 45: 915–925, 1996.
 42. Bonadonna, R., M. P. Saccomani, L. Seely, K. S. Zych, E. Ferrannini, C. Cobelli, and R. A. Defronzo. Glucose transport in human skeletal muscle: the in vivo response to insulin. Diabetes 42: 191–198, 1993.
 43. Bonadonna, R., K. Zych, C. Boni, E. Ferrannini, and R. Defronzo. Time dependence of the interaction between lipid and glucose in humans. Am. J. Physiol. 257: E49–E56, 1989.
 44. Bonadonna, R. C., M. Lehtovirta, E. Laurila, P. Vicini, F. Menotto, and L. C. Groop. Transcapillary transfer of glucose is not mediated by an insulin sensitive mechanism of facilitated diffusion. Diabetes 44 (Suppl 1): 195A, 1995.
 45. Bonadonna, R. C., M. P. Saccomani, and C. Cobelli. In vivo glucose transport in human skeletal muscle: tools, problems, and perspectives. Bailliere's Clin. Endocrinol. Metab. 7: 929–960, 1993.
 46. Bonadonna, R. C., M. P. Saccomani, and C. Cobelli. Effects of systemic hyperinsulinemia on muscle perfusion and glucose metabolism in man. Diabetes 41 (Suppl 1): 188A, 1992.
 47. Bonadonna, R. C., M. P. Saccomani, S. D. Prato, E. Bonora, R. A. De Fronzo, and C. Cobelli. Role of tissue‐specific blood flow and tissue recruitment in insulin‐mediated glucose uptake of human skeletal muscle. Circulation 98: 234–241, 1998.
 48. Bonen, A., D. A. Hood, M. H. Tan, M. M. Sopper, and N. Begin‐Heik. Effects of exercise on insulin binding to human muscle. Am. J. Physiol. 248: E403–E408, 1985.
 49. Bracy, D. P., B. A. Zinker, D. B. Lacy, J. Jacobs, and D. H. Wasserman. Carbohydrate metabolism during exercise: influence of circulating fat availability. J. Appl. Physiol. 79: 506–513, 1995.
 50. Broberg, S., A. Katz, and K. Sahlin. Propranolol enhances adenine nucleotide degradation in human muscle during exercise. J. Appl. Physiol. 65: 2478–2483, 1988.
 51. Brooks, G. A., E. E. Wolfel, B. M. Groves, P. R. Bender, G. E. Butterfield, A. Cymerman, R. S. Mazzeo, J. R. Sutton, R. R. Wolfe, and J. T. Reeves. Muscle accounts for glucose disposal but not blood lactate appearance during exercise after acclimatization to 4,300 m. J. Appl. Physiol. 72: 2435–2445, 1992.
 52. Brozinick, J. T., G. J. Etgen, B. B. Yaspelkis, and J. L. Ivy. Contraction‐activated glucose uptake is normal in insulin‐resistant muscle of obese zucker rat. J. Appl. Physiol. 73: 328–387, 1992.
 53. Bulangu, L., B. Nyomba, V. Ossowski, C. Bogardus, and D. Mott. Insulin‐sensitive tyrosine kinase: relationships with in vivo insulin action in humans. Am. J. Physiol. 258: E964–E974, 1990.
 54. Burcelin, R., R. Printz, J. Kande, R. Assan, D. Granner, and J. Girard. Regulation of glucose transporter and hexokinase II expression in tissues of diabetic rats. Am. J. Physiol. 265: E392–E401, 1993.
 55. Cano, E., and L. Mahadevan. Parallel signal processing among mammalian MAPKs. TIBS 20: 117–122, 1995.
 56. Caro, J., W. Pories, E. Flickinger, D. Meelheim, O. Itoop, M. Jenquin, M. Sinha, and G. Dohm. Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabetes mellitus. J. Clin. Invest. 79: 1330–1337, 1987.
 57. Carruthers, A.. Facilitated diffusion of glucose. Physiol. Rev. 70: 1135–1176, 1990.
 58. Cartee, G. D., A. G. Douen, T. Ramlal, A. Klip, and J. O. Holloszy. Stimulation of glucose transport in skeletal muscle by hypoxia. J. Appl. Physiol. 70: 1593–1600, 1991.
 59. Cartee, G. D., and J. O. Holloszy. Exercise increases susceptibility of muscle glucose transport to activation by various stimuli. Am. J. Physiol. 258: E390–E393, 1990.
 60. Cartee, G., D. Young, M. Sleeper, J. Zierath, H. Wallberg‐Henriksson, and J. Holloszy. Prolonged increase in insulin‐stimulated glucose transport in muscle after exercise. Am. J. Physiol. 256: E494–E499, 1989.
 61. Castillo, C., C. Bogardus, R. N. Bergman, P. Thuillez, and S. Lillioja. Interstitial insulin concentrations determines glucose uptake rates but not insulin resistance in lean and obese men. J. Clin. Invest. 93: 10–16, 1994.
 62. Chance, B., and G. R. Williams. Respiratory enzymes in oxidative phosphorylation. VI. The effects of adenosine diphosphate on azide‐treated mitochondria. J. Biol. Chem. 221: 477–488, 1956.
 63. Chang, P. Y., Y. Lemarchand‐Brustel, L. Cheatham, and D. Moller. Insulin stimulation of mitogen‐activated protein kinase, p90rsk, and p70 s6 kinase in skeletal muscle of normal and insulin resistant mice. J. Biol. Chem. 270: 29928–29935, 1995.
 64. Chaveau, M. A., and M. Kaufmann. Experiences pour la determination du coefficient de l'activite nutritive et respiratoire des muscles en repos et en travail. C. R. Acad. Sci. 104: 1126–1132, 1887.
 65. Cheatham, B., and C. R. Kahn. Insulin action and the insulin signaling network. Endocr. Rev. 16: 117–142, 1996.
 66. Cheatham, B., C. Vlahos, and L. Cheatham. Phosphatidylinositol 3‐kinase is required for insulin stimulation of pp70 s6 kinase, DNA synthesis and glucose transporter translocation. Mol. Cell. Biol. 14: 4902–4911, 1994.
 67. Chen, J., and P. D. Gollnick. Effect of exercise on hexokinase distribution and mitochondrial respiration in skeletal muscle. Pfluegers Arch. 427: 257–263, 1994.
 68. Chen, K., S. C. Huang, and D. C. Yu. The effects of measurement errors in the plasma radioactivity curve on parameter estimation in positron emission tomography. Phys. Med. Biol. 36: 183–210, 1991.
 69. Chen‐Zion, M., Y. Bassukevitz, and R. Beitner. Sequence of insulin effects on cytoskeletal and cytosolic phosphofructokinase, mitochondrial hexokinase, glucose 1,6‐bisphosphate and fructose 2,6‐bisphosphate levels. Int. J. Biochem. 24: 1661–1667, 1992.
 70. Cline, G. W., B. M. Jucker, Z. Trajanoski, A. J. M. Rennings, and G. I. Shulman. A novel 13C NMR method to assess intracellular glucose concentration in muscle, in vivo. Am. J. Physiol. 274: E381–E389, 1998.
 71. Cobelli, C., M. Saccomani, E. Ferrannini, R. Defronzo, R. Gelfand, and R. Bonadonna. A compartmental model to quantitate in vivo glucose transport in the human forearm. Am. J. Physiol. 257: E943–E958, 1989.
 72. Coderre, L., K. V. Kandror, G. Vallega, and P. F. Pilch. Identification and characterization of an exercise‐sensitive pool of glucose transporters in skeletal muscle. J. Biol. Chem. 270: 27584–27588, 1995.
 73. Coggan, A. R., W. M. Kohrt, R. J. Spina, D. M. Bier, and J. O. Holloszy. Endurance training decreases plasma glucose turnover and oxidation during moderate intensity exercise in men. J. Appl. Physiol. 68: 990–996, 1990.
 74. Cohen, P.. Signal integration at the level of protein kinases, protein phosphatases and their substrates. Trends Biochem. Sci. 17: 408–413, 1992.
 75. Constable, S. H., R. J. Favier, G. D. Cartee, D. A. Young, and J. O. Holloszy. Muscle glucose transport: interactions of in vitro contractions, insulin, and exercise. J. Appl. Physiol. 55: 2329–2332, 1988.
 76. Cooper, D. M., T. J. Barstow, A. Bergner, and W. P. Lee. Blood glucose turnover during high‐ and low‐intensity exercise. Am. J. Physiol. 257: E405–E412, 1989.
 77. Cooper, D. M., D. H. Wasserman, M. Vranic, and K. Wasserman. Glucose turnover in response to exercise during high‐ and low‐FiO2 breathing in humans. Am. J. Physiol. 14: E209–E214, 1986.
 78. Crabtree, B., and E. A. Newsholme. A quantitative approach to metabolic control. Curr. Top. Cell. Regul. 25: 21–76, 1985.
 79. Crone, C., and D. G. Levitt. Capillary permeability to small solutes. In: The Cardiovascular System. Microcirculation. Bethesda, MD: American Physiological Society, p. 411–466, 1984.
 80. Cross, D., D. Alessi, J. Vandenheede, H. McDowell, H. Hundal, and P. Cohen. The inhibition of glycogen synthase kinase‐3 by insulin or insulin‐like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin but not rapamycin. Biochem. J. 303: 21–26, 1994.
 81. Cushman, S., and L. Wardzala. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. J. Biol. Chem. 255: 4758–4762, 1980.
 82. Czech, M.. Molecular actions of insulin on glucose transport. Annu. Rev. Nutr. 15: 441–471, 1995.
 83. Czech, M., B. Clancy, A. Pessino, C. Woon, and S. Harrison. Complex regulation of simple sugar transport in insulin‐responsive cells. Trends Biochem. Sci. 17: 197–201, 1992.
