Comprehensive Physiology Wiley Online Library

Angiotensins

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Angiotensin Generation and Metabolism
1.1 Classic Pathway of Angiotensin II Generation
1.2 Alternative Pathways Generating Angiotensin Peptides
2 Angiotensin Actions in the Kidney
2.1 Regulation of Intrarenal Hemodynamics
2.2 Angiotensin II Actions on Renal Tubule Epithelial Transport
2.3 Coordination of Renal Vascular and Epithelial Angiotensin II Actions
3 Cardiovascular Actions of Angiotensin II
3.1 Effects on Blood Vessels
3.2 Cardiac Actions
4 Adrenal Actions of Angiotensin
4.1 Adrenal Angiotensin II Receptors
4.2 Mechanisms of Angiotensin II‐Stimulated Aldosterone Synthesis
4.3 Mechanisms of Adrenal Glomerulosa Cell Activation
4.4 Trophic Effects on the Adrenal Gland
5 Central Nervous System Actions of Angiotensin II
5.1 Expression of Renin‐Angiotensin System Components
5.2 Angiotensin II‐Mediated Drinking, Vasopressin Release, and Salt Intake
5.3 Centrally Mediated Effects on Blood Pressure
5.4 Cellular Mechanisms
6 Angiotensin II Receptors
6.1 Angiotensin II Receptor Subtypes
6.2 Regulation of Receptor Expression
6.3 Receptor Structure‐Function Relationships
6.4 Receptor Signaling Mechanisms
7 Conclusions
Figure 1. Figure 1.

Generation and metabolism of angiotensin peptides. A: Classic pathway of angiotensin generation and subsequent cleavage steps. B: Generation of Angiotensin III bypassing Angiotensin II. C: Generation of Angiotensin (1–7) from Angiotensin I and subsequent cleavage steps. D: Generation of Angiotensin (1–7) from Angiotensin II.

Figure 2. Figure 2.

Autoregulation of renal blood flow and glomerular filtration rate. In sodium‐depleted dogs, renal perfusion pressure was reduced stepwise from a mean of 130 mm Hg to 70 mm Hg, in the absence or presence of the angiotensin‐converting enzyme inhibitor SQ‐20881. Glomerular filtration rate and efferent arteriolar resistance are dependent on angiotensin II (AII) as perfusion pressure falls. Afferent arteriolar resistance varies steeply with changes in perfusion pressure and is not dependent on AII. [From Hall 624 with permission.]

Figure 3. Figure 3.

Glomerular and peritubular capillary Starling forces. The hydraulic pressure gradient (black arrows) favoring fluid exit from capillaries is opposed by the oncotic pressure gradient (gray arrows). Net pressure gradient (ΔP) is shown below the panels. In glomerular capillaries, oncotic pressure rises as filtration removes protein‐free ultrafiltrate. Reduction of hydraulic pressure between glomerular and peritubular capillaries is due to efferent arteriolar resistance. In the presence of angiotensin II (bottom panel), the pressure profile is changed, resulting in higher end‐glomerular capillary and, hence, peritubular capillary oncotic pressure and reduced peritubular capillary hydraulic pressure.

Figure 4. Figure 4.

Structure of glomerular mesangium. Transmission electron micrograph of rat glomerulus, single glomerular capillary loop. Basement membrane is not circumferential. Mesangial cells are present in the glomerular interstitium. (Photomicrograph kindly provided by W. Kriz Ruprecht‐Karls‐Universitat, Heidelberg, Germany.)

Figure 5. Figure 5.

Effect of a kinin antagonist and enalaprilat on papillary blood flow in anesthetized rats. Each data point represents mean ± SE from eight rats. *P < 0.05 vs. control; C, P < 0.05 vs. kinin antagonist. Hence, angiotensin II has a significant effect on papillary blood flow when the vasodilatory effect of kinins is inhibited. [From Roman et al. 450 with permission.]

Figure 6. Figure 6.

Effect of angiotensin II (AII) on net proximal tubule fluid reabsorption. Angiotensin II (10 pM, left panel; 10 μ, M, right panel was added to the bath of isolated, perfused proximal tubules obtained from rabbits, and net fluid reabsorption (Jv) was measured during control, AII, and recovery periods. Individual data points are shown as line graphs, averaged data as bar graphs. This study was the first to show a direct and bimodal effect of AII on transport functions in isolated tubules. [From Schuster Kokko and Jacobson 491 with permission.]

Figure 7. Figure 7.

Sites of angiotensin II action in proximal tubule cells. Vectorial Na+ transport is accomplished by the restricted location of Na+−K+‐ATPase at the basolateral membrane (facing the interstitium) of polarized epithelia. Entry of Na+ from tubule lumen via the apical Na+−H+ exchanger (NHE) is down an electrochemical gradient generated by Na+−K+‐ATPase. Intracellular H+ is derived from CO2 and H2O through the action of carbonic anhydrase. H+ entering the tubule lumen is buffered by filtered HCO3. Angiotensin II (large arrows) stimulates both apical NHE‐ and basolateral Na+−HCO3 transport activity.

Figure 8. Figure 8.

Sodium excretion during angiotensin II (AII) infusion is pressure dependent. Mean arterial pressure, cumulative sodium balance, and urinary sodium excretion in a dog (HS‐7) receiving a continuous infusion of AII. During the first 4 days, renal perfusion pressure was prevented from rising by a servocontrol device. Note progressive sodium retention and severe hypertension during this period. When renal pressure was allowed to rise to the level of the systemic pressure, natriuresis promptly ensued and sodium balance was restored. [From Hall, Granger, Hester et al. 200 with permission.]

Figure 9. Figure 9.

Role of angiotensin (AII) in maintaining stable blood pressure when salt intake changes. Sodium intake was varied in dogs given the angiotensin‐converting enzyme inhibitor SQ‐14225 (captopril) or AII (5 ng · kg−1 · min−1). Blood pressure falls significantly on a low‐salt diet when AII production is inhibited. Also, severe hypertension develops on high‐salt diets if circulating AII levels remain high. [From Hall et al. 625 with permission.]

Figure 10. Figure 10.

Vascular smooth muscle cell responses to angiotensin II (AII). A: Time course of AII (100 nM)‐induced aortic contraction. B: Time course of AII‐stimulated rise in cytosolic Ca2+ concentration. Time course of AII‐stimulated inositol 1,4,5‐trisphosphate (IP3) and diacylglycerol (DG) concentrations. D: Time‐course of vascular smooth muscle cell alkalinization in responses to AII. The dissociation between IP3 and diacylglycerol generation is accounted for by a switch from phospholipase Cβ‐dependent to phospholipase D dependent diacylglycerol generation. See text for details. [From Griendling et al. 180 with permission.]

Figure 11. Figure 11.

Aldosterone biosynthetic pathway. Angiotensin stimulates cholesterol transfer from outer mitochondrial membrane to the inner mitochondrial membrane, the rate‐limiting step in aldosterone synthesis. See text for details.

Figure 12. Figure 12.

Angiotensin II (AII) and Ca2+ dependence of cholesterol transfer. Cholesterol content in the outer mitochondrial membrane (OM), inner membrane contact sites (CS), and inner mitochondrial membrane (IM) after CaCl2 or angiotensin II stimulation in the presence or absence of cycloheximide (CHx). Cholesterol content in contact sites and inner mitochondrial membranes increases in response to angiotensin II and Ca2+ in a protein synthesis‐dependent fashion. On Western blots, the abundance of StAR (steroidogenic acute regulatory) protein similarly increases in response to stimulation with angiotensin II and Ca2+. [From Cherradi et al. 87 with permission.]

Figure 13. Figure 13.

Effect of AT2 receptor deficiency on drinking response. Mice deficient in AT2 receptors (−/Y) and wild‐type mice (+/Y) were deprived of water for 40 h, followed by a 3 h period during which they had free access to water. Although all mice lost an equivalent percentage of body weight during the deprivation period, the drinking response of AT2 receptor‐deficient mice was significantly less than that of wild‐type mice. [From Hein et al. 626 with permission.]

Figure 14. Figure 14.

Central effect of angiotensin II (AII) on blood pressure. A: Rate meter records of action potential firing frequency in the area postrema and blood pressure response following systemic administration of angiotensin II (50ng AII). B: Dose‐dependent blood pressure response to angiotensin II microinjection into the area postrema. [From Ferguson and Washburn 155 with permission.]

Figure 15. Figure 15.

Schematic view of AT1 receptor embedded in plasma membrane. The receptor consists of a seven‐transmembrane‐spanning domain, which forms a ring‐like structure. Angiotensin II (AII) is shown in its binding pocket. See text for details. [From Burns et al. 623 with permission.]

Figure 16. Figure 16.

Intracellular signals stimulated by AT1 receptor activation. Pathways dependent on Gq and Gi activation and their downstream effectors are shown. In this cascade, calcium and protein kinase C serve as the central signaling molecules. See text for details. NHE‐3, Na+−H+ exchanger; IP3, inositol 1,4,5‐trisphosphate; PLCβ, phospholipase Cβ; PLA2 phospholipase A2; PLD, phospholipase D; MLC, myosin light chain; DAG, diacylglycerol; PKC, protein kinase C.

Figure 17. Figure 17.

Intracellular tyrosine phosphorylation cascades activated by AT1 receptor. The precise mechanism whereby the AT1 receptor activates tyrosine kinase activity is not known. Two potential mechanisms (via c‐SRC and/or Pyk2) are described in the text. PKC, protein kinase C; PLCγ, phospholipse Cγ; SOS, son of sevenless; IP3, inositol 1,4,5‐trisphosphate; DAG, diacylglycerol; PI3‐kinase, phosphatidylinositol‐3‐kinase; JNK, Jun N‐terminal kinase; MEK, mitogen activated protein kinase/extracellular signal‐regulated kinase kinase, POSH, “Plenty of SH”; ERK, “extracellular signal‐regulated kinase.”



Figure 1.

Generation and metabolism of angiotensin peptides. A: Classic pathway of angiotensin generation and subsequent cleavage steps. B: Generation of Angiotensin III bypassing Angiotensin II. C: Generation of Angiotensin (1–7) from Angiotensin I and subsequent cleavage steps. D: Generation of Angiotensin (1–7) from Angiotensin II.



Figure 2.

Autoregulation of renal blood flow and glomerular filtration rate. In sodium‐depleted dogs, renal perfusion pressure was reduced stepwise from a mean of 130 mm Hg to 70 mm Hg, in the absence or presence of the angiotensin‐converting enzyme inhibitor SQ‐20881. Glomerular filtration rate and efferent arteriolar resistance are dependent on angiotensin II (AII) as perfusion pressure falls. Afferent arteriolar resistance varies steeply with changes in perfusion pressure and is not dependent on AII. [From Hall 624 with permission.]



Figure 3.

Glomerular and peritubular capillary Starling forces. The hydraulic pressure gradient (black arrows) favoring fluid exit from capillaries is opposed by the oncotic pressure gradient (gray arrows). Net pressure gradient (ΔP) is shown below the panels. In glomerular capillaries, oncotic pressure rises as filtration removes protein‐free ultrafiltrate. Reduction of hydraulic pressure between glomerular and peritubular capillaries is due to efferent arteriolar resistance. In the presence of angiotensin II (bottom panel), the pressure profile is changed, resulting in higher end‐glomerular capillary and, hence, peritubular capillary oncotic pressure and reduced peritubular capillary hydraulic pressure.



Figure 4.

Structure of glomerular mesangium. Transmission electron micrograph of rat glomerulus, single glomerular capillary loop. Basement membrane is not circumferential. Mesangial cells are present in the glomerular interstitium. (Photomicrograph kindly provided by W. Kriz Ruprecht‐Karls‐Universitat, Heidelberg, Germany.)



Figure 5.

Effect of a kinin antagonist and enalaprilat on papillary blood flow in anesthetized rats. Each data point represents mean ± SE from eight rats. *P < 0.05 vs. control; C, P < 0.05 vs. kinin antagonist. Hence, angiotensin II has a significant effect on papillary blood flow when the vasodilatory effect of kinins is inhibited. [From Roman et al. 450 with permission.]



Figure 6.

Effect of angiotensin II (AII) on net proximal tubule fluid reabsorption. Angiotensin II (10 pM, left panel; 10 μ, M, right panel was added to the bath of isolated, perfused proximal tubules obtained from rabbits, and net fluid reabsorption (Jv) was measured during control, AII, and recovery periods. Individual data points are shown as line graphs, averaged data as bar graphs. This study was the first to show a direct and bimodal effect of AII on transport functions in isolated tubules. [From Schuster Kokko and Jacobson 491 with permission.]



Figure 7.

Sites of angiotensin II action in proximal tubule cells. Vectorial Na+ transport is accomplished by the restricted location of Na+−K+‐ATPase at the basolateral membrane (facing the interstitium) of polarized epithelia. Entry of Na+ from tubule lumen via the apical Na+−H+ exchanger (NHE) is down an electrochemical gradient generated by Na+−K+‐ATPase. Intracellular H+ is derived from CO2 and H2O through the action of carbonic anhydrase. H+ entering the tubule lumen is buffered by filtered HCO3. Angiotensin II (large arrows) stimulates both apical NHE‐ and basolateral Na+−HCO3 transport activity.



Figure 8.

Sodium excretion during angiotensin II (AII) infusion is pressure dependent. Mean arterial pressure, cumulative sodium balance, and urinary sodium excretion in a dog (HS‐7) receiving a continuous infusion of AII. During the first 4 days, renal perfusion pressure was prevented from rising by a servocontrol device. Note progressive sodium retention and severe hypertension during this period. When renal pressure was allowed to rise to the level of the systemic pressure, natriuresis promptly ensued and sodium balance was restored. [From Hall, Granger, Hester et al. 200 with permission.]



Figure 9.

Role of angiotensin (AII) in maintaining stable blood pressure when salt intake changes. Sodium intake was varied in dogs given the angiotensin‐converting enzyme inhibitor SQ‐14225 (captopril) or AII (5 ng · kg−1 · min−1). Blood pressure falls significantly on a low‐salt diet when AII production is inhibited. Also, severe hypertension develops on high‐salt diets if circulating AII levels remain high. [From Hall et al. 625 with permission.]



Figure 10.

Vascular smooth muscle cell responses to angiotensin II (AII). A: Time course of AII (100 nM)‐induced aortic contraction. B: Time course of AII‐stimulated rise in cytosolic Ca2+ concentration. Time course of AII‐stimulated inositol 1,4,5‐trisphosphate (IP3) and diacylglycerol (DG) concentrations. D: Time‐course of vascular smooth muscle cell alkalinization in responses to AII. The dissociation between IP3 and diacylglycerol generation is accounted for by a switch from phospholipase Cβ‐dependent to phospholipase D dependent diacylglycerol generation. See text for details. [From Griendling et al. 180 with permission.]



Figure 11.

Aldosterone biosynthetic pathway. Angiotensin stimulates cholesterol transfer from outer mitochondrial membrane to the inner mitochondrial membrane, the rate‐limiting step in aldosterone synthesis. See text for details.



Figure 12.

Angiotensin II (AII) and Ca2+ dependence of cholesterol transfer. Cholesterol content in the outer mitochondrial membrane (OM), inner membrane contact sites (CS), and inner mitochondrial membrane (IM) after CaCl2 or angiotensin II stimulation in the presence or absence of cycloheximide (CHx). Cholesterol content in contact sites and inner mitochondrial membranes increases in response to angiotensin II and Ca2+ in a protein synthesis‐dependent fashion. On Western blots, the abundance of StAR (steroidogenic acute regulatory) protein similarly increases in response to stimulation with angiotensin II and Ca2+. [From Cherradi et al. 87 with permission.]



Figure 13.

Effect of AT2 receptor deficiency on drinking response. Mice deficient in AT2 receptors (−/Y) and wild‐type mice (+/Y) were deprived of water for 40 h, followed by a 3 h period during which they had free access to water. Although all mice lost an equivalent percentage of body weight during the deprivation period, the drinking response of AT2 receptor‐deficient mice was significantly less than that of wild‐type mice. [From Hein et al. 626 with permission.]



Figure 14.

Central effect of angiotensin II (AII) on blood pressure. A: Rate meter records of action potential firing frequency in the area postrema and blood pressure response following systemic administration of angiotensin II (50ng AII). B: Dose‐dependent blood pressure response to angiotensin II microinjection into the area postrema. [From Ferguson and Washburn 155 with permission.]



Figure 15.

Schematic view of AT1 receptor embedded in plasma membrane. The receptor consists of a seven‐transmembrane‐spanning domain, which forms a ring‐like structure. Angiotensin II (AII) is shown in its binding pocket. See text for details. [From Burns et al. 623 with permission.]



Figure 16.

Intracellular signals stimulated by AT1 receptor activation. Pathways dependent on Gq and Gi activation and their downstream effectors are shown. In this cascade, calcium and protein kinase C serve as the central signaling molecules. See text for details. NHE‐3, Na+−H+ exchanger; IP3, inositol 1,4,5‐trisphosphate; PLCβ, phospholipase Cβ; PLA2 phospholipase A2; PLD, phospholipase D; MLC, myosin light chain; DAG, diacylglycerol; PKC, protein kinase C.



Figure 17.

Intracellular tyrosine phosphorylation cascades activated by AT1 receptor. The precise mechanism whereby the AT1 receptor activates tyrosine kinase activity is not known. Two potential mechanisms (via c‐SRC and/or Pyk2) are described in the text. PKC, protein kinase C; PLCγ, phospholipse Cγ; SOS, son of sevenless; IP3, inositol 1,4,5‐trisphosphate; DAG, diacylglycerol; PI3‐kinase, phosphatidylinositol‐3‐kinase; JNK, Jun N‐terminal kinase; MEK, mitogen activated protein kinase/extracellular signal‐regulated kinase kinase, POSH, “Plenty of SH”; ERK, “extracellular signal‐regulated kinase.”

