Comprehensive Physiology Wiley Online Library

Molecular and Physiological Aspects of Angiotensin I Converting Enzyme

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Distribution
1.1 Somatic Angiotensin‐Converting Enzyme
1.2 Germinal Angiotensin‐Converting Enzyme
2 Catalytic Properties
2.1 Angiotensin‐Converting Enzyme Is a Zinc Metallopeptidase
2.2 Substrate Specificity
2.3 Anion Activation
3 Molecular Structure of Angiotensin‐Converting Enzyme
3.1 Somatic Angiotensin‐Converting Enzyme
3.2 Germinal Angiotensin‐Converting Enzyme
4 Two Angiotensin‐Converting Enzyme Active Sites: Identification of Essential Residues
5 Differences in the Characteristics of the N and C domains
5.1 Chloride Activation
5.2 Substrate Specificity
5.3 Angiotensin‐Converting Enzyme Inhibitors
6 Structure of the Angiotensin‐Converting Enzyme Gene
7 Mechanism of Angiotensin‐Converting Enzyme Anchorage and Solubilization
8 Regulation of Angiotensin‐Converting Enzyme Gene Expression in Somatic And Germinal Cells
9 Induction of Angiotensin‐Converting Enzyme Gene Expression in Physiological and Pathological Situations
10 Genetic Polymorphism of Angiotensin‐Converting Enzyme Levels in Humans
11 Association of the Genetic Polymorphism of Angiotensin‐Converting Enzyme Levels with Disease
12 Physiological Role of Angiotensin‐Converting Enzyme
Figure 1. Figure 1.

Schematic representation of the human angiotensin‐converting enzyme (ACE) gene on chromosome 17q23, its somatic and germinal transcripts, and their protein products. P1 and P2 indicate the location of the somatic and testicular promoters, respectively. Arrows indicate sites of transcription initiation. Hatched areas in somatic ACE indicate the two regions displaying greater than 60% sequence homology and carrying one active site each. HEMGH indicates position of consensus sequences of zinc metallopeptidases containing the two zinc‐coordinating histidines and an essential glutamic acid in these active sites.

Figure 2. Figure 2.

Schematic respresentation of human somatic angiotensin‐converting enzyme with location of some critical amino acids identified by protein sequencing or site‐directed mutagenesis. White box on the left is the signal peptide. Hatched areas represent the two homologous domains, each with one active site. The position of the zinc‐coordinating amino acids and other essential catalytic residues in these active sites is indicated above the graph. Bottom: Detail of the carboxy‐terminal extremity with the transmembrane‐anchoring sequence and the location of the cleavage site (arrow) for the release of the soluble enzyme.

Figure 3. Figure 3.

Insertion (I)/deletion (D) angiotensin‐converting enzyme polymorphism of intron 16 of the angiotensin‐converting enzyme (ACE) gene and association with plasma and membrane‐bound (T lymphocyte) ACE levels. A: Schematic representation of the 3′ part of intron 16 and the 5′ part of exon 17 with the polymorphic Alu sequence (hatched segment). Arrows indicate position of flanking and sequence‐specific oligonucleotide primers used for genotyping. B: Results of genotyping by a nested polymerase chain reaction amplification technique using these primers. C: Association of serum ACE levels with genotype in healthy subjects (P <0.001). D: Association of T‐lymphocyte ACE levels with genotype (P <0.01). From Rigat et al. 177, Costerousse et al. 37, and Marre et al. 140 with permission.



Figure 1.

Schematic representation of the human angiotensin‐converting enzyme (ACE) gene on chromosome 17q23, its somatic and germinal transcripts, and their protein products. P1 and P2 indicate the location of the somatic and testicular promoters, respectively. Arrows indicate sites of transcription initiation. Hatched areas in somatic ACE indicate the two regions displaying greater than 60% sequence homology and carrying one active site each. HEMGH indicates position of consensus sequences of zinc metallopeptidases containing the two zinc‐coordinating histidines and an essential glutamic acid in these active sites.



Figure 2.

Schematic respresentation of human somatic angiotensin‐converting enzyme with location of some critical amino acids identified by protein sequencing or site‐directed mutagenesis. White box on the left is the signal peptide. Hatched areas represent the two homologous domains, each with one active site. The position of the zinc‐coordinating amino acids and other essential catalytic residues in these active sites is indicated above the graph. Bottom: Detail of the carboxy‐terminal extremity with the transmembrane‐anchoring sequence and the location of the cleavage site (arrow) for the release of the soluble enzyme.



Figure 3.

Insertion (I)/deletion (D) angiotensin‐converting enzyme polymorphism of intron 16 of the angiotensin‐converting enzyme (ACE) gene and association with plasma and membrane‐bound (T lymphocyte) ACE levels. A: Schematic representation of the 3′ part of intron 16 and the 5′ part of exon 17 with the polymorphic Alu sequence (hatched segment). Arrows indicate position of flanking and sequence‐specific oligonucleotide primers used for genotyping. B: Results of genotyping by a nested polymerase chain reaction amplification technique using these primers. C: Association of serum ACE levels with genotype in healthy subjects (P <0.001). D: Association of T‐lymphocyte ACE levels with genotype (P <0.01). From Rigat et al. 177, Costerousse et al. 37, and Marre et al. 140 with permission.

References
 1. Admiraal, P. J., A. H., Danser, M. S. Jong, H. Pieterman, F. H. Derkx, and M. A. Shalekamp. Regional angiotensin II production in essential hypertension and renal artery stenosis. Hypertension 21: 173–174, 1993.
 2. Alhenc‐Gelas, F., O., Costerousse, and S. Danilov, Genetic and physiological aspects of ACE. In: Cell surface petidases, edited by J. Kenny and C. M. Boustead. London: Bios, 1997, p 119–135.
 3. Alhenc‐Gelas, F., T., Baussant, C. Hubert, F. Soubrier, and P. Corvol. The angiotensin I–converting enzyme in the kidney. J. Hypertens. 7: S9–S13, 1989.
 4. Alhenc‐Gelas, F., J. Richard, D. Courbon, J. Warnet, and P. Corvol. Distribution of plasma angiotensin I‐converting‐enzyme levels in healthy men: relationship to environmental and hormonal parameters. J. Lab. Clin. Med. 117: 33–39, 1991.
 5. Alhenc‐Gelas, F., J., Weare, R. Johnson, and E. Erdos. Measurements of human converting enzyme level by direct radioimmunoassay. J. Lab. Clin. Med. 101: 83–96, 1983.
 6. Arbustini, E., M., Grasso, R. Fasani, C. Klersy, M. Diegoli, E. Porcu, N. Banchieri, P. Fortina, C. Danesino, and G. Specchia. Angiotensin converting enzyme gene deletion allele is independently and strongly associated with coronary atherosclerosis and myocardial infarction. Br. Heart J. 74: 584–591, 1995.
 7. Arnal, J. F., T., Battle, C. Rasetti, M. Challah, O. Costerousse, E. Vicaut, J. B. Michel, and F. Alhenc‐Gelas. ACE in three tunicae of rat aorta: expression in smooth muscle and effect of renovascular hypertension. Am. J. Physiol. 267 (Heart Circ. Physiol. 38): H1777–1784, 1994.
 8. Azizi, M., A., Rousseau, E. Ezan, T.‐T. Guyene, S. Michelet, J.‐M. Grognet, M. Lenfant, P. Corvol, and J. Ménard. Acute angiotensin‐converting enzyme inhibition increases the plasma level of the natural stem cell regulator N‐acetyl‐seryl‐aspartyl‐lysyl‐proline. J. Clin. Invest. 97: 839–844, 1996.
 9. Badenhop, R. F., X. L., Wang, and D. E. Wilcken. Angiotensin‐converting enzyme genotype in children and coronary events in their grandparents. Circulation 91: 1655–1658, 1995.
 10. Barley, J., A., Blackwood, M. Miller, N. D. Markandu, N. D. Carter, S. Jeffrey, F. P. Cappucio, G. A. MacGregor, and G. A. Sagnella. Angiotensin converting enzyme insertion/deletion polymorphism, blood pressure and the renin‐angiotensin system in Caucasian and Afro‐Caribbean people. J. Hypertens. 10: 31–35, 1996.
 11. Barnes, K., R., Matsas, N. M. Hooper, A. J. Turner, and A. J. Kenny. Endopeptidase 24.11 is striosomally ordered in pig brain and, in contrast to aminopeptidase N and dipeptidyl dipeptidase, an angiotensin converting enzyme, is a marker for a set of striatal efferent fibers. Neuroscience 27: 799–817, 1988.
 12. Batzer, M. A., M., Stoneking, M. Alegria‐Hartman, H. Bazan, D. H. Kass, T. H. Shaikh, G. E. Novick, P. A. Ioannou, W. D. Scheer, R. J. Herrera, and P. L. Deininger. African origin of human‐specific polymorphic Alu insertions. Proc. Natl. Acad. Sci. U.S.A. 91: 12288–12292, 1994.