 84. Damsbo, P., A. Vaag, O. Hother‐Nielsen, and H. Beck‐Nielsen. Reduced glycogen synthase activity in skeletal muscle from obese patients with and without Type 2 (non‐insulin‐dependent) diabetes mellitus. Diabetologia 34: 239–245, 1991.
 85. Defronzo, R., E. Ferrannini, Y. Sato, P. Felig, and J. Wahren. Synergistic interaction between exercise and insulin on peripheral glucose uptake. J. Clin. Invest. 68: 1468–1474, 1981.
 86. Defronzo, R., E. Jacot, E. Jequier, E. Maeder, J. Wahren, and J.‐P. Felber. The effect of insulin on the disposal of an intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30: 1000–1007, 1981.
 87. Defronzo, R., J. Tobin, and R. Andres. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am. J. Physiol. 237: E214–E223, 1979.
 88. Dohm, G. L., E. B. Tapscott, W. J. Pories, D. J. Dabbs, E. G. Flickinger, D. Meelhein, T. Fushiki, S. M. Atkinson, C. W. Elton, and J. F. Caro. An in vitro human muscle preparation suitable for metabolic studies. Decreased insulin stimulation of glucose transport in muscle from morbidly obese and diabetic subjects. J. Clin. Invest. 82: 486–494, 1988.
 89. Dolan, P. L., S. G. Boyd, and G. L. Dohm. Differential effect of maturation on insulin‐ vs. contraction‐stimulated glucose transport in Zucker rats. Am. J. Physiol. 268: E1154–E1160, 1995.
 90. Dombrowski, L., D. Roy, B. Marcotte, and A. Marette. A new procedure for the isolation of plasma membranes, T‐tubules, and internal membranes from skeletal muscle. Am. J. Physiol. 270: E667–E676, 1996.
 91. Dombrowski, L., D. Roy, and A. Marette. Selective impairment of GLUT4 translocation to transverse tubules in skeletal muscle of streptozotocin‐induced diabetic rats. Diabetes 47: 5–12, 1998.
 92. Dorrestijn, J., D. Owens, N. Vandenberghe, J. Bos, and J. Maasen. Expression of a dominant‐negative Ras mutant does not affect stimulation of glucose uptake and glycogen synthesis by insulin. Diabetologia 39: 558–563, 1996.
 93. Douen, A. G., T. Ramlal, G. D. Cartee, and A. Klip. Exercise‐induced increase in glucose transporters of plasma membranes of rat skeletal muscle. Endocrinology 124: 449–454, 1989.
 94. Douen, A. G., T. Ramlal, S. Rastogi, P. J. Bilan, G. Cartee, M. Vranic, J. O. Holloszy, and A. Klip. Exercise induces recruitment of the insulin responsive glucose transporter. Evidence for distinct intracellular insulin‐ and exercise‐recruitable transporter pools in skeletal muscle. J. Biol. Chem. 265: 13427–13430, 1990.
 95. Dyck, D. J., C. T. Putnam, G. J. F. Heigenhauser, E. Hultman, and L. L. Spriet. Regulation of fat‐carbohydrate interaction in skeletal muscle during intense aerobic cycling. Am. J. Physiol. 265: E852–E859, 1993.
 96. Etgen, G. J., C. M. Wilson, J. Jensen, S. W. Cushman, and J. L. Ivy. Glucose transport and cell surface GLUT‐4 protein in skeletal muscle of the obese Zucker rat. Am. J. Physiol. 271: E294–E301, 1996.
 97. Ferrannini, E., J. D. Smith, C. Cobelli, G. Toffolo, A. Pilo, and R. A. De Fronzo. Effect of insulin on the distribution and disposition of glucose in man. J. Clin. Invest. 76: 357–364, 1985.
 98. Firth, R., P. Bell, H. Marsh, I. Hansen, and R. Rizza. Postprandial hyperglycemia in patients with noninsulin‐dependent diabetes mellitus. J. Clin. Invest. 77: 1525–1532, 1986.
 99. Folli, F., M. Saad, J. Backer, and C. R. Kahn. Regulation of P13–kinase activity in liver and muscle of animal models of insulin‐resistant and insulin‐deficient diabetes mellitus. J. Clin. Invest. 92: 1787–1794, 1993.
 100. Frayn, K.. Calculation of substrate oxidation rates in vivo from gaseous exchange. J. Appl. Physiol. 55: 628–634, 1983.
 101. Friedenberg, G., S. Suter, R. Henry, D. Reichart, and J. Olefsky. In vivo stimulation of the insulin receptor kinase in human skeletal muscle. Correlation with insulin‐stimulated glucose disposal during euglycemic clamp studies. J. Clin. Invest. 87: 2222–2229, 1991.
 102. Friedman, J. E., R. W. Dudek, D. S. Whitehead, D. L. Downes, W. R. Frisell, J. F. Caro, and G. L. Dohm. Immunolocalization of glucose transporter GLUT4 with human skeletal muscle. Diabetes 40: 150–154, 1991.
 103. Fukumoto, H., T. Kayano, J. Buse, Y. Edwards, P. Pilch, G. Bell, and S. Seino. Cloning and characterization of the major insulin‐responsive glucose transporter expressed in human skeletal muscle and other insulin‐responsive tissues. J. Biol. Chem. 264: 7776–7779, 1989.
 104. Furler, S. M., A. B. Jenkins, L. H. Storlien, and E. W. Kraegen. In vivo location of the rate‐limiting step of hexose uptake in muscle and brain tissue of rats. Am. J. Physiol. 261: E337–E347, 1991.
 105. Fushiki, T., J. A. Wells, E. B. Tapscott, and G. L. Dohm. Changes in glucose transporters in muscle in response to exercise. Am. J. Physiol. 256: E580–E587, 1989.
 106. Gao, J., E. A. Gulve, and J. O. Holloszy. Contraction‐induced increase in muscle insulin sensitivity: requirement for a serum factor. Am. J. Physiol. 266: E186–E192, 1994.
 107. Gao, J., J. Ren, E. A. Gulve, and J. O. Holloszy. Additive effect of contractions and insulin on GLUT‐4 translocation into the sarcolemma. J. Appl. Physiol. 77 (4): 1597–1601, 1994.
 108. Garetto, L. P., E. A. Richter, M. N. Goodman, and N. B. Ruderman. Enhanced muscle glucose metabolism after exercise in the rat: the two phases. Am. J. Physiol. 246: E471–E475, 1984.
 109. Gollnick, P., B. Pernow, B. Essen, E. Jansson, and B. Saltin. Availability of glycogen and plasma FFA for substrate utilization in leg muscle of man during exercise. Clin. Physiol. 1: 27–42, 1981.
 110. Gomez, F., E. Jequier, V. Chabot, V. Buber, and J. P. Felber. Carbohydrate and lipid oxidation in normal human subjects: its influence on glucose tolerance and insulin response to glucose. Metabolism 21: 381–391, 1972.
 111. Goodyear, L., P. Chang, D. Sherwood, S. Dufresne, and D. Moller. Effect of exercise on mitogen‐activated protein kinase signaling pathways in rat skeletal muscle. Am. J. Physiol. 271: E403–E408, 1996.
 112. Goodyear, L. J., F. Giorgino, T. W. Balon, G. Condorelli, and R. J. Smith. Effects of contractile activity on tyrosine phosphoproteins and PI 3‐kinase activity in rat skeletal muscle. Am. J. Physiol. 268: E987–E995, 1995.
 113. Goodyear, L., F. Giorgino, L. Sherman, J. Carvey, R. Smith, and G. L. Dohm. Insulin receptor phosphorylation, insulin receptor substrate‐1 phosphorylation, and phosphatidylinositol 3‐kinase activity are decreased in intact skeletal muscle strips from obese subjects. J. Clin. Invest. 95: 2195–2204, 1995.
 114. Goodyear, L. J., M. F. Hirshman, and E. S. Horton. Exercise‐induced translocation of skeletal muscle glucose transporters. Am. J. Physiol. 261: E795–E799, 1991.
 115. Goodyear, L. J., M. F. Hirshman, P. A. King, C. M. Thompson, E. D. Horton, and E. S. Horton. Skeletal muscle plasma membrane glucose transport and glucose transporters after exercise. J. Appl. Physiol. 68: 193–198, 1990.
 116. Goodyear, L. J., M. F. Hirshman, R. J. Smith, and E. S. Horton. Glucose transporter number, activity, and isoform content in plasma membranes of red and white skeletal muscle. Am. J. Physiol. 261: E556–E561, 1991.
 117. Goodyear, L. J., P. A. King, M. F. Hirshman, C. M. Thompson, and E. S. Horton. Contractile activity increases plasma membrane glucose transporters in absence of insulin. Am. J. Physiol. 258: E667–E672, 1990.
 118. Graso, G., L. Frittitta, M. Anello, P. Russo, G. Sesti, and V. Trischitta. Insulin receptor tyrosine‐kinase activity is altered in both muscle and adipose tissue from non‐obese normoglycemic insulin‐resistant subjects. Diabetologia 38: 55–61, 1995.
 119. Gregg, S. G., M. Kern, and G. A. Brooks. Acute anemia results in an increased glucose dependence during sustained exercise. J. Appl. Physiol. 66: 1874–1880, 1989.
 120. Grossbard, L., and R. T. Schimke. Multiple hexokinases of rat tissues. J. Biol. Chem. 241: 3546–3560, 1966.
 121. Guma, A., J. Zierath, H. Wallberg‐Henrickson, and A. Klip. Insulin induces translocation of GLUT‐4 glucose transporters in human skeletal muscle. Am. J. Physiol. 268: E613–E622, 1995.
 122. Halseth, A. E., D. P. Bracy, and D. H. Wasserman. Limitations to exercise‐and maximal insulin‐stimulated muscle glucose uptake in vivo. J. Appl. Physiol. 85: 2305–2313, 1998.