References
 1. Aguilera, G.. Role of angiotensin II receptor subtypes on the regulation of aldosterone secretion in the adrenal glomerulosa zone in the rat. Mol. Cell Endocrinol. 90: 53–60, 1992.
 2. Aguilera, G., and K. Catt. Regulation of vascular angiotensin II receptors in the rat during altered sodium intake. Circ. Res. 49: 751–758, 1981.
 3. Ambroz, G., and K. J. Catt. Angiotensin II receptor–mediated calcium influx in bovine adrenal glomerulosa cells. Endocrinology 131: 408–414, 1992.
 4. Amemiya, M., J., Loffing, M. Lotscher, B. Kaissling, R. J. Alpern, and O. W. Moe. Expression of NHE‐3 in the apical membrane of rat renal proximal tubule and thick ascending limb. Kidney Int. 48: 1206–1215, 1995.
 5. Anderson, J. M., M. A. Gimbrone, Jr., and R. W., Alexander. Angiotensin II stimulates phosphorylation of the myosin light chain in cultured vascular smooth muscle cells. J. Biol. Chem. 256: 4693–4696, 1981.
 6. Anderson, K. M., T., Murahashi, D. E. Dostal, and M. J. Peach. Morphological and biochemical analysis of angiotensin II internalization in cultured rat aortic smooth muscle cells. Am. J. Physiol (Cell Physiology) 264: C179–C188, 1993.
 7. Anderson, P. W., Y. S., Do, and W. A. Hsueh. Angiotensin II causes mesangial cell hypertrophy. Hypertension 21: 29–35, 1993.
 8. Anderson, P. W., X. Y., Zhang, J. Tian, J. D. Correale, X. P. Xi, D. Yang, K. Graf, R. E. Law, and W. A. Hsueh. Insulin and angiotensin II are additive in stimulating TGF‐beta 1 and matrix mRNAs in mesangial cells. Kidney Int. 50: 745–753, 1996.
 9. Anderson, S., H. G., Rennke, and B. M. Brenner. Therapeutic advantage of converting enzyme inhibitors in arresting progressive renal disease associated with systemic hypertension in the rat. J. Clin. Invest. 77: 1993–2000, 1986.
 10. Anderson, W. P., D., Alcorn, A. I. Gilchrist, J. M. Whiting, and G. B. Ryan. Glomerular actions of ANG II during reduction of renal artery pressure: a morphometric amorhometric analysis. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 27): F1021–F1026, 1989.
 11. Anderson, W. P., K. M., Denton, R. L. Woods, and D. Alcorn. Angiotensin II and the maintenance of GFR and renal blood flow during renal artery narrowing. Kidney Int. Suppl. 30: S109–S113, 1990.
 12. Andrews, P. M.. Investigations of cytoplasmic contractile and cytoskeletal elements in the kidney glomerulus. Kidney Int. 20: 549–562, 1981.
 13. Aoki, H., S., Izumo, and J. Sadoshima. Angiotensin II activates RhoA in cardiac myocytes: a critical role of RhoA in angiotensin II‐induced premyofibril formation. Circ. Res. 82: 666–676, 1998.
 14. Arakawa, K.. Serine protease angiotensin II systems. J. Hypertens. Suppl. 14: S3–S7, 1996.
 15. Arakawa, K., and H. Maruta. Ability of kallikrein to generate angiotensin II‐like pressor substance and a proposed “kinin–tensin enzyme system.” Nature 288: 705–706, 1980.
 16. Ardaillou, R.. Active fragments of angiotensin II: enzymatic pathways of synthesis and biological effects. Curr. Opin. Nephrol. Hypertens. 6: 28–34, 1997.
 17. Asano, M., Y., Suzuki, and H. Hidaka. Effects of various calmodulin antagonists on contraction of rabbit aortic strips. J. Pharmacol. Exp. Ther. 220: 191–196, 1982.
 18. Ashizawa, N., K., Graf, Y. S. Do, T. Nunohiro, C. M. Giachelli, W. P. Meehan, T. L. Tuan, and W. A. Hsueh. Osteopontin is produced by rat cardiac fibroblasts and mediates A(II)‐induced DNA synthesis and collagen gel contraction. J. Clin. Invest. 98: 2218–2227, 1996.
 19. Ausiello, D.A.T., J. I., Kreisberg, C. Roy, and M. J. Karnovsky. Contraction of cultured rat glomerular cells of apparent mesangial origin after stimulation with angiotensin II and arginine vasopressin. J. Clin. Invest. 65: 754–760, 1980.
 20. Averill, D. B., D. I., Diz, K. L. Barnes, and C. M. Ferrario. Pressor responses of angiotensin II microinjected into the dorsomedial medulla of the dog. Brain Res. 414: 294–300, 1987.
 21. Avrith, D. B., and J. T. Fitzsimons. Increased sodium appetite in the rat induced by intracranial administration of components of the renin–angiotensin system. J. Physiol. (Lond.) 301: 349–364, 1980.
 22. Bagby, S. P., E. A., Kirk, L. H. Mitchell, M. M. O'Reilly, W. E. Holden, P. E. Stenberg, and A. C. Bakke. Proliferative synergy of ANG II and EGF in porcine aortic vascular smooth muscle cells. Am. J. Physiol. 265 (Renal Fluid Electrolyte Physiol. 36): F239–F249, 1993.
 23. Balcells, E., Q. C., Meng, W. H. Johnson, Jr., S. Oparil, and L. J. Dell'Italia. Angiotensin II formation from ACE and chymase in human and animal hearts: methods and species considerations. Am. J. Physiol. 273 (Heart Circ. Physiol. 42): H1769–H1774, 1997.
 24. Balla, T., A. J., Baukal, S. Eng, and K. J. Catt. Angiotensin II receptor subtypes and biological responses in the adrenal cortex and medulla. Mol. Pharmacol. 40: 401–406, 1991.
 25. Balla, T., A. J., Baukal, G. Guillemette, and K. J. Catt. Multiple pathways of inositol polyphosphate metabolism in angiotensin‐stimulated adrenal glomerulosa cells. J. Biol. Chem. 263: 4083–4091, 1988.
 26. Balla, T., A. J., Baukal, G. Guillemette, R. O. Morgan, and K. J. Catt. Angiotensin‐stimulated production of inositol trisphosphate isomers and rapid metabolism through inositol 4‐monophosphate in adrenal glomerulosa cells. Proc. Natl. Acad. Sci. U.S.A. 83: 9323–9327, 1986.
 27. Balla, T., W. P. Hausdorff, A. J. Baukal, and K. J. Catt. Inositol polyphosphate production and regulation of cytosolic calcium during the biphasic activation of adrenal glomerulosa cells by angiotensin II. Arch. Biochem. Biophys. 270: 398–403, 1989.
 28. Balla, T., S., Nakanishi, and K. J. Catt. Cation sensitivity of inositol 1,4,5‐trisphosphate production and metabolism in agonist‐stimulated adrenal glomerulosa cells. J. Biol. Chem. 269: 16101–16107, 1994.
 29. Ballermann, B. J., K. L., Skorecki, and B. M. Brenner. Reduced glomerular angiotensin II receptor density in early untreated diabetes mellitus in the rat. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 18): F110–F116, 1984.
 30. Balmforth, A. J., A. J., Lee, P. Warburton, D. Donnelly, and S. G. Ball. The conformational change responsible for AT1 receptor activation is dependent upon two juxtaposed asparagine residues on transmembrane helices III and VII. J. Biol. Chem. 272: 4245–4251, 1997.
 31. Baukal, A. J., T., Balla, L. Hunyady, W. Hausdorff, G. Guillemette, and K. J. Catt. Angiotensin II and guanine nucleotides stimulate formation of inositol 1,4,5–trisphosphate and its metabolites in permeabilized adrenal glomerulosa cells. J. Biol. Chem. 263: 6087–6092, 1988.
 32. Baum, M., R., Quigley, and A. Quan. Effect of luminal angiotensin II on rabbit proximal convoluted tubule bicarbonate absorption. Am. J. Physiol. 273 (Renal Physiol. 42): F595–F600, 1997.
 33. Becker, B. N., H. F., Cheng, K. D. Burns, and R. C. Harris. Polarized rabbit type 1 angiotensin II receptors manifest differential rates of endocytosis and recycling. Am. J. Physiol. 269 (Cell Physiol. 38): C1048–C1056, 1995.
 34. Becker, B. N., H. F., Cheng, and R. C. Harris. Apical ANG II‐stimulated PLA2 activity and Na+ flux: a potential role for Ca2+‐independent PLA2. Am. J. Physiol. 273 (Renal Fluid Electrolyte Physiol. 44): F554–F562, 1997.
 35. Becker, B. N., and R. C. Harris. A potential mechanism for proximal tubule angiotensin II‐mediated sodium flux associated with receptor‐mediated endocytosis and arachidonic acid release. Kidney Int. Suppl. 57: S66–S72, 1996.
 36. Beckwith, C., and M. A. Munger. Effect of angiotensin‐converting enzyme inhibitors on ventricular remodeling and survival following myocardial infarction. Ann. Pharmacother. 27: 755–766, 1993.
 37. Beresford, M. J., and J. T. Fitzsimons. Intracerebroventricular angiotensin II‐induced thirst and sodium appetite in rat are blocked by the AT1 receptor antagonist, losartan (DuP 753), but not by the AT2 antagonist, CGP 42112B. Exp. Physiol. 77: 761–764, 1992.
 38. Berk, B. C., M. S., Aronow, T. A. Brock, E. Cragoe, Jr., M. A. Gimbrone, Jr., and R. W., Alexander. Angiotensin II‐stimulated Na+/H+ exchange in cultured vascular smooth muscle cells. Evidence for protein kinase C‐dependent and ‐independent pathways. J. Biol. Chem. 262: 5057–5064, 1987.
 39. Berk, B. C., and M. A. Corson. Angiotensin II signal transduction in vascular smooth muscle: role of tyrosine kinases. Circ. Res. 80: 607–616, 1997.
 40. Bhat, G. J., T. J., Thekkumkara, W. G. Thomas, K. M. Conrad, and K. M. Baker. Angiotensin II stimulates sis‐inducing factorlike DNA binding activity. Evidence that the AT1A receptor activates transcription factor‐Stat91 and/or a related protein. J. Biol. Chem. 269: 31443–31449, 1994.
 41. Biemesderfer, D., P. A., Rutherford, T. Nagy, J. H. Pizzonia, A. K. Abu‐Alfa, and P. S. Aronson. Monoclonal antibodies for high‐resolution localization of NHE3 in adult and neonatal rat kidney. Am. J. Physiol. 273 (Renal Physiol. 42): F289–F299, 1997.
 42. Bird, I. M., J. I., Mason, and W. E. Rainey. Regulation of type 1 angiotensin II receptor messenger ribonucleic acid expression in human adrenocortical carcinoma H295 cells. Endocrinology 134: 2468–2474, 1994.
 43. Blantz, R. C., and F. B. Gabbai. Effect of angiotensin II on glomerular hemodynamics and ultrafiltration coefficient. Kidney Int. Suppl. 20: S108–S111, 1987.
 44. Blantz, R. C., F. B., Gabbai, B. J. Tucker, T. Yamamoto, and C. B. Wilson. Role of mesangial cell in glomerular response to volume and angiotensin II. Am. J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 35): F158–F165, 1993.
 45. Blantz, R. C., K. S., Konnen, and B. J. Tucker. Angiotensin II effects upon the glomerular microcirculation and ultrafiltration coefficient of the rat. J. Clint. Invest. 57: 419–434, 1976.
 46. Bocckino, S. B., P. F., Blackmore, P. B. Wilson, and J. H. Exton. Phosphatidate accumulation in hormone‐treated hepatocytes via a phospholipase D mechanism. J. Biol. Chem. 262: 15309–15315, 1987.
 47. Bodart, V., H. Ong, and A. De Lean. A role for protein tyrosine kinase in the steroidogenic pathway of angiotensin II in bovine zona glomerulosa cells. J. Steroid. Biochem. Mol. Biol. 54: 55–62, 1995.
 48. Boer, P. H., M., Ruzicka, W. Lear, E. Harmsen, J. Rosenthal, and F. H. Leenen. Stretch‐mediated activation of cardiac renin gene. Am. J. Physiol. 267 (Heart Circ. Physiol. 38): H1630–H1636, 1994.
 49. Boer, W. H., B., Braam, R. Fransen, P. Boer, and H. A. Koomans. Effects of reduced renal perfusion pressure and acute volume expansion on proximal tubule and whole kidney angiotensin II content in the rat. Kidney Int. 51: 44–49, 1997.
 50. Booz, G. W., and K. M. Baker. Molecular signalling mechanisms controlling growth and function of cardiac fibroblasts. Cardiovasc. Res. 30: 537–543, 1995.
 51. Booz, G. W., and K. M. Baker. The role of the renin–angiotensin system in the pathophysiology of cardiac remodeling. Blood Press. Suppl. 2: 10–18, 1996.
 52. Border, W. A., N. A., Noble, and M. Ketteler. TGF‐beta: a cytokine mediator of glomerulosclerosis and a target for therapeutic intervention. Kidney Int. Suppl. 49: S59–S61, 1995.
 53. Bouby, N., A., Hus‐Citharel, J. Marchetti, L. Bankir, P. Corvol, and C. Llorens‐Cortes. Expression of type 1 angiotensin II receptor subtypes and angiotensin II‐induced calcium mobilization along the rat nephron. J. Am. Soc. Nephrol. 8: 1658–1667, 1997.
 54. Boulay, G., L., Chretien, D. E. Richard, and G. Guillemette. Short‐term desensitization of the angiotensin II receptor of bovine adrenal glomerulosa cells corresponds to a shift from a high to a low affinity state. Endocrinology 135: 2130–2136, 1994.
 55. Boulay, G., N., Gallo‐Payet, and G. Guillemette. Implication of phospholipase C in the steroidogenic action of angiotensin II. Eur. J. Pharmacol. 189: 267–275, 1990.
 56. Bouscarel, B., P. F., Blackmore, and J. H. Exton. Characterization of the angiotensin II receptor in primary cultures of rat hepatocytes. Evidence that a single population is coupled to two different responses. J. Biol. Chem. 263: 14913–14919, 1988.
 57. Bouscarel, B., P. B., Wilson, P. F. Blackmore, C. J. Lynch, and J. H. Exton. Agonist‐induced down‐regulation of the angiotensin II receptor in primary cultures of rat hepatocytes. J. Biol. Chem. 263: 14920–14924, 1988.
 58. Braam, B., K. D., Mitchell, J. Fox, and L. G. Navar. Proximal tubular secretion of angiotensin II in rats. Am. J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 35): F891–F898, 1993.
 59. Brandenburger, Y., E. D., Kennedy, C. P. Python, M. F. Rossier, M. B. Vallotton, C. B. Wollheim, and A. M. Capponi. Possible role for mitochondrial calcium in angiotensin II‐ and potassium‐stimulated steroidogenesis in bovine adrenal glomerulosa cells. Endocrinology 137: 5544–5551, 1996.
 60. Brauneis, U., P. M., Vassilev, S. J. Quinn, G. H. Williams, and D. L. Tillotson. ANG II blocks potassium currents in zona glomerulosa cells from rat, bovine, and human adrenals. Am. J. Physiol. 260 (Endocrinol. Metab. E772–E779, 1991.
 61. Breault, L., J. G., Lehoux, and N. Gallo‐Payet. Angiotensin II receptors in the human adrenal gland. Endocr. Res. 22: 355–361, 1996.
 62. Brinson, A. E., T., Harding, P. A. Diliberto, Y. He, X. Li, D. Hunter, B. Herman, H. S. Earp, and L. M. Graves. Regulation of a calcium‐dependent tyrosine kinase in vascular smooth muscle cells by angiotensin II and platelet‐derived growth factor. Dependence on calcium and the actin cytoskeleton. J. Biol. Chem. 273: 1711–1718, 1998.
 63. Brown, C. A., R. M., Zusman, and E. Haber. Identification of an angiotensin receptor in rabbit renomedullary interstitial cells in tissue culture. Correlation with prostaglandin biosynthesis. Circ. Res. 46: 802–807, 1980.
 64. Bunkenburg, B., T. Van Amelsvoort, H. Rogg, and J. M. Wood. Receptor‐mediated effects of angiotensin II on growth of vascular smooth muscle cells from spontaneously hypertensive rats. Hypertension 20: 746–754, 1992.
 65. Bunning, P., B., Holmquist, and J. F. Riordan. Substrate specificity and kinetic characteristics of angiotensin converting enzyme. Biochemistry 22: 103–110, 1983.
 66. Burgoyne, R. D., T. R., Cheek, A. Morgan, A. J. O'Sullivan, R. B. Moreton, M. J. Berridge, A. M. Mata, J. Colyer, A. G. Lee, and J. M. East. Distribution of two distinct Ca2+‐ATPase‐like proteins and their relationships to the agonist‐sensitive calcium store in adrenal chromaffin cells. Nature 342: 72–74, 1989.
 67. Burnay, M. M., C. P., Python, M. B. Vallotton, A. M. Capponi, and M. F. Rossier. Role of the capacitative calcium influx in the activation of steroidogenesis by angiotensin‐II in adrenal glomerulosa cells. Endocrinology 135: 751–758, 1994.
 68. Burns K. D., Inagami, T., Harris, R C Burns, K. D., et al, Cloning of a rabbit kidney cortex angiotensin receptor that is present in proximal tubule epithelium. Am. J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F645–F654, 1993.
 69. Burton, J., and T. Quinn. The amino‐acid residues on the C‐terminal side of the cleavage site of angiotensinogen influence the species specificity of reaction with renin. Biochim. Biophys. Acta 952: 8–12, 1988.
 70. Cabado, A. G., F. H., Yu, A. Kapus, G. Lukacs, S. Grinstein, and J. Orlowski. Distinct structural domains confer cAMP sensitivity and ATP dependence to the Na+/H+ exchanger NHE3 isoform. J. Biol. Chem. 271: 3590–3599, 1996.
 71. Campbell, D. J., J., Bouhnik, E. Coezy, J. Menard, and P. Corvol. Characterization of precursor and secreted forms of human angiotensinogen. J. Clin. Invest. 75: 1880–1893, 1985.
 72. Campbell, D. J., and J. F. Habener. Angiotensinogen gene is expressed and differentially regulated in multiple tissues of the rat. J. Clin. Invest. 78: 31–39, 1986.
 73. Capasso, G., R., Unwin, F. Ciani, N. G. De Santo, G. De Tommaso, F. Russo, and G. Giebisch. Bicarbonate transport along the loop of Henle. II. Effects of acid‐base, dietary, and neurohumoral determinants. J. Clin. Invest. 94: 830–838, 1994.
 74. Capponi, A. M., P. D., Lew, L. Jornot, and M. B. Vallotton. Correlation between cytosolic free Ca2+ and aldosterone production in bovine adrenal glomerulosa cells. Evidence for a difference in the mode of action of angiotensin II and potassium. J. Biol. Chem. 259: 8863–8869, 1984.
 75. Carmines, P. K., T. K., Morrison, and L. G. Navar. Angiotensin II effects on microvascular diameters of in vitro blood‐perfused juxtamedullary nephrons. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 22): F610–F618, 1986.
 76. Carroll, M. A., M., Balazy, P. Margiotta, D. D. Huang, J. R. Falck, and J. C. McGiff. Cytochrome P‐450‐dependent HETEs: profile of biological activity and stimulation by vasoactive peptides. Am. J. Physiol. 271 (Regulatory Integrative Comp. Physiol. 42): R863–R869, 1996.
 77. Casarini, D. E., M. A., Boim, R. C. Stella, M. H. Krieger‐Azzolini, J. E. Krieger, and N. Schor. Angiotensin I‐converting enzyme activity in tubular fluid along the rat nephron. Am. J. Physiol. 272 (Renal Physiol. 41): F405–F409, 1997.
 78. Chaki, S., and T. Inagami. A newly found angiotensin II receptor subtype mediates cyclic GMP formation in differentiated neuro‐2A cells. Eur. J. Pharmacol. 225: 355–356, 1992.
 79. Chaki, S., and T. Inagami. New signaling mechanism of angiotensin II in neuroblastoma neuro‐2A cells: activation of soluble guanylyl cyclase via nitric oxide synthesis. Mol. Pharmacol. 43: 603–608, 1993.
 80. Chang, R. S., V. J., Lotti, and M. E. Keegan. Inactivation of angiotensin II receptors in bovine adrenal cortex by dithiothreitol: further evidence for the essential nature of disulfide bonds. Biochem. Pharmacol. 31: 1903–1906, 1982.
 81. Chansel, D., S., Czekalski, P. Pham, and R. Ardaillou. Characterization of angiotensin II receptor subtypes in human glomeruli and mesangial cells. Am. J. Physiol. 262 (Renal Fluid Electrolyte Physiol. 33): F432–F441, 1992.
 82. Chatsudthipong, V., and Y. L. Chan. Inhibitory effect of angiotensin II on renal tubular transport. Am. J. Physiol. 260 (Renal Fluid Electrolyte Physiol. 31): F340–F346, 1991.
 83. Chen, M., M. P., Harris, D. Rose, A. Smart, X. R. He, M. Kretzler, J. P. Briggs, and J. Schnermann. Renin and renin mRNA in proximal tubules of the rat kidney. J. Clin. Invest. 94: 237–243, 1994.
 84. Chen, X., W., Li, H. Yoshida, S. Tsuchida, H. Nishimura, F. Takemoto, S. Okubo, A. Fogo, T. Matsusaka, and I. Ichikawa. Targeting deletion of angiotensin type 1B receptor gene in the mouse. Am. J. Physiol. 272 (Renal Physiol. 41): F299–F304, 1997.
 85. Cheng, H. F., B. N., Becker, K. D. Burns, and R. C. Harris. Angiotensin II upregulates type‐1 angiotensin II receptors in renal proximal tubule. J. Clin. Invest. 95: 2012–2019, 1995.
 86. Cheng, H. F., B. N., Becker, and R. C. Harris. Dopamine decreases expression of type‐1 angiotensin II receptors in renal proximal tubule. J. Clin. Invest. 97: 2745–2752, 1996.
 87. Cherradi, N., M. F., Rossier, M. B. Vallotton, and A. M. Capponi. Calcium stimulates intramitochondrial cholesterol transfer in bovine adrenal glomerulosa cells. J. Biol. Chem. 271: 25971–25975, 1996.
