Comprehensive Physiology Wiley Online Library

Renal Actions of Vasopressin

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Vasopressin and the Urinary Concentrating and Diluting Mechanism
1.1 General Features of the Urinary Concentration and Dilution Process
1.2 Mechanism of Tubule Fluid Dilution
1.3 Mechanism of Tubule Fluid Concentration
1.4 Countercurrent Multiplication
1.5 Role of Vasopressin in Urinary Concentration and Dilution
2 Vasopressin Receptors
2.1 V1a and V1b Receptor Subtypes
2.2 V2 Receptors
2.3 Renal Localization
3 Regulation of Aquaporin Water Channels by Vasopressin
3.1 Aquaporin Structure
3.2 Localization of Aquaporins in the Kidney
3.3 Short‐ and Long‐Term Regulation of Water Permeability in the Collecting Duct
3.4 Short‐Term Regulation of Aquaporin‐2 by Vasopressin‐Induced Trafficking
3.5 Long‐Term Regulation of Water Transport Through Regulation of Aquaporin Protein Abundance
3.6 Role of Vasopressin in Pathophysiological Stales Associated with Abnormalities of Water Balance
4 The Vasopressin‐Regulated Urea Transporter
4.1 Physiological Evidence for a Vasopressin‐Regulated Urea Transporter
4.2 Molecular Cloning of Renal Urea Transporters
4.3 Short‐Term Regulation
4.4 Long‐Term Regulation
5 Regulation of Loop of Henle Function by Vasopressin
5.1 Thick Ascending Limb
5.2 Thin Ascending Limb
6 Regulation of Renal Hemodynamics by Vasopressin
6.1 Medullary Blood Flow
6.2 Glomerular Function
Figure 1. Figure 1.

Steady‐state renal response to varying rates of vasopressin infusion in conscious rats. A water load (4% of body weight) was maintained throughout the experiments to suppress endogenous vasopressin secretion. A: Water excretion and osmolar clearance (Cosm). Although water excretion was markedly reduced at higher vasopressin infusion rates, osmolar clearance changed very little. B: Urinary osmolality. [Data plotted from Atherton et al. 12.]

Figure 2. Figure 2.

Mammalian renal structure. Major regions of the kidney are labeled at left. Configurations of a long‐looped (left) and a short‐looped (right) nephron are depicted. The major portions of the nephron are proximal tubules (hatched), thin limbs of Henle's loops (single line), thick ascending limbs of Henle's loops (solid), distal convoluted tubules (stippled), and the collecting duct system (open). OS, outer stripe; IS, inner stripe.

Figure 3. Figure 3.

Osmolality measurements at different points along the renal tubule at high and low circulating vasopressin levels. Data are typical osmolalities (in milliosmoles per kilogram H2O) found in various renal tubular sites by micropuncture in anesthetized rodents 92, 121, 277. Fluid in the proximal tubule is always virtually isosmotic with plasma (290 mOsm/kg H2O). Fluid emerging from the loop of Henle (entering early distal tubule) is always hypotonic. Osmolality in the late distal tubule increases to the plasma level only when circulating vasopressin is high. Final urine is hypertonic when circulating vasopressin is high, hypotonic when vasopressin is low. A high osmolality is always maintained in the loop of Henle, though the value is somewhat attenuated at low vasopressin levels. With high circulating vasopressin levels, osmolalities in all inner medullary structures are nearly equal. AVP, arginine vasopressin.

Figure 4. Figure 4.

Composition of rat renal medullary tissue and urine with high (left) and low (right) circulating vasopressin levels. IS, inner stripe of outer medulla; OS, outer stripe of outer medulla. [Data from Hai and Thomas 97.]

Figure 5. Figure 5.

Membrane‐spanning architecture of V2 vasopressin receptor. The V2 receptor is a single polypeptide chain that spans the plasma membrane seven times, as is characteristic among the super‐family of G protein–coupled receptors. The amino terminus is extracellular, while the carboxy terminus is intracellular. A putative glycosylation site is located in the extracellular amino‐terminal region (arrowhead). The site of ligand‐induced posttranslational cleavage by a membrane metalloproteinase 146 is indicated by arrows. There is a disulfide bridge between cysteine residues in the first and second extracellular loops. The carboxy terminus is palmitoylated, which provides an additional site of attachment to the plasma membrane. [From Fahrenholz et al. 68 with permission.]