 123. Halseth, A. E., D. P. Bracy, and D. H. Wasserman. Over‐expression of hexokinase II increases insulin‐ and exercise‐stimulated muscle glucose uptake in vivo. Am. J. Physiol., 276: E70–E77, 1999.
 124. Hamilton, K. S., F. K. Gibbons, D. P. Bracy, D. B. Lacy, A. D. Cherrington, and D. H. Wasserman. Effect of prior exercise on the partitioning of an intestinal glucose load between splanchnic bed and skeletal muscle. J. Clin. Invest. 98: 125–135, 1996.
 125. Han, X. X., A. Handberg, L. N. Petersen, T. Ploug, and H. Galbo. Stability of GLUT‐1 and GLUT‐4 expression in perfused rat muscle stimulated by insulin and exercise. J. Appl. Physiol. 78 (1): 46–52, 1995.
 126. Hansen, P., E. Gulve, J. Gao, J. Schluter, M. Muekler, and J. Holloszy. Kinetics of 2‐deoxyglucose transport in skeletal muscle: effects of insulin and contractions. Am. J. Physiol. 268: C30–C35, 1995.
 127. Hargreaves, M., B. Kiens, and E. A. Richter. Effect of increased plasma free fatty acid concentrations on muscle metabolism in exercising men. J. Appl. Physiol. 70: 194–201, 1991.
 128. Hariharan, R., M. Bray, R. Ganim, T. Doenst, C. Med, G. W. Goodwin, and H. Taegtmeyer. Fundamental limitations of [18F]2‐deoxy‐2‐fluoro‐D‐glucose for assessing myocardial glucose uptake. Circulation 91: 2435–2444, 1995.
 129. Haring, H., B. Obermeier, B. Ermel, Z. Su, J. Mushack, E. Rattenhuber, J. Holzl, D. Kirsch, R. Machicao, and L. Herberg. Insulin receptor kinase defects as a possible cause of cellular insulin resistance. Diabete Metab. 13: 284–294, 1987.
 130. Havel, R. J., B. Pernow, and N. L. Jones. Uptake and release of free fatty acids and other metabolites in the legs of exercising men. J. Appl. Physiol. 23: 90–99, 1967.
 131. Hawkins, R. A., M. E. Phelps, and S. C. Huang. Effects of temporal sampling, glucose metabolic rates, and disruptions of the blood‐brain barrier on the FDG model with and without a vascular compartment: studies in human brain tumors with PET. J. Cereb. Blood Flow Metab. 6: 170–183, 1986.
 132. Hayashi, T., M. F. Hirshman, E. J. Kurth, W. W. Winder, and L. J. Goodyear. Contraction and AICAR, an activator of 5′‐AMP‐activated protein kinase, stimulate glucose transport by a similar mechanism. Diabetes 47 (Suppl 1): A3, 1998.
 133. Heinrich, R., and T. A. Rapoport. A linear steady‐state treatment of enzymatic chains. Critique of the crossover theorem and a general procedure to identify interaction sites with an effector. Eur. J. Biochem. 42: 97–105, 1974.
 134. Heinrich, R., and T. A. Rapoport. A linear steady‐state treatment of enzymatic chains. General properties, control and effector strength. Eur. J. Biochem. 42: 89–95, 1974.
 135. Heller‐Harrison, R., M. Morin, A. Guilherme, and M. Czech. Insulin‐mediated targeting of phosphatidylinositol 3‐kinase to GLUT4‐containing vesicles. J. Biol. Chem. 271: 10200–10204, 1996.
 136. Henriksen, E. J., R. E. Bourey, K. J. Rodnick, L. Koranyi, M. A. Permutt, and J. O. Holloszy. Glucose transporter protein content and glucose transport capacity in rat skeletal muscle. Am. J. Physiol. 259: E593–E598, 1990.
 137. Henry, R. R., T. Ciaraldi, L. Abrams‐Carter, S. Mudalier, K. Park, and S. Nikoulina. Glycogen synthase activity is reduced in cultured skeletal muscle cells of non‐insulin‐dependent diabetes mellitus subjects. J. Clin. Invest. 98: 1231–1236, 1996.
 138. Henry, R. R., T. Ciaraldi, S. Mudaliar, L. Abrams, and S. Nikoulina. Acquired defects of glycogen synthase activity in cultured human skeletal muscle cells: influence of high glucose and insulin levels. Diabetes 45: 400–407, 1996.
 139. Hespel, P., and E. A. Richter. Glucose uptake and transport in contracting, perfused rat muscle with different pre‐contraction glycogen concentrations. J. Physiol. [Lond.] 427: 347–359, 1990.
 140. Hespel, P., L. Vergauwen, K. Vandenberghe, and E. A. Richter. Important role of insulin and flow in stimulating glucose uptake in contracting skeletal muscle. Diabetes 44: 210–215, 1995.
 141. Higaki, Y., T. Kagawa, J. Fujitani, A. Kiyonaga, M. Shindo, A. Taniguchi, Y. Nakai, K. Tokoyama, M. Suzuki, and H. Tanaka. Effects of a single bout of exercise on glucose effectiveness. Am. J. Physiol. 80: 754–759, 1996.
 142. Hirshman, M. F., L. J. Goodyear, L. J. Wardzala, E. D. Horton, and E. S. Horton. Acute exercise increases the numberof plasma membrane glucose transporters in rat skeletal muscle. FEBS Lett. 238: 235–239, 1988.
 143. Hofmann, S., and D. Pette. Low‐frequency stimulation of rat fast‐twitch muscle enhances the expression of hexokinase II and both the translocation and expression of glucose transporter 4 (GLUT4). Eur. J. Biochem. 219: 307–315, 1994.
 144. Holloszy, J. O., S. H. Constable, and D. A. Young. Activation of glucose transport in muscle by exercise. Diabetes Metab. Rev. 1: 409–423, 1986.
 145. Holloszy, J. O., and H. T. Narahara. Enhanced permeability to sugar associated with muscle contraction: studies of the role of Ca++. J. Gen. Physiol. 50: 551–562, 1967.
 146. Holloszy, J. O., and H. T. Narahara. Nitrate ions: potentiation of increased permeability to sugar associated with muscle contractions. Science 155: 573–575, 1967.
 147. Holmang, A., K. Mimura, P. Bjorntorp, and P. Lonnroth. Interstitial muscle insulin and glucose levels in normal and insulin‐resistant Zucker rats. Diabetes 46: 1799–1804, 1997.
 148. Huang, S. C., M. Schwaiger, R. E. Carson, J. Carson, H. Hansen, C. Selin, E. J. Hoffman, N. MacDonald, H. R. Schelbert, and M. E. Phelps. Quantitative measurement of myocardial blood flow with oxygen‐15 water and positron computed tomography: an assessment of potential and problems. J. Nucl. Med. 26: 616–625, 1985.
 149. Hultman, E., J. Bergstrom, and A. E. Roch‐Norland. Glycogen storage in human skeletal muscle. In: Muscle Metabolism during Exercise, edited by B. S. B. Pernow. New York: Plenum Press, p. 273–288, 1971.
 150. Idstrom, J. P., V. H. Subramanian, B. Chance, T. Scherston, and A. C. Bylund‐Fellinium. Oxygen dependence of energy metabolism in contracting and recovering rat skeletal muscle. Am. J. Physiol. 248: H40–H48, 1985.
 151. Iida, H., I. Kanno, A. Takahashi, S. Miura, M. Murakami, K. Takahashi, Y. Ono, F. Shishido, A. Inugami, N. Tomura, S. Higano, H. Fujita, H. Sasaki, H. Nakamichi, S. Misuzawa, Y. Kondo, and K. Uemura. Measurement of absolute myocardial blood flow with H215O and dynamic positron‐emission tomography. Strategy for quantification in relation to the partial‐volume effect. Circulation 78: 104–115, 1988.
 152. Issekutz, B.. Role of beta‐adrenergic receptors in mobilization of energy sources in exercising dogs. J. Appl. Physiol. 44: 869–876, 1978.
 153. Issekutz, B.. Effect of epinephrine on carbohydrate metabolism in exercising dogs. Metabolism 34: 457–464, 1985.
 154. Jackson, R., P. Blix, J. Mathews, L. Morgan, A. Rubenstein, and J. Nabarro. Comparison of peripheral glucose uptake after oral glucose loading and a mixed meal. Metabolism 32: 706–710, 1983.
 155. Jackson, R., R. Roshania, M. Haiwa, B. Sim, and L. Di Silvio. Impact of glucose ingestion on hepatic and peripheral glucose metabolism in man: an analysis based on simultaneous use of the forearm and double isotope techniques. J. Clin. Endocrinol. Metab. 63: 531–549, 1986.
 156. Jackson, R. A., N. Peters, U. Advani, G. Perry, J. Rogers, W. H. Brough, and T. R. E. Pilkington. Forearm glucose uptake during oral glucose tolerance test in normal subjects. Diabetes 22: 442–458, 1973.
 157. James, D. E., E. W. Kraegen, and D. J. Chisholm. Effect of exercise training on in vivo insulin action in individual tissues of the rat. J. Clin. Invest. 76: 657–666, 1985.
 158. James, D. E., E. W. Kraegen, and D. J. Chisholm. Muscle glucose metabolism in exercising rats: comparison with insulin stimulation. Am. J. Physiol. 248: E575–E580, 1985.
 159. Jansson, E., P. Hjemdahl, and L. Kaijser. Epinephrine‐induced changes in muscle carbohydrate metabolism during exercise in male subjects. J. Appl. Physiol. 60: 1466–1470, 1986.
 160. Jenkins, A. B., L. H. Storlien, D. J. Chisholm, and E. W. Kraegen. Effects of nonesterified fatty acid availability on tissue‐specific glucose utilization in rats in vivo. J. Clin. Invest. 82: 293–299, 1988.