 13. Beldent, V., A., Michaud, C. Bonnefoy, M.‐T. Chauvet, and P. Corvol. Cell surface localization of proteolysis of human endothelial angiotensin I‐converting enzyme. J. Biol. Chem. 270: 28962–28969, 1995.
 14. Beldent, V., A., Michaud, L. Wei, M.‐T. Chauvet, and P. Corvol. Proteolytic release of human angiotensin‐converting enzyme. Localization of the cleavage site. J. Biol. Chem. 268: 26428–26433, 1993.
 15. Berg, T., J., Sulner, C. Y. Lai, and R. L. Soffer. Immunohistochemical localization of two angiotensin I‐converting isoenzymes in the reproductive tract of the male rabbit. J. Histochem. Cytochem. 34: 753–760, 1986.
 16. Bernstein, K. E., B. M., Martin, E. A. Bernstein, J. Linton, L. Striker, and G. Striker. The isolation of angiotensin converting enzyme cDNA. J. Biol. Chem. 263: 11021–11024, 1988.
 17. Bernstein, K. E., B. M., Martin, A. S. Edwards, and E. A. Bernstein. Mouse angiotensin‐converting‐enzyme is a protein composed of two homologous domains. J. Biol. Chem. 264: 11945–11951, 1989.
 18. Bohn, M., K. E., Berge, A. Bakken, J. Erikssent, and K. Berg. Insertion/deletion (I/D) polymorphism at the locus for angiotensin I‐converting enzyme and parental history of myocardial infarction. Clin. Genet. 44: 298–301, 1993.
 19. Bonhiton‐Koop, C., P. Ducimetière, P. J. Touboul, J. M. Feve, E. Billaud, D. Courbon, and V. Heraud. Plasma angiotensin‐converting‐enzyme activity and carotid wall thickening. Circulation 89: 952–954, 1994.
 20. Brentjens, J. R., S., Matsuo, G. A. Andres, P. R. B. Caldwell, and L. Zamboni. Gametes contain angiotensin converting enzyme (kininase II). Experientia 42: 399–402, 1986.
 21. Bruneval, P., N, Hinglais, F. Alhenc‐Gelas, V. Tricottet, P. Corvol, J. Ménard, J‐P Camilleri, and J. Bariety. Angiotensin I converting enzyme in human intestine and kidney. Ultrastructural immunohistochemical localization. Histochemistry 85: 73–80, 1986.
 22. Bünning, P., S. G., Kleemann and J. F. Riordan. Essential residues in angiotensin converting enzyme: modification with 1‐fluoro‐2,4‐dinitrobenzene. Biochemistry 29: 10488–10492, 1990.
 23. Bünning, P., and J. F. Riordan. Activation of angiotensin converting enzyme by monovalent anions. Biochemistry 22: 110–116, 1983.
 24. Bünning, P., and J. F. Riordan. The functional role of zinc in angiotensin converting enzyme. Implication for the enzyme mechanism. J. Inorg. Biochem. 24: 183–198, 1985.
 25. Caldwell, P. R., B. C., Seegal, K. C. Hsu, M. Das, and R. L. Soffer. Angiotensin‐converting‐enzyme: vascular endothelial localization. Science 191: 1050–1051, 1976.
 26. Cambien, F., F., Alhenc‐Gelas, B. Herbeth, J. L. Andre, R. Rakotovao, M. F. Gonzalez, J. Allegrini, and C. Bloch. Familial resemblance of plasma angiotensin‐converting‐enzyme level: the Nancy Study. Am. J. Hum. Genet. 43: 774–780, 1988.
 27. Cambien, F., O., Costerousse, L. Tiret, O. Poirier, L. Lecerf, M. F. Gonzalez, A. Evans, D. Arveiler, J. P. Cambou, G. Luc, R. Rakotovao, P. Ducimetière, F. Soubrier, and F. Alhenc‐Gelas. Plasma level and gene polymorphism of angiotensin‐converting‐enzyme in relation to myocardial infarction. Circulation 90: 669–676, 1994.
 28. Cambien, F., O., Poirier, L. Lecerf, A. Evans, J. P. Cambou, D. Arveiler, G. Luc, J. M. Bard, L. Bara, S. Ricard, L. Tiret, P. Amouyel, F. Alhenc‐Gelas, and F. Soubrier. Deletion polymorphism in the gene for angiotensin‐converting‐enzyme is a potent risk factor for myocardial infarction. Nature 359: 641–644, 1992.
 29. Castellano, M., M. L., Muiesan, D. Rizzoni, M. Beschi, O. Pasni, A. Cinelli, E. Salvetti, E. Ported, G. Bettoni, R. Krentz, K. Lindpaintner, and E. Agabtti‐Rosei. Angiotensin‐converting enzyme I/D polymorphism and arterial wall thickness in a general population. The Vobarno Study. Circulation 91: 2721–2724, 1995.
 30. Catto, A., A. M., Carter, J. H. Barrett, M. Stickland, J. Bamford, J. A. Davies, and P. J. Grant. Angiotensin‐converting enzyme insertion/deletion polymorphism and cerebrovascular disease. Stroke 27: 435–440, 1996.
 31. Challah, M., A., Nicoletti, J. F. Arnal, M. Philippe, I. Laboulandine, J. Allegrini, F. Alhenc‐Gelas, S. Danilov, and J. B. Michel. Cardiac angiotensin‐converting‐enzyme overproduction indicates interstitial activation in renovascular hypertension. Cardiovasc. Res. 30: 231–239, 1995.
 32. Chen, Y.N.P., M.R.W., Ehlers, and J. F. Riordan. The functional role of tyrosine‐200 in human testis angiotensin‐converting enzyme. Biochem. Biophys. Res. Commun. 184: 306–309, 1992.
 33. Chen, Y.N.P., and J. F. Riordan. Identification of essential tyrosine and lysine residues in angiotensin converting enzyme: evidence for a single active site. Biochemistry 29: 10493–10498, 1990.
 34. Cornell, M. J., T. A., Williams, N. S. Lamango, D. Coates, P. Corvol, F. Soubrier, J. Hoheisel, H. Lehrach, and R. E. Isaac. Cloning and expression of an evolutionarily conserved single‐domain angiotensin converting enzyme from Drosophila melanogaster. J. Biol. Chem. 270: 13613–13619, 1995.
 35. Costerousse, O., J., Allegrini, P. Clozel, J. Menard, and F. Alhenc‐Gelas. Angiotensin I‐converting enzyme inhibition but not angiotensin II suppression alters angiotensin I‐converting enzyme gene expression in vessels and epithelia. J. Pharmacol. Exp. Ther. 284: 1180–1187, 1998.
 36. Costerousse, O., J., Allegrini, H. Huang, J. Bouhnik, and F. Alhenc‐Gelas. Regulation of ACE gene expression and plasma levels during rat postnatal development. Am. J. Physiol. 267 (Endocrinol. Metab. 30): E745–E753, 1994.
 37. Costerousse O., J. Allegrini, M. Lopez, F. Alhenc‐Gelas. Angiotensin I‐converting enzyme in human circulating mononuclear cells: genetic polymorphism of expression in T‐lymphocytes. Biochem. J. 290: 33–40, 1993.
 38. Costerousse, O., E., Jaspard, and F. Alhenc‐Gelas. Molecular and genetic aspects of dipeptidylcarboxypeptidase I (the angiotensin I converting‐enzyme). Expression in the immune system. Adv. Neuroimmunol. 3: 217–224, 1993.
 39. Cushman, D. W., and H. S. Cheung. Concentrations of angiotensin‐converting‐enzyme in tissues of the rat. Biochim Biophys. Acta 250: 261–265, 1971.
 40. Cushman, D. W., and M. A. Ondetti. Inhibitors of angiotensin‐converting‐enzyme. Prog. Med. Chem. 17: 42–104, 1980.
 41. Danilov S., E. Jaspard, T. Churakova, H. Towbin, F. Savoie, L. Weil, and F. Alhenc‐Gelas. Structure–function analysis of angiotensin I‐converting‐enzyme using monoclonal antibodies. Selective inhibition of the amino‐terminal active site. J. Biol. Chem. 269: 26806–26814, 1994.
 42. Danilov, S., F. Savoie, B. Lenoir, X. Jeunemaître, M. Azizi, L. Tarnow, and F. Alhenc‐Gelas. (1996), Development of enzyme linked immunoassays for human angiotensin I‐converting‐enzyme suitable for large studies. J. Hypertens. 14: 709–717, 1996.
 43. Danser A. H., M. M. Koning, P. J. Admiraal, L. M. Sassen, F. H. Derkx, P. D. Verdouw, and A.D.H. Shalekamp. Production of angiotensin I and II at tissue sites in intact pigs. Am. J: Physiol. 263 (Heart Circ. Physiol. 34): H429–H437, 1992.
 44. Danser A. H., M. A. Schalekamp, W. A. Bax, A. M. Van Den Brink, P. R. Satema, G. A. Riegger, and H. Schunkert. Angiotensin‐converting enzyme in the human heart. Effect of the deletion/insertion polymorphism. Circulation 92: 1387–1388, 1995.