Figure 6. Figure 6.

Localization of vasopressin receptor mRNA in rat kidney by in situ hybridization. White areas indicate sites of hybridization with antisense probes. Left panel: V1a receptor. High‐resolution studies showed labeling of inner medullary structures between the collecting ducts but no labeling of the collecting ducts themselves. Right panel: V2 receptor. High‐resolution studies showed heavy labeling of all collecting duct segments and moderate labeling of medullary thick ascending limbs. Controls with sense probes gave no labeling (not shown). [From Ostrowski et al. 206 with permission.]

Figure 7. Figure 7.

Membrane‐spanning architecture of aquaporins. Each molecule spans the plasma membrane six times, with the amino and carboxy termini in the intracellular milieu. Loops are labeled A through E according to the terminology of Agre and colleagues 125. Aquaporins contain a characteristic asparagine‐proline‐alanine (NPA) sequence in the B and E loops, which is postulated to play a role in forming the water pore 125. The greatest variability among the four renal aquaporins is in the COOH termini. This variability allowed unique peptides to be synthesized for each aquaporin, facilitating the preparation of specific polyclonal antibodies to each.

Figure 8. Figure 8.

Immunogold labeling with anti‐aquaporin‐2 antibody in principal cells from isolated perfused inner medullary collecting ducts. The three panels show typical sections from tubules fixed before (A), during (B), and after (C) exposure to arginine vasopressin (AVP). Small arrows point to selected sites of apical plasma membrane labeling, while arrowheads indicate sites of vesicular labeling. Note shift of labeling from intracellular vesicles to plasma membrane in response to arginine vasopressin exposure of perfused collecting duct. Statistical analysis of labeling distribution in 30 different perfused segments showed a highly significant shift from vesicles to plasma membrane in response to arginine vasopressin. MVB, multivesicular body. [From Nielsen et al. 192 with permission.]

Figure 9. Figure 9.

Diagram of collecting duct principal cell indicating distribution of aquaporins and mechanism by which water permeability of the apical plasma membrane increases in response to a vasopressin‐induced increase in intracellular cAMP. Aquaporin‐2 is present in the apical plasma membrane and in intracellular vesicles and shuttles between these two compartments depending on the vasopressin‐induced level of intracellular cAMP. Aquaporin‐3 and aquaporin‐4 are present in the basolateral plasma membrane and are thought to be responsible for the constitutively high water permeability of the basolateral barrier.

Figure 10. Figure 10.

Effect of restriction of water intake in rats (Thirsted) on osmotic water permeability (A) and urea permeability (B) of isolated perfused inner medullary collecting ducts. Measurements were made in the absence of in vitro vasopressin after a long equilibration period. Thirsting resulted in a conditioned increase in water permeability but not urea permeability. [Bar graphs were drawn using data from Lankford et al. 159.]

Figure 11. Figure 11.

Transepithelial urea permeability in isolated collecting ducts and papillary surface epithelium measured in the presence and absence of arginine vasopressin (AVP). Vasopressin increases urea permeability only in the terminal portion of the inner medullary collecting duct. CCD, cortical collecting duct; OMCD, outer medullary collecting duct; IMCD, inner medullary collecting duct; PSE, papillary surface epithelium. [Data are plotted from 223, 225.]

Figure 12. Figure 12.

Comparison of epithelial urea permeability in various renal tubule segments (solid bars) with predicted values assuming urea is transported only by lipid phase diffusion (hatched bars). Predicted values include an estimate of apical and basolateral membrane amplification due to apical projections and basolateral infoldings, assuming that urea permeabilities of apical and basolateral membranes are the same as in artificial phospholipid bilayers (4 × 10−6 cm/sec) 82. PCT, proximal convoluted tubule; PST, proximal straight tubule; tAL, thin ascending limb; mTAL, medullary thick ascending limb; cTAL, cortical thick ascending limb; CCD, cortical collecting duct; OMCD, outer medullary collecting duct; IMCD, inner medullary collecting duct; PSE, papillary surface epithelium. [Data of Sands et al. 225].

Figure 13. Figure 13.