 161. Johnson, A., M. Argyraki, J. Thow, I. Jones, D. Broughton, M. Miller, and R. Taylor. Impaired activation of skeletal muscle glycogen synthase in non‐insulin‐dependent diabetes mellitus is unrelated to the degree of obesity. Metabolism 40: 252–260, 1991.
 162. Kahn, B. B.. Type 2 diabetes: when insulin secretion fails to compensate for insulin resistance. Cell 92: 593–596, 1998.
 163. Kanai, F., M. Todaka, H. Hayashi, S. Kamohara, K. Ishii, T. Okada, O. Hazeki, M. Ui, and Y. Ebina. Insulin‐stimulated GLUT4 translocation is relevant to the phosphorylation of IRS‐1 and the activity of P13‐kinase. Biochem. Biophys. Res. Commun. 195: 762–768, 1993.
 164. Kapeller, R., and L. Cantley. Phosphatidylinositol 3‐kinase. Bioessays 16: 565–576, 1994.
 165. Katz, A., S. Broberg, K. Sahlin, and J. Wahren. Leg glucose uptake during maximal dynamic exercise in humans. Am. J. Physiol. 251: E65–E70, 1986.
 166. Katz, A., B. L. Nyomba, and C. Bogardus. No accumulation of glucose in human skeletal muscle during euglycemic hyperinsulinemia. Am. J. Physiol. 255: E942–E945, 1988.
 167. Katz, A., K. Sahlin, and S. Broberg. Regulation of glucose utilization in human skeletal muscle during moderate dynamic exercise. Am. J. Physiol. 260: E411–E415, 1991.
 168. Katzen, H. M., D. D. Soderman, and C. E. Wiley. Multiple forms of hexokinase. Activities associated with subcellular particulate and soluble fractions of normal and streptozotocin diabetic rat tissues. J. Biol. Chem. 245: 4081–4096, 1970.
 169. Kelley, D., and L. Mandarino. Hyperglycemia normalizes insulin‐stimulated skeletal muscle glucose oxidation and storage in noninsulin‐dependent diabetes mellitus. J. Clin. Invest. 86: 1999–2007, 1990.
 170. Kelley, D., A. Mitrakou, H. Marsh, F. Schwenk, J. Benn, G. Sonnenberg, M. Arcangeli, T. Aoki, J. Sorensen, M. Berger, and J. Gerich. Skeletal muscle glycolysis, oxidation, and storage of an oral glucose load. J. Clin. Invest. 81: 1563–1571, 1988.
 171. Kelley, D., M. Mokan, and L. Mandarino. Intracellular defects in glucose metabolism in obese patients with NIDDM. Diabetes 41: 698–706, 1992.
 172. Kelley, D., J. Reilley, T. Veneman, and L. Mandarino. Effects of insulin on skeletal muscle glucose storage, oxidation, and glycolysis in humans. Am. J. Physiol. 258: E923–E929, 1990.
 173. Kelley, D. E., M. A. Mintun, S. C. Watkins, J. A. Simoneau, F. Jadali, A. Fredrickson, J. Beattie, and R. Theriault. The effect of non‐insulin‐dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle. J. Clin. Invest. 97: 2705–2713, 1996.
 174. Kelley, D. E., M. Mokan, J. A. Simoneau, and L. J. Mandarino. Interaction between glucose and free fatty acid metabolism in human skeletal muscle. J. Clin. Invest. 92: 91–98, 1993.
 175. Kim, J. K., J. K. Wi, and J. H. Youn. Plasma free fatty acids decrease insulin‐stimulated skeletal muscle glucose uptake by suppressing glycolysis in conscious rats. Diabetes 45: 446–453, 1996.
 176. King, P. A., M. F. Hirshman, E. D. Horton, and E. S. Horton. Glucose transport in skeletal muscle membrane vesicles from control and exercised rats. Am. J. Physiol. 257: C1128–C1134, 1989.
 177. Kjaer, M., C. Hollenbeck, B. Frey‐Hewitt, H. Galbo, W. Haskell, and G. Reaven. Glucoregulation and hormonal responses to maximal exercise in non‐insulin dependent diabetes. J. Appl. Physiol. 68: 2067–2074, 1990.
 178. Klein, H., H. Vestergaard, G. Kotze, and O. Pedersen. Elevation of serum insulin concentration during euglycemic hyperinsulinemic clamp studies leads to similar activation of insulin receptor kinase in skeletal muscle of subjects with and without NIDDM. Diabetes 44: 1310–1377, 1995.
 179. Kohn, A. D., S. A. Summers, M. J. Birnbaum, and R. A. Roth. Expression of a constitutively active Akt Ser/Thr kinase in 3T3‐L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J. Biol. Chem. 1996: 31372–31378, 1996.
 180. Kolterman, O., R. Gray, J. Griffen, P. Bernstein, J. Insel, J. Scarlett, and J. Olefsky. Receptor and postreceptor defects contribute to the insulin resistance in non‐insulin dependent diabetes mellitus. J. Clin. Invest. 68: 957–969, 1981.
 181. Koval, J. A., R. A. De Fronzo, R. M. O'Doherty, R. L. Printz, H. Ardehali, D. K. Granner, and L. J. Mandarino. Regulation of hexokinase II activity and expression in human muscle by moderate exercise. Am. J. Physiol. 274: E304–E308, 1998.
 182. Kristiansen, S., M. Hargreaves, and E. A. Richter. Exercise‐induced increase in glucose transport, GLUT4 and VAMP2 in plasma membrane from human muscle. Am. J. Physiol. 270: E197–E201, 1996.
 183. Kristiansen, S., J. Jones, A. Handberg, G. L. Dohm, and E. A. Richter. Eccentric contractions decrease glucose transporter transcription rate, mRNA, and protein in skeletal muscle. Am. J. Physiol. 272: C1734–C1738, 1997.
 184. Kubo, K., and J. E. Foley. Rate‐limiting steps for insulin‐mediated glucose uptake into perfused rat hindlimb. Am. J. Physiol. 250: E100–E102, 1986.
 185. Kuikka, J., M. Levin, and J. B. Bassingthwaighte. Multiple tracer dilution estimates of D‐ and 2‐deoxy‐D‐glucose uptake in the heart. Am. J. Physiol. 250: H29–H40, 1986.
 186. Kupriyanova, T. A., and K. V. Kandror. Akt‐2 binds to Glut4‐containing vesicles and phosphorylates their component proteins in response to insulin. J. Biol. Chem. 274: 1458–1464, 1999.
 187. Kusunoki, M., L. H. Storlien, J. Macdessi, N. D. Oakes, C. Kennedy, D. J. Chisholm, and E. W. Kraegen. Muscle glucose uptake during and after exercise is normal in insulin‐resistant rats. Am. J. Physiol. 264: E167–E172, 1993.
 188. Laakso, M., S. Edelman, G. Brechtel, and A. Baron. Impaired insulin‐mediated skeletal muscle blood flow in patients with NIDDM. Diabetes 41: 1076–1083, 1992.
 189. Laine, H., H. Yki‐Jarvinen, O. Kirvela, T. Tolvanen, M. Raitakari, O. Solin, M. Haaparanta, J. Knuuti, and P. Nuutila. Insulin resistance of glucose uptake in skeletal muscle cannot be ameliorated by enhancing endothelium‐dependent blood flow in obesity. J. Clin. Invest. 101: 1156–1162, 1998.
 190. Lassen, N. A., and W. Perl. Tracer Kinetic Methods in Medical Physiology. New York: Raven Press, 1979.
 191. Laughlin, M. H., and R. B. Armstrong. Muscular blood flow distribution patterns as a function of running speed in rats. Am. J. Physiol. 243: H296–H306, 1982.
 192. Laursen, S., J. Belknap, K. Sampson, and H. Knull. Hexokinase redistribution in vivo. Biochim. Biophys. Acta 1034: 118–121, 1990.
 193. Laville, M., V. Rigalieau, J. P. Riou, and M. Beylot. Respective role of plasma nonesterified fatty acid oxidation and total lipid oxidation in lipid‐induced insulin resistance. Metabolism 44: 639–644, 1995.
 194. Lazar, D., R. Wiese, M. Brady, C. Mastick, S. Waters, K. Yamauchi, J. Pessin, P. Cuatrecasas, and A. Saltiel. Mitogen‐activated protein kinase inhibition does not block the stimulation of glucose utilization by insulin. J. Biol. Chem. 270: 20801–20807, 1995.
 195. Lee, A. D., P. A. Hansen, and J. O. Holloszy. Wortmannin inhibits insulin‐stimulated but not contraction‐stimulated glucose transport activity in skeletal muscle. FEBS Lett. 316: 51–54, 1995.
 196. Lillioja, S., D. Mott, J. Zawadzki, A. Young, W. Abbott, and C. Bogardus. Glucose storage is a major determinant of in vivo “insulin resistance” in subjects with normal glucose tolerance. J. Clin. Endocrinol. Metab. 62: 922–927, 1986.
 197. Lillioja, S., A. A. Young, C. L. Cluster, J. L. Ivy, W. G. H. Abbott, J. K. Zawadzki, H. Y. Jarvinen, L. Christin, T. W. Secomb, and C. Bogardus. Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man. J. Clin. Invest. 80: 415–424, 1987.
 198. Lund, S., G. D. Holman, O. Schmitz, and O. Pedersen. Glut4 content in the plasma membrane of rat skeletal muscle: comparative studies of the subcellular fractionation method and the exofacial technique using ATB‐BMPA. FEBS Lett. 330: 312–318, 1993.
 199. Lund, S., G. D. Holman, O. Schmitz, and O. Pedersen. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc. Nalt. Acad. Sci. USA 92: 5817–5821, 1995.