 45. Das M., J. L. Hartley, and R. L. Soffer. Serum angiotensin‐converting enzyme. Isolation and relationship to the pulmonary enzyme. J. Biol. Chem. 252: 1316–1319, 1977.
 46. Dasarathy, Y., and B. L. Fanburg. Elevation of bovine endothelial cell angiotensin‐converting‐enzyme by cationophores and inhibition by ouabain. Biochim. Biophys. Acta. 1051: 14–20, 1990.
 47. Deddish, P. A., L. X., Wang, H. L. Jackman, B. Michel, J. Wang, R. A. Skidgel, and E. G. Erdös. Single domain angiotensin I‐converting enzyme (kininase II): characterization and properties. J. Pharmacol. Exp. Ther. 279: 1582–1589, 1996.
 48. Deddish P. A., J. Wang, B. Michel, P. W. Morris, N. O. Davidson, R. A. Skidgel, and E. G. Erdös. Naturally occurring active N domain of human angiotensin I‐converting‐enzyme. Proc. Natl. Acad. Sci. U.S.A. 91: 7807–7811, 1994.
 49. Defendini, R., E. A., Zimmerman, J. A. Weare, F. Alhenc‐Gelas, E. G. Erdös. Angiotensin‐converting enzyme in epithelial and neuroepithelial cells. Neuroendocrinology 37: 32–40, 1983.
 50. Doi, Y., H., Yoshigumi, K. Lino, M. Yamamoto, K. Ichikawa, M. Iwase, and M. Fujishima. Association between a polymorphism in the angiotensin‐converting‐enzyme gene and microvascular complications in Japanese patients with NIDDM. Diabetologia 39: 97–102, 1996.
 51. Dorer F. E., J. R. Kahn, K. E. Lentz, M. Levine, and L. T. Skeggs. Hydrolysis of bradykinin by angiotensin‐converting enzyme. Circ. Res. 34: 824–827, 1974.
 52. Doria A., J. H. Warram, and A. S. Krolewski. Genetic predisposition to diabetic nephropathy: evidence for a role of angiotensin‐I‐converting‐enzyme gene. Diabetes 43: 690–695, 1994.
 53. Dubreuil P., P. Fulcrand, M. Rodriguez, H. Fulcrand, J. Laur, and J. Martinez. Novel activity of angiotensin‐converting enzyme hydrolysis of cholecystokinin and gastrin analogues with release of the amidated carboxy‐terminal dipeptide. Biochem. J. 262: 125–130, 1989.
 54. Dudley, C.R.K., B., Keavney, I. M. Stratton, R. C. Turner, and P. J. Ratcliffe. UK prospective diabetes study XV: relationship of renin–angiotensin system gene polymorphisms with microalbuminuria in NIDDM. Kidney Int. 48: 1907–1911, 1995.
 55. Duru, K., S., Farrow, J. M. Wang, W. Lockette, and T. Kurtz. Frequency of a deletion polymorphism in the gene for angiotensin‐converting‐enzyme is increased in African‐Americans with hypertension. Am. J. Hypertens. 7: 759–762, 1994.
 56. Ehlers M., E. Fox, D. Strydom, and J. Riordan. Molecular cloning of human testicular angiotensin‐converting‐enzyme: the testis isozyme is identical to the C‐terminal half of endothelial angiotensin‐converting‐enzyme. Proc. Natl. Acad. Sci. U.S.A. 86: 7741–7745, 1989.
 57. Ehlers, M.R.W., Y.N.P. Chen, and J. F. Riordan. Spontaneous solubilization of membrane‐bound human testis angiotensin‐converting enzyme expressed in Chinese hamster ovary cells. Proc. Natl. Acad. Sci. U.S.A. 88: 1009–1013, 1991.
 58. Ehlers, M.R.W., Y.N.P. Chen, and J. F. Riordan. The unique N‐terminal sequence of testis angiotensin‐converting enzyme is heavily O‐glycosylated and unessential for activity or stability. Biochem. Biophys. Res. Commun. 183: 199–205, 1992.
 59. Ehlers, M.R.W., and R. E. Kirsch. Catalysis of angiotensin I hydrolysis by human angiotensin‐converting enzyme: effect of chloride and pH. Biochemistry 27: 5538–5544, 1988.
 60. Ehlers, M.R.W., and J. F. Riordan. Angiotensin‐converting enzyme: new concepts concerning its biological role. Biochemistry 28: 5311–5318, 1989.
 61. Ehlers, M.R.W., and J. F. Riordan, Angiotensin‐converting enzyme. Biochemistry and molecular biology. In Hypertension Pathophysiology, Diagnosis and Management, edited by J. H. Laragh and B. M. Brenner. 1990, Raven, New York: 1217–1231.
 62. Ehlers, M.R.W., and J. F. Riordan. Angiotensin‐converting enzyme: zinc‐and inhibitor binding stoichiometrics of the somatic and testis isozymes. Biochemistry 30: 7118–7126, 1991.
 63. El‐Dorry, H., K. Iwata, N. A. Thornberg, E. H. Cordes, and R. L. Soffer. Molecular and catalytic properties of rabbit testicular dipeptidyl carboxypeptidase. J. Biol. Chem. 257: 14128–14133, 1982.
 64. El‐Dorry, H. A., J. S. MacGregor, and R. L. Soffer. Dipeptidyl carboxypeptidase from seminal fluid resembles the pulmonary rather than the testicular isoenzyme. Biochem. Biophys. Res. Commun. 115: 1096–1100, 1983.
 65. El‐Dorry, H. A., C. B. Pickett, J. S. MacGregor, and R. L. Suffer. Tissue‐specific expression of mRNAs for dipeptidyl carboxypeptidase isoenzymes. Proc. Natl. Acad. Sci. U.S.A. 79: 4295–4297, 1982.
 66. Erdös, E. G.. Angiotensin I converting enzyme and the changes in our concepts through the years. Lewis K. Dahl memorial lecture. Hypertension. 16: 363–370, 1990.
 67. Erdös, E. G. and R. A. Skidgel. The angiotensin I‐converting enzyme. Lab. Invest. 56: 345–348, 1987.
 68. Esther, C. R., Jr., T. E. Howard, E. M. Marino, J. M. Goddard, M. Capecchi, and K. E. Bernstein. Mice lacking angiotensin‐converting‐enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab. Invest. 74: 953–965, 1996.
 69. Falkenhahn M., F. Franke, R. M. Bohle, Y. C. Zhu, H. M. Stauss, S. Bachmann, S. Danilov, and T. Unger. Cellular distribution of angiotensin‐converting‐enzyme after myocardial infarction. Hypertension 25: 219–226, 1995.
 70. Faxon, D. P.. Effect of high dose angiotensin‐converting enzyme inhibition on restenosis: final results of the MARCATOR study, a multicenter, double‐blind, placebo‐controlled trial of cilazapril. The multicenter American research trial with cilazapril after angioplasty to prevent transluminal coronary obstruction and restenosis (MARCATOR) study group. J. Am. Coll. Cardiol. 25: 362–369, 1994.
 71. Fishel, R. S., S., Eisenberg, S. Y. Shai, R. A. Redden, K. E. Bernstein, and B. C. Berk. Glucocorticoids induce angiotensin‐converting‐enzyme expression in vascular smooth muscle. Hypertension 25: 343–349, 1995.
 72. Fishel R. S., V. Thourani, and S. J. Eisenberg. Fibroblast growth factor stimulates angiotensin‐converting‐enzyme expression in vascular smooth muscle cells. Possible mediator of the response to vascular injury. J. Clin. Invest. 95: 377–387, 1995.
 73. Fitzgibbon W. R., A. A. Jaffa, R. K. Mayfield, and D. W. Roth. Role of kinins in the renal response to enalaprilat in normotensive and hypertensive rats. Hypertension 27: 235–244, 1996.
 74. Fogarty D. G., A. P. Maxwell, A. Hughes, N. C. Nevin, and C. C. Doherthy. A deletion polymorphism in the angiotensin‐converting‐enzyme gene is a risk factor for diabetic nephropathy. EDTA Proc. 117, 1994.
 75. Forslund T., F. Fyhrquist, and C. Gronhagen‐Riska. Induction of angiotensin‐converting‐enzyme with the ACE inhibitory compound MK‐421 in rat lung. Eur. J. Pharmacol. 80: 121–125, 1982.
 76. Friedl W., F. Krempler, B. Paulweber, and I. Tickkanen. A deletion polymorphism in the angiotensin‐converting‐enzyme gene is not associated with coronary heart disease in an Austrian population. Atherosclerosis 112: 137–143, 1995.
 77. Friedland J., C. Setton, and E. Silverstein. Induction of angiotensin‐converting‐enzyme in human monocytes in culture. Biochem. Biophys. Res. Commun. 83: 843–849, 1978.
 78. Fusijawa T., H. Ikegami, Y. Kawaguchi, Y. Hamada, H. Ueda, M. Shintani, M. Fukuda, and T. Ogihara. Meta‐analysis of association of insertion/deletion polymorphism of angiotensin I‐converting enzyme with diabetic nephropathy and retinopathy. Diabetologia 41: 47–53, 1998.