Renal urea transporter gene splice variants. A: UTA‐1 cDNA codes for a 929 amino acid protein. This isoform is expressed in the IMCD and is the vasopressin‐regulated urea transporter. B: UTA‐2 cDNA codes for a 397 amino acid protein that is identical to the terminal 397 amino acid sequence of the UTA‐1 protein. UTA‐2 is expressed in the cells of the descending limb of Henle's loop. H1–H4 designate 134 amino acid hydrophobic regions that presumably span the plasma membrane one or more times.

Figure 14. Figure 14.

Cell model of thick ascending limb epithelial transporters.



Figure 1.

Steady‐state renal response to varying rates of vasopressin infusion in conscious rats. A water load (4% of body weight) was maintained throughout the experiments to suppress endogenous vasopressin secretion. A: Water excretion and osmolar clearance (Cosm). Although water excretion was markedly reduced at higher vasopressin infusion rates, osmolar clearance changed very little. B: Urinary osmolality. [Data plotted from Atherton et al. 12.]



Figure 2.

Mammalian renal structure. Major regions of the kidney are labeled at left. Configurations of a long‐looped (left) and a short‐looped (right) nephron are depicted. The major portions of the nephron are proximal tubules (hatched), thin limbs of Henle's loops (single line), thick ascending limbs of Henle's loops (solid), distal convoluted tubules (stippled), and the collecting duct system (open). OS, outer stripe; IS, inner stripe.



Figure 3.

Osmolality measurements at different points along the renal tubule at high and low circulating vasopressin levels. Data are typical osmolalities (in milliosmoles per kilogram H2O) found in various renal tubular sites by micropuncture in anesthetized rodents 92, 121, 277. Fluid in the proximal tubule is always virtually isosmotic with plasma (290 mOsm/kg H2O). Fluid emerging from the loop of Henle (entering early distal tubule) is always hypotonic. Osmolality in the late distal tubule increases to the plasma level only when circulating vasopressin is high. Final urine is hypertonic when circulating vasopressin is high, hypotonic when vasopressin is low. A high osmolality is always maintained in the loop of Henle, though the value is somewhat attenuated at low vasopressin levels. With high circulating vasopressin levels, osmolalities in all inner medullary structures are nearly equal. AVP, arginine vasopressin.



Figure 4.

Composition of rat renal medullary tissue and urine with high (left) and low (right) circulating vasopressin levels. IS, inner stripe of outer medulla; OS, outer stripe of outer medulla. [Data from Hai and Thomas 97.]



Figure 5.

Membrane‐spanning architecture of V2 vasopressin receptor. The V2 receptor is a single polypeptide chain that spans the plasma membrane seven times, as is characteristic among the super‐family of G protein–coupled receptors. The amino terminus is extracellular, while the carboxy terminus is intracellular. A putative glycosylation site is located in the extracellular amino‐terminal region (arrowhead). The site of ligand‐induced posttranslational cleavage by a membrane metalloproteinase 146 is indicated by arrows. There is a disulfide bridge between cysteine residues in the first and second extracellular loops. The carboxy terminus is palmitoylated, which provides an additional site of attachment to the plasma membrane. [From Fahrenholz et al. 68 with permission.]



Figure 6.

Localization of vasopressin receptor mRNA in rat kidney by in situ hybridization. White areas indicate sites of hybridization with antisense probes. Left panel: V1a receptor. High‐resolution studies showed labeling of inner medullary structures between the collecting ducts but no labeling of the collecting ducts themselves. Right panel: V2 receptor. High‐resolution studies showed heavy labeling of all collecting duct segments and moderate labeling of medullary thick ascending limbs. Controls with sense probes gave no labeling (not shown). [From Ostrowski et al. 206 with permission.]



Figure 7.

Membrane‐spanning architecture of aquaporins. Each molecule spans the plasma membrane six times, with the amino and carboxy termini in the intracellular milieu. Loops are labeled A through E according to the terminology of Agre and colleagues 125. Aquaporins contain a characteristic asparagine‐proline‐alanine (NPA) sequence in the B and E loops, which is postulated to play a role in forming the water pore 125. The greatest variability among the four renal aquaporins is in the COOH termini. This variability allowed unique peptides to be synthesized for each aquaporin, facilitating the preparation of specific polyclonal antibodies to each.



Figure 8.