 200. Maegawa, H., Y. Shigetu, K. Egawa, and M. Kobayashi. Impaired autophosphorylation of the insulin receptor from abdominal skeletal muscles in non‐obese subjects with NIDDM. Diabetes 40: 815–819, 1991.
 201. Maggs, D. G., R. Jacob, F. Rife, S. Caprio, W. V. Tamborlane, and R. S. Sherwin. Counterregulation in peripheral tissues. Effect of systemic hypoglycemia on levels of substrates and catecholamines in human skeletal muscle and adipose tissue. Diabetes 46: 70–76, 1997.
 202. Maggs, D. G., R. Jacob, F. Rife, R. Lange, P. Leone, M. J. During, W. V. Tamborlane, and R. S. Sherwin. Interstitial fluid concentrations of glycerol, glucose, and amino acids in human quadricep muscle and adipose tissue. Evidence for significant lipolysis in skeletal muscle. J. Clin. Invest. 96: 370–377, 1995.
 203. Mandarino, L. J., A. Consoli, A. Jain, and D. Kelley. Interaction of carbohydrate and fat fuels in human skeletal muscle. Am. J. Physiol. 270: E463–E470, 1996.
 204. Mandarino, L. J., R. L. Printz, K. A. Cusi, P. Kinchington, R. O'Doherty, H. Osawa, C. Sewell, A. Consoli, D. K. Granner, and R. A. De Fronzo. Regulation of hexokinase II and glycogen synthase mRNA, protein, and activity in human muscle. Am. J. Physiol. 269: E701–E708, 1995.
 205. Mandarino, L. J. K. Wright, L. Verity, J. Nichols, J. Bell, O. Kolterman, and H. Beck‐Nielsen. Effects of insulin infusion on human skeletal muscle pyruvate dehydrogenase, phosphofructokinase, and glycogen synthase. J. Clin. Invest. 80: 655–633, 1987.
 206. Margolis, B., and E. Skolnik. Activation of ras by receptor tyrosine kinases. J. Am. Soc. Nephrol. 5: 1288–1299, 1994.
 207. Mari, A.. On the calculation of glucose rate of disappearance in nonsteady state. Am. J. Physiol. 266: E825–E826, 1994.
 208. McConnell, G., M. McCoy, J. Proietto, and M. Hargreaves. Skeletal muscle GLUT‐4 and glucose uptake during exercise in humans. J. Appl. Physiol. 77 (3): 1565–1568, 1994.
 209. McGuinness, O. P., and A. Mari. Assessment of insulin action on glucose uptake and production during a euglycemic hyperinsulinemic clamp in dog: a new kinetic analysis. Metabolism 46: 1116–1127, 1997.
 210. Michel, G., T. Vocke, W. Fiehn, H. Weicker, W. Schwarz, and W. P. Bieger. Bidirectional alteration of insulin receptor affinity by direct forms of physical activity. Am. J. Physiol. 246: E153–E159, 1984.
 211. Mijares, A., and M. Jensen. Contribution of blood flow to leg glucose uptake during a mixed meal. Diabetes 44: 1165–1169, 1995.
 212. Mikines, K. J., B. Sonne, P. A. Farrell, B. Tronier, and H. Galbo. Effect of physical exercise on sensitivity and responsiveness to insulin in man. Am. J. Physiol. 254: E248–E259, 1988.
 213. Miles, P., M. Levisetti, D. Reichart, M. Khoursheed, A. Moosa, and J. Olefsky. Kinetics of insulin action in vivo. Identification of rate‐limiting steps. Diabetes 44: 947–953, 1995.
 214. Moxham, C., A. Tabrizchi, R. Davis, and C. Malbon. Jun N‐terminal kinase mediates activation of skeletal muscle glycogen synthase by insulin in vivo. J. Biol. Chem. 271: 30765–30773, 1996.
 215. Myers, M. G. Jr., Y. Zhang, G. A. Aldaz, T. Grammer, E. M. Glasheen, L. Yenush, L. M. Wang, X. J. Sun, J. Blenis, J. H. Pierce, M. F. White. YMXM motifs and signaling by an insulin receptor substrate 1 molecule without phosphorylation sites. Mol. Cell. Biol. 16 (8): 4147–4155, 1996.
 216. Myers, M., L. Wang, X. Sun, Y. Zhang, L. Yenush, J. Schlessinger, J. Pierce, and M. White. Role of IRS‐1‐GRB‐2 complexes in insulin signaling. Mol. Cell. Biol. 14: 3577–3587, 1994.
 217. Natali, A., G. Buzzigoli, S. Taddei, D. Santoro, M. Cerri, R. Pedrinelli, and E. Ferrannini. Effects of insulin on hemodynamics and metabolism in human forearm. Diabetes 39: 490–500, 1990.
 218. Nesher, R., I. Karl, and D. Kipnis. Dissociation of effects of insulin and contraction on glucose transport in rat epitrochlearis muscle. Am. J. Physiol. 249: C266–C232, 1985.
 219. Neufer, P. D., and G. L. Dohm. Exercise induces a transient increase in transcription of the GLUT‐4 gene in skeletal muscle. Am. J. Physiol. 265: C1597–C1603, 1993.
 220. Nolan, J., G. Friedenberg, R. Henry, D. Reichardt, and J. Olefsky. Role of human skeletal muscle insulin receptor kinase in the in vivo insulin resistance of noninsulin‐dependent diabetes mellitus and obesity. J. Clin. Endocrinol. Metab. 78: 471–477, 1994.
 221. Nuutila, P., M. J. Knutti, M. Raitakari, U. Ruotsalainen, M. Teras, L. M. Voipio‐Pulkki, M. Haaparanta, O. Solin, U. Wegelius, and H. Yki‐Jarvinen. Effect of antilipolysis on heart and skeletal muscle glucose uptake in overnight fasted humans. Am. J. Physiol. 267: E941–E946, 1994.
 222. Nuutila, P., V. A. Koivisto, J. Knuuti, U. Ruotsalainen, M. Teras, M. Haaparanta, J. Bergman, O. Solin, L. Voipio‐Pulkki, U. Wegelius, and H. Yki‐Jarvinen. Glucose‐free fatty acid cycle operates in human heart and skeletal muscle in vivo. J. Clin. Invest. 89: 1767–1774, 1992.
 223. Nuutila, P., M. Raitakari, H. Laine, O. Kirvela, T. Takala, T. Utrainen, S. Makimattila, O.‐P. Pitkaneani, U. Rutosilainen, H. Iida, J. Knuuti, and H. Yki‐Jarvinen. Role of blood flow in regulating insulin‐stimulated glucose uptake in humans. J. Clin. Invest. 97: 1741–1747, 1996.
 224. Nyomba, B., V. Ossowski, and C. Bogardus. Insulin‐sensitive tyrosine kinase: relationship with in vivo insulin action in humans. Am. J. Physiol. 258: E964–E974, 1990.
 225. O'Doherty, R. M., D. P. Bracy, D. K. Granner, and D. H. Wasserman. Hexokinase II gene transcription is increased by acute exercise in rat skeletal muscle. J. Appl. Physiol. 81: 789–793, 1996.
 226. O'Doherty, R. M., D. P. Bracy, H. Osawa, D. H. Wasserman, and D. K. Granner. Rat skeletal muscle hexokinase II mRNA and activity are increased by a single bout of acute exercise. Am. J. Physiol. 266: E171–E178, 1994.
 227. O'Reilly, K., M. Warhol, R. Fielding, W. Frontera, C. Meredith, and W. Evans. Eccentric exercise‐induced muscle damage impairs muscle glycogen repletion. J. Appl. Physiol. 63: 252–256, 1987.
 228. Okada, T., Y. Kawano, T. Sakakibara, O. Hazeki, and M. Ui. Essential role of phosphatidylinositol 3‐kinase in insulin‐induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J. Biol. Chem. 269: 3568–3573, 1994.
 229. Olson, A. L., and J. E. Pessin. Structure, function, and regulation of the mammalian facilitative glucose transporter gene family. Annu. Rev. Nutr. 16: 235–256, 1996.
 230. Osawa, H., C. Sutherland, R. B. Robey, R. L. Printz, and D. K. Granner. Analysis of the signaling pathway involved in the regulation of hexokinase II gene transcription by insulin. J. Biol. Chem. 271: 16690–16694, 1996.
 231. Patlak, C. S., and R. G. Blasberg. Graphical evaluation of blood‐to‐brain transfer constants from multiple‐time uptake data. Generalization. J. Cereb. Blood Flow Metab. 5: 584–590, 1985.
 232. Patti, M., X. Sun, J. Bruening, E. Araki, M. Lipes, M. White, and C. R. Kahn. 4PS/IRS‐2 is the alternative substrate of the insulin receptor in IRS‐1‐deficient mice. J. Biol. Chem. 270: 24670–24673, 1995.
 233. Pedley, K., G. Jones, M. Magnani, R. Rist, and R. Naftalin. Direct observation of hexokinase translocation in stimulated macrophages. Biochem. J. 291: 515–522, 1993.
 234. Pestell, R. G., G. M. Ward, P. Galvin, J. D. Best, and F. P. Alford. Impaired glucose tolerance after endurance exercise is associated with reduced insulin secretion rather than altered insulin sensitivity. Metabolism 42: 277–282, 1993.
 235. Phelps, M. E., S. C. Huang, E. J. Hoffman, C. J. Selin, L. Sokoloff, and D. E. Kuhl. Tomographic measurement of local cerebral glucose metabolic rate in humans with [18F]2‐fluoro‐2‐deoxy‐D‐glucose: validation of method. Ann. Neurol. 6: 371–388, 1979.
 236. Ploug, T., H. Galbo, T. Ohkuwa, J. Tranum‐Jensen, and J. Vinten. Kinetics of glucose transport in rat skeletal muscle membrane vesicles: effects of insulin and contractions. Am. J. Physiol. 262: E700–E711, 1992.