 79. Gardell, S. J., D., Hilvert, J. Barnett, E. T. Kaiser, and W. J. Ruter. Use of directed mutagenesis to probe the role of tyrosine 198 in the catalytic mechanism of carboxypeptidase A. J. Biol. Chem. 262: 576–582, 1987.
 80. Gardes, J., T., Baussant, P. Corvol, J. Menard, and F. Alhenc‐Gelas. Effect of bradykinin and kininogen in isolated rat kidney vasoconstricted by angiotensin II. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 29): F1273–F1281, 1990.
 81. Gisen Group, Randomised placebo‐controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non‐diabetic nephropathy. Lancet 349: 1857–1863, 1997.
 82. Hamon, M., C., Bauters, C. Amant, E. P. McFadden, N. Helbecque, J. M. Lablanche, M. E. Bertrand, and P. Amouyel. Relation between the deletion polymorphism of the angiotensin‐converting enzyme gene and late luminal narrowing after coronary angioplasty. Circulation 91: 296–299, 1995.
 83. Harden, P. N., C., Geddes, P. A. Rowe, J. H. McIlroy, M. Bourton‐Jones, R.S.C. Rodler, R.J.R. Junor, J. D. Briggs, J.M.C. MacConnell, and A. G. Jardine. Polymorphisms in angiotensin‐converting‐enzyme gene and progression of IgA nephropathy. Lancet 345: 1540–1542, 1995.
 84. Harrap, S. B, H. R. Davidson, J. M. Connor, F. Soubrier, P. Corvol, R. Fraser, C. J. Foy, and G. C. Watt. The angiotensin I‐converting‐enzyme gene and predisposition to high blood pressure. Hypertension 21: 455–460, 1993.
 85. Hilbert P., K. Lindpaintner, J. S. Beckmann, T. Serikawa, F. Soubrier, C. Dubay, P. Cartwright, B. De Gouyon, C. Julien, S. Takahasi, M. Vincent, D. Ganten, M. Georges, and G. M. Lathrop. Chromosomal mapping of two genetic loci associated with blood‐pressure regulation in hereditary hypertensive rats [see comments]. Nature 353: 521–529, 1991.
 86. Hooper N. M.. Angiotensin‐converting enzyme. Implications from molecular biology for its physiological functions. Int. J. Biochem. 23: 641–647, 1991.
 87. Hooper N. M., J. Keen, D.J.C. Pappin, and A. J. Turner. Pig kidney angiotensin‐converting enzyme. Purification and characterization of amphiphatic and hydrophilic forms of the enzyme establishes C‐terminal anchorage to the plasma membrane. Biochem. J. 247: 85–93, 1987.
 88. Hooper, N. M, and A. J., Turner. Isolation of two differentially glycosylated forms of peptidyl‐dipeptidase A (angiotensin‐converting enzyme) from pig brain: a re‐evaluation of their role in neuropeptide metabolism. Biochem. J. 241: 625–633, 1987.
 89. Howard, T., R., Balogh, P. Overbeek, and K. E. Bernstein. Sperm‐specific expression of angiotensin‐converting enzyme (ACE) is mediated by a 91‐base‐pair promoter containing a CRE‐like element. Mol. Cell. Biol. 13: 1–27, 1993.
 90. Howard, T. E., S. Y., Shai, K. G. Langford, B. M. Martin, and K. E. Bernstein. Transcription of testicular angiotensin‐converting enzyme (ACE) is initiated within the 12th intron of the somatic ACE gene. Mol. Cell. Biol. 10: 4294–4302, 1990.
 91. Hubert C., A.‐M. Houot, P. Corvol, and F. Soubrier. Structure of the angiotensin I‐converting enzyme gene. Two alternate promoters correspond to evolutionary steps of a duplicated gene. J. Biol. Chem. 266: 15377–15383, 1991.
 92. Igic R., E. G. Erdös, H.S.G. Yen, K. Sorrells, and T. Nakajima. Angiotensin I converting enzyme of the lung. Circ. Res. 31 (Suppl. 2): 51–61, 1972.
 93. Iwai N., N. Ohmichi, and Y. Nakamura. DD genotype of the angiotensin‐converting‐enzyme gene is a risk factor for left ventricular hypertrophy. Circulation 90: 2622–2628, 1994.
 94. Inokuchi, J. J, and A., Nagamatsu. Tripeptidyl carboxypeptidase activity of kininase II (angiotensin converting enzyme). Biochim. Biophys. Acta 662: 300–307, 1981.
 95. Ishigami T., T. Iwamoto, K. Tamura, S. Yamaguchi, K. Iwasawa, K. Uchino, S. Umemura, and M. Ishii. Angiotensin I converting enzyme (ACE) gene polymorphism and essential hypertension in Japan. Ethnic difference of ACE genotype. Am. J. Hypertens. 8: 95–97, 1995.
 96. Jackman H. L., F. Tan, D. Schraufnagel, T. Dragovic, B. Dezso, R. P. Becker, and E. G. Erdos. Plasma membrane‐bound and lysosomal peptidases in human alveolar macrophages. Am. J. Respir. Cell. Mol. Biol. 13: 196–204, 1995.
 97. Jackson B., R. B. Cubela, K. Sakaguchi, and C. I. Johnston. Characterization of angiotensin‐converting‐enzyme (ACE) in the testis and assessment of the in vivo effects of the ACE inhibitor perindopril. Endocrinology 123: 50–55, 1988.
 98. Jacob H. J., K. Lindpaintner, S. E. Lincoln, K. Kusumi, R. K. Bunker, Y. P. Mao, D. Ganten, V. J. Dzau, and E. S. Lander. Genetic mapping of a gene causing hypertension in the stroke‐prone spontaneously hypertensive rat. Cell 67: 213–224, 1991.
 99. Jaspard, E., and F. Alhenc‐Gelas. Catalytic properties of the two active sites of angiotensin I‐converting enzyme on the cell surface. Biochem. Biophys. Res. Commun. 211: 528–534, 1995.
 100. Jaspard, E., L., Wei, and F. Alhenc‐Gelas. Differences in the properties and enzymatic specificities of the two active sites of angiotensin I‐converting‐enzyme (kininase II). Studies with bradykinin and other natural peptides. J. Biol. Chem. 268: 9496–9503, 1993.
 101. Jeunemaitre X., R. P. Lifton, S. C. Hunt, R. R. Williams, and J. M. Lalouel. Absence of linkage between the angiotensin‐converting‐enzyme locus and human essential hypertension. Nat. Genet. 1: 72–75, 1992.
 102. Johnston C. I.. Tissue angiotensin‐converting‐enzyme in cardiac and vascular hypertrophy, repair, and remodelling. Hypertension 23: 258–268, 1994.
 103. Keavney B. D., C. R. Dudley, I. M. Stratton, R. R. Holman, D. R. Mathews, P. J. Ratcliffe, and R. C. Turner. UK prospective diabetes study (UKPDS) 14: association of angiotensin‐converting enzyme insertion/deletion polymorphism with myocardial infraction in NIDDM. Diabetologia 38: 948–952, 1995.
 104. Kester W. R., and B. W. Matthews. Crystallographic study of the binding of dipeptide inhibitors to thermolysin: implications for the mechanism of catalysis. Biochemistry 16: 2506–2516, 1977.
 105. King S. J., and S. Oparil. Converting‐enzyme inhibitors increase converting‐enzyme mRNA and activity in endothelial cells. Am. J. Physiol. 263: C743–C749, 1992.
 106. Kohzuki M., C. I. Johnston, S. Y. Chai, B. Jackson, R. Perich, D. Paxton, and F. A. Mendelsohn. Measurement of angiotensin‐converting enzyme induction and inhibition using quantitative in vitro autoradiography: tissue selective induction after chronic lisinopril treatment. J. Hypertens. 9: 579–587, 1991.
 107. Koike G., J. E. Krieger, H. J. Jacob, M. Muroyama, R. E. Pratt, and V. Dzau. Angiotensin converting enzyme and genetic hypertension: cloning of rat cDNAs and characterization of the enzyme. Biochem. Biophys. Res. Commun. 198: 380–386, 1994.
 108. Krege J. H., S. W. John, L. L. Langenbach, J. B. Hodgin, J. R. Hagaman, E. S. Bachman, J. C. Jennette, D. A. O'Brien, and O. Smithies. Male‐female differences in fertility and blood pressure in ACE‐deficient mice. Nature 375: 146–148, 1995.
 109. Kreutz, R., N., Hubner, M. R. James, M. T. Bihoreau, D. Gaughier, G. M. Lathrop, D. Ganten, and K. Lindpaintner. Dissection of a quantitative trait locus for genetic hypertension on rat chromosome 10. Proc. Natl. Acad. Sci. U.S.A. 92: 8778–8782, 1995.
 110. Krolewski, A. J., J. H., Warram, L. I. Rand, and C. R. Kahn. Epidemiologic approach to the etiology of type I diabetes mellitus and its complications. N. Engl. J. Med. 317: 1390–1398, 1987.