Immunogold labeling with anti‐aquaporin‐2 antibody in principal cells from isolated perfused inner medullary collecting ducts. The three panels show typical sections from tubules fixed before (A), during (B), and after (C) exposure to arginine vasopressin (AVP). Small arrows point to selected sites of apical plasma membrane labeling, while arrowheads indicate sites of vesicular labeling. Note shift of labeling from intracellular vesicles to plasma membrane in response to arginine vasopressin exposure of perfused collecting duct. Statistical analysis of labeling distribution in 30 different perfused segments showed a highly significant shift from vesicles to plasma membrane in response to arginine vasopressin. MVB, multivesicular body. [From Nielsen et al. 192 with permission.]



Figure 9.

Diagram of collecting duct principal cell indicating distribution of aquaporins and mechanism by which water permeability of the apical plasma membrane increases in response to a vasopressin‐induced increase in intracellular cAMP. Aquaporin‐2 is present in the apical plasma membrane and in intracellular vesicles and shuttles between these two compartments depending on the vasopressin‐induced level of intracellular cAMP. Aquaporin‐3 and aquaporin‐4 are present in the basolateral plasma membrane and are thought to be responsible for the constitutively high water permeability of the basolateral barrier.



Figure 10.

Effect of restriction of water intake in rats (Thirsted) on osmotic water permeability (A) and urea permeability (B) of isolated perfused inner medullary collecting ducts. Measurements were made in the absence of in vitro vasopressin after a long equilibration period. Thirsting resulted in a conditioned increase in water permeability but not urea permeability. [Bar graphs were drawn using data from Lankford et al. 159.]



Figure 11.

Transepithelial urea permeability in isolated collecting ducts and papillary surface epithelium measured in the presence and absence of arginine vasopressin (AVP). Vasopressin increases urea permeability only in the terminal portion of the inner medullary collecting duct. CCD, cortical collecting duct; OMCD, outer medullary collecting duct; IMCD, inner medullary collecting duct; PSE, papillary surface epithelium. [Data are plotted from 223, 225.]



Figure 12.

Comparison of epithelial urea permeability in various renal tubule segments (solid bars) with predicted values assuming urea is transported only by lipid phase diffusion (hatched bars). Predicted values include an estimate of apical and basolateral membrane amplification due to apical projections and basolateral infoldings, assuming that urea permeabilities of apical and basolateral membranes are the same as in artificial phospholipid bilayers (4 × 10−6 cm/sec) 82. PCT, proximal convoluted tubule; PST, proximal straight tubule; tAL, thin ascending limb; mTAL, medullary thick ascending limb; cTAL, cortical thick ascending limb; CCD, cortical collecting duct; OMCD, outer medullary collecting duct; IMCD, inner medullary collecting duct; PSE, papillary surface epithelium. [Data of Sands et al. 225].



Figure 13.

Renal urea transporter gene splice variants. A: UTA‐1 cDNA codes for a 929 amino acid protein. This isoform is expressed in the IMCD and is the vasopressin‐regulated urea transporter. B: UTA‐2 cDNA codes for a 397 amino acid protein that is identical to the terminal 397 amino acid sequence of the UTA‐1 protein. UTA‐2 is expressed in the cells of the descending limb of Henle's loop. H1–H4 designate 134 amino acid hydrophobic regions that presumably span the plasma membrane one or more times.



Figure 14.

Cell model of thick ascending limb epithelial transporters.