 88. Cherradi, N., M. F., Rossier, M. B. Vallotton, R. Timberg, I. Friedberg, J. Orly, X. J. Wang, D. M. Stocco, and A. M. Capponi. Submitochondrial distribution of three key steroidogenic proteins (steroidogenic acute regulatory protein and cytochrome p450scc and 3 beta‐hydroxysteroid dehydrogenase isomerase enzymes) upon stimulation by intracellular calcium in adrenal glomerulosa cells. J. Biol. Chem. 272: 7899–7907, 1997.
 89. Chiu, A. T., J., Dunscomb, J. Kosierowski, C. R. Burton, L. D. Santomenna, M. H. Corjay, and P. Benfield. The ligand binding signatures of the rat AT1A, AT1B and the human AT1 receptors are essentially identical. Biochem. Biophys. Res. Commun. 197: 440–449, 1993.
 90. Chiu, A. T., J. W., Ryan, F. T. Bryan, R. E. Niemeyer, and D. R. Schultz. Synthesis of renin substrate by rat liver. Biochem. J. 184: 7–12, 1979.
 91. Chobanian, M. C., and C. M. Julin. Angiotensin II stimulates ammoniagenesis in canine renal proximal tubule segments. Am. J. Physiol. 260 (Renal Fluid Electrolyte Physiol. 31): F19–F26, 1991.
 92. Choi, M. E., E. G., Kim, Q. Huang, and B. J. Ballermann. Rat mesangial cell hypertrophy in response to transforming growth factor‐beta 1. Kidney Int. 44: 948–958, 1993.
 93. Chou, S. Y., J. G., Porush, and P. F. Faubert. Renal medullary circulation: hormonal control. Kidney Int. 37: 1–13, 1990.
 94. Chou, S.‐Y., S., Spitalewitz, P. F. Faubert, I. Y. Park, and J. G. Porush. Inner medullary hemodynamics in chronic salt‐depleted dogs. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 17): F146–F154, 1984.
 95. Clapham, D. E., and E. J. Neer. New roles for G‐protein beta gamma‐dimers in transmembrane signalling. Nature 365: 403–406, 1993.
 96. Clark, A. J., T., Balla, M. R. Jones, and K. J. Catt. Stimulation of early gene expression by angiotensin II in bovine adrenal glomerulosa cells: roles of calcium and protein kinase C. Mol. Endocrinol. 6: 1889–1898, 1992.
 97. Clark, B. J., J., Wells, S. R. King, and D. M. Stocco. The purification, cloning, and expression of a novel luteinizing hormone‐induced mitochondrial protein in MA‐10 mouse Ley‐dig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J. Biol. Chem. 269: 28314–28322, 1994.
 98. Clemson, B., L., Gaul, S. S. Gubin, D. M. Campsey, J. McConville, J. Nussberger, and R. Zelis. Prejunctional angiotensin II receptors. Facilitation of norepinephrine release in the human forearm. J. Clin. Invest. 93: 684–691, 1994.
 99. Clyne, C. D., P. C., White, and W. E. Rainey. Calcium regulates human CYP11B2 transcription. Endocr. Res. 22: 485–492, 1996.
 100. Clyne, C. D., Y., Zhang, L. Slutsker, J. M. Mathis, P. C. White, and W. E. Rainey. Angiotensin II and potassium regulate human CYP11B2 transcription through common cis‐elements. Mol. Endocrinol. 11: 638–649, 1997.
 101. Cohen, N. A., Q., Sha, E. N. Makhina, A. N. Lopatin, M. E. Linder, S. H. Snyder, and C. G. Nichols. Inhibition of an inward rectifier potassium channel (Kir2.3) by G‐protein beta‐gamma subunits. J. Biol. Chem. 271: 32301–32305, 1996.
 102. Cohn, J. N.. The management of chronic heart failure. N. Engl. J. Med. 335: 490–498, 1996.
 103. Conlin, P. R., G. H., Williams, and M. L. Canessa. Angiotensin II‐induced activation of Na+–H+ exchange in adrenal glomerulosa cells is mediated by protein kinase C. Endocrinology 129: 1861–1868, 1991.
 104. Cooney, A. S., and J. T. Fitzsimons. The effect of the putative AT2 agonist, p‐aminophenylalanine6 angiotensin II, on thirst and sodium appetite in rats. Exp. Physiol. 78: 767–774, 1993.
 105. Coso, O. A., H., Teramoto, W. F. Simonds, and J. S. Gutkind. Signaling from G protein‐coupled receptors to c‐Jun kinase involves beta gamma subunits of heterotrimeric G proteins acting on a Ras and Rac 1‐dependent pathway. J. Biol. Chem. 271: 3963–3966, 1996.
 106. Cover, C. M., J. M. Wang, E. St. Lezin, T. W. Kurtz, and S. H. Mellon. Molecular variants in the P450c11AS gene as determinants of aldosterone synthase activity in the Dahl rat model of hypertension. J. Biol. Chem. 270: 16555–16560, 1995.
 107. Cupples, W. A., T., Sakai, and D. J. Marsh. Angiotensin II and prostaglandins in control of vasa recta blood flow. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 25): F417–F424, 1988.
 108. Curnow, K. M.. Human type‐1 angiotensin II (AT1) receptor gene structure and function. Clin. Exp. Pharmacol. Physiol. Suppl. 3: S67–S73, 1996.
 109. Curnow, K. M., L., Pascoe, E. Davies, P. C. White, P. Corvol, and E. Clauser. Alternatively spliced human type 1 angiotensin II receptor mRNAs are translated at different efficiencies and encode two receptor isoforms. Mol. Endocrinol. 9: 1250–1262, 1995.
 110. Curnow, K. M., M. T., Tusie‐Luna, L. Pascoe, R. Natarajan, J. L. Gu, J. L. Nadler, and P. C. White. The product of the CYP11B2 gene is required for aldosterone biosynthesis in the human adrenal cortex. Mol. Endocrinol. 5: 1513–1522, 1991.
 111. Curtis, J. J., R. G., Luke, J. D. Whelchel, A. G. Diethelm, P. Jones, and H. P. Dustan. Inhibition of angiotensin‐converting enzyme in renal‐transplant recipients with hypertension. N. Engl. J. Med. 308: 377–381, 1983.
 112. Czekalski, S., D., Chansel, S. Vandermeersch, P. Ronco, and R. Ardaillou. Evidence for angiotensin IV receptors in human collecting duct cells. Kidney Int. 50: 1125–1131, 1996.
 113. Damron, D. S., H. S., Nadim, S. J. Hong, A. Darvish, and P. A. Murray. Intracellular translocation of PKC isoforms in canine pulmonary artery smooth muscle cells by ANG II. Am. J. Physiol. 274 (Lung Cell. Mol. Physiol. 43): L278–L288, 1998.
 114. Danser, A. H., and M. A. Schalekamp. Is there an internal cardiac renin–angiotensin system? Heart 76: 28–32, 1996.
 115. Davies, E., A., Bonnardeaux, P. F. Plouin, P. Corvol, and E. Clauser. Somatic mutations of the angiotensin II (AT1) receptor gene are not present in aldosterone‐producing adenoma. J. Clin. Endocrinol. Metab. 82: 611–615, 1997.
 116. Davies, M., J., Martin, G. J. Thomas, and D. H. Lovett. Proteinases and glomerular matrix turnover. Kidney Int. 41: 671–678, 1992.
 117. de Arriba, G., V. Barrio, A. Olivera, D. Rodriguez‐Puyol, and J. M. Lopez‐Novoa. Atrial natriuretic peptide inhibits angiotensin II‐induced contraction of isolated glomeruli and cultured glomerular mesangial cells of rats: the role of calcium. J. Lab. Clin. Med. 111: 466–474, 1988.
 118. de Gasparo, M., A. Husain, W. Alexander, K. J. Catt, A. T. Chiu, M. Drew, T. Goodfriend, J. W. Harding, T. Inagami, and P. B. Timmermans. Proposed update of angiotensin receptor nomenclature. Hypertension 25: 924–927, 1995.
 119. Dell, G. C., S. D., Morley, J. J. Mullins, B.C. Williams, and S. W. Walker. Multiple signal transduction systems regulate angiotensin II type 1 (AT1) receptor mRNA expression in bovine adrenocortical cells. Endocr. Res. 22: 363–368, 1996.
 120. Denton, K. M., P. A., Fennessy, D. Alcorn, and W. P. Anderson. Morphometric analysis of the actions of angiotensin II on renal arterioles and glomeruli. Am. J. Physiol. 262 (Renal Fluid Electrolyte Physiol. 33): F367–F372, 1992.
 121. Derrien, A., D., Langlois, and J. M. Saez. Expression and regulation of G alpha q and G alpha 11 mRNAs and proteins in bovine adrenal cells. Mol. Cell. Endocrinol. 121: 65–74, 1996.
 122. DeSanto, N. G., C., Bisaccia, M. Cirillo, R. M. DeSanto, L. S. DeSanto, D. DeSanto, T. Papalia, G. Capasso, and N. De Napoli. A contribution to the history of common salt. Kidney Int. Suppl. 59: S127–S134, 1997.
 123. De Santo, N. G., C. Bisaccia, R. M. De Santo, L. S. De Santo, L. Petrelli, L. Gallo, M. Cirillo, and G. Capasso. Salt: a sacred substance. Kidney Int. Suppl. 62: S111–S120, 1997.
 124. Doolittle, R. F.. Angiotensinogen is related to the antitrypsin–antithrombin–ovalbumin family. Science 222: 417–419, 1983.
 125. Dostal, D. E., K. N., Rothblum, K. M. Conrad, G. R. Cooper, and K. M. Baker. Detection of angiotensin I and II in cultured rat cardiac myocytes and fibroblasts. Am. J. Physiol. 263 (Cell Physiol. 26): C851–C863, 1992.
 126. Douglas, J. G.. Mechanism of adrenal angiotensin II receptor changes after nephrectomy in rats. J. Clin. Invest. 67: 1171–1176, 1981.
 127. Du, Y., D. F., Guo, T. Inagami, R. C. Speth, and D. H. Wang. Regulation of ANG II‐receptor subtype and its gene expression in adrenal gland. Am. J. Physiol. 271 (Heart Circ. Physiol. 42): H440–H446, 1996.
 128. Dudley, D. T., R. L., Panek, T. C. Major, G. H. Lu, R. F. Bruns, B. A. Klinkefus, J. C. Hodges, and R. E. Weishaar. Subclasses of angiotensin II binding sites and their functional significance. Mol. Pharmacol. 38: 370–377, 1990.
 129. Duff, J. L., M. B., Marrero, W. G. Paxton, B. Schieffer, K. E. Bernstein, and B. C. Berk. Angiotensin II signal transduction and the mitogen‐activated protein kinase pathway. Cardiovasc. Res. 30: 511–517, 1995.
 130. Dworkin, L. D., and B. M. Brenner, Biophysical basis of glomerular filtration. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1992, p. 979–1016.
 131. Dzau, V. J.. Cardiac renin‐angiotensin system. Molecular and functional aspects. Am. J. Med. 84: 22–27, 1988.
 132. Dzau, V. J.. Circulating versus local renin‐angiotensin system in cardiovascular homeostasis. Circulation 77: 14–113, 1988.
 133. Ebert, T. J.. Captopril potentiates chronotropic baroreflex responses to carotid stimuli in humans. Hypertension 7: 602–606, 1985.
 134. Eckert, R., and W. Trautwein. Inhibitory modulation of fast and slow Ca2+‐currents in neuroblastoma X glioma cells during differentiation. Neurosci. Lett. 129: 123–126, 1991.
 135. Edwards, R. M.. Effects of prostaglandins on vasoconstrictor action in isolated renal arterioles. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 19): F779–F784, 1985.
 136. Eguchi, S., T., Matsumoto, E. D. Motley, H. Utsunomiya, and T. Inagami. Identification of an essential signaling cascade for mitogen‐activated protein kinase activation by angiotensin II in cultured rat vascular smooth muscle cells. Possible requirement of Gq‐mediated p21ras activation coupled to a Ca2+ calmodulin‐sensitive tyrosine kinase. J. Biol. Chem. 271: 14169–14175, 1996.
 137. Eiam‐Ong, S., S. A., Hilden, C. A. Johns, and N. E. Madias. Stimulation of basolateral Na+‐HCO3‐ cotransporter by angiotensin II in rabbit renal cortex. Am. J. Physiol. 265 (Renal Fluid Electrolyte Physiol. 36): F195–F203, 1993.
 138. Ekboir, A. S., and M. A. Enero. Pre‐ and postjunctional potentiation of the adrenergic neurotransmission by angiotensin II in the perfused rabbit kidney. Gen. Pharmacol. 11: 395–402, 1980.
 139. Elliott, M. E., T. L., Goodfriend, and C. R. Jefcoate. Bovine adrenal glomerulosa and fasciculata cells exhibit 28.5‐kilodalton proteins sensitive to angiotensin, other agonists, and atrial natriuretic peptide. Endocrinology 133: 1669–1677, 1993.
 140. Ely, J. A., C., Ambroz, A. J. Baukal, S. B. Christensen, T. Balla, and K. J. Catt. Relationship between agonist‐ and thapsigargin‐sensitive calcium pools in adrenal glomerulosa cells. Thapsigargin‐induced Ca2+ mobilization and entry. J. Biol. Chem. 266: 18635–18641, 1991.
 141. Epstein, A. N., J. T., Fitzsimons, and B. J. Rolls. Drinking induced by injection of angiotensin into the rain of the rat. J. Physiol. (Lond.) 210: 457–474, 1970.
 142. Ernsberger, P., J., Zhou, T. H. Damon, and J. G. Douglas. Angiotensin II receptor subtypes in cultured rat renal mesangial cells. Am. J. Physiol. 263 (Renal Fluid Electrolyte Physiol. 34): F411–F416, 1992.
 143. Ertl, G., K., Hu, W. R. Bauer, and B. Bauer. The renin‐angiotensin system and coronary vasomotion. Heart 76: 45–52, 1996.
 144. Exton, J. H.. Cell signalling through guanine‐nucleotide‐binding regulatory proteins (G proteins) and phospholipases. Eur. J. Biochem. 243: 10–20, 1997.
 145. Fagard, R. H., A. W. Cowley, Jr., L. G. Navar, H. G. Lang‐ford, and A. C. Guyton. Renal responses to slight elevations of renal arterial plasma angiotensin II concentration in dogs. Clin. Exp. Pharmacol. Physiol. 3: 531–538, 1976.
 146. Falchuk, K. H., B. M., Brenner, M. Tadokoro, and R. W. Berliner. Oncotic and hydrostatic pressures in peritubular capillaries and fluid reabsorption by proximal tubule. Am. J. Physiol. 220: 1427–1433, 1971.
 147. Faubert, P. F., S. Y., Chou, and J. G. Porush. Regulation of papillary plasma flow by angiotensin II. Kidney Int. 32: 472–478, 1987.
 148. Felix, D., and K. Akert. The effect of angiotensin II on neurones of the cat subfornical organ. Brain Res. 76: 350–353, 1974.
 149. Felix, D., and W. Schlegel. Angiotensin receptive neurones in the subfornical organ. Structure‐activity relations. Brain Res. 149: 107–116, 1978.
 150. Feng, Y. H., K., Noda, Y. Saad, X. P. Liu, A. Husain, and S. S. Karnik. The docking of Arg2 of angiotensin II with Asp281 of AT1 receptor is essential for full agonism. J. Biol. Chem. 270: 12846–12850, 1995.
 151. Fenger‐Gron, J., M. J., Mulvany, and K. L. Christensen. Intestinal blood flow is controlled by both feed arteries and micro‐circulatory resistance vessels in freely moving rats. J. Physiol. (Lond.) 498: 215–224, 1997.
 152. Ferguson, A. V., T. A., Day, and L. P. Renaud. Subfornical organ efferents influence the excitability of neurohypophyseal and tuberoinfundibular paraventricular nucleus neurons in the rat. Neuroendocrinology 39: 423–428, 1984.
 153. Ferguson, A. V., T. A., Day, and L. P. Renaud. Subfornical organ stimulation excites paraventricular neurons projecting to dorsal medulla. Am. J. Physiol. 247 (Regulatory Integrative Comp. Physiol. 18): R1088–R1092, 1984.
 154. Ferguson, A. V., and N. W. Kasting. Angiotensin acts at the subfornical organ to increase plasma oxytocin concentrations in the rat. Regul. Pept. 23: 343–352, 1988.
 155. Ferguson, A. V., and Z. Li. Whole cell patch recordings from forebrain slices demonstrate angiotensin II inhibits potassium currents in subfornical organ neurons. Regul. Pept. 66: 55–58, 1996.
 156. Ferguson, A. V., and D. L. Washburn. Angiotensin II: a peptidergic neurotransmitter in central autonomic pathways. Prog. Neurobiol. 54: 169–192, 1998.
 157. Fern, R. J., M. S., Hahm, H. K. Lu, L. P. Liu, F. S. Gorelick, and P. Q. Barrett. Ca2+/calmodulin‐dependent protein kinase II activation and regulation of adrenal glomerulosa Ca2+ signaling. Am. J. Physiol. 269 (Renal Fluid Electrolyte Physiol. 40): F751–760, 1995.
 158. Ferrari, R., C., Ceconi, S. Curello, P. Pepi, A. Mazzoletti, and O. Visioli. Cardioprotective effect of angiotensin‐converting enzyme inhibitors in patients with coronary artery disease. Cardiovasc. Drugs. Ther. 10 (Suppl. 2): 639–647, 1996.
 159. Fingerle, J., R. M., Muller, H. Kuhn, M. Pech, and H. R. Baumgartner. Mechanism of inhibition of neointimal formation by the angiotensin‐converting enzyme inhibitor cilazapril. A study in balloon catheter‐injured rat carotid arteries. Arterioscler. Thromb. Vasc. Biol. 15: 1945–1950, 1995.
 160. Fisher, S. A., and M. Absher. Norepinephrine and ANG II stimulate secretion of TGF‐beta by neonatal rat cardiac fibroblasts in vitro. Am. J. Physiol. 268 (Cell Physiol. 37): C910–C917, 1995.
 161. Fitts, D. A., and R. L. Thunhorst. Rapid elicitation of salt appetite by an intravenous infusion of angiotensin II in rats. Am. J. Physiol. 270 (Regulatory Integrative Comp. Physiol. 41): R1092–R1098, 1996.
 162. Fitzsimons, J. T., J., Kucharczyk, and G. Richards. Systemic angiotensin‐induced drinking in the dog: a physiological phenomenon. J. Physiol. (Lond.) 276: 435–448, 1978.
 163. Fleming, J. T., and I. G. Joshua. Mechanism of the biphasic arteriolar response to angiotensin II. Am. J. Physiol. 247 (Heart Circ. Physiol. 18): H88–H94, 1984.
 164. Foidart, J. B., C. A., Dechenne, P. Mahieu, C. E. Creutz, and J. de Mey. Tissue culture of normal rat glomeruli. Isolation and morphological characterization of two homogeneous cell lines. Invest. Cell Pathol. 2: 15–26, 1979.
 165. Foster, R. H., J. S., Davis, and R. V. Farese. External calcium is required for activation of phospholipase C by angiotensin II in adrenal glomerulosa cells. Mol. Cell. Biochem. 95: 157–166, 1990.
 166. Franzoni, L., G., Nicastro, T. A. Pertinhez, M. Tato, C. R. Nakaie, A. C. M. Paiva, S. Schreier, and A. Spisni. Structure of the C‐terminal fragment 300–320 of the rat angiotensin II AT1A receptor and its relevance with respect to G‐protein coupling. J. Biol. Chem. 272: 9734–9741, 1997.
 167. Frega, N. S., M., Davalos, and A. Leaf. Effect of endogenous angiotensin on the efferent glomerular arteriole of rat kidney. Kidney Int. 18: 323–327, 1980.
 168. Fretschner, M., K., Endlich, C. Fester, N. Parekh, and M. Steinhausen. A narrow segment of the efferent arteriole controls efferent resistance in the hydronephrotic rat kidney. Kidney Int. 37: 1227–1239, 1990.
 169. Fried, T. A., and E. A. Simpson. Intrarenal localization of angiotensinogen mRNA by RNA‐DNA dot‐blot hybridization. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 21): F374–F377, 1986.
 170. Furukawa, Y., P., Scipione, and M. N. Levy. Effects of angiotensin II on the cardiac responses to sympathetic nerve stimulation in dogs. Hypertension 5: 26–33, 1983.
 171. Ganguly, A., S., Chiou, N. S. Fineberg, and J. S. Davis. Greater importance of Ca(2+)‐calmodulin in maintenance of ang II and K(+)‐mediated aldosterone secretion: lesser role of protein kinase C. Biochem. Biophys. Res. Commun. 182: 254–261, 1992.
 172. Ganguly, A., and J. S. Davis. Role of calcium and other mediators in aldosterone secretion from the adrenal glomerulosa cells. Pharmacol. Rev. 46: 417–447, 1994.
 173. Garvin, J. L.. Angiotensin stimulates bicarbonate transport and Na+/K+ ATPase in rat proximal straight tubules. J. Am. Soc. Nephrol. 1: 1146–1152, 1991.
 174. Gassee, J. P., R. du Bois, M. Staroukine, and P. P. Lambert. Determination of glomerular intracapillary and transcapillary pressure gradients from sieving data. 3. The effects of angiotensin II. Pflugers Arch. 367: 15–24, 1976.
 175. Geibel, J., G., Giebisch, and W. F. Boron. Angiotensin II stimulates both Na(+)‐H+ exchange and Na+/HCO3‐ cotransport in the rabbit proximal tubule. Proc. Natl. Acad. Sci. U.S.A. 87: 7917–7920, 1990.
 176. Giacchetti, G., G., Opocher, R. Sarzani, A. Rappelli, and F. Mantero. Angiotensin II and the adrenal. Clin. Exp. Pharmacol. Physiol. Suppl. 3: S119–S124, 1996.
 177. Gibbons, G. H., R. E., Pratt, and V. J. Dzau. Vascular smooth muscle cell hypertrophy vs. hyperplasia. Autocrine transforming growth factor‐beta 1 expression determines growth response to angiotensin II. J. Clin. Invest. 90: 456–461, 1992.
 178. Gimbrone, M. A., Jr. and R. W. Alexander. Angiotensin II stimulation of prostaglandin production in cultured human vascular endothelium. Science 189: 219–220, 1975.
 179. Gomez Llambi, H., F. Manni, P. La Padula, O. A. Carretero, and C. M. Taquini. Myocardial contractility is modulated by angiotensin II via nitric oxide. Hypertension 27: 704–708, 1996.
 180. Gong, M. C., K., Iizuka, G. Nixon, J. P. Browne, A. Hall, J. F. Eccleston, M. Sugai, S. Kobayashi, A. V. Somlyo, and A. P. Somlyo. Role of guanine nucleotide‐binding proteins‐ras‐family or trimeric proteins or both—in Ca2+ sensitization of smooth muscle. Proc. Natl. Acad. Sci. U.S.A. 93: 1340–1345, 1996.