 111. Krulewitz A. H., W. E. Baur, and B. L. Fanburg. Hormonal influence on endothelial cell angiotensin I‐converting‐enzyme activity. Am. J. Physiol. 247 (Cell Physiol. 16): C163–C168, 1984.
 112. Kumar R. S., J. Kusari, S. N. Roy, R. L. Soffer, and G. C. Sen. Structure of testicular angiotensin‐converting enzyme. A segmental mosaic isozyme. J. Biol. Chem. 264: 16754–16758, 1989.
 113. Kumar R. S., T. J. Thekkumkara, and G. C. Sen. The mRNAs encoding the two angiotensin‐converting isozymes are transcribed from the same gene by a tissue‐specific choice of alternative transcription initiation sites. J. Biol. Chem. 266: 3854–3862, 1991.
 114. Kupari M., M. Perola, and P. Koskinen. Left ventricular size, mass, and function in relation to angiotensin‐converting enzyme gene polymorphism in humans. Am. J. Physiol. 267 (Heart Circ. Physiol. 38): H1107–1111, 1994.
 115. Lachurie M. L., M. Azizi, T. T. Guyene, F. Alhenc‐Gelas, and J. Menard. Angiotensin‐converting enzyme gene polymorphism has no influence on the circulating renin–angiotensin–aldosterone system or blood pressure in normotensive subjects. Circulation 91: 2933–2942, 1995.
 116. Lamango N., and R. E. Isaac. Identification of an ACE‐like peptidyl dipeptidase activity in the housefly, Musca domestica. Biochem. Soc. Trans. 21: 245S, 1993.
 117. Langford K. G., S. Y. Shai, and T. E. Howard. Transgenic mice demonstrate a testis‐specific promoter for angiotensin‐converting enzyme. J. Biol. Chem. 266: 15559–15562, 1991.
 118. Lanzillo J. J., X. J. Kong, and B. L. Fanburg. A competitive deletion mutant quantitative PCR assay for angiotensin‐converting enzyme mRNA in smooth muscle cells. PCR Methods Appl. 4: 167–171, 1994.
 119. Lattion A. L., F. Soubrier, J. Allegrini, C. Hubert, P. Corvol, and F. Alhenc‐Gelas. The testicular transcript of the angiotensin I‐converting‐enzyme encodes for the ancestral, non‐duplicated form of the enzyme. FEBS Lett. 252: 99–104, 1989.
 120. Lawton, G., P. H., Paciorek, and J. F. Waterfall, The design and biological profile of ACE inhibitors. In: Advances in Drug Research. New York: Academic, 1992, vol. 23, p. 161–220.
 121. Lechin, M., M. A., Quinones, A. Omran, R. Hill, Q. T. Yu, H. Rakowski, D. Wigle, C. C. Liew, M. Sole, R. Roberts, and A. J. Marian. Angiotensin‐I converting enzyme genotypes and left ventricular hypertrophy in patients with hypertrophic cardiomyopathy. Circulation 92: 1808–1812, 1995.
 122. Lee E. J.. Population genetics of angiotensin I‐converting enzyme in chinese. Br. J. Clin. Pharmacol. 37: 212–214, 1994.
 123. LeMoual H., A. Devault, B. P. Roques, P. Crine, and G. Boileau. Identification of glutamic acid 616 as a zinc‐coordinating residue in endopeptidase 24.11. J. Biol. Chem. 266: 15670–15674, 1991.
 124. Lewis E. H., L. G. Hunsiker, R. P. Bain, and R. D. Rohde. for the Collaborative Study Group. The effect of angiotensin converting‐enzyme inhibition on diabetic nephropathy. N. Engl. J. Med. 329: 1456–1462, 1993.
 125. Lieberman J.. The specificity and nature of serum‐angiotensin‐converting‐enzyme (serum ACE) elevations in sarcoidosis. Ann. N.Y. Acad. Sci. 278: 488–497, 1976.
 126. Lindpaintner K., M. Lee, M. G. Larson V. S. Rao, M. A. Pfeffer, J. M. Ordovas, E. Schaffer, P. W. Wilson, R. S. Vasan, R. H. Myers, and D. Levy. Absence of association or genetic linkage between the angiotensin‐converting‐enzyme gene and left ventricular mass. N. Engl. J. Med. 334: 1023–1028, 1996.
 127. Lindpaintner K., M. A. Pfeffer, R. Kreutz, M. J. Stampfer, F. Grodstein, F. Lamotte, J. Buring, and C. H. Mennekens. A prospective evaluation of an angiotensin‐converting‐enzyme gene polymorphism and the risk of ischemic heart disease. N. Engl. J. Med. 332: 706–711, 1995.
 128. Linz W., G. Wiemer, and B. A. Scholkens. Role of kinins in the pathophysiology of myocardial ischemia. In vitro and in vito studies. Diabetes 45 (Suppl. 1): S51–S58, 1996.
 129. Liu Y. H., X. P. Yang, V. G. Sharov, O. Nass, H. N. Sabbah, E. Peterson, O. A. Carretero. Effects of ACE inhibitors and angiotensin II receptors antagonists in rats with heart failure. Role of kinins and angiotensin II type 2 receptors. J. Clin. Invest. 99: 1926–1935, 1997.
 130. Lloyd, C. J., D. A., Cary, and F. A. Mendelsohn. Angiotensin converting enzyme induction by cyclic AMP and analogues in cultured endothelial cells. Mol. Cell. Endocrinol. 52: 219–225, 1987.
 131. Lonn, E. M., S., Yusuf, P. Jha, T. J. Montague, K. K. Teo, C. R. Benedict, and B. Pitt. Emerging role of angiotensin‐converting enzyme inhibitors in cardiac and vascular protection. Circulation 90: 2056–2069, 1994.
 132. Ludwig E., P. S. Corneli, J. L. Anderson, H. W. Marshall, J. M. Lalouel, and R. H. Ward. Angiotensin‐converting enzyme gene polymorphism is associated with myocardial infarction but not with development of coronary stenosis. Circulation 91: 2120–2124, 1995.
 133. Marchetti J., S. Roseau, and F. Alhenc‐Gelas. Angiotensin I converting enzyme and kinin‐hydrolyzing enzymes along the rabbit nephron. Kidney Int. 31: 744–751, 1987.
 134. Margaglione M., E. Celentano, E. Grandone, G. Vecchione, G. Cappuci, N. Giulani, D. Colaizzo, S. Panico, F. P. Mancini, and G. Di Minno. Deletion polymorphism in the angiotensin‐converting‐enzyme gene in patients with a history of ischemic stroke. Arterioscler. Thromb. Vase. Biol. 16: 304–309, 1996.
 135. Margolius, H. S.. The kallikrein–kinin system and the kidney. Annu. Rev. Physiol. 46: 309–326, 1984.
 136. Marian A. J., Q. T. Yu, R. Workman, G. Greve, and R. Roberts. Angiotensin‐converting enzyme polymorphism in hypertrophic cardiomyopathy and sudden cardiac death [see comments]. Lancet 342: 1085–1086, 1993.
 137. Markus H. S., J. Barley, R. Lunt, J. M. Bland, S. Jeffrey, N. D. Carter, and M. M. Brown. Angiotensin‐converting enzyme gene deletion polymorphism. A new risk factor for lacunar stroke but not carotid atheroma. Stroke 26: 1329–1333, 1995.
 138. Marre M., P. Bernadet, Y. Gallois, F. Savagner, T. T. Guyenne, M. Hallab, F. Cambien, P. Passa, and F. Alhenc‐Gelas. Relationships between angiotensin I‐converting‐enzyme gene polymorphism, plasma levels, and diabetic retinal and renal complications. Diabetes 43: 384–388, 1994.
 139. Marre M., G. Chatellier, H. Leblanc, T. T. Guyenne, J. Menard, and P. Passa. Prevention of diabetic nephropathy with enalapril in normotensive diabetic subjects with persistent microalbuminuria. BMJ 297: 1092–1095, 1988.
 140. Marre, M., J., Jeunemaître, Y. Gallois, M. Rodier, G. Chatellier, C. Serf, L. Dusselier, Z. Kahal, L. Chaillous, S. Halimi, R. Muller, H. Sackmann, B. Bauduceau, F. Bled, P. Passa, and F. Alhenc‐Gelas. for the Genediab Study Group. Contributions of genetic polymorphisms of the renin–angiotensin system to renal complications in insulin dependent diabetes. J. Clin. Invest. 99: 1585–1595, 1997.
 141. Maschio, G., D., Alberti, G. Janin, F. Locatelli, J.F.E. Mann, M. Motolese, C. Ponticelli, E. Ritz, and P. Ziuchelli. ACE inhibition in Progressive Renal Insufficiency Study Group: effect of the ACE inhibitor benazepril on the progression of chronic renal insufficiency. N. Engl. J. Med. 334: 939–945, 1996.
 142. Matsas R, A. J. Kenny, and A. J. Turner. The metabolism of neuropeptides. The hydrolysis of peptides including enkephalins, tachykinins and their analogues by endopeptidase 24.11 (E.C. 3.4.24.11). Biochem. J. 223: 433–440, 1984.