 237. Ploug, T., H. Galbo, J. Vinten, M. Jorgensen, and E. A. Richter. Kinetics of glucose transport in rat muscle: effect of insulin and contractions. Am. J. Physiol. 259: E12–E20, 1987.
 238. Ploug, T., B. Stallknecht, O. Pedersen, B. Kahn, T. Ohkuwa, J. Vinten, and H. Galbo. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle. Am. J. Physiol. 259: E778–E786, 1990.
 239. Ploug, T., J. Wojtaszewski, S. Kristiansen, P. Hespel, H. Galbo, and E. A. Richter. Glucose transport and transporters in muscle giant vesicles: differential effects of insulin and contractions. Am. J. Physiol. 264: E270–E278, 1993.
 240. Poulin, R., G. Steil, D. Moore, M. Ader, and R. Bergman. Dynamics of glucose production and uptake are more closely related to insulin in hindlimb than in thoracic duct lymph. Diabetes 43: 180–190, 1994.
 241. Price, T. B., D. L. Rothman, R. Taylor, M. J. Avison, G. I. Shulman, and R. G. Shulman. Human muscle glycogen resynthesis after exercise: insulin‐dependent and‐independent phases. J. Appl. Physiol. 76: 104–111, 1994.
 242. Printz, R. L., H. Ardehali, S. Koch, and D. Granner. Human hexokinase II mRNA and gene structure. Diabetes 44: 290–294, 1995.
 243. Printz, R. L., S. Koch, L. R. Potter, R. M. Doherty, J. J. Tiesinga, S. Moritz, and D. K. Granner. Hexokinase II mRNA and gene structure, regulation by insulin, and evolution. J. Biol. Chem. 268: 5209–5219, 1993.
 244. Putnam, C. T., L. L. Spriet, E. Hultman, D. J. Dyck, and G. J. F. Heigenhauser. Skeletal muscle pyruvate dehydrogenase activity during acetate infusion in humans. Am. J. Physiol. 268: E1007–E1017, 1995.
 245. Putnam, C. T., L. L. Spriet, E. Hultman, M. I. Lindinger, L. C. Lands, R. S. McKelvis, G. Cederblad, N. L. Jones, and G. J. F. Heigenhauser. Pyruvate dehydrogenase activity and acetyl group accumulation during exercise after different diets. Am. J. Physiol. 265: E752–E760, 1993.
 246. Raitakari, M., P. Nuutila, U. Ruotsalainen, H. Laine, M. Teras, H. Iida, S. Makimattila, T. Utrianen, V. Oikonen, H. Sipila, M. Haaparanta, O. Solin, U. Wegelius, J. Knuuti, and H. Yki‐Jarvinen. Evidence for dissociation of insulin stimulation of blood flow and glucose uptake in human skeletal muscle. Studies using [15O]H2O, [18F]fluoro‐2‐deoxy‐D glucose, and positron emission tomography. Diabetes 45: 1471–1477, 1996.
 247. Ramlal, T., V. Sarabia, P. Bilan, and A. Klip. Insulin‐mediated translocation of glucose transporters from intracellular membranes to plasma membranes: sole mechanism of stimulation of glucose transport in L6 muscle cells. Biochem. Biophys. Res. Commun. 157: 1329–1335, 1988.
 248. Randle, P. J., P. J. England, and R. M. Denton. Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart. Biochem. J. 117: 677–695, 1970.
 249. Randle, P. J., P. B. Garland, C. N. Hales, and E. A. Newsholme. The glucose‐fatty acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1: 785–789, 1963.
 250. Randle, P. J., P. B. Garland, C. N. Hales, E. A. Newsholme, R. M. Denton, and C. I. Pogson. Interactions of metabolism and the physiological role of insulin. Recent Prog. Horm. Res. 22: 1–48, 1966.
 251. Randle, P. J., A. Kerbey, and J. Espinal. Mechanisms decreasing glucose oxidation in diabetes and starvation: role of lipid fuels and hormones. Diabetes Metab. Rev. 4: 623–638, 1988.
 252. Randle, P. J., and G. H. Smith. Regulation of glucose uptake by muscle. I. The effects of insulin, anaerobiosis, and cell poisons on the uptake of glucose and release of potassium by isolated rat diaphragm. Biochem. J. 70: 490–500, 1958.
 253. Rasio, E., C. Hampers, J. Soeldner, and G. Cahill. Diffusion of glucose, insulin, inulin, and Evans Blue protein into thoracic duct lymph of man. J. Clin. Invest. 46: 903–910, 1967.
 254. Rattigan, S., M. G. Clark, and E. J. Barrett. Hemodynamic actions of insulin in rat skeletal muscle: evidence for capillary recruitment. Diabetes 46: 1381–1388, 1997.
 255. Ren, J. M., B. Adkins‐Marshall, E. A. Gulve, J. Gao, D. W. Johnson, J. O. Holloszy, and M. Muekler. Evidence from transgenic mice that glucose transport is rate‐limiting for glycogen deposition and glycolysis in skeletal muscle. J. Biol. Chem. 268: 16113–16115, 1993.
 256. Ren, J. M., C. F. Semenkovich, E. A. Gulve, J. G. Gao, and J. O. Holloszy. Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin‐stimulated glycogen storage in muscle. J. Biol. Chem. 269: 14396–14401, 1994.
 257. Renkin, E.. Control of microcirculation and blood tissue exchange. In The Cardiovascular System. Microcirculation. Bethesda, MD: American Physiological Society, p. 627–687, 1984.
 258. Rennie, M. J., and J. O. Holloszy. Inhibition of glucose uptake and glycogenolysis by availability of oleate in well‐oxygenated perfused skeletal muscle. Biochem. J. 168: 161–170, 1977.
 259. Richter, E. A.. Glucose utilization. In: Handbook of Physiology, edited by L. B. Rowell and J. T. Shepherd. Columbia, MD: Bermedica Production, Ltd., p. 912–951, 1996.
 260. Richter, E. A., L. P. Garetto, M. N. Goodman, and N. B. Ruderman. Muscle glucose metabolism following exercise in the rat. Increased sensitivity to insulin. J. Clin. Invest. 69: 785–793, 1982.
 261. Richter, E. A., K. J. Mikines, H. Galbo, and B. Kiens. Effect of exercise on insulin action in human skeletal muscle. J. Appl. Physiol. 66: 876–885, 1989.
 262. Rizza, R., L. Mandarino, and J. Gerich. Dose response characteristics for the effects of insulin on production and utilization of glucose in man. Am. J. Physiol. 240: E630–E639, 1981.
 263. Roach, P.. Control of glycogen synthase by hierarchical protein phosphorylation. FASEB J. 4: 2961–2968, 1990.
 264. Roberts, A., C. J. T. Reeves, G. E. Butterfield, R. S. Mazzeo, J. R. Sutton, E. E. Wolfel, and G. A. Brooks. Altitude and beta‐blockade augment glucose utilization during submaximal exercise. J. Appl. Physiol. 80: 605–615, 1996.
 265. Roberts, C. K., R. J. Barnard, S. H. Schedk, and T. W. Balon. Exercise‐stimulated glucose transport in skeletal muscle in nitric oxide dependent. Am. J. Physiol. 273: E220–E225, 1997.
 266. Roden, M., T. B. Price, G. Perseghin, K. P. Falk, D. L. Rothman, G. W. Cline, and G. I. Shulman. Mechanism of free fatty acid‐induced insulin resistance in humans. J. Clin. Invest. 97: 2859–2865, 1996.
 267. Rordorf‐Nikolic, T., D. V. Horn, D. Chen, M. White, and J. Backer. Regulation of phosphatidylinositol 3′‐kinase by tyrosyl phosphoproteins. J. Biol. Chem. 270: 3662–3666, 1995.
 268. Rossetti, L., and A. Giacarri. Relative contribution of glycogen synthesis and glycolysis to insulin mediated glucose uptake: a dose‐response study. J. Clin. Invest. 85: 1785–1792, 1994.
 269. Rossetti, L., Y. Lee, J. Ruiz, S. C. Aldridge, H. Shamoon, and G. Boden. Quantitation of glycolysis and skeletal muscle glycogen synthesis in humans. Am. J. Physiol. 265: E761–E769, 1993.
 270. Rothman, D., R. Shulman, and G. Shulman. 31P nuclear magnetic resonance measurements of muscle glucose 6‐phosphate. J. Clin. Invest. 89: 1069–1075, 1992.
 271. Roussel, R., G. Velho, P. G. Carlier, L. Jouvensal, and G. Bloch. In vivo NMR evidence for moderate glucose accumulation in human skeletal muscle during hyperglycemia. Am. J. Physiol. 271: E434–E438, 1996.
 272. Roy, D., and A. Marette. Exercise induces the translocation of GLUT4 to transverse tubules from an intracellular pool in rat skeletal muscle. Biochem. Biophys. Res. Commun. 223: 147–152, 1996.
 273. Roy, D., M. Perreauly, and A. Marette. Insulin stimulation of glucose uptake in skeletal muscle and adipose tissues in vivo is NO dependent. Am. J. Physiol. 274: E692–E699, 1998.
 274. Russell, R. R., J. M. Mrus, J. I. Mommessin, and H. Taegtmeyer. Compartmentation of hexokinase in rat heart. A critical factor for tracer kinetic analysis of myocardial glucose metabolism. J. Clin. Invest. 90: 1972–1977, 1992.
 275. Saad, M., E. Araki, M. Miralpeixl, P. Rothenberg, M. White, and C. R. Kahn. Regulation of insulin receptor substrate‐1 in liver and muscle of animal models of insulin resistance. J. Clin. Invest. 90: 1839–1849, 1992.