 181. Griendling, K. K., B. C., Berk, P. Ganz, M. A. Gimbrone, Jr., and R. W., Alexander. Angiotensin II stimulation of vascular smooth muscle phosphoinositide metabolism. State of the art lecture. Hypertension 9: III181–III185, 1987.
 182. Griendling, K. K., P., Delafontaine, S. E. Rittenhouse, M. A. Gimbrone, Jr., and R. W., Alexander. Correlation of receptor sequestration with sustained diacylglycerol accumulation in angiotensin II‐stimulated cultured vascular smooth muscle cells. J. Biol. Chem. 262: 14555–14562, 1987.
 183. Griendling, K. K., M., Ushio‐Fukai, B. Lassegue, and R. W. Alexander. Angiotensin II signaling in vascular smooth muscle. New concepts. Hypertension 29: 366–373, 1997.
 184. Groblewski, T., B., Maigret, R. Larguier, C. Lombard, J. C. Bonnafous, and J. Marie. Mutation of Asn111 in the third transmembrane domain of the AT1A angiotensin II receptor induces its constitutive activation. J. Biol. Chem. 272: 1822–1826, 1997.
 185. Guillemette, G., G., Guillon, J. Marie, M.N. Balestre, E. Escher, and S. Jard. High yield photoaffinity labeling of angiotensin II receptors. Mol. Pharmacol. 30: 544–551, 1986.
 186. Gunther, S., R. W., Alexander, W. J. Atkinson, and M. A. Gimbrone, Jr. Functional angiotensin II receptors in cultured vascular smooth muscle cells. J. Cell Biol. 92: 289–298, 1982.
 187. Gunther, S., M. A. Gimbrone, Jr., and R. W., Alexander. Identification and characterization of the high affinity vascular angiotensin II receptor in rat mesenteric artery. Circ. Res. 47: 278–286, 198.
 188. Gunther, S., M. A. Gimbrone, Jr., and R. W., Alexander. Regulation by angiotensin II of its receptors in resistance blood vessels. Nature 287: 230–232, 1980.
 189. Guo, D. F., and T. Inagami. Epidermal growth factor–enhanced human angiotensin II type 1 receptor. Hypertension 23: 1032–1035, 1994.
 190. Guo, D. F., and T. Inagami. The genomic organization of the rat angiotensin II receptor AT1B. Biochim. Biophys. Acta 1218: 91–94, 1994.
 191. Guo, D. F., S., Uno, A. Ishihata, N. Nakamura, and T. Inagami. Identification of a cis‐acting glucocorticoid responsive element in the rat angiotensin II type 1A promoter. Circ. Res. 77: 249–257, 1995.
 192. Haas, J. A., J. C., Lockhart, T. S. Larson, T. Henrikson, and F. G. Knox. Natriuretic response to renal interstitial hydrostatic pressure during angiotensin II blockade. Am. J. Physiol. 266 (Renal Fluid electrolyte Physiol. 37): F117–F119, 1994.
 193. Hajnoczky, G., G., Csordas, A. Bago, A. T. Chiu, and A. Spat. Angiotensin II exerts its effect on aldosterone production and potassium permeability through receptor subtype AT1 in rat adrenal glomerulosa cells. Biochem. Pharmacol. 43: 1009–1012, 1992.
 194. Haley, D. P., M., Sarrafian, R. E. Bulger, D. C. Dobyan, and G. Eknoyan. Structural and functional correlates of effects of angiotensin‐induced changes in rat glomerulus. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 24): F111–F119, 1987.
 195. Hall, J. E.. Control of sodium excretion by angiotensin II: intrarenal mechanisms and blood pressure regulation. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 21): R960–R972, 1986.
 196. Hall, J. E.. Regulation of glomerular filtration rate and sodium excretion by angiotensin II. Federation Proc. 45: 1431–1437, 1986.
 197. Hall, J. E.. Intrarenal actions of converting enzyme inhibitors. Am. J. Hypertens. 2: 875–884, 1989.
 198. Hall, J. E, Guyton, A. C., Smith, M J Jr., Coleman, T G.. Blood pressure and renal function during chronic changes in sodium intake: role of angiotensin, Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 10): F271–F280, 1980.
 199. Hall, J. E., M. W., Brands, and E. W. Shek. Central role of the kidney and abnormal fluid volume control in hypertension. J. Hum. Hypertens. 10: 633–639, 1996.
 200. Hall, J. E., T. G., Coleman, A. C. Guyton, P. R. Kastner, and J. P. Granger. Control of glomerular filtration rate by circulating angiotensin II. Am. J. Physiol. 241 (Regulatory Integrative Comp. Physiol. 12): R190–R197, 1981.
 201. Hall, J. E., and J. P. Granger. Adenosine alters glomerular filtration control by angiotensin II. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 21): F917–F923, 1986.
 202. Hall, J. E., J. P., Granger, and R. L. Hester. Interactions between adenosine and angiotensin II in controlling glomerular filtration. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 19): F340–F346, 1985.
 203. Hall, J. E., J. P., Granger, R. L. Hester, T. G. Coleman, M. J. Smith, Jr., and R. B., Cross. Mechanisms of escape from sodium retention during angiotensin II hypertension. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 17): F627–F634, 1984.
 204. Hall, J. E., A. C. Guyton, and A. W. Cowley, Jr. Dissociation of renal blood flow and filtration rate autoregulation by renin depletion. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 3): F215–F221, 1977.
 205. Hamm, H. E.. The many faces of G protein signaling. J. Biol. Chem. 273: 669–672, 1998.
 206. Handa, R. K., C. M., Ferrario, and J. W. Strandhoy. Renal actions of angiotensin‐(1–7): in vivo and in vitro studies. Am. J. Physiol. 270 (Renal Fluid Electrolyte Physiol. 41): F141–F147, 1996.
 207. Handa, R. K., L. T., Krebs, J. W. Harding, and S. E. Handa. Angiotensin IV AT4‐receptor system in the rat kidney. Am. J. Physiol. 274 (Renal Physiol. 45): F290–F299, 1998.
 208. Hansell, P.. Influence of captopril on red cell velocity in the vasa recta of the renal medulla. Ups. J. Med. Sci. 98: 149–158, 1993.
 209. Hansell, P., M., Sjöquist, and H. R. Ulfendahl. Effect of a converting‐enzyme inhibitor on vasa recta blood flow in rat kidney. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 25): F492–F499, 1988.
 210. Harding, J. W., J. W., Wright, G. N. Swanson, J. M. Hanes‐worth, and L. T. Krebs. AT4 receptors: specificity and distribution. Kidney Int. 46: 1510–1512, 1994.
 211. Harris, R. C.. Regulation of S6 kinase activity in renal proximal tubule. Am. J. Physiol. 263 (Renal Fluid Electrolyte Physiol. 34): F127–F134, 1992.
 212. Harris, R. C., B. N., Becker, and H. F. Cheng. Acute and chronic mechanisms for regulating proximal tubule angiotensin II receptor expression. J. Am. Soc. Nephrol. 8: 306–313, 1997.
 213. Harrison‐Bernard, L. M., L. G., Navar, M. M. Ho, G. P. Vinson, and S. S. el‐Dahr. Immunohistochemical localization of ANG II AT1 receptor in adult rat kidney using a monoclonal antibody. Am. J. Physiol. 273 (Renal Physiol. 42): F170–F177, 1997.
 214. Hassid, A., and C. Williams. Vasoconstrictor‐evoked prostaglandin synthesis in cultured vascular smooth muscle. Am. J. Physiol. 245 (Cell Physiol. 14): C278–C282, 1983.
 215. Hatakeyama, H., I., Miyamori, T. Fujita, Y. Takeda, R. Takeda, and H. Yamamoto. Vascular aldosterone. Biosynthesis and a link to angiotensin II‐induced hypertrophy of vascular smooth muscle cells. J. Biol. Chem. 269: 24316–24320, 1994.
 216. Hausdorff, W. P., and K. J. Catt. Activation of dihydropyridine‐sensitive calcium channels and biphasic cytosolic calcium responses by angiotensin II in rat adrenal glomerulosa cells. Endocrinology 123: 2818–2826, 1988.
 217. Hawes, B. E., T. Van Biesen, W. J. Koch, L. M. Luttrell, and R. J. Lefkowitz. Distinct pathways of Gi and Gq‐mediated mitogen‐activated protein kinase activation. J. Biol. Chem. 270: 17148–17153, 1995.
 218. Hayashida, W., M., Horiuchi, and V. J. Dzau. Intracellular third loop domain of angiotensin II type‐2 receptor. Role in mediating signal transduction and cellular function. J. Biol. Chem. 271: 21985–21992, 1996.
 219. Hein L., Barsh, G. S., Pratt, R. E., Dzau, V. J., Kobilka, B. K.. Behavioural and cardiovascular effects of disrupting the angiotensin II type‐2 receptor gene in mice. Nature 377: 744–747, 1995.
 220. Hein, L., M. E., Stevens, G. S. Barsh, R. E. Pratt, B. K. Kobilka, and V. J. Dzau. Overexpression of angiotensin AT1 receptor transgene in the mouse myocardium produces a lethal pheno‐type associated with myocyte hyperplasia and heart block. Proc. Natl. Acad. Sci. U.S.A. 94: 6391–6396, 1997.
 221. Heinemann, A., C. H., Wachter, B. A. Peskar, and P. Holzer. Dilatation by angiotensin II of the rat femoral arterial bed in vivo via pressure/flow‐induced release of nitric oxide and prostaglandins. Br. J. Pharmacol. 122: 975–984, 1997.
 222. Heller, J., and V. Horacek. Angiotensin II: preferential efferent constriction? Ren. Physiol. 9: 357–365, 1986.
 223. Henger, A., T., Huber, K. G. Fischer, R. Nitschke, P. Mundel, P. Schollmeyer, R. Greger, and H. Pavenstadt. Angiotensin II increases the cytosolic calcium activity in rat podocytes in culture. Kidney Int. 52: 687–693, 1997.
 224. Hennington, B. S., H., Zhang, M. T. Miller, J. P. Granger, and J. F. Reckelhoff. Angiotensin II stimulates synthesis of endothelial nitric oxide synthase. Hypertension 31: 283–288, 1998.
 225. Herbert, J.. Studying the central actions of angiotensin using the expression of immediate‐early genes: expectations and limitations. Regul. Pept. 66: 13–18, 1996.
 226. Herzig, T. C., S. M., Jobe, H. Aoki, J. D. Molkentin, A. W. Cowley, Jr., S. Izumo, and B. E. Markham. Angiotensin II type 1a receptor gene expression in the heart: AP‐1 and GATA‐4 participate in the response to pressure overload. Proc. Natl. Acad. Sci. U.S.A. 94: 7543–7548, 1997.
 227. Higashita, R., L. Li, V. Van Putten, Y. Yamamura, F. Zarinetchi, L. Heasley, and R. A. Nemenoff. Galpha16 mimics vasoconstrictor action to induce smooth muscle alpha‐actin in vascular smooth muscle cells through a Jun‐NH2–terminal kinase‐dependent pathway. J. Biol. Chem. 272: 25845–25850, 1997.
 228. Hjorth, S. A., H. T., Schambye, W. J. Greenlee, and T. W. Schwartz. Identification of peptide binding residues in the extracellular domains of the AT1 receptor. J. Biol. Chem. 269: 30953–30959, 1994.
 229. Hoit, B. D., Y., Shao, A. Kinoshita, M. Gabel, A. Husain, and R. A. Walsh. Effects of angiotensin II generated by an angiotensin converting enzyme‐independent pathway on left ventricular performance in the conscious baboon. J. Clin. Invest. 95: 1519–1527, 1995.
 230. Holubarsch, C., G., Hasenfuss, S. Schmidt‐Schweda, A. Knorr, B. Pieske, T. Ruf, R. Fasol, and H. Just. Angiotensin I and II exert inotropic effects in atrial but not in ventricular human myocardium. An in vitro study under physiological experimental conditions. Circulation 88: 1228–1237, 1993.
 231. Holz, F. G., and M. Steinhausen. Renovascular effects of adenosine receptor agonists. Ren. Physiol. 10: 272–282, 1987.
 232. Horiuchi, M., G., Koike, T. Yamada, M. Mukoyama, M. Nakajima, and V. J. Dzau. The growth‐dependent expression of angiotensin II type 2 receptor is regulated by transcription factors interferon regulatory factor‐1 and ‐2. J. Biol. Chem. 270: 20225–20230, 1995.
 233. Hornych, H., M., Beaufils, and G. Richet. The effect of exogenous angiotensin on superficial and deep glomeruli in the rat kidney. Kidney Int. 2: 336–343, 1972.
 234. Houillier, P., R., Chambrey, J. M. Achard, M. Froissart, J. Poggioli, and M. Paillard. Signaling pathways in the biphasic effect of angiotensin II on apical Na/H antiport activity in proximal tubule. Kidney Int. 50: 1496–1505, 1996.
 235. Hricik, D. E., P. J., Browning, R. Kopelman, W. E. Goorno, N. E. Madias, and V. J. Dzau. Captopril‐induced functional renal insufficiency in patients with bilateral renal‐artery stenoses or renal‐artery stenosis in a solitary kidney. N. Engl. J. Med. 308: 373–376, 1983.
 236. Huang, C. L., G., Davis, and E. J. Johns. A study of the action of angiotensin II on perfusion through the cortex and papilla of the rat kidney. Exp. Physiol. 76: 787–798, 1991.
 237. Huckle, W. R., M. D., Drag, W. R. Acker, M. Powers, R. C. McFall, D. J. Holder, T. Fujita, I. I. Stabilito, D. Kim, D. L. Ondeyka, N. B. Mantlo, R. S. Chang, C. F. Reilly, R. S. Schwartz, W. J. Greenlee, and R. G. Johnson, Jr. Effects of subtype‐selective and balanced angiotensin II receptor antagonists in a porcine coronary artery model of vascular restenosis. Circulation 93: 1009–1019, 1996.
 238. Huckle, W. R., and H. S. Earp. Regulation of cell proliferation and growth by angiotensin II. Prog. Growth Factor Res. 5: 177–194, 1994.
 239. Huizer, T., P. Van der Meer, and J. W. de Jong. Captopril inhibits angiotensin I‐induced coronary flow reduction in isolated rat heart but has no effect on contractility or energy metabolism. Eur. Heart J. 13: 109–114, 1992.
 240. Humpel, C., A., Lippoldt, I. Stromberg, M. Bygdeman, J. Wagner, U. Hilgenfeldt, D. Ganten, K. Fuxe, and L. Olson. Human angiotensinogen is highly expressed in astrocytes in human cortical grafts. Glia 10: 186–192, 1994.
 241. Hunt, M. K., S. P., Ramos, K. M. Geary, L. L. Norling, M. J. Peach, R. A. Gomez, and R. M. Carey. Colocalization and release of angiotensin and renin in renal cortical cells. Am. J. Physiol. 263 (Renal Fluid Electrolyte Physiol. 34): F363–F373, 1992.
 242. Hunter, C. A., J., Singh, and J. M. Thornton. Pi‐pi interactions: the geometry and energetics of phenylalanine‐phenylalanine interactions in proteins. J. Mol. Biol. 218: 837–846, 1991.
 243. Hunyady, L., A. J., Baukal, T. Balla, and K. J. Catt. Independence of type I angiotensin II receptor endocytosis from G protein coupling and signal transduction. J. Biol. Chem. 269: 24798–24804, 1994.
 244. Hunyady, L., A. J., Baukal, M. Bor, J. A. Ely, and K. J. Catt. Regulation of 1,2‐diacylglycerol production by angiotensin‐II in bovine adrenal glomerulosa cells. Endocrinology 126: 1001–1008, 1990.
 245. Hunyady, L., M., Bor, T. Balla, and K. J. Catt. Identification of a cytoplasmic Ser‐Thr‐Leu motif that determines agonist‐induced internalization of the AT1 angiotensin receptor. J. Biol. Chem. 269: 31378–31382, 1994.
 246. Hunyady, L., F., Merelli, A. J. Baukal, T. Balla, and K. J. Catt. Agonist‐induced endocytosis and signal generation in adrenal glomerulosa cells. A potential mechanism for receptor‐operated calcium entry. J. Biol. Chem. 266: 2783–2788, 1991.
 247. Hunyady, L., M., Zhang, G. Jagadeesh, M. Bor, T. Balla, and K. J. Catt. Dependence of agonist activation on a conserved apolar residue in the third intracellular loop of the AT1 angiotensin receptor. Proc. Natl. Acad. Sci. U.S.A. 93: 10040–10045, 1996.
 248. Hura, C. E., and R. T. Kunau, Jr. Angiotensin II‐stimulated prostaglandin production by canine renal afferent arterioles. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 25): F734–F738, 1988.
 249. Ichihara, A., E. W., Inscho, J. D. Imig, and L. G. Navar. Neuronal nitric oxide synthase modulates rat renal microvascular function. Am. J. Physiol. 274 (Renal Physiol. 43): F516–F524, 1998.
 250. Ichiki, T., and T. Inagami. Expression, genomic organization, and transcription of the mouse angiotensin II type 2 receptor gene. Circ. Res. 76: 693–700, 1995.
 251. Ichiki, T., P. A., Labosky, C. Shiota, S. Okuyama, Y. Imagawa, A. Fogo, F. Niimura, I. Ichikawa, B. L. Hogan, and T. Inagami. Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type‐2 receptor. Nature 377: 748–750, 1995.
 252. Ikebe, M., and F. V. Brozovich. Protein kinase C increases force and slows relaxation in smooth muscle: evidence for regulation of the myosin light chain phosphatase. Biochem. Biophys. Res. Commun. 225: 370–376, 1996.
 253. Ikram, H.. The renin‐angiotensin‐aldosterone system and cardiac ischaemia. Heart 76: 60–67, 1996.
 254. Ingelfinger, J. R., R. E., Pratt, K. Ellison, and V. J. Dzau. Sodium regulation of angiotensinogen mRNA expression in rat kidney cortex and medulla. J. Clin. Invest. 78: 1311–1315, 1986.
 255. Inoue, Y., N., Nakamura, and T. Inagami. A review of mutagenesis studies of angiotensin II type 1 receptor, the three‐dimensional receptor model in search of the agonist and antagonist binding site and the hypothesis of a receptor activation mechanism. J. Hypertens. 15: 703–714, 1997.
 256. Ishizaka, N., R. W., Alexander, J. B. Laursen, H. Kai, T. Fukui, M. Oppermann, R. J. Lefkowitz, P. R. Lyons, and K. K. Griendling. G protein–coupled receptor kinase 5 in cultured vascular smooth muscle cells and rat aorta. Regulation by angiotensin II and hypertension. J. Biol. Chem. 272: 32482–32488, 1997.
 257. Itoh, T., A., Suzuki, Y. Watanabe, T. Mino, M. Naka, and T. Tanaka. A calponin peptide enhances Ca2+ sensitivity of smooth muscle contraction without affecting myosin light chain phosphorylation. J. Biol. Chem. 270: 20400–20403, 1995.
 258. Iversen, B. M., F. I., Kvam, K. Matre, L. Morkrid, G. Horvei, W. Bagchus, J. Grond, and J. Ofstad. Effect of mesangiolysis on autoregulation of renal blood flow and glomerular filtration rate in rats. Am. J. Physiol. 262 (Renal Fluid Electrolyte Physiol. 33): F361–F366, 1992.
 259. Iwami, K., N., Ashizawa, Y. S. Do, K. Graf, and W. A. Hsueh. Comparison of ANG II with other growth factors on Egr‐1 and matrix gene expression in cardiac fibroblasts. Am. J. Physiol. 270 (Heart Circ. Physiol. 41): H2100–H2107, 1996.
 260. Jhamandas, J. H., R. W., Lind, and L. P. Renaud. Angiotensin II may mediate excitatory neurotransmission from the subfornical organ to the hypothalamic supraoptic nucleus: an anatomical and electrophysiological study in the rat. Brain Res. 487: 52–61, 1989.
 261. Johnson, E. I., A. M., Capponi, and M. B. Vallotton. Cytosolic free calcium oscillates in single bovine adrenal glomerulosa cells in response to angiotensin II stimulation. J. Endocrinol. 122: 391–402, 1989.
 262. Johnson, R. J., C. E., Alpers, A. Yoshimura, D. Lombardi, P. Pritzl, J. Floege, and S. M. Schwartz. Renal injury from angiotensin II‐mediated hypertension. Hypertension 19: 464–474, 1992.
 263. Jourdain, M., C., Amiel, and G. Friedlander. Modulation of Na–H exchange activity by angiotensin II in opossum kidney cells. Am. J. Physiol. 263 (Cell Physiol. 32): C1141–C1146, 1992.
 264. Jugdutt, B. I., M. I., Khan, S. J. Jugdutt, and G. E. Blinston. Effect of enalapril on ventricular remodeling and function during healing after anterior myocardial infarction in the dog. Circulation 91: 802–812, 1995.
 265. Jung, E., S., Betancourt‐Calle, R. Mann‐Blakeney, T. Foushee, C. M. Isales, and W. B. Bollag. Sustained phospholipase D activation in response to angiotensin II but not carbachol in bovine adrenal glomerulosa cells. Biochem. J. 330: 445–451, 1998.
 266. Kagami, S., W. A., Border, D. E. Miller, and N. A. Noble. Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor‐beta expression in rat glomerular mesangial cells. J. Clin. Invest. 93: 2431–2437, 1994.
 267. Kagami, S., T., Kuhara, K. Okada, Y. Kuroda, W. A. Border, and N. A. Noble. Dual effects of angiotensin II on the plasminogen/plasmin system in rat mesangial cells. Kidney Int. 51: 664–671, 1997.
 268. Kai, H., T., Fukui, B. Lassegue, A. Shah, C. A. Minieri, and K. K. Griendling. Prolonged exposure to agonist results in a reduction in the levels of the Gq/G11 alpha subunits in cultured vascular smooth muscle cells. Mol. Pharmacol. 49: 96–104, 1996.
 269. Kakuchi, J., T., Ichiki, S. Kiyama, B. L. Hogan, A. Fogo, T. Inagami, and I. Ichikawa. Developmental expression of renal angiotensin II receptor genes in the mouse. Kidney Int. 47: 140–147, 1995.