 143. Mattu R. K., E. W. Needham, D. J. Galton, E. Frangos, A. J. Clark, and M. Caufield. A DNA variant at the angiotensin‐converting‐enzyme gene locus associates with coronary artery disease in the Caerphilly Heart Study. Circulation 91: 270–274, 1995.
 144. McKenzie C. A., C. Julier, T. Forrester, N. McFarlane‐Anderson, B. Keavney, G. M. Lathrop, P. J. Ratcliffe, and M. Farall. Segregation and linkage analysis of serum angiotensin I‐converting‐enzyme levels: evidence for two quantitative‐trait loci. Am. J. Hum. Genet. 57: 1426–1435, 1995.
 145. Mendelsohn F. A., C. J. Lloyd, C. Kachel, and J. W. Funder. Induction by glucocorticoids of angiotensin‐converting‐enzyme production from bovine endothelial cells in culture and rat lung in vivo. J. Clin. Invest. 70: 684–692, 1982.
 146. Michaud A., T. A. Willials, M. T. Chauvet, and P. Corvol. Substrate dependence of angiotensin I‐converting enzyme inhibition: captopril displays a partial selectivity for inhibition of N‐acetyl‐seryl‐aspartyl‐lysyl‐proline hydrolysis compared with that for angiotensin I. Mol. Pharmacol. 51: 1070–1076, 1997.
 147. Miettinen H. E., K. Korpela, L. Hamalainen, and K. Kontula. Polymorphisms of the apolipoprotein and angiotensin‐converting‐enzyme genes in young North Karelian patients with coronary heart disease. Hum. Genet. 94: 189–192, 1994.
 148. Mizuiri, S., H., Hemmi, A. Inoue, H. Yoshikawa, M. Tanegashima, T. Fushimi, M. Ishigami, Y. Amagasaki, T. Ohara, and H. Shimatake. Angiotensin‐converting enzyme polymorphism and development of diabetic nephropathy in non‐insulin‐dependent diabetes mellitus. Nephron 70: 455–459, 1995.
 149. Morris, B. J., R. Y., Zee, and A. P. Schrader. Different frequencies of angiotensin‐converting‐enzyme genotypes in older hypertensive individuals. J. Clin. Invest. 94: 1085–1089, 1994.
 150. Nadaud S., A. M. Houot, C. Hubert, P. Corvol, and F. Soubrier. Functional study of the germinal angiotensin I‐converting enzyme promoter. Biochem. Biophys. Res. Commun. 189: 134–140, 1992.
 151. Nakai K., C. Itoh, Y. Miura, K. Nakai, T. Syo, T. Musya, and K. Hiramori. Deletion polymorphism of the angiotensin I‐converting‐enzyme gene is associated with serum ACE concentration and increased risk for CAD in the Japanese. Circulation 90: 2199–2202, 1994.
 152. Nakamura Y., T. Takeda, M. Ishii, K. Nishiyama, M. Yamakada, Y. Hirata, K. Kimura, and S. Murao. Elevation of serum angiotensin‐converting‐enzyme activity in patients with hyperthyroidism. J. Clin. Endocrinol. Metab. 55: 931–934, 1982.
 153. Ng, K.K.F., and J. R. Vane. Conversion of angiotensin I to angiotensin II. Nature 216: 762–766, 1967.
 154. Ng, K.K.F., and J. R. Vane. Fate of angiotensin I in the circulation. Nature 218: 144–150, 1968.
 155. Oblin A., M. J. Danse, and B. Zivkovic. Degradation of substance P by membrane peptidases in the rat substantia nigra: effect of selective inhibitors. Neurosci. Lett. 84: 91–96, 1988.
 156. Ohno T., S. Kawazu, and S. Tomono. Association analyses of the polymorphisms of angiotensin‐converting‐enzyme and angiotensinogen genes with diabetic nephropathy in Japanese non‐insulin‐dependent diabetics. Metabolism 45: 218–222, 1996.
 157. Oike Y., A. Hata, Y. Ogata, Y. Numata, K. Shido, and K. Kondo. Angiotensin converting enzyme as a genetic risk factor for coronary artery spasm. Implication in the pathogenesis of myocardial infarction. J. Clin. Invest. 96: 2975–2979, 1995.
 158. Okabe, T., M., Fujisawa, H. Yotsumoto, F. Takaku, J. J. Lanzillo, and B. L. Fanburg. Familial elevation of serum angiotensin converting enzyme. Q. J. Med. 55: 55–61, 1985.
 159. Okabe T., K. Yamagata, M. Fujisawa, J. Watanabe, F. Takaku, J. J. Lanzillo, and B. L. Fanburg. Increased angiotensin‐converting‐enzyme in peripheral blood monocytes from patients with sarcoidosis. J. Clin. Invest. 75: 911–914, 1985.
 160. Oparil S., and E. Haber. The renin angiotensin system. N. Engl. J. Med. 291: 389–401, 1974.
 161. Oparil S., and E. Haber. The renin angiotensin system. N. Engl. J. Med. 291: 446–457, 1974.
 162. Oparil, S., C. A., Sanders, and E. Haber. In vivo and in vitro conversion of angiotensin I to II. Circ. Res. 26: 591–599, 1970.
 163. Oppong S. Y., and N. M. Hooper. Characterization of a secretase activity which releases angiotensin‐converting enzyme from the membrane. Biochem. J. 292: 597–603, 1993.
 164. Parving H. H., P. Jacobsen, L. Tarnow, P. Rossing, L. Lecerf, O. Poirier, and F. Cambien. Effect of a deletion polymorphism of angiotensin‐converting‐enzyme gene on progression of diabetic nephropathy during inhibition of angiotensin‐converting‐enzyme, observational follow up study. BMJ 313: 591–594, 1996.
 165. Passier R. C., J. F. Smits, M. J. Verluyten, R. Studer, H. Drexler, and M. J. Daemen. Activation of angiotensin‐converting‐enzyme expression in infarct zone following myocardial infarction. Am. J. Physiol. 269 (Heart Circ. Physiol. 40): H1268–H1276, 1995.
 166. Patchett A. A., and E. H. Cordes. The design and properties of N‐carboxyalkyldipeptide inhibitors of angiotensin converting enzyme. Advances in Enzymology. 57: 1–84, 1985.
 167. Paul M., J. Wagner, and V. J. Dzau. Gene expression of the renin–angiotensin system in human tissues. Quantitative analysis by the polymerase chain reaction. J. Clin. Invest. 91: 2058–2064, 1993.
 168. Perich R. B., B. Jackson, F. Rogerson, F.A.O. Mendelsohn, D. Paxton, and C. I. Johnston. Two binding sites on angiotensin‐converting enzyme: evidence from radioligand binding studies. Mol. Pharmacol. 42: 286–293, 1992.
 169. Pfeufer A., K. J. Osterziel, H. Urata, G. Borck, H. Schuster, T. Wienker, R. Dietz, and F. C. Luft. Angiotensin‐converting enzyme and heart chymase gene polymorphisms in hypertrophic cardiomyopathy. Am. J. Cardiol. 78: 362–364, 1996.
 170. Powell, J. S., J. P., Clozel, R. K. Muller, H. Kuhn, F. Hefti, and H. R. Baumgartner. Inhibitors of angiotensin‐converting‐enzyme prevent myointimal proliferation after vascular injury. Science 245: 186–188, 1989.
 171. Pullicino, P., P. L., Kwen, S. Greenberg, A. L. Becker, and N. Glenister. Angiotensin‐converting enzyme gene and lacunar stroke. Stroke 27: 569–570, 1996.
 172. Rakugi H., D. K. Kim, J. E. Krieger, D. S. Wang, V. J. Dzau, and R. E. Pratt. Induction of angiotensin‐converting‐enzyme in the neointima after vascular injury. Possible role in restenosis. J. Clin. Invest. 93: 339–346, 1994.
 173. Ramchandran R., G. C. Sen, K. Misono, and I. Sen. Regulated cleavage‐secretion of the membrane‐bound angiotensin‐converting enzyme. J. Biol. Chem. 269: 2125–2130, 1994.
 174. Ramchandran R., and I. Sen. Cleavage processing of angiotensin‐converting enzyme by a membrane‐associated metalloprotease. Biochemistry 34: 12645–12652, 1995.
 175. Raynolds M. V., M. R. Bristow, E. W. Bush, W. T. Abraham, B. D. Lowes, L. S. Zisman, C. S. Taft, and M. B. Perryman. Angiotensin‐converting enzyme DD genotype in patients with ischaemic or idiopathic dilated cardiomyopathy [see comments]. Lancet 342: 1073–1075, 1993.
 176. Rieger K. J., N. Saez‐Servent, M. P. Papet, J. Wdzieczak‐Bakala, J. L. Morgat, J. Thierry, W. Woelter, and M. Lenfant. Involvements of human plasma angiotensin converting enzyme in the degradation of the hemoregulatory peptide N‐acetyl‐seryl‐aspartyl‐lysyl‐proline. Biochem. J. 296: 373–378, 1993.