References
 1. Agre, P., S., Sasaki, and M. J. Chrispeels. Aquaporins: a family of water channel proteins. Am. J. Physiol. 265 (Renal Fluid Electrolyte Physiol. 34): F461, 1993.
 2. Amemiya, M., J., Loffing, M. Lotscher, B. Kaissling, R. J. Al‐pern, and O. W. Moe. Expression of NHE‐3 in the apical membrane of the rat renal proximal tubule and thick ascending limb. Kidney Int. 48: 1206–1215, 1995.
 3. Ammar, A., S., Roseau, and D. Butlen. Pharmacological characterization of V1a vasopressin receptors in the rat cortical collecting duct. Am. J. Physiol. 262 (Renal Fluid Electrolyte Physiol. 31): F546–F553, 1992.
 4. Ammar, A., A., Schmidt, B. Semmekrot, S. Roseau, and D. Butlen. Receptors for neurohypophyseal hormones along the rat nephron: 125I‐labelled (CH2)5[Tyr(Me2), Thr4, Orn8, Tyr9‐NH2] vasotocin binding in microdissected tubules. Pflugers Arch. 418: 220–227, 1991.
 5. Ando, Y., M. D., Breyer, and H. R. Jacobson. Dose‐dependent heterogenous actions of vasopressin in rabbit cortical collecting ducts. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F556–F562, 1989.
 6. Ando, Y., K., Tabei, and Y. Asano. Luminal vasopressin modulates transport in the rabbit cortical collecting duct. J. Clin. Invest. 88: 952–959, 1991.
 7. Antoni, F. A. Novel ligand specificity of pituitary vasopressin receptors in the rat. Neuroendocrinology 39: 186–188, 1984.
 8. Apostol, E., C. A., Ecelbarger, T. Terris, A. D. Bradford, P. Andrews, and M. A. Knepper. Reduced renal medullary water channel expression in puromycin aminonucleoside‐induced nephrotic syndrome. J. Am. Soc. Nephrol. 8: 15–24, 1997.
 9. Arsenijevec, Y., M., Dubois‐Dauphin, E. Tribollet, M. Manning, W. H. Sawyer, and J. J. Dreifuss. Vasopressin‐binding sites in the pig pituitary gland: competition by novel vasopressin antagonists suggests the existence of an unusual receptor subtype in the anterior lobe. J. Endocrinol. 141: 383–391, 1994.
 10. Asahina, Y., N., Izumi, N. Enomoto, S. Sasaki, K. Fushimi, F. Marumo, and C. Sato. Increased gene expression of water channel in cirrhotic rat kidneys. Hepatology 21: 169–173, 1995.
 11. Ashkar, Z. M., S., Martial, T. Isozaki, S. R. Price, and J. M. Sands. Urea transport in initial IMCD of rats fed a low‐protein diet: functional properties and mRNA abundance. Am. J. Physiol. 268 (Renal Fluid Electrolyte Physiol. 37): F1218–F1223, 1995.
 12. Atherton, J. C., R., Green, and S. Thomas. Influence of lysine‐vasopressin dosage on the time course of changes in renal tissue and urinary composition in the conscious rat. J. Physiol. (Lond.) 213: 291–309, 1971.
 13. Atherton, J. C., M. A., Hai, and S. Thomas. The time course of changes in renal tissue composition during water diuresis in the rat. J. Physiol. (Lond.) 197: 429–443, 1968.
 14. Aurbach, G. D., and L. R. Chase. Renal adenyl cyclase: anatomically separate sites for parathyroid hormone and vasopressin. Science 159: 545–547, 1968.
 15. Ausiello, D. A., J. I., Kreisberg, C. Roy, and M. J. Karnovsky. Contraction of cultured rat glomerular cells of apparent mesangial origin after stimulation with angiotensin II and arginine vasopressin. J. Clin. Invest. 65: 754–760, 1980.
 16. Bankir, L., M., Ahloulay, N. Bouby, M.‐M. Trinh‐Trang‐Tan, F. Machet, B. Lacour, and P. Jungers. Is the process of urinary urea concentration responsible for a high glomerular filtration rate? J. Am. Soc. Nephrol. 4: 1091–1103, 1993.
 17. Bankir, L., C., Fischer, S. Fischer, K. Jukkula, H. C. Specht, and W. Kriz. Adaptation of the rat kidney to altered water intake and urine concentration. Pflugers Arch. 412: 42–53, 1988.
 18. Baudouin‐Legros, M., M., Bouthier, and J. Teulon. [Arginine]vasopressin hydrolyses phosphoinositides in the medullary thick ascending limb of mouse nephron. Pflugers Arch. 425: 381–389, 1993.
 19. Berliner, R. W., N. G., Levinsky, D. G. Davidson, and M. Eden. Dilution and concentration of the urine and the action of antidiuretic hormone. Am. J. Med. 27: 730–744, 1958.