 270. Kambayashi, Y., S., Bardhan, K. Takahashi, S. Tsuzuki, H. Inui, T. Hamakubo, and T. Inagami. Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J. Biol. Chem. 268: 24543–24546, 1993.
 271. Kanazirska, M. V., P. M., Vassilev, S. J. Quinn, D. L. Tillotson, and G. H. Williams. Single K+ channels in adrenal zona glomerulosa cells. II. Inhibition by angiotensin II. Am. J. Physiol. 263 (Endocrinol. Metab. 26): E760–E765, 1992.
 272. Kandasamy, R. A., F. H., Yu, R. Harris, A. Boucher, J. W. Hanrahan, and J. Orlowski. Plasma membrane Na+/H+ exchanger isoforms (NHE‐1, ‐2, and ‐3) are differentially responsive to second messenger agonists of the protein kinase A and C pathways. J. Biol. Chem. 270: 29209–29216, 1995.
 273. Kang, J., P., Posner, and C. Sumners. Angiotensin II type 2 receptor stimulation of neuronal K+ currents involves an inhibitory GTP binding protein. Am. J. Physiol. 267 (Cell Physiol. 36): C1389–C1397, 1994.
 274. Kang, J., C., Sumners, and P. Posner. Modulation of net outward current in cultured neurons by angiotensin II: involvement of AT1 and AT2 receptors. Brain Res. 580: 317–324, 1992.
 275. Kang, J., C., Sumners, and P. Posner. Angiotensin II type 2 receptor‐modulated changes in potassium currents in cultured neurons. Am. J. Physiol. 265 (Cell Physiol. 34): C607–C616, 1993.
 276. Kang, P. M., A., Nakouzi, T. Simpson, J. Scheuer, and P. M. Buttrick. Role of endogenous renin‐angiotensin system in c‐fos activation and PKC‐epsilon translocation in adult rat hearts. Am. J. Physiol. 270 (Heart Circ. Physiol. 41): H2177–H2183, 1996.
 277. Karim, Z., N., Defontaine, M. Paillard, and J. Poggioli. Protein kinase C isoforms in rat kidney proximal tubule: acute effect of angiotensin II. Am. J. Physiol. 269 (Cell Physiol. 40): C134–C140, 1995.
 278. Kawasaki, H., W. H. Cline, Jr., and C., Su. Involvement of the vascular renin‐angiotensin system in beta adrenergic receptor‐mediated facilitation of vascular neurotransmission in spontaneously hypertensive rats. J. Pharmacol. Exp. Ther. 231: 23–32, 1984.
 279. Kaye, A. D., B. D., Nossaman, I. N. Ibrahim, and P. J. Kadowitz. Influence of PLC and MLCK inhibitors and the role of L‐calcium channels in the cat pulmonary vascular bed. Am. J. Physiol. 269 (Lung Cell. Mol. Physiol. 38): L507–L513, 1995.
 280. Kaye, D. M., R. A., Kelly, and T. W. Smith. Cytokines and cardiac hypertrophy: roles of angiotensin II and basic fibroblast growth factor. Clin. Exp. Pharmacol. Physiol. Suppl. 3: S136–S141, 1996.
 281. Keil, J., R., Lehnfeld, H. W. Reinhardt, R. Mohnhaupt, and G. Kaczmarczyk. Acute effects of angiotensin II on renal haemo‐dynamics and excretion in conscious dogs. Ren. Physiol. Biochem. 12: 238–249, 1989.
 282. Khairallah, P. A., I. H., Page, F. M. Bumpus, and R. K. Turker. Angiotensin tachyphylaxis and its reversal. Circ. Res. 19: 247–254, 1966.
 283. Kim, N. N., F. J., Villarreal, M. P. Printz, A. A. Lee, and W. H. Dillmann. Trophic effects of angiotensin II on neonatal rat cardiac myocytes are mediated by cardiac fibroblasts. Am. J. Physiol. 269 (Endocrinol. Metab. 32): E426–E437, 1995.
 284. Kirchheim, H. R., H., Ehmke, E. Hackenthal, W. Lowe, and P. Persson. Autoregulation of renal blood flow, glomerular filtration rate and renin release in conscious dogs. Pflugers Arch. 410: 441–449, 1987.
 285. Klemke, R. L., S., Cai, A. L. Giannini, P. J. Gallagher, P. de Lanerolle, and D. A. Cheresh. Regulation of cell motility by mitogen‐activated protein kinase. J. Cell. Biol. 137: 481–492, 1997.
 286. Knepel, W., D., Nutto, and D. K. Meyer. Effect of transection of subfornical organ efferent projections on vasopressin release induced by angiotensin or isoprenaline in the rat. Brain Res. 248: 180–184, 1982.
 287. Kohara, K., K. B., Brosnihan, M. C. Chappell, M. C. Khosla, and C. M. Ferrario. Angiotensin‐(1–7). A member of circulating angiotensin peptides. Hypertension 17: 131–138, 1991.
 288. Kohout, T. A., and T. B. Rogers. Angiotensin II activates the Na+/HCO3‐ symport through a phosphoinositide‐independent mechanism in cardiac cells. J. Biol. Chem. 270: 20432–20438, 1995.
 289. Koike, G., M., Horiuchi, T. Yamada, C. Szpirer, H. J. Jacob, and V. J. Dzau. Human type 2 angiotensin II receptor gene: cloned, mapped to the X chromosome, and its mRNA is expressed in the human lung. Biochem. Biophys. Res. Commun. 203: 1842–1850, 1994.
 290. Kojima, I., and E. Ogata. Direct demonstration of adrenocorticotropin‐induced changes in cytoplasmic free calcium with aequorin in adrenal glomerulosa cell. J. Biol. Chem. 261: 9832–9838, 1986.
 291. Komatsu, S., and H. Hosoya. Phosphorylation by MAPKAP kinase 2 activates Mg(2+)‐ATPase activity of myosin II. Biochem. Biophys. Res. Commun. 223: 741–745, 1996.
 292. Kriz, W., and S. Bachmann. Pre‐ and postglomerular arterioles of the kidney. J. Cardiovasc. Pharmacol. 7 (Suppl. 3): S24–S30, 1985.
 293. Kriz, W., M., Elger, K. Lemley, and T. Sakai. Structure of the glomerular mesangium: a biomechanical interpretation. Kidney Int. Suppl. 30: S2–S9, 1990.
 294. Kriz, W., M., Elger, P. Mundel, and K. V. Lemley. Structure‐stabilizing forces in the glomerular tuft. J. Am. Soc. Nephrol. 5: 1731–1739, 1995.
 295. Kudoh, S., I., Komuro, T. Mizuno, T. Yamazaki, Y. Zou, I. Shiojima, N. Takekoshi, and Y. Yazaki. Angiotensin II stimulates c‐Jun NH2‐terminal kinase in cultured cardiac myocytes of neonatal rats. Circ. Res. 80: 139–146, 1997.
 296. Kugler, P.. On angiotensin‐degrading aminopeptidases in the rat kidney. Adv. Anat. Embryol. Cell Biol. 76: 1–86, 1982.
 297. Kugler, P.. Angiotensinase A in the renomedullary interstitial cells. Histochemistry 77: 105–115, 1983.
 298. Kurokawa, K.. Kidney, salt, and hypertension: how and why. Kidney Int. Suppl. 55: S46–S51, 1996.
 299. Lajic, S., A., Levo, A. Nikoshkov, Y. Lundberg, J. Partanen, and A. Wedell. A cluster of missense mutations at Arg356 of human steroid 21‐hydroxylase may impair redox partner interaction. Hum. Genet. 99: 704–709, 1997.
 300. Langford, K., K., Frenzel, B. M. Martin, and K. E. Bernstein. The genomic organization of the rat AT1 angiotensin receptor. Biochem. Biophys. Res. Commun. 183: 1025–1032, 1992.
 301. Langlois, D., R., Ouali, M. C. Berthelon, A. Derrien, and J. M. Saez. Regulation by growth factors of angiotensin II type‐1 receptor and the alpha subunit of Gq and G11 in bovine adrenal cells. Endocrinology 135: 480–483, 1994.
 302. Lassegue, B., R. W., Alexander, G. Nickenig, M. Clark, T. J. Murphy, and K. K. Griendling. Angiotensin II down‐regulates the vascular smooth muscle AT1 receptor by transcriptional and post‐transcriptional mechanisms: evidence for homologous and heterologous regulation. Mol. Pharmacol. 48: 601–609, 1995.
 303. Lauber, M., and J. Muller. Purification and characterization of two distinct forms of rat adrenal cytochrome P450(11)beta: functional and structural aspects. Arch. Biochem. Biophys. 274: 109–119, 1989.
 304. Lear, W., M., Ruzicka, and F. H. Leenen. ACE inhibitors and cardiac ACE mRNA in volume overload‐induced cardiac hypertrophy. Am. J. Physiol. 273 (Heart Circ. Physiol. 44): H641–H646, 1997.
 305. Lee, M. R., L., Li, and T. Kitazawa. Cyclic GMP causes Ca2+ desensitization in vascular smooth muscle by activating the myosin light chain phosphatase. J. Biol. Chem. 272: 5063–5068, 1997.
 306. Lee, W. B., M. J., Ismay, and E. R. Lumbers. Mechanisms by which angiotensin II affects the heart rate of the conscious sheep. Circ. Res. 47: 286–292, 1980.
 307. Leeuw, T., C., Wu, J. D. Schrag, M. Whiteway, D. Y. Thomas, and E. Leberer. Interaction of a G‐protein beta‐subunit with a conserved sequence in Ste20/PAK family protein kinases. Nature 391: 191–195, 1998.
 308. Lefkowitz, R. J., S., Cotecchia, P. Samama, and T. Costa. Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends. Pharmacol. Sci. 14: 303–307, 1993.
 309. Lefroy, D. C., T. Crake, F. Del Monte, G. Vescovo, L. Dalla Libera, S. Harding, and P. A. Poole‐Wilson. Angiotensin II and contraction of isolated myocytes from human, guinea pig, and infarcted rat hearts. Am. J. Physiol. 270 (Heart Circ. Physiol. 41): H2060–H2069, 1996.
 310. Lehoux, J. G., I. M., Bird, W. E. Rainey, A. Tremblay, and L. Ducharme. Both low sodium and high potassium intake increase the level of adrenal angiotensin‐II receptor type 1, but not that of adrenocorticotropin receptor. Endocrinology 134: 776–782, 1994.
 311. Lenkei, Z., M., Palkovits, P. Corvol, and C. Llorens‐Cortes. Distribution of angiotensin II type‐2 receptor (AT2) mRNA expression in the adult rat brain. J. Comp. Neurol. 373: 322–339, 1996.
 312. Leveen, P., M., Pekny, S. Gebre‐Medhin, B. Swolin, E. Larsson, and C. Betsholtz. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 8: 1875–1887, 1994.
 313. Levine, D. Z., M., Iacovitti, S. Buckman, and V. Harrison. In vivo modulation of rat distal tubule net HCO3 flux by VIP, isoproterenol, angiotensin II, and ADH. Am. J. Physiol. 266 (Renal Fluid Electrolyte Physiol. 37): F878–F883, 1994.
 314. Li, X., and H. S. Earp. Paxillin is tyrosine‐phosphorylated by and preferentially associates with the calcium‐dependent tyrosine kinase in rat liver epithelial cells. J. Biol. Chem. 272: 14341–14348, 1997.
 315. Li, Z., and A. V. Ferguson. Subfornical organ efferents to paraventricular nucleus utilize angiotensin as a neurotransmitter. Am. J. Physiol. 265 (Regulatory Integrative Comp. Physiol. 36): R302–R309, 1993.
 316. Li, Z., and A. V. Ferguson. Electrophysiological properties of paraventricular magnocellular neurons in rat brain slices: modulation of IA by angiotensin II. Neuroscience 71: 133–145, 1996.
 317. Liao, D. F., J. L., Duff, G. Daum, S. L. Pelech, and B. C. Berk. Angiotensin II stimulates MAP kinase kinase kinase activity in vascular smooth muscle cells. Role of Raf. Circ. Res. 79: 1007–1014, 1996.
 318. Liao, D. F., B., Monia, N. Dean, and B. C. Berk. Protein kinase C‐zeta mediates angiotensin II activation of ERK1/2 in vascular smooth muscle cells. J. Biol. Chem. 272: 6146–6150, 1997.
 319. Linseman, D. A., C. W., Benjamin, and D. A. Jones. Convergence of angiotensin II and platelet‐derived growth factor receptor signaling cascades in vascular smooth muscle cells. J. Biol. Chem. 270: 12563–12568, 1995.
 320. Lippoldt, A., B., Bunnemann, N. Iwai, R. Metzger, T. Inagami, K. Fuxe, and D. Ganten. Cellular localization of angiotensin type 1 receptor and angiotensinogen mRNAs in the subfornical organ of the rat brain. Neurosci. Lett. 150: 153–158, 1993.
 321. Liu, F. Y., and M. G. Cogan. Angiotensin II stimulation of hydrogen ion secretion in the rat early proximal tubule. Modes of action, mechanism, and kinetics. J. Clin. Invest. 82: 601–607, 1988.
 322. Llorens‐Cortes, C., B., Greenberg, H. Huang, and P. Corvol. Tissular expression and regulation of type 1 angiotensin II receptor subtypes by quantitative reverse transcriptase‐polymerase chain reaction analysis. Hypertension 24: 538–548, 1994.
 323. Lokuta, A. J., C., Cooper, S. T. Gaa, H. E. Wang, and T. B. Rogers. Angiotensin II stimulates the release of phospholipidderived second messengers through multiple receptor subtypes in heart cells. J. Biol. Chem. 269: 4832–4838, 1994.
 324. Lopez, J. J., B. H., Lorell, J. R. Ingelfinger, E. O. Weinberg, H. Schunkert, D. Diamant, and S. S. Tang. Distribution and function of cardiac angiotensin AT1‐ and AT2‐receptor subtypes in hypertrophied rat hearts. Am. J. Physiol. 267 (Heart Circ. Physiol. 38): H844–H852, 1994.
 325. Lou, Y. K., D. T., Liu, J. A. Whitworth, and B. J. Morris. Renin mRNA concentration in rat hypothalamus is decreased by enalapril. Clin. Exp. Pharmacol. Physiol. 22: 493–495, 1995.
 326. Loutzenhiser, R., L., Chilton, and G. Trottier. Membrane potential measurements in renal afferent and efferent arterioles: actions of angiotensin II. Am. J. Physiol. 273 (Renal Physiol. 42): F307–F314, 1997.
 327. Loutzenhiser, R., M., Epstein, K. Hayashi, T. Takenaka, and H. Forster. Characterization of the renal microvascular effects of angiotensin II antagonist, DuP 753: studies in isolated perfused hydronephrotic kidneys. Am. J. Hypertens. 4: 309S–314S, 1991.
 328. Lu, H. K., R. J., Fern, D. Luthin, J. Linden, L. P. Liu, C. J. Cohen, and P. Q. Barrett. Angiotensin II stimulates T‐type Ca2+ channel currents via activation of a G protein, Gi. Am. J. Physiol. 271 (Cell Physiol. 40): C1340–C1349, 1996.
 329. Luchner, A., T. L., Stevens, D. D. Borgeson, M. M. Redfield, J. E. Bailey, S. M. Sandberg, D. M. Heublein, and J. C. Burnett, Jr. Angiotensin II in the evolution of experimental heart failure. Hypertension 28: 472–477, 1996.
 330. Lucius, C., A., Arner, A. Steusloff, M. Troschka, F. Hofmann, K. Aktories, and G. Pfitzer. Clostridium difficile toxin B inhibits carbachol‐induced force and myosin light chain phosphorylation in guinea‐pig smooth muscle: role of Rho proteins. J. Physiol. (Lond.) 506: 83–93, 1998.
 331. Lumbers, E. R., D. I., McCloskey, and E. K. Potter. Inhibition by angiotensin II of baroreceptor‐evoked activity in cardiac vagal efferent nerves in the dog. J. Physiol. (Lond.) 294: 69–80, 1979.
 332. Lumbers, E. R., and E. K. Potter. Inhibition of the vagal component of the baroreceptor‐cardioinhibitory reflex by angiotensin III in dogs and sheep. J. Physiol. (Lond.) 336: 83–89, 1983.
 333. Luttrell, L. M., B. E. Hawes, T. Van Biesen, D. K. Luttrell, T. J. Lansing, and R. J. Lefkowitz. Role of c‐Src tyrosine kinase in G protein‐coupled receptor‐ and Gbetagamma subunit–mediated activation of mitogen‐activated protein kinases. J. Biol. Chem. 271: 19443–19450, 1996.
 334. Macrez, N., J. L., Morel, F. Kalkbrenner, P. Viard, G. Schultz, and J. Mironneau. A betagamma dimer derived from G13 transduces the angiotensin AT1 receptor signal to stimulation of Ca2+ channels in rat portal vein myocytes. J. Biol. Chem. 272: 23180–23185, 1997.
 335. Macrez‐Lepretre, N., F., Kalkbrenner, J. L. Morel, G. Schultz, and J. Mironneau. G protein heterotrimer Gα13β1γ3 couples the angiotensin AT1A receptor to increases in cytoplasmic Ca2+ in rat portal vein myocytes. J. Biol. Chem. 272: 10095–10102, 1997.
 336. Madrid, M. I., M., Garcia‐Salom, J. Tornel, M. de Gasparo, and F. J. Fenoy. Interactions between nitric oxide and angiotensin II on renal cortical and papillary blood flow. Hypertension 30: 1175–1182, 1997.
 337. Magness, R. R., C. R., Rosenfeld, A. Hassan, and P. W. Shaul. Endothelial vasodilator production by uterine and systemic arteries. I. Effects of ANG II on PGI2 and NO in pregnancy. Am. J. Physiol. 270 (Heart Circ. Physiol. 41): H1914–H1923, 1996.
 338. Malarkey, K., A., McLees, A. Paul, G. W. Gould, and R. Plevin. The role of protein kinase C in activation and termination of mitogen‐activated protein kinase activity in angiotensin II‐stimulated rat aortic smooth‐muscle cells. Cell. Signal. 8: 123–129, 1996.
 339. Mangiapane, M. L., and J. B. Simpson. Subfornical organ: forebrain site of pressor and dipsogenic action of angiotensin II. Am. J. Physiol. 239 (Regulatory Integrative Comp. Physiol. 10): R382–R389, 1980.
 340. Mangiapane, M. L., and J. B. Simpson. Subfornical organ lesions reduce the pressor effect of systemic angiotensin II. Neuroendocrinology 31: 380–384, 1980.
 341. Marie, J., B., Maigret, M. P. Joseph, R. Larguier, S. Nouet, C. Lombard, and J. C. Bonnafous. Tyr292 in the seventh transmembrane domain of the AT1A angiotensin II receptor is essential for its coupling to phospholipase C. J. Biol. Chem. 269: 20815–20818, 1994.
 342. Marrero, M. B., W. G., Paxton, J. L. Duff, B. C. Berk, and K. E. Bernstein. Angiotensin II stimulates tyrosine phosphorylation of phospholipase C‐gamma 1 in vascular smooth muscle cells. J. Biol. Chem. 269: 10935–10939, 1994.
 343. Marrero, M. B., W. G., Paxton, B. Schieffer, B. N. Ling, and K. E. Bernstein. Angiotensin II signalling events mediated by tyrosine phosphorylation. Cell. Signal. 8: 21–26, 1996.
 344. Martens, J. R., D., Wang, C. Sumners, P. Posner, and C. H. Gelband. Angiotensin II type 2 receptor‐mediated regulation of rat neuronal K+ channels. Circ. Res. 79: 302–309, 1996.
 345. Maruta, H., and K. Arakawa. Confirmation of direct angiotensin formation by kallikrein. Biochem. J. 213: 193–200, 1983.
 346. Matsunaga, H., N., Yamashita, Y. Maruyama, I. Kojima, and K. Kurokawa. Evidence for two distinct voltage‐gated calcium channel currents in bovine adrenal glomerulosa cells. Biochem. Biophys. Res. Commun. 149: 1049–1054, 1987.
 347. Matsusaka, T., H., Nishimura, H. Utsunomiya, J. Kakuchi, F. Niimura, T. Inagami, A. Fogo, and I. Ichikawa. Chimeric mice carrying “regional” targeted deletion of the angiotensin type 1A receptor gene. Evidence against the role for local angiotensin in the in vivo feedback regulation of renin synthesis in juxtaglomerular cells. J. Clin. Invest. 98: 1867–1877, 1996.
 348. Mattiazzi, A.. Positive inotropic effect of angiotensin II. Increases in intracellular Ca2+ or changes in myofilament Ca2+ responsiveness? J. Pharmacol. Toxicol. Methods 37: 205–214, 1997.
 349. Mattson, D. L., H., Raff, and R. J. Roman. Influence of angiotensin II on pressure natriuresis and renal hemodynamics in volume‐expanded rats. Am. J. Physiol. 260 (Regulatory Integrative Comp. Physiol. 31): R1200–R1209, 1991.
 350. Mazzocchi, G., P., Rebuffat, A. S. Belloni, C. Robba, and G. G. Nussdorfer. An ultrastructural stereologic study of the effects of angiotensin II on the zona glomerulosa of rat adrenal cortex. Acta Endocrinol. (Copenh.) 95: 523–527, 1980.
 351. Mazzocchi, G., C., Robba, P. Rebuffat, and G. G. Nussdorfer. Investigations on the turnover of adrenocortical mitochondria. XV. A stereological study of the effect of chronic treatment with angiotensin II on the size and number of the mitochondria in the zona glomerulosa of the rat. Cell Tissue. Res. 210: 333–337, 1980.
 352. McCarthy, R. T., C., Isales, and H. Rasmussen. T‐type calcium channels in adrenal glomerulosa cells: GTP‐dependent modulation by angiotensin II. Proc. Natl. Acad. Sci. U.S.A. 90: 3260–3264, 1993.
 353. McEwan, P. E., G. B., Lindop, and C. J. Kenyon. Control of cell proliferation in the rat adrenal gland in vivo by the renin‐angiotensin system. Am. J. Physiol. 271 (Endocrinol. Metab. 34): E192–E198, 1996.
 354. McKinley, M. J., M., Evered, M. Mathai, and J. P. Coghlan. Effects of central losartan on plasma renin and centrally mediated natriuresis. Kidney Int. 46: 1479–1482, 1994.
 355. Meininger, G. A., and J. P. Trzeciakowski. Combined effects of autoregulation and vasoconstrictors on hindquarters vascular resistance. Am. J. Physiol. 258 (Heart Circ. Physiol. 29): H1032–H1041, 1990.
 356. Mendelsohn, F. A., A. M., Allen, S. Y. Chai, P. M. Sexton, and R. Figdor. Overlapping distributions of receptors for atrial natriuretic peptide and angiotensin II visualized by in vitro autoradiography: morphological basis of physiological antagonism. Can. J. Physiol. Pharmacol. 65: 1517–1521, 1987.
 357. Miller‐Wing, A. V., J. M., Hanesworth, M. F. Sardinia, K. L. Hall, J. W. Wright, R. C. Speth, K. L. Grove, and J. W. Harding. Central angiotensin IV binding sites: distribution and specificity in guinea pig brain. J. Pharmacol. Exp. Ther. 266: 1718–1726, 1993.