 276. Sacca, L., G. Toffolo, and C. Cobelli. V‐A and A‐V modes in whole body and regional kinetics: domain of validity from a physiological model. Am. J. Physiol. 263: E597–E606, 1992.
 277. Saccomani, M. P., R. Bonadonna, D. M. Bier, R. A. De Fronzo, and C. Cobelli. A model to measure insulin effects on glucose transport and phosphorylation in muscle: a three‐tracer study. Am. J. Physiol. 270: E170–E185, 1996.
 278. Saloranta, C., V. Koivisto, E. Widen, K. Falholt, R. A. Defronzo, M. Harkonen, and L. Groop. Contribution of muscle and liver to glucose‐fatty acid cycle in humans. Am. J. Physiol. 264: E599–E605, 1993.
 279. Saltiel, A.. Diverse signaling pathways in the cellular actions of insulin. Am. J. Physiol. 270: E375–E385, 1996.
 280. Scherrer, U., D. Randin, P. Vollenweider, L. Vollenweider, and P. Nicod. Nitric oxide release accounts for insulin's vascular effects in humans. J. Clin. Invest. 94: 2511–2515, 1994.
 281. Schmidt, K., G. Lucignani, R. M. Moresco, G. Rizzo, M. C. Gilardi, C. Messa, F. Colombo, F. Fazio, and L. Sokoloff. Errors introduced by tissue heterogeneity in estimation of local cerebral glucose utilization with current kinetic models of the [18F]fluorodeoxyglucose method. J. Cereb. Blood Flow Metab. 12: 823–834, 1992.
 282. Schmidt, K., G. Mies, and L. Sokoloff. Model of kinetic behavior of deoxyglucose in heterogeneous tissues in brain: a reinterpretation of the significance of parameters fitted to homogeneous tissue models. J. Cereb. Blood Flow Metab. 11: 10–24, 1991.
 283. Schultz, T. A., S. B. Lewis, D. K. Westbie, J. D. Wallin, and J. E. Gerich. Glucose delivery: a modulator of glucose uptake in contracting skeletal muscle. Am. J. Physiol. 233: E514–E518, 1977.
 284. Sheperd, P., B. Nave, and K. Siddle. Insulin stimulation of glycogen synthesis and glycogen synthase activity is blocked by wortmannin and rapamycin in 3T3L1 adipocytes. Biochem. J. 305: 25–28, 1995.
 285. Shulman, G. I., J. R. Alger, J. W. Prichard, and R. G. Shulman. Nuclear magnetic resonance spectroscopy in diagnostic and investigative medicine. J. Clin. Invest. 74: 1127–1131, 1984.
 286. Shulman, G. I., D. Rothman, T. Jue, P. Stein, R. Defronzo, and R. G. Shulman. Quantitation of muscle glycogen synthesis in normal subjects and subjects with noninsulin‐dependent diabetes mellitus by 13C nuclear magnetic resonance spectroscopy. N. Engl. J. Med. 322: 223–228, 1990.
 287. Simonson, D. C., V. A. Koivisto, R. S. Sherwin, E. Ferrannini, R. Hendler, and R. A. Defronzo. Adrenergic blockade alters glucose kinetics during exercise in insulin‐dependent diabetics. J. Clin. Invest. 73: 1648–1658, 1984.
 288. Skolnik, E., A. Batzer, N. Li, C.‐H. Lee, E. Loewenstein, M. Mohamadi, B. Margolis, and J. Schlessinger. The function of GRB2 in linking the insulin receptor to ras signaling pathways. Science 260: 1953–1955, 1993.
 289. Slentz, C. A., E. A. Gulve, K. J. Rodnick, E. J. Henriksen, J. H. Youn, and J. O. Holloszy. Glucose transporters and maximal transport are increased in endurance‐trained rat soleus. J. Appl. Physiol. 73: 486–492, 1992.
 290. Sorenson, J. A., and M. E. Phelps. Physics in Nuclear Medicine, 2nd ed. Philadelphia: W. B. Saunders Co.
 291. Steele, R.. Influences of glucose loading and of injected insulin on hepatic glucose output. Ann. NY Acad. Sci. 82: 420–430, 1959.
 292. Steil, G., M. Meador, and R. Bergman. Thoracic duct lymph: relative contribution from splanchnic and muscle tissue. Diabetes 42: 720–731, 1993.
 293. Steinberg, H., H. Chaker, R. Leaming, A. Johnson, G. Brechtel, and A. Baron. Obesity/insulin resistance is associated with endothelial dysfunction. J. Clin. Invest. 97: 2601–2610, 1996.
 294. Sternlicht, E., R. J. Barnard, and G. K. Grimditch. Exercise and insulin stimulate skeletal muscle glucose transport by different mechanisms. Am. J. Physiol. 256: E227–E230, 1989.
 295. Suzuki, K., and T. Kono. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an internal storage site. Proc. Natl. Acad. Sci. USA 77: 2542–2545, 1980.
 296. Taylor, R., T. B. Price, L. D. Katz, R. G. Shulman, and G. I. Shulman. Direct measurement of change in muscle glycogen concentration after a mixed meal in normal subjects. Am. J. Physiol. 265: E224–E229, 1993.
 297. Thiebaud, D., E. Jacot, R. Defronzo, E. Maeder, E. Jequier, and J.‐P. Felber. The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. Diabetes 31: 957–963, 1982.
 298. Thorburn, A., B. Gumbiner, F. Bulacan, G. Brechtel, and R. Henry. Multiple defects in muscle glycogen synthase activity contribute to reduced glycogen synthesis in non‐insulin dependent diabetes mellitus. J. Clin. Invest. 87: 489–495, 1991.
 299. Treadway, J. L., D. E. James, E. Burcel, and N. B. Ruderman. Effect of exercise on insulin receptor binding and kinase activity in skeletal muscle. Am. J. Physiol. 256: E138–E144, 1989.
 300. Tuominen, J. A., P. Ebeling, R. Bourey, L. Kornayi, A. Lamminen, J. Rapola, T. Sane, H. Vuorinen‐Markkola, and V. A. Koivisto. Post‐marathon paradox: insulin resistance in the face of glycogen depletion. Am. J. Physiol. 270: E336–E343, 1996.
 301. Turinsky, J., and A. Damrau‐Abney. Akt kinases and 2‐deoxyglucose uptake in rat skeletal muscles in vivo: study with insulin and exercise. Am. J. Physiol. 276: R277–R282, 1999.
 302. Ueki, K., R. Yamamoto‐Honda, Y. Kaburagi, T. Yamauchi, K. Tobe, B. M. T. Burgering, P. J. Coffer, I. Komuro, Y. Akanuma, Y. Yazaki, and T. Kadowaki. Potential role of protein kinase B in insulin‐induced glucose transport, glycogen synthesis, and protein synthesis. J. Biol. Chem. 273: 5315–5322, 1998.
 303. Utriainen, T., R. Malmstrom, S. Makimattila, and H. Yki‐Jarvinen. Methodological aspects, dose‐response characteristics, and causes of interindividual variation in insulin stimulation of limb blood flow in normal subjects. Diabetologia 38: 555–564, 1995.
 304. Utriainen, T., P. Nuutila, T. Takala, P. Vicini, U. Ruotsalainen, T. Ronnemaa, T. Tolvanen, M. Raitakari, M. Haaparanta, O. Kirvela, C. Cobelli, and H. Yki‐Jarvinen. Intact insulin stimulation of skeletal muscle blood flow, its heterogeneity and redistribution, but not of glucose uptake in non‐insulin‐dependent diabetes mellitus. J. Clin. Invest. 100: 777–785, 1997.
 305. Vaag, A., J. E. Henrikssen, and H. Beck‐Nielsen. Decreased insulin activation of glycogen synthase in skeletal muscles in young non‐obese caucasian first‐degree relatives of patients with non‐insulin dependent diabetes mellitus. J. Clin. Invest. 89: 782–788, 1992.
 306. Van Houten, D. R., J. M. Davis, D. M. Meyers, and J. L. Durstine. Altered cellular distribution of hexokinase in skeletal muscle after exercise. Int. J. Sports Med. 13: 436–438, 1992.
 307. Vergauwen, L., P. Hespel, and E. A. Richter. Adenosine receptors mediate synergistic stimulation of glucose uptake and transport by insulin and by contractions in rat skeletal muscle. J. Clin. Invest. 93: 974–981, 1994.
 308. Vestergaard, H., C. Bjorbaek, T. Hansen, F. Larsen, D. Granner, and O. Pedersen. Impaired activity and gene expression of hexokinase II in muscle from non‐insulin‐dependent diabetes mellitus patients. J. Clin. Invest. 96: 2639–2645, 1995.
 309. Viitanen, P. V., P. J. Geiger, S. Erickson‐Viitanen, and S. P. Bessman. Evidence for functional hexokinase compartmentation in rat skeletal muscle mitochondria. J. Biol. Chem. 259: 9679–9686, 1984.
 310. Villar‐Palasi, C., and J. Larner. Insulin‐mediated effect on the activity of UDPG‐glycogen transglucosylase of muscle. Biochem. Biophys. Acta 39: 171, 1960.
 311. Vogt, C., H. Yki‐Jarvinen, P. Iozzo, R. Pipek, H. Ardehali, R. Printz, D. Granner, R. De Fronzo, and L. Mandarino. Effects of insulin on subcellular localization of hexokinase 11 in human skeletal muscle in vivo. J. Clin. Endo. Metab. 83: 230–4, 1998.
 312. Wahren, J., P. Felig, G. Ahlborg, and L. Jorfeldt. Glucose metabolism during leg exercise in man. J. Clin. Invest. 50: 2715–2725, 1971.
 313. Walaas, E.. The effect of adrenaline on the uptake of glucose, mannose, and fructose in rat diaphragm. Acta Physiol. Scand. 35: 109–125, 1955.