 20. Besseghir, K., M. E., Trimble, and L. Stoner. Action of ADH on isolated medullary thick ascending limb of the Brattleboro rat. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F271–F277, 1986.
 21. Bichara, M., O., Mercier, P. Houillier, M. Paillard, and F. Leviel. Effects of antidiuretic hormone on urinary acidification and on tubular handling of bicarbonate in the rat. J. Clin. Invest. 80: 621–630, 1987.
 22. Bichet, D. G. Vasopressin receptors in health and disease. Kidney Int. 49: 1706–1711, 1996.
 23. Bichet, D. G., R., Kluge, R. L. Howard, and R. W. Schrier. Hyponatremic states. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin, and G. Giebisch. New York: Raven, 1992, p. 1727–1751.
 24. Biemesderfer, D., R. F., Reilly, M. Exner, P. Igarashi, and P. S. Aronson. Immunocytochemical characterization of Na+–H+ exchanger isoform NHE‐1 in rabbit kidney. Am. J. Physiol. 263: (Renal Fluid Electrolyte Physiol. 32): F833–F840, 1992.
 25. Billah, M. M., and R. H. Michell. Stimulation of the breakdown and resynthesis of phosphatidylinositol in rat hepatocytes by angiotensin, vasopressin and adrenaline. Biochem. Soc. Trans. 6: 1033–1035, 1978.
 26. Billah, M. M., and R. H. Michell. Phosphatidylinositol metabolism in rat hepatocytes stimulated by glycogenolytic hormones. Effects of angiotensin, vasopressin, adrenaline, ionophore A23187 and calciumion deprivation. Biochem. J. 182: 661–668, 1979.
 27. Birnbaumer, M., A., Seibold, S. Gilbert, M. Ishido, C. Barbaris, A. Antaramian, P. Brabet, and W. Rosenthal. Molecular cloning of the receptor for human antidiurectic hormone. Nature 357: 333–335, 1992.
 28. Bouby, N., and L. Bankir. Effect of high protein intake on sodium, potassium‐dependent adenosine triphosphatase activity in the thick ascending limb of Henle's loop in the rat. Clin. Sci. (Colch.) 74: 319–329, 1988.
 29. Bouby, N., L., Bankir, M. M. Trinh‐Trang‐Tan, W. W. Minuth, and W. Kriz. Selective ADH‐induced hypertrophy of the medullary thick ascending limb in Brattleboro rats. Kidney Int. 28: 456–466, 1985.
 30. Breyer, M. D. Feedback inhibition of cyclic adenosine mono‐phosphate‐stimulated Na+ transport in the rabbit cortical collecting duct via Na+‐dependent basolateral Ca++ entry. J. Clin. Invest. 88: 1502–1510, 1991.
 31. Brown, D., P., Weyer, and L. Orci. Vasopressin stimulates endocytosis in kidney collecting duct principal cells. Eur. J. Cell Biol. 46: 336–341, 1988.
 32. Burg, M. B., and N. Green. Function of the thick ascending limb of Henle's loop. Am. J. Physiol. 224: 659–668, 1973.
 33. Burgess, W. J., R. J., Balment, and J. S. Beck. Effects of luminal vasopressin on intracellular calcium in microperfused rat medullary thick ascending limb. Ren. Physiol. Biochem. 17: 1–9, 1994.
 34. Chabardes, D., D., Firsov, L. Aarab, A. Clabecq, A. C. Bellanger, S. Siaume‐Perez, and J. M. Elalouf. Localization of mRNAs encoding Ca2+‐inhibitable adenylyl cyclases along the renal tubule. Functional consequences for regulation of the cAMP content. J. Biol. Chem. 271: 19264–19271, 1996.
 35. Chabardes, D., M., Gagnan‐Brunette, M. Imbert‐Teboul, O. Gontcharevshaia, M. Montegut, A. Clique, and F. Morel. Adenylate cyclase responsiveness to hormones in various portions of the human nephron. J. Clin. Invest. 65: 439–448, 1980.
 36. Champigneulle, A., E., Siga, G. Vassent, and M. Imbert‐Teboul. V2‐like vasopressin receptor mobilizes intracellular Ca2+ in medullary collecting tubules. Am. J. Physiol. 265 (Renal Fluid Electrolyte Physiol. 34): F35–F45, 1993.
 37. Charlton, J. A., and P. H. Baylis. Stimulation of rat renal medullary Na+/K+‐ATPase by arginine vasopressin is mediated by the V2 receptor. J. Endocrinol. 127: 213–216, 1990.
 38. Cheng, A., A. N. Van Hoek, M. Yeager, A. S. Verkman, A. K. Mitra. Three‐dimensional organization of a human water channel. Nature 387: 627–630, 1997.