 358. Minden, A., and M. Karin. Regulation and function of the JNK subgroup of MAP kinases. Biochim. Biophys. Acta 1333: F85–F104, 1997.
 359. Misono, K. S., J. J., Chang, and T. Inagami. Amino acid sequence of mouse submaxillary gland renin. Proc. Natl. Acad. Sci. U.S.A. 79: 4858–4862, 1982.
 360. Miyata, S., and T. Haneda. Hypertrophic growth of cultured neonatal rat heart cells mediated by type 1 angiotensin II receptor. Am. J. Physiol. 266 (Heart Circ. Physiol. 37): H2443–H2451, 1994.
 361. Mlinar, B., B. A., Biagi, and J. J. Enyeart. A novel K+ current inhibited by adrenocorticotropic hormone and angiotensin II in adrenal cortical cells. J. Biol. Chem. 268: 8640–8644, 1993.
 362. Mlinar, B., B. A., Biagi, and J. J. Enyeart. Losartan‐sensitive AII receptors linked to depolarization‐dependent Cortisol secretion through a novel signaling pathway. J. Biol. Chem. 270: 20942–20951, 1995.
 363. Moe, O. W., M., Amemiya, and Y. Yamaji. Activation of protein kinase A acutely inhibits and phosphorylates Na/H exchanger NHE‐3. J. Clin. Invest. 96: 2187–2194, 1995.
 364. Moffat, D. B.. The fine structure of the blood vessels of the renal medulla with particular reference to the control of the medullary circulation. J. Ultrastruct. Res. 19: 532–545, 1967.
 365. Molkentin, J. D., J. R., Lu, C. L. Antos, B. Markham, J. Richardson, J. Robbins, S. R. Grant, and E. N. Olson. A calcineurin‐dependent transcriptional pathway for cardiac hypertrophy. Cell 93: 215–228, 1998.
 366. Molloy, C. J., D. S., Taylor, and H. Weber. Angiotensin II stimulation of rapid protein tyrosine phosphorylation and protein kinase activation in rat aortic smooth muscle cells. J. Biol. Chem. 268: 7338–7345, 1993.
 367. Monical, P. L., G. K., Owens, and R. A. Murphy. Expression of myosin regulatory light‐chain isoforms and regulation of phosphorylation in smooth muscle. Am. J. Physiol. 264 (Cell Physiol. 33): C1466–C1472, 1993.
 368. Morgan, K. G.. Calcium and vascular smooth muscle tone. Am. J. Med. 82: 9–15, 1987.
 369. Morgan, L., F. B., Pipkin, and N. Kalsheker. Angiotensinogen: molecular biology, biochemistry and physiology. Int. J. Biochem. Cell Biol. 28: 1211–1222, 1996.
 370. Moriguchi, A., K. B., Brosnihan, H. Kumagai, D. Ganten, and C. M. Ferrario. Mechanisms of hypertension in transgenic rats expressing the mouse Ren‐2 gene. Am. J. Physiol. 266 (Regulatory Integrative Comp. Physiol. 37): R1273–R1279, 1994.
 371. Mornet, E., J., Dupont, A. Vitek, and P. C. White. Characterization of two genes encoding human steroid 11 beta‐hydroxylase (P‐450(11) beta). J. Biol. Chem. 264: 20961–20967, 1989.
 372. Morris, B. J., H. S., Iwamoto, and I. A. Reid. Localization of angiotensinogen in rat liver by immunocytochemistry. Endocrinology 105: 796–800, 1979.
 373. Morrison, D. L., J. S., Sanghera, J. Stewart, C. Sutherland, M. P. Walsh, and S. L. Pelech. Phosphorylation and activation of smooth muscle myosin light chain kinase by MAP kinase and cyclin‐dependent kinase‐1. Biochem. Cell. Biol. 74: 549–557, 1996.
 374. Mullins, J. J., J., Peters, and D. Ganten. Fulminant hypertension in transgenic rats harbouring the mouse Ren‐2 gene. Nature 344: 541–544, 1990.
 375. Murasawa, S., H., Matsubara, M. Kanasaki, K. Kijima, K. Maruyama, Y. Nio, N. Okubo, H. Tsukaguchi, Y. Mori, and M. Inada. Characterization of glucocorticoid response element of rat angiotensin II type 1A receptor gene. Biochem. Biophys. Res. Commun. 209: 833–840, 1995.
 376. Murasawa, S., H., Matsubara, Y. Mori, K. Kijima, K. Maruyama, and M. Inada. Identification of a negative cis‐regulatory element and trans‐acting protein that inhibit transcription of the angiotensin II type 1a receptor gene. J. Biol. Chem. 270: 24282–24286, 1995.
 377. Murasawa, S., H., Matsubara, M. Urakami, and M. Inada. Regulatory elements that mediate expression of the gene for the angiotensin II type 1a receptor for the rat. J. Biol. Chem. 268: 26996–27003, 1993.
 378. Murphy, T. J., R. W., Alexander, K. K. Griendling, M. S. Runge, and K. E. Bernstein. Isolation of a cDNA encoding the vascular type‐1 angiotensin II receptor. Nature 351: 233–236, 1991.
 379. Myers, B. D., W. M., Deen, and B. M. Brenner. Effects of norepinephrine and angiotensin II on the determinants of glomerular ultrafiltration and proximal tubule fluid reabsorption in the rat. Circ. Res. 37: 101–110, 1975.
 380. Nagami, G. T.. Effect of angiotensin II on ammonia production and secretion by mouse proximal tubules perfused in vitro. J. Clin. Invest. 89: 925–931, 1992.
 381. Nagami, G. T.. Effect of luminal angiotensin II on ammonia production and secretion by mouse proximal tubules. Am. J. Physiol. 269 (Renal Fluid Electrolyte Physiol. 40): F86–F92, 1995.
 382. Nagatomo, T., K., Inenaga, and H. Yamashita. Transient outward current in adult rat supraoptic neurones with slice patch‐clamp technique: inhibition by angiotensin II. J. Physiol. (Lond.) 485: 87–96, 1995.
 383. Nahman, N. S., Jr., K. L. Rothe, M. E. Falkenhain, K. M. Frazer, L. E. Dacio, J. D. Madia, K. L. Leonhart, J. C. Kronenberger, and D. A. Stauch. Angiotensin II induction of fibronectin biosynthesis in cultured human mesangial cells: association with CREB transcription factor activation. J. Lab. Clin. Med. 127: 599–611, 1996.
 384. Nakache, M., H. E., Gaub, A. B. Schreiber, and H. M. McConnell. Topological and modulated distribution of surface markers on endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 83: 2874–2878, 1986.
 385. Nakamaru, M., E. K., Jackson, and T. Inagami. Beta‐adrenoceptor‐mediated release of angiotensin II from mesenteric arteries. Am. J. Physiol. 250 (Heart Circ. Physiol. 21): H144–H148, 1986.
 386. Nanus, D. M., D., Engelstein, G. A. Gastl, L. Gluck, M. J. Vidal, M. Morrison, C. L. Finstad, N. H. Bander, and A. P. Albino. Molecular cloning of the human kidney differentiation antigen gp160: human aminopeptidase A. Proc. Natl. Acad. Sci. U.S.A. 90: 7069–7073, 1993.
 387. Natarajan, R., H., Yang, P. F. Hall, and J. Nadler. Angiotensin II regulates cytochrome P‐450 steroid hydroxylase enzyme expression in human adrenal glomerulosa cells. Am. J. Hypertens. 5: 800–805, 1992.
 388. Navar, L. G., J. D., Imig, L. Zou, and C. T. Wang. Intrarenal production of angiotensin II. Semin. Nephrol. 17: 412–422, 1997.
 389. Navar, L. G., E. W., Inscho, S. A. Majid, J. D. Imig, L. M. Harrison‐Bernard, and K. D. Mitchell. Paracrine regulation of the renal microcirculation. Physiol. Rev. 76: 425–536, 1996.
 390. Navar, L. G., L., Lewis, A. Hymel, B. Braam, and K. D. Mitchell. Tubular fluid concentrations and kidney contents of angiotensins I and II in anesthetized rats. J. Am. Soc. Nephrol. 5: 1153–1158, 1994.
 391. Navar, L. G., R. V., Paul, P. K. Carmines, C. L. Chou, and D. J. Marsh. Intrarenal mechanisms mediating pressure natriuresis: role of angiotensin and prostaglandins. Federation Proc. 45: 2885–2891, 1986.
 392. Nawata, H., R., Takayanagi, K. Ohnaka, Y. Sakai, K. Imasaki, T. Yanase, S. Ikuyama, S. Tanaka, and K. Ohe. Type I angiotensin II receptors of adrenal tumors. Steroids 60: 28–34, 1995.
 393. Neves, L. A., A. P., Almeida, M. C. Khosla, and R. A. Santos. Metabolism of angiotensin I in isolated rat hearts. Effect of angiotensin converting enzyme inhibitors. Biochem. Pharmacol. 50: 1451–1459, 1995.
 394. New, M. I.. Steroid 21‐hydroxylase deficiency (congenital adrenal hyperplasia). Am. J. Med. 98: 2S–8S, 1995.
 395. Newby, D. E., S., Masumori, N. R. Johnston, N. A. Boon, and D. J. Webb. Endogenous angiotensin II contributes to basal peripheral vascular tone in sodium deplete but not sodium replete man. Cardiovasc. Res. 36: 268–275, 1997.
 396. Nishimura, H., T., Matsusaka, A. Fogo, V. Kon, and I. Ichikawa. A novel in vivo mechanism for angiotensin type 1 receptor regulation. Kidney Int. 52: 345–355, 1997.
 397. Nobes, M. S., P. J., Harris, H. Yamada, and F. A. Mendelsohn. Effects of angiotensin on renal cortical and papillary blood flows measured by laser‐Doppler flowmetry. Am. J. Physiol. 261 (Renal Fluid Electrolyte Physiol. 32): F998–1006, 1991.
 398. Noda, K., Y., Saad, and S. S. Karnik. Interaction of Phe8 of angiotensin II with Lys199 and His256 of AT1 receptor in agonist activation. J. Biol. Chem. 270: 28511–28514, 1995.
 399. Odya, C. E., R. D., Dally, and K. E. Georgiadis. Specific, high‐affinity bradykinin binding by purified porcine kidney post‐proline cleaving enzyme. Biochem. Pharmacol. 36: 39–49, 1987.
 400. Oelkers, W.. Adrenal insufficiency. N. Engl. J. Med. 335: 1206–1212, 1996.
 401. Ogiku, N., R., Ishida, K. Saeki, and M. Sugiura. Induction of cardiac angiotensinogen mRNA and angiotensin converting enzyme (ACE) activity in isoproterenol‐induced heart injury. Hypertens. Res. 19: 179–187, 1996.
 402. Ohishi, K., P. K., Carmines, E. W. Inscho, and L. G. Navar. EDRF–angiotensin II interactions in rat juxtamedullary afferent and efferent arterioles. Am. J. Physiol. 263 (Renal Fluid Electrolyte Physiol. 34): F900–F906, 1992.
 403. Ohkubo, N., H., Matsubara, Y. Nozawa, Y. Mori, S. Murasawa, K. Kijima, K. Maruyama, H. Masaki, Y. Tsutumi, Y. Shibazaki, T. Iwasaka, and M. Inada. Angiotensin type 2 receptors are reexpressed by cardiac fibroblasts from failing myopathic hamster hearts and inhibit cell growth and fibrillar collagen metabolism. Circulation 96: 3954–3962, 1997.
 404. Ohyama, K., Y., Yamano, S. Chaki, T. Kondo, and T. Inagami. Domains for G‐protein coupling in angiotensin II receptor type I: studies by site‐directed mutagenesis. Biochem. Biophys. Res. Commun. 189: 677–683, 1992.
 405. Oliver, J. A., and R. R. Sciacca. Local generation of angiotensin II as a mechanism of regulation of peripheral vascular tone in the rat. J. Clin. Invest. 74: 1247–1251, 1984.
 406. Olsen, J., G. M., Cowell, E. Konigshofer, E. M. Danielsen, J. Moller, L. Laustsen, O. C. Hansen, K. G. Welinder, J. Engberg, W. Hunziker, M. Spiess, H. Sjoestroem, and O. Noren. Complete amino acid sequence of human intestinal aminopeptidase N as deduced from cloned cDNA. FEBS Lett. 238: 307–314, 1988.
 407. Olson, S. C., T. A., Dowds, P. A. Pino, M. T. Barry, and T. Burke‐Wolin. ANG II stimulates endothelial nitric oxide synthase expression in bovine pulmonary artery endothelium. Am. J. Physiol. 273 (Lung Cell. Mol. Physiol. 42): L315–L321, 1997.
 408. Oppermann, M., M., Diverse‐Pierluissi, M. H. Drazner, S. L. Dyer, N. J. Freedman, K. C. Peppel, and R. J. Lefkowitz. Monoclonal antibodies reveal receptor specificity among G‐protein‐coupled receptor kinases. Proc. Natl. Acad. Sci. U.S.A. 93: 7649–7654, 1996.
 409. Orth, S. R., T., Weinreich, S. Bonisch, M. Weih, and E. Ritz. Angiotensin II induces hypertrophy and hyperplasia in adult human mesangial cells. Exp. Nephrol. 3: 23–33, 1995.
 410. Osborne, M. J., B., Droz, P. Meyer, and F. Morel. Angiotensin II: renal localization in glomerular mesangial cells by autoradiography. Kidney Int. 8: 245–254, 1975.
 411. Osswald, H., W. S., Spielman, and F. G. Knox. Mechanism of adenosine‐mediated decreases in glomerular filtration rate in dogs. Circ. Res. 43: 465–469, 1978.
 412. Ouali, R., M. C., Berthelon, M. Begeot, and J. M. Saez. Angiotensin II receptor subtypes AT1 and AT2 are down‐regulated by angiotensin II through AT1 receptor by different mechanisms. Endocrinology 138: 725–733, 1997.
 413. Ouali, R., M. C., Lebrethon, and J. M. Saez. Identification and characterization of angiotensin‐II receptor subtypes in cultured bovine and human adrenal fasciculata cells and PC12W cells. Endocrinology 133: 2766–2772, 1993.
 414. Pagtalunan, M. E., R., Rasch, H. G. Rennke, and T. W. Meyer. Morphometric analysis of effects of angiotensin II on glomerular structure in rats. Am. J. Physiol. 268 (Renal Fluid Electrolyte Physiol. 37): F82–F88, 1995.
 415. Pallone, T. L.. Vasoconstriction of outer medullary vasa recta by angiotensin II is modulated by prostaglandin E2. Am. J. Physiol. 266 (Renal Fluid Electrolyte Physiol. 35): F850–F857, 1994.
 416. Pallone, T. L., C. R., Robertson, and R. L. Jamieson. Renal medullary microcirculation. Physiol. Rev. 70: 885–920, 1990.
 417. Parekh, N., and A. P. Zou. Role of prostaglandins in renal medullary circulation: response to different vasoconstrictors. Am. J. Physiol. 271 (Renal Fluid Electrolyte Physiol. 40): F653–F658, 1996.
 418. Paul, R. J.. Smooth muscle energetics and theories of crossbridge regulation. Am. J. Physiol. 258 (Cell Physiol. 27): C369–C375, 1990.
 419. Paxton, W. G., M., Runge, C. Horaist, C. Cohen, R. W. Alexander, and K. E. Bernstein. Immunohistochemical localization of rat angiotensin II AT1 receptor. Am. J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 25): F989–F995, 1993.
 420. Payet, M. D., L., Bilodeau, P. Drolet, J. Ibarrondo, G. Guillon, and N. Gallo‐Payet. Modulation of a Ca(2+)‐activated K+ channel by angiotensin II in rat adrenal glomerulosa cells: involvement of a G protein. Mol. Endocrinol. 9: 935–947, 1995.
 421. Payet, M. D., T., Durroux, L. Bilodeau, G. Guillon, and N. Gallo‐Payet. Characterization of K+ and Ca2+ ionic currents in glomerulosa cells from human adrenal glands. Endocrinology 134: 2589–2598, 1994.
 422. Persson, P., H., Ehmke, and H. Kirchheim. Influence of the renin–angiotensin system on the autoregulation of renal blood flow and glomerular filtration rate in conscious dogs. Acta Physiol. Scand. 134: 1–7, 1988.
 423. Peter, M., L., Fawaz, S. L. Drop, H. K. Visser, and W. G. Sippell. Hereditary defect in biosynthesis of aldosterone: aldosterone synthase deficiency 1964–1997. J. Clin. Endocrinol. Metab. 82: 3525–3528, 1997.
 424. Petrovic, N., T. A., BLack, J. R. Fabian, C. Kane, C. A. Jones, J. A. Loudon, J. P. Abonia, C. D. Sigmund, and K. W. Gross. Role of proximal promoter elements in regulation of renin transcription. J. Biol. Chem. 271: 22499–22505, 1996.
 425. Pezzi, V., C. D., Clyne, S. Ando, J. M. Mathis, and W. E. Rainey. Ca(2+)‐regulated expression of aldosterone synthase is mediated by calmodulin and calmodulin‐dependent protein kinases. Endocrinology 138: 835–838, 1997.
 426. Phillips, M. I.. New evidence for brain angiotensin and for its role in hypertension. Federation Proc. 42: 2667–2672, 1983.
 427. Platia, M. P., K. J., Catt, G. D. Hodgen, and G. Aguilera. Regulation of primate angiotensin II receptors during altered sodium intake. Hypertension 8: 1121–1126, 1986.
 428. Plump, A. S., S. K., Erickson, W. Weng, J. S. Partin, J. L. Breslow, and D. L. Williams. Apolipoprotein A‐I is required for cholesteryl ester accumulation in steroidogenic cells and for normal adrenal steroid production. J. Clin. Invest. 97: 2660–2671, 1996.
 429. Poggioli, J., G., Lazar, P. Houillier, J. P. Gardin, J. M. Achard, and M. Paillard. Effects of angiotensin II and nonpeptide receptor antagonists on transduction pathways in rat proximal tubule. Am. J. Physiol. 263 (Cell Physiol. 32): C750–C758, 1992.
 430. Potter, E. K.. Angiotensin inhibits action of vagus nerve at the heart. Br. J. Pharmacol. 75: 9–11, 1982.
 431. Potter, E. K., and I. A. Reid. Intravertebral angiotensin II inhibits cardiac vagal efferent activity in dogs. Neuroendocrinology 40: 493–496, 1985.
 432. Pratt, R. E.. Regulation of vascular smooth‐muscle cell growth by angiotensin II. Blood Press. Suppl. 2: 6–9, 1996.
 433. Pueyo, M. E., J. F., Arnal, J. Rami, and J. B. Michel. Angiotensin II stimulates the production of NO and peroxynitrite in endothelial cells. Am. J. Physiol. 274 (Cell Physiol. 43): C214–C220, 1998.
 434. Python, C. P., O. P., Laban, M. F. Rossier, M. B. Vallotton, and A. M. Capponi. The site of action of Ca2+ in the activation of steriodogenesis: studies in Ca2+‐clamped bovine adrenal zonaglomerulosa cells. Biochem. J. 305: 569–576, 1995.
 435. Quan, A., and M. Baum. Regulation of proximal tubule transport by angiotensin II. Semin. Nephrol. 17: 423–430, 1997.
 436. Quinn, S. J., M. C., Cornwall, and G. H. Williams. Electrophysiological responses to angiotensin II of isolated rat adrenal glomerulosa cells. Endocrinology 120: 1581–1589, 1987.
 437. Quinn, S. J., G. H., Williams, and D. L. Tillotson. Calcium oscillations in single adrenal glomerulosa cells stimulated by angiotensin II. Proc. Natl. Acad. Sci. U.S.A. 85: 5754–5758, 1988.
 438. Rabkin, S. W., V., Goutsouliak, and J. Y. Kong. Angiotensin II induces activation of phosphatidylinositol 3‐kinase in cardiomyocytes. J. Hypertens. 15: 891–899, 1997.
 439. Raizada, M. K., B., Rydzewski, D. Lu, and C. Sumners. Angiotensin II type 1 receptor–mediated stimulation of c‐fos gene expression in astroglial cultures. Am. J. Physiol. 265 (Cell Physiol. 34): C1046–C1049, 1993.
 440. Rakugi, H., D. S., Wang, V. J. Dzau, and R. E. Pratt. Potential importance of tissue angiotensin‐converting enzyme inhibition in preventing neointima formation. Circulation 90: 449–455, 1994.
 441. Ramsay, D. J., L. C., Keil, M. C. Sharpe, and J. Shinsako. Angiotensin II infusion increases vasopressin, ACTH, and 11‐hydroxycorticosteroid secretion. Am. J. Physiol. 234: (Regulatory Integrative Comp. Physiol. 5): R66–R71, 1978.
 442. Rao, G. N., B., Lassegue, R. W. Alexander, and K. K. Griendling. Angiotensin II stimulates phosphorylation of highmolecular‐mass cytosolic phospholipase A2 in vascular smooth‐muscle cells. Biochem. J. 299: 197–201, 1994.
 443. Rasmussen, H., Y., Takuwa, and S. Park. Protein kinase C in the regulation of smooth muscle contraction. FASEB. J. 1: 177–185, 1987.
 444. Ray, P. E., G., Aguilera, J. B. Kopp, S. Horikoshi, and P. E. Klotman. Angiotensin II receptor–mediated proliferation of cultured human fetal mesangial cells. Kidney Int. 40: 764–771, 1991.
 445. Rebuffat, P., A. S., Belloni, G. Mazzocchi, P. Vassanelli, and G. G. Nussdorfer. A stereological study of the trophic effects of the renin–angiotensin system on the rat adrenal zona glomerulosa. J. Anat. 129: 561–570, 1979.
 446. Regan, C. P., P. G., Anderson, S. P. Bishop, and K. H. Berecek. Pressure‐independent effects of ATI‐receptor antagonism on cardiovascular remodeling in aortic‐banded rats. Am. J. Physiol. 272 (Heart Circ. Physiol. 43): H2131–H2138, 1997.
 447. Reilly, A. M., P. J., Harris, and D. A. Williams. Biphasic effect of angiotensin II on intracellular sodium concentration in rat proximal tubules. Am. J. Physiol. 269 (Renal Fluid Electrolyte Physiol. 38): F374–F380, 1995.
 448. Reilly, C. F., D. A., Tewksbury, N. M. Schechter, and J. Travis. Rapid conversion of angiotensin I to angiotensin II by neutrophil and mast cell proteinases. J. Biol. Chem. 257: 8619–8622, 1982.
 449. Rockman, H. A., D. J., Choi, N. U. Rahman, S. A. Akhter, R. J. Lefkowitz, and W. J. Koch. Receptor‐specific in vivo desensitization by the G protein‐coupled receptor kinase‐5 in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 93: 9954–9959, 1996.
 450. Rodriguez‐Viciana, P., P. H., Warne, A. Khwaja, B. M. Marte, D. Pappin, P. Das, M. D. Waterfield, A. Ridley, and J. Downward. Role of phosphoinositide 3‐OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89: 457–467, 1997.