 314. Walker, M., G. R. Fulcher, C. Catalano, G. Petranyi, H. Orskov, and K. G. Alberti. Physiological levels of plasma non‐esterified fatty acids impair forearm glucose uptake in normal man. Clin. Sci. 79: 167–174, 1990.
 315. Walker, P. M., J. P. Idstrom, T. Schersten, and A. C. Bylund‐Fellenius. Glucose uptake in relation to metabolic state in perfused rat hindlimb at rest and during exercise. Eur. J. Appl. Physiol. 48: 163–176, 1982.
 316. Wallberg‐Henriksson, H., S. H. Constable, D. A. Young, and J. O. Holloszy. Glucose transport into rat skeletal muscle: interaction between exercise and insulin. J. Appl. Physiol. 65: 909–913, 1988.
 317. Wasserman, D. H., J. L. Bupp, J. L. Johnson, D. Bracy, and D. B. Lacy. Glucoregulation during rest and exercise in depancreatized dogs: role of the acute presence of insulin. Am. J. Physiol. 262: E574–E582, 1992.
 318. Wasserman, D. H., R. J. Geer, D. E. Rice, D. Bracy, P. J. Flakoll, L. L. Brown, J. O. Hill, and N. N. Abumrad. Interaction of exercise and insulin action in man. Am. J. Physiol. 260: E37–E45, 1991.
 319. Wasserman, D. H., D. B. Lacy, D. Bracy, and P. E. Williams. Metabolic regulation in peripheral tissues and transition to increased gluconeogenic mode during prolonged exercise. Am. J. Physiol. 263: E345–E354, 1992.
 320. Wasserman, D. H., H. L. A. Lickley, and M. Vranic. Effect of hematocrit reduction on hormonal and metabolic responses to exercise. J. Appl. Physiol. 58: 1257–1262, 1985.
 321. Wasserman, D. H., H. L. A. Lickley, and M. Vranic. The role of beta‐adrenergic mechanisms during exercise in poorly‐controlled diabetes. J. Appl. Physiol. 59: 1282–1289, 1985.
 322. Wasserman, D. H., T. Mohr, P. Kelly, D. B. Lacy, and D. Bracy. The impact of insulin deficiency on glucose fluxes and muscle glucose metabolism during exercise. Diabetes 41: 1229–1238, 1992.
 323. Weber, F. E., and D. Pette. Changes in free and bound forms and total amount of hexokinase isozyme II of rat muscle in response to contractile activity. Eur. J. Biochem. 191: 85–90, 1990.
 324. White, M. F.. The insulin signalling system and the IRS proteins. Diabetologia 40: S2–S17, 1997.
 325. Widrick, J. J., D. L. Costill, G. K. McConnel, D. E. Anderson, D. R. Pearson, and J. J. Zachweieja. Time course of glycogen accumulation after eccentric exercise. J. Appl. Physiol. 72: 1999–2004, 1992.
 326. Williams, B. D., I. Plag, J. Troup, and R. R. Wolfe. Isotopic determination of glycolytic flux during intense exercise in humans. J. Appl. Physiol. 78: 483–490, 1995.
 327. Wilson, J.. Hexokinases. Rev. Phys. Biochem. Pharmacol. 126: 65–198, 1995.
 328. Wisniewski, E., W. S. Kunz, and F. N. Gellerich. Phosphate affects the distribution of flux control among the enzymes of oxidative phosphorylation in rat skeletal muscle mitochondria. J. Biol. Chem. 268: 9343–9346, 1993.
 329. Withers, D. J., J. S. Gutierrez, I. Towery, D. J. Burks, J. M. Ren, S. Previs, Y. Zhang, D. Bernal, S. Pons, and G. I. Shulman. Disruption of IRS‐2 causes Type 2 diabetes in mice. Nature 391: 900–904, 1998.
 330. Wititsuwannakui, D., and K. H. Kim. Mechanism of palmitoyl coenzyme A inhibition of liver glycogen synthase. J. Biol. Chem. 252: 7812–1781, 1977.
 331. Wojtaszewski, J. F., B. F. Hansen, B. Kiens, and E. A. Richter. Insulin signaling in human skeletal muscle: time course and effect of exercise. Diabetes 46: 1775–1781, 1997.
 332. Wojtaszewski, J. F., B. F. Hansen, B. Urso, and E. A. Richter. Wortmannin inhibits both insulin‐stimulated and contraction‐stimulated glucose uptake and transport in rat skeletal muscle. J. Appl. Physiol. 81: 1501–1509, 1996.
 333. Wolfe, B. M., S. Klein, E. J. Peters, B. F. Schmidt, and R. R. Wolfe. Effect of elevated free fatty acids on glucose oxidation in normal humans. Metabolism 37: 323–329, 1988.
 334. Wright, K., H. Beck‐Nielsen, O. Kolterman, and L. Mandarino. Decreased activation of skeletal muscle glycogen synthase by mixed‐meal ingestion in NIDDM. Diabetes 37: 436–440, 1988.
 335. Yaffe, D.. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc. Natl. Acad. Sci. USA 61: 477–483, 1968.
 336. Yale, J., L. Leiter, and E. Marliss. Metabolic responses to intense exercise in lean and obese subjects. J. Clin. Endocrinol. Metab. 68: 438–445, 1989.
 337. Yamauchi, T., K. Tobe, H. Tamemoto, K. Ueki, Y. Kaburagi, R. Yamamoto‐Honda, Y. Takahashi, F. Yoshizawa, S. Aizawa, Y. Akanuma, N. Sonenberg, Y. Yazakazi, and T. Kadowoki. Insulin signaling and insulin actions in the muscles and livers of insulin‐resistant, insulin receptor substrate 1‐deficient mice. Mol. Cell. Biol. 16: 3074–3084, 1996.
 338. Yeh, J., E. Gulve, L. Rameh, and M. Birnbaum. The effects of wortmannin on rat skeletal muscle. Dissociation of signaling pathways for insulin‐ and contraction‐activated hexose transport. J. Biol. Chem. 270: 2107–2111, 1995.
 339. Yki‐Jarvinen, H., D. Mott, A. Young, K. Stone, and C. Bogardus. Regulation of glycogen synthase and phosphorylase activities by glucose and insulin in human skeletal muscle. J. Clin. Invest. 80: 95–100, 1987.
 340. Yki‐Jarvinen, H., I. Puhakainen, and V. A. Koivisto. Effect of free fatty acids on glucose uptake and nonoxidative glycolysis across human forearm tissues in the basal state and during insulin stimulation. J. Clin. Endocrinol. Metab. 72: 1268–1277, 1991.
 341. Yki‐Jarvinen, H., I. Puhakainen, C. Saloranta, L. Groop, and M. R. Taskinen. Demonstration of a novel feedback mechanism between FFA oxidation from intracellular and intravascular sources. Am. J. Physiol. 260: E680–E689, 1991.
 342. Yki‐Jarvinen, H., K. Sahlin, J. M. Ren, and V. A. Koivisto. Localization of rate‐limiting defect for glucose disposal in skeletal muscle of insulin‐resistant type I diabetic patients. Diabetes 39: 157–167, 1990.
 343. Yki‐Jarvinen, H., A. Young, C. Lamkin, and J. Foley. Kinetics of glucose disposal in whole body and across the forearm in man. J. Clin. Invest. 79: 1713–1719, 1987.
 344. Youn, J. H., E. A. Gulve, and J. O. Holloszy. Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction. Am. J. Physiol. 260: C555–C561, 1991.
 345. Young, A. A., C. Bogardus, K. Stone, and D. M. Mott. Insulin response of components of whole‐body and muscle carbohydrate metabolism in humans. Am. J. Physiol. 254: E231–E236, 1988.
 346. Zierler, K.. Theory of the use of arteriovenous concentration differences for measuring metabolism in steady and non‐steady states. J. Clin. Invest. 40: 2111–2125, 1961.
 347. Zinker, B. A., R. Allison, D. B. Lacy, and D. H. Wasserman. Interaction of exercise, insulin, and hypoglycemia studied using euglycemic and hypoglycemic insulin clamps. Am. J. Physiol. 272: E530–E542, 1997.
 348. Zinker, B. A., D. Bracy, D. B. Lacy, J. Jacobs, and D. H. Wasserman. Regulation of glucose uptake and metabolism during exercise: an in vivo analysis. Diabetes 42: 956–965, 1993.
 349. Zinker, B. A., D. B. Lacy, D. Bracy, and D. H. Wasserman. Role of glucose and insulin loads to the exercising limb in increasing glucose uptake and metabolism. J. Appl. Physiol. 74: 2915–2921, 1993.
 350. Zorzano, A., T. W. Balon, L. P. Garetto, M. N. Goodman, and N. B. Ruderman. Muscle alpha‐aminoisobutyric acid transport after exercise: enhanced stimulation by insulin. Am. J. Physiol. 248: E546–E552, 1985.
 351. Zvelebil, M., L. Macdougall, S. Leevers, S. Volinia, B. Vanhaesbroek, I. Gout, G. Panayotou, J. Domin, R. Stein, F. Pages, H. Koga, K. Salim, J. Linacre, P. Das, C. Panaretou, R. Wetzker, and M. Waterfield. Structural and functional diversity of phosphoinositide 3‐kinases. Phil. Trans. R. Soc. Lond. 351: 217–223, 1996.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Lawrence J. Mandarino, Riccardo C. Bonadonna, Owen P. Mcguinness, Amy E. Halseth, David H. Wasserman. Regulation of Muscle Glucose Uptake In Vivo. Compr Physiol 2011, Supplement 21: Handbook of Physiology, The Endocrine System, The Endocrine Pancreas and Regulation of Metabolism: 803-845. First published in print 2001. doi: 10.1002/cphy.cp070227