 177. Rigat B., C. Hubert, F. Alhenc‐Gelas, F. Cambien, P. Corvol, and F. Soubrier. An insertion/deletion polymorphism in the angiotensin I‐converting‐enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest. 86: 1343–1346, 1990.
 178. Rigat B., C. Hubert, P. Corvol, and F. Soubrier. PCR detection of the insertion/deletion polymorphism of the human angiotensin‐converting‐enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1). Nucleic Acids Res. 20: 1433, 1992.
 179. Roman R. J., M. L. Kaldunski, A. G. Scicli, and O. A. Carretero. Influence of kinins and angiotensin II on the regulation of papillary blood flow. Am. J. Physiol. 255: 801–804, 1988.
 180. Rotimi, C., A., Puras, R. Cooper, N. McFarlane‐Anderson, T. Forrester, O. Ogunbiyi, L. Morrison, and R. Ward. Polymorphisms of renin–Angiotensin genes among Nigerians, Jamaicans, and African Americans. Hypertension 27: 558–563, 1996.
 181. Rousseau, A., A., Michaud, M.‐T. Chauvet, M. Lenfant, and P. Corvol. The hemoregulatory peptide N‐acetyl‐Ser‐Asp‐Lys‐Pro is a natural and specific substrate of the N‐terminal active site of human angiotensin‐converting enzyme. J. Biol. Chem. 270: 3656–3661, 1995.
 182. Ruiz J., H. Blanche, N. Cohen, G. Velho, F. Cambien, D. Cohen, P. Passa, and P. Froguel. Insertion/deletion polymorphism of the angiotensin‐converting‐enzyme gene is strongly associated with coronary heart disease in non‐insulin‐dependent diabetes mellitus. Proc. Natl. Acad. Sci. U.S.A. 91: 3662–3665, 1994.
 183. Ryan U. S., J. W. Ryan, C. Whitaker, and A. Chiu. Localization of angiotensin‐converting enzyme (kininase II). II: Imunocytochemistry and imunofluorescence. Tissue Cell 8: 125–145, 1976.
 184. Samani N. J., D. S. Martin, M. Brack, J. Cullen, A. Chauhan, D. Lodwick, A. Harley, J. D. Swales, D. P. DeBono, and A. H. Gershlick. Insertion/deletion polymorphism in the angiotensin‐converting‐enzyme gene and risk of restenosis after coronary angioplasty. Lancet 345: 1013–1016, 1995.
 185. Samani N. J., J. R. Thompson, L. O'Toole, K. Channer, and K. L. Woods. A meta analysis of the association of the deletion allele of the angiotensin‐converting‐enzyme gene with myocardial infarction. Circulation 94: 708–712, 1996.
 186. Schachter F., L. Faure‐Delanef, F. Guenot, H. Rouger, P. Froguel, L. Lesueur‐Ginot, and D. Cohen. Genetic associations with human longevity at the APOE and ACE loci. Nat. Genet. 6: 29–32, 1994.
 187. Schmidt S., N. Schone, and E. Ritz. Association of ACE gene polymorphism and diabetic nephropathy? The Diabetic Nephropathy Study Group. Kidney Int. 47: 1176–1181, 1995.
 188. Schmidt S., I. M. Van Hooft, D. E. Grobbee, D. Ganten, and E. Ritz. Polymorphism of the angiotensin I‐converting‐enzyme gene is apparently not related to high blood pressure: Dutch Hypertension and Offspring Study. J. Hypertens. 11: 345–348, 1993.
 189. Schunkert, H., V. J., Dzau, S. S. Tang, A. T. Hirsch, C. S. Apstein, and B. H. Lorell. Increased rat cardiac angiotensin‐converting‐enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation. J. Clin. Invest. 86: 1913–1920, 1990.
 190. Schunkert H., H. W. Hense, and S. R. Holmer. Association between a deletion polymorphism of the angiotensin‐converting‐enzyme gene and left ventricular hypertrophy. N. Engl. J. Med. 330: 1634–1638, 1994.
 191. Schunkert, H., J. R., Ingelfinger, A. T. Hirsch, Y. Pinto, W. J. Remme, H. Jacob, and V. J. Dzau. Feedback regulation of angiotensin‐converting‐enzyme activity and mRNA levels by angiotensin II. Circ. Res. 72: 312–318, 1993.
 192. Schweisfurth H., and S. Schioberg‐Schiegnitz. Assay and biochemical characterization of angiotensin I‐converting enzyme in cerebrospinal fluid. Enzyme 32: 12–19, 1984.
 193. Sen I, S. Kasturi, M. A. Jabbar, and G. C. Sen. Mutations in two specific residues of testicular angiotensin‐converting enzyme change its catalytic properties. J. Biol. Chem. 268: 25748–25754, 1993.
 194. Shai S. Y., R. S. Fishel, B. M. Martin, B. C. Berk, and K. E. Bernstein. Bovine angiotensin‐converting‐enzyme cDNA cloning and regulation. Increased expression during endothelial cell growth arrest. Circ. Res. 70: 1274–1281, 1992.
 195. Shanmugam V., K. W. Sell, and B. K. Saha. Mistyping ACE heterozygotes. PCR Methods Appl. 3: 120–121, 1993.
 196. Shapiro R., B. Holmquist, and J. F. Riordan. Anion activation of angiotensin‐converting enzyme: dependence on nature of substrate. Biochemistry 22: 3850–3857, 1983.
 197. Shapiro R., and J. F. Riordan. Critical lysine residue at the chloride binding site of angiotensin converting enzyme. Biochemistry 22: 5315–5321, 1983.
 198. Shiota N, M. Miyazaki, and H. Okunishi. Increase of angiotensin‐converting‐enzyme gene expression in the hypertensive aorta. Hypertension 20: 168–174, 1992.
 199. Sibony M, J. M. Gasc, F. Soubrier, F. Alhenc‐Gelas, and P. Corvol. Gene expression and tissue localization of the two iso‐forms of angiotensin I‐converting‐enzyme. Hypertension 21: 827–835, 1993.
 200. Sibony, M., D. Segretain, J.‐M. Gasc. Angiotensin‐converting enzyme in murine testis: step‐specific expression of the germinal isoform during spermiogenesis. Biol. Reprod. 50: 1015–1026, 1994.
 201. Skeggs, L. T., J. R., Kahn, and N. P. Shumway. The preparation and function of the hypertensin converting enzyme. J. Exp. Med. 103: 295–299, 1956.
 202. Skidgel R. A., S. Engelbrecht, A. R. Johnson, and E. G. Erdös. Hydrolysis of substance P and neurotensin by converting enzyme and neutral endopeptidase. Peptides 5: 769–776, 1984.
 203. Skidgel R. A., and E. G. Erdös. Novel activity of human angiotensin I converting enzyme: release of the NH2‐ and COOH‐terminal tripeptides from the luteinizing hormone–releasing hormone. Proc. Natl. Acad. Sci. U.S.A. 82: 1025–1029, 1985.
 204. Skidgel R. A., and E. G. Erdös. The broad substrate specificity of human angiotensin I converting enzyme. Clin. Exp. Hypertens. A9: 243–259, 1987.
 205. Soubrier F., F. Alhenc‐Gelas, C. Hubert, J. Allegrini, V. John, G. Trejecer, and P. Corvol. Two putative active centers in human angiotensin I‐converting‐enzyme revealed by molecular cloning. Proc. Natl. Acad. Sci. U.S.A. 85: 9386–9390, 1988.
 206. Staessen J., J. Wang, G. Ginocchio, V. Petrov, A. Saavedra, F. Soubrier, R. Vlietinck, and R. Fagard. The deletion/insertion polymorphism of the angiotensin‐converting enzyme gene and cardiovascular risk. J. Hypertens. 15: 1579–1592, 1997.
 207. Strittmatter S. M., M.M.S. Lo, J. A. Javitch, and S. H. Snyder. Autoradiographic visualization of angiotensin‐converting enzyme in rat brain with [3H] captopril: localization to a striatonigral pathway. Proc. Natl. Acad. Sci. U.S.A. 81: 1599–1603, 1984.
 208. Strittmatter, S. M., and S. H. Snyder. Angiotensin‐converting enzyme immuno‐histochemistry in rat brain and pituitary gland: correlation of isozyme type with cellular localization. Neuroscience 21: 407–420, 1987.
 209. Strittmatter S. M., E. A. Thiele, E. B. De Souza, and S. H. Snyder. Angiotensin‐converting enzyme in the testis and epydidymis: differential development and pituitary regulation of isozymes. Endocrinology 117: 1374–1379, 1985.
 210. Strittmatter S. M., E. A. Thiele, M. S. Kapiloff, and S. H. Snyder. A rat brain isozyme of angiotensin‐converting enzyme. J. Biol. Chem. 260: 9825–9832, 1985.
 211. Studer, R., H., Reinecke, B. Muller, J. Holtz, H. Just, and H. Drexler. Increased angiotensin‐I converting enzyme gene expression in the failing human heart. Quantification by competitive RNA polymerase chain reaction. J. Clin. Invest. 94: 301–310, 1994.