 451. Rogerson, F. M., I., Schlawe, G. Paxinos, S. Y. Chai, M. J. McKinley, and F. A. Mendelsohn. Localization of angiotensin converting enzyme by in vitro autoradiography in the rabbit brain. J. Chem. Neuroanat. 8: 227–243, 1995.
 452. Rohacs, T., A., Bago, F. Deak, L. Hunyady, and A. Spat. Capacitative Ca2+ influx in adrenal glomerulosa cells: possible role in angiotensin II response. Am. J. Physiol. 267 (Cell Physiol. 36): C1246–C1252, 1994.
 453. Rohacs, T., G., Nagy, and A. Spat. Cytoplasmic Ca2+ signalling and reduction of mitochondrial pyridine nucleotides in adrenal glomerulosa cells in response to K+, angiotensin II and vasopressin. Biochem. J. 322: 785–792, 1997.
 454. Roman, R. J., M. L., Kaldunski, A. G. Scicli, and O. A. Carretero. Influence of kinins and angiotensin II on the regulation of papillary blood flow. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 26): F690–F698, 1988.
 455. Romero, M. F., Z. T., Madhun, U. Hopfer, and J. G. Douglas. An epoxygenase metabolite of arachidonic acid 5,6 epoxyeicosatrienoic acid mediates angiotensin‐induced natriuresis in proximal tubular epithelium. Adv. Prostaglandin Thromboxane Leukot. Res. 21A: 205–208, 1991.
 456. Ronco, P., M., Antoine, B. Baudouin, M. Geniteau‐Legendre, B. Lelongt, F. Chatelet, P. Verroust, and A. Vandewalle. Polarized membrane expression of brush‐border hydrolases in primary cultures of kidney proximal tubular cells depends on cell differentiation and is induced by dexamethasone. J. Cell Physiol. 145: 222–237, 1990.
 457. Rosivall, L., P., Youngblood, and L. G. Navar. Renal autoregulatory efficiency during angiotensin‐converting enzyme inhibition in dogs on a low sodium diet. Ren. Physiol. 9: 18–28, 1986.
 458. Rossier, M. F., H. B., Aptel, C. P. Python, M. M. Burnay, M. B. Vallotton, and A. M. Capponi. Inhibition of low threshold calcium channels by angiotensin II in adrenal glomerulosa cells through activation of protein kinase C. J. Biol. Chem. 270: 15137–15142, 1995.
 459. Rossier, M. F., M. M., Burnay, Y. Brandenburger, N. Cherradi, M. B. Vallotton, and A. M. Capponi. Sources and sites of action of calcium in the regulation of aldosterone biosynthesis. Endocr. Res. 22: 579–588, 1996.
 460. Rossig, L., A., Zolyomi, K. J. Catt, and T. Balla. Regulation of angiotensin II‐stimulated Ca2+ oscillations by Ca2+ inflex mechanisms in adrenal glomerulosa cells. J. Biol. Chem. 271: 22063–22069, 1996.
 461. Rothblat, G. H.. Finally, a noncontroversial role for Apo A‐I in HDL‐mediated cholesterol flux to cells. J. Clin. Invest. 97: 2405–2406, 1996.
 462. Ruiz, O. S., Y. Y., Qiu, L. J. Wang, and J. A. Arruda. Regulation of the renal Na‐HCO3 cotransporter: IV. Mechanisms of the stimulatory effect of angiotensin II. J. Am. Soc. Nephrol. 6: 1202–1208, 1995.
 463. Ruiz‐Gines, J. A., C., Perez‐Caballero, F. O'Valle, M. Rodriguez‐Puyol, and D. Rodriguez‐Puyol. Captopril inhibits pp60c‐src tyrosine phosphorylation in cultured human mesangial cells. Eur. J. Pharmacol. 336: 251–256, 1997.
 464. Rupprecht, H. D., P., Dann, V. P. Sukhatme, R. B. Sterzel, and D. L. Coleman. Effect of vasoactive agents on induction of Egr‐1 in rat mesangial cells: correlation with mitogenicity. Am. J. Physiol. 263 (Renal Fluid Electrolyte Physiol. 32): F623–F636, 1992.
 465. Ruzicka, M., and F. H. Leenen. Update on local cardiac renin–angiotensin system. Curr. Opin. Cardiol. 12: 347–353, 1997.
 466. Saccomani, G., K. D., Mitchell, and L. G. Navar. Angiotensin II stimulation of Na+–H+ exchange in proximal tubule cells. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F1188–F1195, 1990.
 467. Sachse, R., X. J., Shao, A. Rico, U. Finckh, A. Rolfs, M. Reincke, and J. Hensen. Absence of angiotensin II type 1 receptor gene mutations in human adrenal tumors. Eur. J. Endocrinol. 137: 262–266, 1997.
 468. Sadoshima, J., and S. Izumo. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu. Rev. Physiol. 59: 551–571, 1997.
 469. Saino, A., G., Pomidossi, R. Perondi, R. Valentini, A. Rimini, L. Di Francesco, and G. Mancia. Intracoronary angiotensin II potentiates coronary sympathetic vasoconstriction in humans. Circulation 96: 148–153, 1997.
 470. Sano, T., K., Ohyama, Y. Yamano, Y. Nakagomi, S. Nakazawa, M. Kikyo, H. Shirai, J. S. Blank, J. H. Exton, and T. Inagami. A domain for G protein coupling in carboxyl‐terminal tail of rat angiotensin II receptor type 1A. J. Biol. Chem. 272: 23631–23636, 1997.
 471. Santos, R. A., K. B., Brosnihan, D. W. Jacobsen, P. E. DiCorleto, and C. M. Ferrario. Production of angiotensin‐(1–7) by human vascular endothelium. Hypertension 19: II56–II61, 1992.
 472. Sasaki, K., Y., Yamano, S. Bardhan, N. Iwai, J. J. Murray, M. Hasegawa, Y. Matsuda, and T. Inagami. Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type‐1 receptor. Nature 351: 230–233, 1991.
 473. Sasamura, H., V. J., Dzau, and R. E. Pratt. Desensitization of angiotensin receptor function. Kidney Int. 46: 1499–1501, 1994.
 474. Sasamura, H., L., Hein, J. E. Krieger, R. E. Pratt, B. K. Kobilka, and V. J. Dzau. Cloning, characterization, and expression of two angiotensin receptor (AT‐1) isoforms from the mouse genome. Biochem. Biophys. Res. Commun. 185: 253–259, 1992.
 475. Sauro, M. D., R., Sudakow, and S. Burns. In vivo effects of angiotensin II on vascular smooth muscle contraction and blood pressure are mediated through a protein tyrosine‐kinase‐dependent mechanism. J. Pharmacol. Exp. Ther. 277: 1744–1750, 1996.
 476. Savineau, J. P., P. Gonzalez de la Fuente, and R. Marthan. Effect of modulators of tyrosine kinase activity on agonistinduced contraction in the rat pulmonary vascular smooth muscle. Pulm. Pharmacol. 9: 189–195, 1996.
 477. Savineau, J. P., and R. Marthan. Modulation of the calcium sensitivity of the smooth muscle contractile apparatus: molecular mechanisms, pharmacological and pathophysiological implications. Fundam. Clin. Pharmacol. 11: 289–299, 1997.
 478. Sawa, H., F., Tokuchi, N. Mochizuki, Y. Endo, Y. Furuta, T. Shinohara, A. Takada, H. Kawaguchi, H. Yasuda, and K. Nagashima. Expression of the angiotensinogen gene and localization of its protein in the human heart. Circulation 86: 138–146, 1992.
 479. Scharschmidt, L. A., J. G., Douglas, and M. J. Dunn. Angiotensin II and eicosanoids in the control of glomerular size in the rat and human. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F348–F356, 1986.
 480. Schelling, J. R., A. S., Hanson, R. Marzec, and S. L. Linas. Cytoskeleton‐dependent endocytosis is required for apical type 1 angiotensin II receptor–mediated phospholipase C activation in cultured rat proximal tubule cells. J. Clin. Invest. 90: 2472–2480, 1992.
 481. Schelling, J. R., and S. L. Linas. Angiotensin II‐dependent proximal tubule sodium transport requires receptor‐mediated endocytosis. Am. J. Physiol. 266 (Cell Physiol. 35): C669–C675, 1994.
 482. Schelling, J. R., N., Nkemere, M. Konieczkowski, K. A. Martin, and G. R. Dubyak. Angiotensin II activates the beta 1 isoform of phospholipase C in vascular smooth muscle cells. Am. J. Physiol. 272 (Cell Physiol. 41): C1558–C1566, 1997.
 483. Schelling, J. R., H., Singh, R. Marzec, and S. L. Linas. Angiotensin II‐dependent proximal tubule sodium transport is mediated by cAMP modulation of phospholipase C. Am. J. Physiol. 267 (Cell Physiol. 36): C1239–C1245, 1994.
 484. Schieffer, B., W. G., Paxton, Q. Chai, M. B. Marrero, and K. E. Bernstein. Angiotensin II controls p21ras activity via pp60c‐src. J. Biol. Chem. 271: 10329–10333, 1996.
 485. Schlatter, E., S., Haxelmans, I. Ankorina, and R. Kleta. Regulation of Na+/H+ exchange by diadenosine polyphosphates, angiotensin II, and vasopressin in rat cortical collecting duct. J. Am. Soc. Nephrol. 6: 1223–1229, 1995.
 486. Schmitt, F., F. Martinez, G. Brillet, T. Nguyen‐Khoa, R. Brouard, J. Sissmann, B. Lacour, and J. P. Grunfeld. Acute renal effects of ATI‐receptor blockade after exogenous angiotensin II infusion in healthy subjects. J. Cardiovasc. Pharmacol. 31: 314–321, 1998.
 487. Schmitz, U., M., Ishida, and B. C. Berk. Angiotensin II stimulates tyrosine phosphorylation of phospholipase C‐gamma‐associated proteins. Characterization of a c‐Src‐dependent 97‐kD protein in vascular smooth muscle cells. Circ. Res. 81: 550–557, 1997.
 488. Schnabel, E., W., Kriz, and M. Steinhausen. Outflow segment of the efferent arteriole of the rat glomerulus investigated by in vivo and electron microscopy. Ren. Physiol. 10: 318–326, 1988.
 489. Schnermann, J., H., Weihprecht, and J. P. Briggs. Inhibition of tubuloglomerular feedback during adenosine 1 receptor blockade. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F553–F561, 1990.
 490. Schnermann, J., H., Weihprecht, J. N. Lorenz, and J. P. Briggs. The afferent arteriole—the target for macula densa–generated signals. Kidney Int. Suppl. 32: S74–S77, 1991.
 491. Schor, N., I., Ichikawa, and B. M. Brenner. Mechanisms of action of various hormones and vasoactive substances on glomerular ultrafiltration in the rat. Kidney Int. 20: 442–451, 1981.
 492. Schorb, W., T. C., Peeler, N. N. Madigan, K. M. Conrad, and K. M. Baker. Angiotensin II‐induced protein tyrosine phosphorylation in neonatal rat cardiac fibroblasts. J. Biol. Chem. 269: 19626–19632, 1994.
 493. Schramek, H., E., Coroneos, and M. J. Dunn. Interactions of the vasoconstrictor peptides, angiotensin II and endothelin‐1, with vasodilatory prostaglandins. Semin. Nephrol. 15: 195–204, 1995.
 494. Schunkert, H., V. J., Dzau, S. S. Tang, A. T. Hirsch, C. S. Apstein, and B. H. Lorell. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation. J. Clin. Invest. 86: 1913–1920, 1990.
 495. Schuster, V. L., J. P., Kokko, and H. R. Jacobson. Angiotensin II directly stimulates sodium transport in rabbit proximal convoluted tubules. J. Clin. Invest. 73: 507–515, 1984.
 496. Seibold, A., B. G. January, J. Friedman, R. W. Hipkin, and R. B. Clark. Desensitization of beta2‐adrenergic receptors with mutations of the proposed G protein‐coupled receptor kinase phosphorylation sites. J. Biol. Chem. 273: 7637–7642, 1998.
 497. Seikaly, M. G., B. S. Arant, Jr., and F. D. Seney, Jr. Endogenous angiotensin concentrations in specific intrarenal fluid compartments of the rat. J. Clin. Invest. 86: 1352–1357, 1990.
 498. Servant, G., S. A., Laporte, R. Leduc, E. Escher, and G. Guillemette. Identification of angiotensin II‐binding domains in the rat AT2 receptor with photolabile angiotensin analogs. J. Biol. Chem. 272: 8653–8659, 1997.
 499. Shanmugam, S., C., Llorens‐Cortes, E. Clauser, P. Corvol, and J. M. Gasc. Expression of angiotensin II AT2 receptor mRNA during development of rat kidney and adrenal gland. Am. J. Physiol. 268 (Renal Fluid Electrolyte Physiol. 37): F922–F930, 1995.
 500. Shapiro, M. S., L. P., Wollmuth, and B. Hille. Angiotensin II inhibits calcium and M current channels in rat sympathetic neurons via G proteins. Neuron 12: 1319–1329, 1994.
 501. Sigmon, D. H., and W. H. Beierwaltes. Angiotensin II: nitric oxide interaction and the distribution of blood flow. Am. J. Physiol. 265 (Regulatory Integrative Comp. Physiol. 34): R1276–R1283, 1993.
 502. Simon, E. E., C., Merli, J. Herndon, E. J. Cragoe, Jr., and L. L., Hamm. Effects of barium and 5‐(N‐ethyl‐N‐isoproply)‐amiloride on proximal tubule ammonia transport. Am. J. Physiol. 262 (Renal Fluid Electrolyte Physiol. 31): F36–F39, 1992.
 503. Simpson, H. D., R., Shepherd, J. Shepherd, R. Fraser, A. F. Lever, and C. J. Kenyon. Effects of cholesterol and lipoproteins on aldosterone secretion by bovine zona glomerulosa cells. J. Endocrinol. 121: 125–131, 1989.
 504. Simpson, J. B., and A. Routtenberg. Subfornical organ lesions reduce intravenous angiotensin‐induced drinking. Brain Res. 88: 154–161, 1975.
 505. Singh, I., M., Grams, W. H. Wang, T. Yang, P. Killen, A. Smart, J. Schnermann, and J. P. Briggs. Coordinate regulation of renal expression of nitric oxide synthase, renin, and angiotensinogen mRNA by dietary salt. Am. J. Physiol. 270 (Renal Fluid Electrolyte Physiol. 39): F1027–F1037, 1996.
 506. Singhal, P. C., L. A., Scharschmidt, N. Gibbons, and R. M. Hays. Contraction and relaxation of cultured mesangial cells on a silicone rubber surface. Kidney Int. 30: 862–873, 1986.
 507. Siragy, H. M., and R. M. Carey. The subtype 2 angiotensin receptor regulates renal prostaglandin F2 alpha formation in conscious rats. Am. J. Physiol. 273 (Regulatory Integrative Comp. Physiol. 42): R1103–R1107, 1997.
 508. Skeggs, L. T., Jr., K. E. Lentz, H. Hochstrasser, and J. R. Kahn. The purification and partial characterization of several forms of hog renin substrate. J. Exp. Med. 118: 73, 1963.
 509. Skorecki, K. L., B. J., Ballermann, H. G. Rennke, and B. M. Brenner. Angiotensin II receptor regulation in isolated renal glomeruli. Federation Proc. 42: 3064–3070, 1983.
 510. Skorecki, K. L., and B. M. Brenner. Body fluid homeostasis in man. A contemporary overview. Am. J. Med. 70: 77–88, 1981.
 511. Soriano, P.. Abnormal kidney development and hematological disorders in PDGF beta‐receptor mutant mice. Genes Dev. 8: 1888–1896, 1994.
 512. Squire, I. B.. Actions of angiotensin II on cerebral blood flow autoregulation in health and disease. J. Hypertens. 12: 1203–1208, 1994.
 513. Stachowiak, M. K., M., Sar, R. K. Tuominen, H. K. Jiang, S. An, M. J. Iadarola, A. M. Poisner, and J. S. Hong. Stimulation of adrenal medullary cells in vivo and in vitro induces expression of c‐fos proto‐oncogene. Oncogene 5: 69–73, 1990.
 514. Stefanovic, V., P., Vlahovic, N. Ardaillou, P. Ronco, and R. Ardaillou. Cell surface aminopeptidase A and N activities in human glomerular epithelial cells. Kidney Int. 41: 1571–1580, 1992.
 515. Steiner, R. W., and R. C. Blantz. Acute reversal by saralasin of multiple intrarenal effects of angiotensin II. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 8): F386–F391, 1979.
 516. Steiner, R. W., B. J., Tucker, and R. C. Blantz. Glomerular hemodynamics in rats with chronic sodium depletion. Effects of saralasin. J. Clin. Invest. 64: 503–512, 1979.
 517. Steinhausen, M., H., Kucherer, N. Parekh, S. Weis, D. L. Wiegman, and K. R. Wilhelm. Angiotensin II control of the renal microcirculation: effect of blockade by saralasin. Kidney Int. 30: 56–61, 1986.
 518. Streeten, D. H., G. H. Anderson, Jr., and T. H., Dalakos. Angiotensin blockade: its clinical significance. Am. J. Med. 60: 817–824, 1976.
 519. Strong, C. G., H. R., Tapia, V. R. Walker, and J. C. Hunt. Measurement of plasma angiotensinase activity by a radioimmunoassay method. J. Lab. Clin. Med. 79: 170–180, 1972.
 520. Struijker‐Boudier, H. A., H. Van Essen, G. Fazzi, J. G. De Mey, H. Y. Qiu, and B. I. Levy. Disproportional arterial hypertrophy in hypertensive mRen‐2 transgenic rats. Hypertension 28: 779–784, 1996.
 521. Stull, J. T., P. J., Gallagher, B. P. Herring, and K. E. Kamm. Vascular smooth muscle contractile elements. Cellular regulation. Hypertension 17: 723–732, 1991.
 522. Suga, K., K., Ito, D. Tsuru, and T. Yoshimoto. Prolylcarboxy‐peptidase (angiotensinase C): purification and characterization of the enzyme from Xanthomanas maltophilia. Biosci. Biotechnol. Biochem. 59: 298–301, 1995.
 523. Sugaya, T., S., Nishimatsu, K. Tanimoto, E. Takimoto, T. Yamagishi, K. Imamura, S. Goto, K. Imaizumi, Y. Hisada, A. Otsuka, H. Uchida, M. Sugiura, K. Fukuta, A. Fukamizu, and K. Mura Kami. Angiotensin II type 1a receptor‐deficient mice with hypotension and hyperreninemia. J. Biol. Chem. 270: 18719–18722, 1995.
 524. Sumners, C., M., Zhu, C. H. Gelband, and P. Posner. Angiotensin II type 1 receptor modulation of neuronol K+ and Ca2+ currents: intracellular mechanisms. Am. J. Physiol. 271 (Cell Physiol. 40): C154–C163, 1996.
 525. Suvannapura, A., and N. R. Levens. Local control of mesenteric blood flow by the renin–angiotensin system. Am. J. Physiol. 255 (Gastrointest. Liver Physiol. 18): G267–G274, 1988.
 526. Swanson, G. N., J. M., Hanesworth, M. F. Sardinia, et al, Discovery of a distinct binding site for angiotensin II(3–8), a putative angiotensin IV receptor. Regul. Pept. 40: 409–419, 1992.
 527. Szpirer, C., M., Riviere, J. Szpirer, G. Levan, D. F. Guo, N. Iwai, and T. Inagami. Chromosomal assignment of human and rat hypertension candidate genes: type 1 angiotensin II receptor genes and the SA gene. J. Hypertens. 11: 919–925, 1993.
 528. Takahashi, T., Y., Kawahara, M. Okuda, H. Ueno, A. Takeshita, and M. Yokoyama. Angiotensin II stimulates mitogen‐activated protein kinases and protein synthesis by a Rasindependent pathway in vascular smooth muscle cells. J. Biol. Chem. 272: 16018–16022, 1997.
 529. Takayanagi, R., K., Ohnaka, Y. Sakai, S. Ikuyama, and H. Nawata. Molecular cloning and characterization of the promoter for human type‐1 angiotensin II receptor gene. Biochem. Biophys. Res. Commun. 200: 1264–1270, 1994.
 530. Takenaka, T., L. M., Harrison‐Bernard, E. W. Inscho, P. K. Carmines, and L. G. Navar. Autoregulation of afferent arteriolar blood flow in juxtamedullary nephrons. Am. J. Physiol. 267 (Renal Fluid Electrolyte Physiol. 36): F879–F887, 1994.
 531. Takenaka, T., H., Suzuki, K. Fujiwara, Y. Kanno, Y. Ohno, K. Hayashi, T. Nagahama, and T. Saruta. Cellular mechanisms mediating rat renal microvascular constriction by angiotensin II. J. Clin. Invest. 100: 2107–2114, 1997.
 532. Takeuchi, K., R. W., Alexander, Y. Nakamura, T. Tsujino, and T. J. Murphy. Molecular structure and transcriptional function of the rat vascular AT1 a angiotensin receptor gene. Circ. Res. 73: 612–621, 1993.
 533. Tallant, E. A., X., Lu, R. B. Weiss, M. C. Chappell, and C. M. Ferrario. Bovine aortic endothelial cells contain an angiotensin‐(1–7) receptor. Hypertension 29: 388–393, 1997.
 534. Tan, F., P. W., Morris, R. A. Skidgel, and E. G. Erdos. Sequencing and cloning of human prolylcarboxypeptidase (angiotensinase C). Similarity to both serine carboxypeptidase and prolylendopeptidase families [published erratum appears in J. Biol. Chem. 268: 26032, 1993]. J. Biol. Chem. 268: 16631–16638, 1993.
 535. Tanimoto, K., F., Sugiyama, Y. Goto, J. Ishida, E. Takimoto, K. Yagami, A. Fukamizu, and K. Murakami. Angiotensinogen‐deficient mice with hypotension. J. Biol. Chem. 269: 31334–31337, 1994.
 536. Tank, J. E., W. L., Henrich, and O. W. Moe. Regulation of glomerular and proximal tubule renin mRNA by chronic changes in dietary NaCl. Am. J. Physiol. 273 (Renal Physiol. 42): F892–F898, 1997.
 537. Tapon, N., K., Nagata, N. Lamarche, and A. Hall. A new rac target POSH is an SH3‐containing scaffold protein involved in the JNK and NF‐kappaB signalling pathways. EMBO J. 17: 1395–1404, 1998.
 538. Taugner, R., L., Rosivall, C. P. Buhrle, and U. Groschel‐Stewart. Myosin content and vasoconstrictive ability of the proximal and distal (renin‐positive) segments of the preglomerular arteriole. Cell Tissue Res. 248: 579–588, 1987.
 539. Terada, Y., K., Tomita, M. K. Homma, H. Nonoguchi, T. Yang, T. Yamada, Y. Yuasa, E. G. Krebs, and F. Marumo. Sequential activation of MAP kinase cascade by angiotensin II in opossum kidney cells. Kidney Int. 48: 1801–1809, 1995.
 540. Terada, Y., K., Tomita, H. Nonoguchi, and F. Marumo. PCR localization of angiotensin II receptor and angiotensinogen mRNAs in rat kidney. Kidney Int. 43: 1251–1259, 1993.
 541. Thomas, W. G., K. M., Baker, T. J. Motel, and T. J. Thekkumkara. Angiotensin II receptor endocytosis involves two distinct regions of the cytoplasmic tail. A role for residues on the hydrophobic face of a putative amphipathic helix. J. Biol. Chem. 270: 22153–22159, 1995.
 542. Thomas, W. G., T. J., Thekkumkara, and K. M. Baker. Molecular mechanisms of angiotensin II (AT1A) receptor endocytosis. Clin. Exp. Pharmacol. Physiol. Suppl. 3: S74–S80, 1996.
 543. Thomas, W. G., T. J., Thekkumkara, T. J. Motel, and K. M. Baker. Stable expression of a truncated AT1A receptor in CHO‐K1 cells. The carboxyl‐terminal region directs agonist‐induced internationalization but not receptor signaling or desensitization. J. Biol. Chem. 270: 207–213, 1995.
 544. Thorup, C., M., Kornfeld, J. M. Winaver, M. S. Goligorsky, and L. C. Moore. Angiotensin‐II stimulates nitric oxide release in isolated perfused renal resistance arteries. Pflugers Arch. 435: 432–434, 1998.
 545. Thrasher, T. N., J. B., Simpson, and D. J. Ramsay. Lesions of the subfornical organ block angiotensin‐induced drinking in the dog. Neuroendocrinology 35: 68–72, 1982.
 546. Thunhorst, R. L.. Role of peripheral angiotensin in salt appetite of the sodium‐deplete rat. Neurosci. Biobehav. Rev. 20: 101–106, 1996.
 547. Thunhorst, R. L., M., Morris, and A. K. Johnson. Endocrine changes associated with a rapidly developing sodium appetite in rats. Am. J. Physiol. 267 (Regulatory Integrative Comp. Physiol. 36): R1168–R1173, 1994.
 548. Tian, Y., T., Balla, A. J. Baukal, and K. J. Catt. Growth responses to angiotensin II in bovine adrenal glomerulosa cells. Am. J. Physiol. 268 (Endocrinol. Metab. 31): E135–E144, 1995.
 549. Tian, Y., R. D., Smith, T. Balla, and K. J. Catt. Angiotensin II activates mitogen‐activated protein kinase via protein kinase C and Ras/Raf‐1 kinase in bovine adrenal glomerulosa cells. Endocrinology 139: 1801–1809, 1998.
 550. Tigerstedt, R., and P. G. Bergmann. Niere und Kreislauf, Scand. Arch. Physiol. 8: 233–245, 1898.
 551. Toda, N. Endothelium‐dependent relaxation induced by angiotensin II and histamine in isolated arteries of dog. Br. J. Pharmacol. 81: 301–307, 1984.
 552. Tojo, A., C. C., Tisher, and K. M. Madsen. Angiotensin II regulates H+‐ATPase activity in rat cortical collecting duct. Am. J. Physiol. 267 (Renal Fluid Electrolyte Physiol. 36): F1045–F1051, 1994.
 553. Tonnesen, M. G., M. S., Klempner, K. P. Austen, and B. U. Wintroub. Identification of a human neutrophil angiotension II‐generating protease as cathepsin G. J. Clin. Invest. 69: 25–30, 1982.
 554. Toth, I. E., K. S., Szalay, D. Szabo, and J. Pill. Effect of a cholesterol synthesis inhibitor (BM 15.766) in the presence and absence of HDL on corticosteroidogenesis of isolated zona glomerulosa and fasciculata cells. J. Steroid. Biochem. Mol. Biol. 37: 687–691, 1990.
 555. Touhara, K., B. E. Hawes, T. Van Biesen, and R. J. Lefkowitz. G protein beta gamma subunits stimulate phosphorylation of Shc adapter protein. Proc. Natl. Acad. Sci. U.S.A. 92: 9284–9287, 1995.
 556. Touyz, R. M., and E. L. Schiffrin. Tyrosine kinase signaling pathways modulate angiotensin II‐induced calcium ([Ca2+]i) transient in vascular in vascular smooth muscle cells. Hypertension 27: 1097–1103, 1996.
 557. Townend, J. N., M. al‐Ani, J. N. West, W. A. Littler, and J. H. Coote. Modulation of cardiac autonomic control in humans by angiotensin II. Hypertension 25: 1270–1275, 1995.
 558. Traquandi, C., and E. Riva. Cardiac effects of angiotensin I and angiotensin II: dose‐response studies in the isolated perfused rat heart. Pharmacol. Res. 37: 57–65, 1998.
 559. Troyanovskaya, M., L., Song, G. Jayaraman, and D. P. Healy. Expression of aminopeptidase A, an angiotensinase, in glomerular mesangial cells. Hypertension 27: 518–522, 1996.
 560. Tsutsumi, K., C., Stromberg, M. Viswanathan, and J. M. Saavedra. Angiotensin‐II receptor subtypes in fetal tissue of the rat: autoradiography, guanine nucleotide sensitivity, and association with phosphoinositide hydrolysis. Endocrinology 129: 1075–1082, 1991.
 561. Tucker, B. J., and R. C. Blantz. Mechanism of altered glomerular hemodynamics during chronic sodium depletion. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 15): F11–F18, 1983.
 562. Ueda, N., J. A., Iniguez‐Lluhi, E. Lee, A. V. Smrcka, J. D. Robishaw, and A. G. Gilman. G. protein beta gamma subunits. Simplified purification and properties of novel isoforms. J. Biol. Chem. 269: 4388–4395, 1994.
 563. Ueda, S., H. L., Elliott, J. J. Morton, and J. M. Connell. Enhanced pressor response to angiotensin I in normotensive men with the deletion genotype (DD) for angiotensin‐converting enzyme. Hypertension 25: 1266–1269, 1995.
 564. Uehata, M., T., Ishizaki, H. Satoh, T. Ono, T. Kawahara, T. Morishita, H. Tamakawa, K. Yamagami, J. Inui, M. Maekawa, and S. Narumiya. Calcium sensitization of smooth muscle mediated by a Rho‐associated protein kinase in hypertension. Nature 389: 990–994, 1997.
 565. Uiker, S., and W. Kriz. Structural analysis of the formation of glomerular microaneurysms in the Habu venom model. Virchows Arch. 426: 281–293, 1995.
 566. Unnikrishnan, M., U. M., Chandrasekharan, S. Sanker, M. J. Glynias, S. S. Karnik, and A. Husain. Angiotensin II‐forming activity in a reconstructed ancestral chymase. Science 271: 502–505, 1996.
 567. Uno, S., D. F., Guo, M. Nakajima, H. Ohi, T. Imada, R. Hiramatsu, H. Nakakubo, N. Nakamura, and T. Inagami. Glucocorticoid induction of rat angiotensin II type 1A receptor gene promoter. Biochem. Biophys. Res. Commun. 204: 210–215, 1994.
 568. Urata, H., K. D., Boehm, A. Philip, A. Kinoshita, J. Gabrovsek, F. M. Bumpus, and A. Husain. Cellular localization and regional distribution of an angiotensin II‐forming chymase in the heart. J. Clin. Invest. 91: 1269–1281, 1993.
 569. Urata, H., A., Kinoshita, K. S. Misono, F. M. Bumpus, and A. Husain. Identification of a highly specific chymase as the major angiotensin II‐forming enzyme in the human heart [published erratum appears in J. Biol. Chem. 266: 12114, 1991]. J. Biol. Chem. 265: 22348–22357, 1990.
 570. Urata, H., H., Nishimura, and D. Ganten. Chymase‐dependent angiotensin II forming systems in humans. Am. J. Hypertens. 9: 277–284, 1996.
 571. Ushio‐Fukai, M., A. M., Zafari, T. Fukui, N. Ishizaka, and K. K. Griendling. p22phox is a critical component of the superoxide‐generating NADH/NADPH oxidase system and regulates angiotensin II‐induced hypertrophy in vascular smooth muscle cells. J. Biol. Chem. 271: 23317–23321, 1996.
 572. Valenzuela, C., O., Perez, E. Delpon, and J. Tamargo. Effects of lisinopril on cardiac contractility and ionic currents. Gen. Pharmacol. 25: 825–832, 1994.
 573. Vallon, V., K., Richter, N. Heyne, and H. Osswald. Effect of intratubular application of angiotensin 1–7 on nephron function. Kidney Blood Press. Res. 20: 233–239, 1997.
 574. Van Belle, E., C. Bauters, N. Wernert, C. Delcayre, E. P. McFadden, B. Dupuis, J. M. Lablanche, M. E. Bertrand, and B. Swynghedauw. Angiotensin converting enzyme inhibition prevents proto‐oncogene expression in the vascular wall after injury. J. Hypertens. 13: 105–112, 1995.
 575. Van Biesen, T., B. E. Hawes, D. K. Luttrell, K. M. Krueger, K. Touhara, E. Porfiri, M. Sakaue, L. M. Luttrell, and R. J. Lefkowitz. Receptor‐tyrosine‐kinase‐ and G beta gamma‐mediated MAP kinase activation by a common signalling pathway. Nature 376: 781–784, 1995.
 576. Van Bilsen, M.. Signal transduction revisited: recent developments in angiotensin II signaling in the cardiovascular system. Cardiovasc. Res. 36: 310–322, 1997.
 577. Venema, R. C., H., Ju, V. J. Venema, B. Schieffer, J. B. Harp, B. N. Ling, D. C. Eaton, and M. B. Marrero. Angiotensin II‐induced association of phospholipase Cgammal with the G‐protein‐coupled AT1 receptor. J. Biol. Chem. 273: 7703–7708, 1998.
 578. Waeber, B., and H. R. Brunner. Cardiovascular hypertrophy: role of angiotensin II and bradykinin. J. Cardiovasc. Pharmacol. 27 (Suppl. 2): S36–S40, 1996.
 579. Walsh, M. P., A., Horowitz, O. Clement‐Chomienne, J. E. Andrea, B. G. Allen, and K. G. Morgan. Protein kinase C mediation of Ca2+‐independent contractions of vascular smooth muscle. Biochem. Cell. Biol. 74: 485–502, 1996.
 580. Wang, C., S., Jayadev, and J. A. Escobedo. Identification of a domain in the angiotensin II type 1 receptor determining Gq coupling by the use of receptor chimeras. J. Biol. Chem. 270: 16677–16682, 1995.
 581. Wang, D. H., R. L., Prewitt, and S. J. Beebe. Regulation of PDGF‐A: a possible mechanism for angiotensin II‐induced vascular growth. Am. J. Physiol. 269 (Heart Circ. Physiol. 40): H356–H364, 1995.
 582. Wang, P. H., Y. S., Do, L. Macaulay, T. Shinagawa, P. W. Anderson, J. D. Baxter, and W. A. Hsueh. Identification of renal cathepsin B as a human prorenin‐processing enzyme. J. Biol. Chem. 266: 12633–12638, 1991.
 583. Wang, T., and Y. L. Chan. Mechanism of angiotensin II action on proximal tubular transport. J. Pharmacol. Exp. Ther. 252: 689–695, 1990.
 584. Wang, T., and G. Giebisch. Effects of angiotensin II on electrolyte transport in the early and late distal tubule in rat kidney. Am. J. Physiol. 271 (Renal Fluid Electrolyte Physiol. 40): F143–F149, 1996.
 585. Webb, R. C.. Angiotensin II‐induced relaxation of vascular smooth muscle. Blood Vessels 19: 165–176, 1982.
 586. Weber, K. T., and C. G. Brilla. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin–angiotensin–aldosterone system. Circulation 83: 1849–1865, 1991.
 587. Weinberg, E. O., M. A., Lee, M. Weigner, K. Lindpaintner, S. P. Bishop, C. R. Benedict, K. K. Ho, P. S. Douglas, E. Chafizadeh, and B. H. Lorell. Angiotensin AT1 receptor inhibition. Effects on hypertrophic remodeling and ACE expression in rats with pressure‐overload hypertrophy due to ascending aortic stenosis. Circulation 95: 1592–1600, 1997.
 588. Weiner, I. D., A. R., New, A. E. Milton, and C. C. Tisher. Regulation of luminal alkalinization and acidification in the cortical collecting duct by angiotensin II. Am. J. Physiol. 269 (Renal Fluid Electrolyte Physiol. 38): F730–F738, 1995.
 589. Weinman, E. J., D., Steplock, Y. Wang, and S. Shenolikar. Characterization of a protein cofactor that mediates protein kinase A regulation of the renal brush border membrane NA+–H+ exchanger. J. Clin. Invest. 95: 2143–2149, 1995.
 590. Weisinger, R. S., J. R., Blair‐West, P. Burns, D. A. Denton, M. J. McKinley, and E. Tarjan. The role of angiotensin II in ingestive behaviour: a brief review of angiotensin II, thirst and Na appetite. Regul. Pept. 66: 73–81, 1996.
 591. Welches, W. R., K. B., Brosnihan, and C. M. Ferrario. A comparison of the properties and enzymatic activities of three angiotensin processing enzymes: angiotensin converting enzyme, prolyl endopeptidase and neutral endopeptidase 24.11. Life. Sci. 52: 1461–1480, 1993.
 592. Whitebread, S., M., Mele, B. Kamber, and M. de Gasparo. Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochem. Biophys. Res. Commun. 163: 284–291, 1989.
 593. Wolf, G., U., Haberstroh, and E. G. Neilson. Angiotensin II stimulates the proliferation and biosynthesis of type I collagen in cultured murine mesangial cells. Am. J. Pathol. 140: 95–107, 1992.
 594. Wolf, G., and E. G. Neilson. Effects of angiotensin II on proximal tubular cells stably transfected with the c‐mas oncogene. Am. J. Physiol. 263 (Renal Fluid Electrolyte Physiol. 32): F931–F938, 1992.
 595. Wolf, G., and F. N. Ziyadeh. The role of angiotensin II in diabetic nephropathy: emphasis on nonhemodynamic mechanisms. Am. J. Kidney Dis. 29: 153–163, 1997.
 596. Wolny, A., J. P., Clozel, J. Rein, P. Mory, P. Vogt, M. Turino, W. Kiowski, and W. Fischli. Functional and biochemical analysis of angiotensin II‐forming pathways in the human heart. Circ. Res. 80: 219–227, 1997.
 597. Wolthuis, A., A., Boes, H. P. Rodemann, and J. Grond. Vasoactive agents affect growth and protein synthesis of cultured rat mesangial cells. Kidney Int. 41: 124–131, 1992.
 598. Wright, J. W., K. A., Roberts, L. A. Stubley, J. M. Hanesworth, and J. W. Harding. Hypothalamic angiotensin release in response to AII or glutamic acid stimulation of the SFO in rats. Brain. Res. Bull. 31: 649–654, 1993.
 599. Wu, X., A. V., Somlyo, and A. P. Somlyo. Cyclic GMP‐dependent stimulation reverses G‐protein‐coupled inhibition of smooth muscle myosin light chain phosphate. Biochem. Biophys. Res. Commun. 220: 658–663, 1996.
 600. Yamano, Y., K., Ohyama, S. Chaki, D. F. Guo, and T. Inagami. Identification of amino acid residues of rat angiotensin II receptor for ligand binding by site directed mutagenesis. Biochem. Biophys. Res. Commun. 187: 1426–1431, 1992.
 601. Yanagibashi, K., M., Haniu, J. E. Shively, W. H. Shen, and P. Hall. The synthesis of aldosterone by the adrenal cortex. Two zones (fasciculata and glomerulosa) possess one enzyme for 11 beta‐, 18‐hydroxylation, and aldehyde synthesis. J. Biol. Chem. 261: 3556–3562, 1986.
 602. Yang, G., D. C., Merrill, M. W. Thompson, J. E. Robillard, and C. D. Sigmund. Functional expression of the human angiotensinogen gene in transgenic mice. J. Biol. Chem. 269: 32497–32502, 1994.
 603. Ye, M. Q., and D. P. Healy. Characterization of an angiotensin type‐1 receptor partial cDNA from rat kidney: evidence for a novel AT1B receptor subtype. Biochem. Biophys. Res. Commun. 185: 204–210, 1992.
 604. Ying, L., B. J., Morris, and C. D. Sigmund. Transactivation of the human renin promoter by the cyclic AMP/protein kinase A pathway is mediated by both cAMP‐responsive element binding protein‐1 (CREB)‐dependent and CREB‐independent mechanisms in Calu‐6 cells. J. Biol. Chem. 272: 2412–2420, 1997.
 605. Yiu, A. K., P. F., Wong, S. Y. Yeung, S. M. Lam, S. K. Luk, and W. T. Cheung. Immunohistochemical localization of type‐II (AT2) angiotensin receptors with a polyclonal antibody against a peptide from the C‐terminal tail. Regul. Pept. 70: 15–21, 1997.
 606. Yu, H., and R. Di Nicolantonio. Altered age‐dependent modulation of tissue renin messenger RNA levels in the spontaneously hypertensive rat. J. Hypertens. 14: 871–880, 1996.
 607. Yu, H., X., Li, G. S. Marchetto, R. Dy, D. Hunter, B. Calvo, T. L. Dawson, M. Wilm, R. J. Anderegg, L. M. Graves, and H. S. Earp. Activation of a novel calcium‐dependent proteintyrosine kinase. Correlation with c‐Jun N‐terminal kinase but not mitogen‐activated protein kinase activation. J. Biol. Chem. 271: 29993–29998, 1996.
 608. Yuan, B. H., J. B., Robinette, and J. D. Conger. Effect of angiotensin II and norepinephrine on isolated rat afferent and efferent arterioles. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F741–F750, 1990.
 609. Zatz, R., B. R., Dunn, T. W. Meyer, S. Anderson, H. G. Rennke, and B. M. Brenner. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J. Clin. Invest. 77: 1925–1930, 1986.
 610. Zatz, R., T. W., Meyer, H. G. Rennke, and B. M. Brenner. Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic glomerulopathy. Proc. Natl. Acad. Sci. U.S.A. 82: 5963–5967, 1985.
 611. Zhang, J., and R. E. Pratt. The AT2 receptor selectively associates with Gialpha2 and Gialpha3 in the rat fetus. J. Biol. Chem. 271: 15026–15033, 1996.
 612. Zhang, W. J., G. V., Nikiforovich, J. Perodin, D. E. Richard, E. Escher, and G. R. Marshall. Novel cyclic analogs of angiotensin II with cyclization between positions 5 and 7: conformational and biological implications. J. Med. Chem. 39: 2738–2744, 1996.
 613. Zhang, X., D. E., Dostal, K. Reiss, W. Cheng, J. Kajstura, P. Li, H. Huang, E. H. Sonnenblick, L. G. Meggs, K. M. Baker, and P. Anversa. Identification and activation of autocrine renin–angiotensin system in adult ventricular myocytes. Am. J. Physiol. 269 (Heart Circ. Physiol. 40): H1791–H1802, 1995.
 614. Zhang, Y., S., Moreland, and R. S. Moreland. Regulation of vascular smooth muscle contraction: myosin light chain phosphorylation dependent and independent pathways. Can. J. Physiol. Pharmacol. 72: 1386–1391, 1994.
 615. Zhou, J., P., Ernsberger, and J. G. Douglas. A novel angiotensin receptor subtype in rat mesangium. Coupling to adenylyl cyclase. Hypertension 21: 1035–1038, 1993.
 616. Zhu, B., and J. Herbert. Calcium channels mediate angiotensin II‐induced drinking behaviour and c‐fos expression in the brain. Brain Res. 778: 206–214, 1997.
 617. Zhu, M., C. H., Gelband, J. M. Moore, P. Posner, and C. Sumners. Angiotensin II type 2 receptor stimulation of neuronal delayed‐rectifier potassium current involves phospholipase A2 and arachidonic acid. J. Neurosci. 18: 679–686, 1998.
 618. Zhu, M., R. R., Neubig, S. M. Wade, P. Posner, C. H. Gelband, and C. Sumners. Modulation of K+ and Ca2+ currents in cultured neurons by an angiotensin II type 1a receptor peptide. Am. J. Physiol. 273 (Cell Physiol. 42): C1040–C1048, 1997.
 619. Zhuo, J., D., Alcorn, A. M. Allen, and F. A. Mendelsohn. High resolution localization of angiotensin II receptors in rat renal medulla. Kidney Int. 42: 1372–1380, 1992.
 620. Zhuo, J., K., Song, A. Abdelrahman, and F. A. Mendelsohn. Blockade by intravenous losartan of AT1 angiotensin II receptors in rat brain, kidney and adrenals demonstrated by in vitro autoradiography. Clin. Exp. Pharmacol. Physiol. 21: 557–567, 1994.
 621. Zini, S., M. C., Fournie‐Zaluski, E. Chauvel, B. P. Roques, P. Corvol, and C. Llorens‐Cortes. Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: predominant role of angiotensin III in the control of vasopressin release. Proc. Natl. Acad. Sci. U.S.A. 93: 11968–11973, 1996.
 622. Zohn, I. E., H., Yu, X. Li, A. D. Cox, and H. S. Earp. Angiotensin II stimulates calcium‐dependent activation of c‐Jun N‐terminal kinase. Mol. Cell Biol. 15: 6160–6168, 1995.
 623. Zou, A. P., F. Wu, and A. W. Cowley, Jr. Protective effect of angiotensin II‐induced increase in nitric oxide in the renal medullary circulation. Hypertension 31: 271–276, 1998.
 624. Zou, Y., I., Komuro, T. Yamazaki, R. Aikawa, S. Kudoh, I. Shiojima, Y. Hiroi, T. Mizuno, and Y. Yazaki. Protein kinase C, but not tyrosine kinases or Ras, plays a critical role in angiotensin II‐induced activation of Raf‐1 kinase and extracellular signal‐regulated protein kinases in cardiac myocytes. J. Biol. Chem. 271: 33592–33597, 1996.
 625. Zou, Y., I., Komuro, T. Yamazaki, S. Kudoh, R. Aikawa, W. Zhu, I. Shiojima, Y. Hiroi, K. Tobe, T. Kadowaki, and Y. Yazaki. Cell type‐specific angiotensin II‐evoked signal transduction pathways: critical roles of G|xa subunit, Src family, and Ras in cardiac fibroblasts. Circ. Res. 82: 337–345, 1998.
 626. Zusman, R. M., and H. R. Keiser. Prostaglandin biosynthesis by rabbit renomedullary interstitial cells in tissue culture. Stimulation by angiotensin II, bradykinin, and arginine vasopressin. J. Clin. Invest. 60: 215–223, 1977.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Barbara J. Ballermann, Macaulay A. C. Onuigbo. Angiotensins. Compr Physiol 2011, Supplement 22: Handbook of Physiology, The Endocrine System, Endocrine Regulation of Water and Electrolyte Balance: 104-155. First published in print 2000. doi: 10.1002/cphy.cp070304