 212. Sun Y., J.P.M. Cleutens, A. A. Diaz‐Arias, and K. T. Weber. Cardiac angiotensin‐converting enzyme and myocardial fibrosis in the rat. Cardiovasc. Res. 28: 1423–1432, 1994.
 213. Tarnow L., F. Cambien, P. Rossing, F. S. Nielsen, B. V. Hansen, L Lecerf, O. Poirier, S. Danilov, and H. H. Parving. Lack of relationship between an insertion/deletion polymorphism in the angiotensin I‐converting‐enzyme gene and diabetic nephropathy and proliferative retinopathy in IDDM patients. Diabetes 44: 489–494, 1995.
 214. Testut P., P. Corvol, and C. Hubert. Functional analysis of the somatic angiotensin I converting enzyme promoter. Biochem. J. 293: 843–848, 1993.
 215. Thekkumkara T. J., I. W. Livingston, R. S. Kumar, and G. C. Sen. Use of alternative polyadenylation sites for tissue‐specific transcription of two angiotensin‐converting enzyme mRNAs. Nucleic Acids Res. 20: 683–687, 1992.
 216. Tiret L., F. Kee, O. Poirier, S. Ricard, P. Marques‐Vidal, A. Evans, D. Arveiler, G. Luc, P. Amouyel, and F. Cambien. Deletion polymorphism in angiotensin‐converting‐enzyme gene associated with parental history of myocardial infarction. Lancet 341: 991–992, 1993.
 217. Tiret L., B. Rigat, S. Visvikis, C. Breda, P. Corvol, F. Cambien, and F. Soubrier. Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I‐converting‐enzyme (ACE) gene controls plasma ACE levels. Am. J. Hum. Genet. 51: 197, 1992.
 218. Turner A. J., N. M. Hooper, and A. J. Kenny, Metabolism of neuropeptides. In: Mammalian Ectoenzymes, edited by A. J. Kenny and A. J. Turner. New York: Elsevier, 1987.
 219. Turner A. J., J. Hryszko, N. M. Hooper, and M. J. Dowdall. Purification and characterization of a peptidyl dipeptidase resembling angiotensin converting enzyme from the electric organ of Torpedo marmorata. J. Neurochem. 48: 910–916, 1987.
 220. Ueda, S., H. L., Elliott, J. J. Morton, and J. M. Connell. Enhanced pressor response to angiotensin I in normotensive men with the deletion genotype (DD) for angiotensin‐converting‐enzyme. Hypertension 25: 1266–1269, 1995.
 221. Vallee, B. L., and D. S. Auld. Active‐site zinc‐ligands and activated H2O of zinc enzymes. Proc. Natl. Acad. Sci. U.S.A. 87: 220–224, 1990.
 222. Van Bockxmeer, F. M., C. D. Mamotte, F. A. Gibbons, V. Burke, and R. R. Taylor. Angiotensin‐converting enzyme and apolipoprotein E genotypes and restenosis after coronary angioplasty. Circulation 92: 2066–2071, 1995.
 223. Vane J. R., Sites of conversion of angiotensin I. In: Hypertension, edited by J. Genest and E. Koine. Berlin: Springer‐Verlag, 1972, p. 523–532.
 224. Van Essen G. G, P. L. Rensma, D. De Zeeuw, W. J. Sluiter, H. Scheffer, A. J. Aperloo, and P. E. De Jong. Association between angiotensin‐converting‐enzyme gene polymorphism and failure of renoprotective therapy. Lancet 347: 94–95, 1996.
 225. Velletri P. A.. Testicular angiotensin I‐converting enzyme (E.C. 3.4.15.1). Life Sci. 36: 1597–1608, 1985.
 226. Velletri P. A., D. R. Aquilano, E. Bruckwick, C. H. Tsai‐Morris, M. L. Dufau, and W. Lovenberg. Endocrinological control and cellular localization of rat testicular angiotensin‐converting‐enzyme (EC 3.4.15.1). Endocrinology 116: 2516–2522, 1985.
 227. Villard E., L. Tiret, S. Visvikis, R. Rakotovao, F. Cambien, and F. Soubrier. Identification of new polymorphisms of the angiotensin I‐converting‐enzyme (ACE) gene, and study of their relationship to plasma ACE levels by two‐QTL segregation‐linkage analysis. Am. J. Hum. Genet. 58: 1268–1278, 1996.
 228. Vio C. P., and F. Alhenc‐Gelas. Differential distribution of angiotensin I‐converting‐enzyme in normal and hypertensive rat kidneys. Hypertension 25: 18, 1995.
 229. Waeber B., J. Nussberger, and H. S. Brunner, Angiotensin‐converting enzyme inhibitors in hypertension. In: Hypertension: Pathophysiology, Diagnosis and Management, edited by J. H. Laragh and B. M. Brenner. New York: Raven, 1990, p. 2209–2232.
 230. Wei, L., F., Alhenc‐Gelas, P. Corvol, and E. Clauser. The two homologous domains of the human angiotensin I‐converting enzyme are both catalytically active. J. Biol. Chem. 266: 9002–9008, 1991.
 231. Wei, L., F., Alhenc‐Gelas, F. Soubrier, A. Michaud, P. Corvol, and E. Clauser. Expression and characterization of recombinant human angiotensin I‐converting enzyme. Evidence for a C‐terminal transmembrane anchor and for a proteolytic processing of the secreted recombinant and plasma enzymes. J. Biol. Chem. 266: 5540–5546, 1991.
 232. Wei L., E. Clauser, F. Alhenc‐Gelas, and P. Corvol. The two homologous domains of human angiotensin I‐converting enzyme interact differently with competitive inhibitors. J. Biol. Chem. 267: 13398–13405, 1992.
 233. Williams T. A., K. Barnes, A. J. Kenny, A. J. Turner, and N. M. Hooper. A comparison of the zinc content and substrate specificity of the endothelial and testicular forms of porcine angiotensin converting enzyme, and the isolation of isoenzyme specific antisera. Biochem. J. 288: 878–881, 1992.
 234. Williams, T. A., P. Corvol, and F. Soubrier. Identification of two active site residues in human angiotensin I‐converting enzyme. J. Biol. Chem. 269: 29430–29434, 1994.
 235. Williams T. A., N. M. Hooper, and A. J. Turner. Characterization of neuronal and endothelial forms of angiotensin converting enzyme in pig brain. J. Neurochem. 57: 193–199, 1991.
 236. Williams T. A., A. Michaud, X. Houard, M.‐T. Chauvet, F. Soubrier, and P. Corvol. Drosophila melanogaster angiotensin I‐converting enzyme expressed in Pichia pastoris resembles the C domain of the mammalian homologue and does not require glycosylation for secretion and enzymic activity. Biochem. J. 318: 125–131, 1996.
 237. Yang, H.Y.T., E. G. Erdös, and Y. Levin. A dipeptidyl carboxypeptidase that converts angiotensin I and inactivates bradykinin. Biochim. Biophys. Acta 214: 374–376, 1970.
 238. Yasui T., F. Alhenc‐Gelas, P. Corvol, and J. Menard. Angiotensin I‐converting enzyme in amniotic fluid. J. Lab. Clin. Med. 104: 741–751, 1984.
 239. Yokosawa H., S. Endo, Y. Ogura, and S. Ishii. A new feature of angiotensin‐converting enzyme in the brain: hydrolysis of substance P. Biochem. Biophys. Res. Commun. 116: 735–742, 1983.
 240. Yorioka, T., T., Suehiro, N. Yasuoka, K. Hashimoto, and M. Kawada. Polymorphism of the angiotensin‐converting‐enzyme gene and clinical aspects of IgA nephropathy. Clin. Nephrol. 44: 80–85, 1995.
 241. Yoshida, H., T., Mitarai, T. Kawamura, T. Kitajima, Y. Miyazaki, R. Nagasawa, Y. Kawaguchi, H. Kubo, I. Ichikawa, and O. Sakai. Role of the deletion of polymorphism of the angiotensin‐converting‐enzyme gene in the progression and therapeutic responsiveness of IgA nephropathy. J. Clin. Invest. 96: 2162–2169, 1996.
 242. Yosipiv I. V., S. Dipp, and S. S. El‐Dahr. Ontogeny of somatic angiotensin‐converting‐enzyme. Hypertension 23: 369–374, 1994.
 243. Yotsumoto H., Y. Imai, N. Kuzuya, H. Uchimura, and F. Matsuzaki. Increased levels of serum angiotensin‐converting‐enzyme activity in hyperthyroidism. Ann. Intern. Med. 96: 326–328, 1982.
 244. Yu F. S., S. L. Lee, and B. L. Fanburg. Smooth muscle cell conditioned medium elevates angiotensin‐converting enzyme of bovine pulmonary endothelial cells. Am. J. Respir. Cell. Mol. Biol. 1: 401–405, 1989.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Francois Alhenc‐Gelas, Pierre Corvol. Molecular and Physiological Aspects of Angiotensin I Converting Enzyme. Compr Physiol 2011, Supplement 22: Handbook of Physiology, The Endocrine System, Endocrine Regulation of Water and Electrolyte Balance: 81-103. First published in print 2000. doi: 10.1002/cphy.cp070303