 39. Chin, E., J., Zhou, and C. Bondy. Anatomical and developmental patterns of facilitative glucose transporter gene expression in rat kidney. J. Clin. Invest. 91: 1810–1815, 1993.
 40. Chou, C.‐L., S. R., Digiovanni, A. Luther, S. J. Lolait, and M. A. Knepper. Oxytocin as an antidiuretic hormone: II. Role of V2 vasopressin receptor. Am. J. Physiol. 268 (Renal Fluid Electrolyte Physiol. 37): F78–F85, 1995.
 41. Chou, C.‐L., S. R., Digiovanni, R. Mejia, S. Nielsen, and M. A. Knepper. Oxytocin as an antidiuretic hormone: I. Concentration dependence of action. Am. J. Physiol. 268 (Renal Fluid Electrolyte Physiol. 37): F70–F77, 1995.
 42. Chou, C.‐L., and M. A. Knepper. Inhibition of urea transport in inner medullary collecting duct by phloretin and urea analogues. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F359–F365, 1989.
 43. Chou, C.‐L., J. M., Sands, H. Nonoguchi, and M. A. Knepper. Concentration dependence of urea and thiourea transport in rat inner medullary collecting duct. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F486–F494, 1990.
 44. Chou, C.‐L., J. M., Sands, H. Nonoguchi, and M. A. Knepper. Urea gradient‐associated fluid absorption with σurea= 1 in rat terminal collecting duct. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F1173–F1180, 1990.
 45. Clapp, W. L., K. M., Madsen, J. W. Verlander, and C. C. Tisher. Morphologic heterogeneity along the rat inner medullary collecting duct. Lab Invest. 60: 219–230, 1989.
 46. Cogan, E., M., Svoboda, and M. Abramow. Mechanisms of lithium–vasopressin interaction in rabbit cortical collecting tubule. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F1080–F1087, 1987.
 47. Conrad, K. P., M., Gellai, W. G. North, and H. Valtin. Influence of oxytocin on renal hemodynamics and electrolyte and water excretion. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F290–F296, 1986.
 48. Cooper, D. M. F., N., Mons, and J. W. Karpen. Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature 374: 421–424, 1995.
 49. Dai, L. J., and G. A. Quamme. Hormone‐mediated Ca2+ transients in isolated renal cortical thick ascending limb cells. Pflugers Arch. 427: 1–8, 1994.
 50. Danoff, S. K., C. D., Ferris, C. Donath, G. A. Fischer, S. Munemitsu, A. Ullrich, S. H. Snyder, and C. A. Ross. Inositol 1,4,5‐triphosphate receptors: distinct neuronal and nonneuronal forms derived by alternative splicing differ in phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 88: 2951–2955, 1991.
 51. Deen, P. M., M. A., Verdijk, N. V. Knoers, B. Wieringa, L. A. Monnens, C. H. Van Os, and B. A. Van Oost. Requirement of human renal water channel aquaporin‐2 for vasopressin‐dependent concentration of the urine. Science 264: 92–95, 1994.
 52. De Keyzer, Y., C. Auzan, F. Lenne, C. Beldjord, M. Thibonnier, X. Bertagna, and E. Clauser. Cloning and characterization of the human V3 pituitary vasopressin receptor. FEBS Lett. 356: 215–220, 1994.
 53. Denker, B. M., B. L., Smith, F. P. Kuhajda, and P. Agre. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J. Biol. Chem. 263: 15634–15642, 1988.
 54. De Rouffignac, C., B. Corman, and N. Roinel. Stimulation by antidiuretic hormone of electrolyte tubular reabsorption in rat kidney. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F156–F164, 1983.
 55. Digiovanni, S. R., S., Nielsen, E. I. Christensen, and M. A. Knepper. Regulation of collecting duct water channel expression by vasopressin in Brattleboro rat. Proc. Natl. Acad. Sci. U.S.A. 91: 8984–8988, 1994.
 56. Dousa, T. P., H., Sands, and O. Hechter. Cyclic AMP–dependent reversible phosphorylation of renal medullary plasma membrane protein. Endocrinology 91: 757–763, 1972.
 57. Dublineau, I., J. M., Elalouf, P. Pradelles, and C. Derouffignac. Independent desensitization of rat renal thick ascending limbs and collecting ducts to ADH. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F656–F663, 1989.
 58. Ecelbarger, C. A., C.‐L., Chou, S. J. Lolait, M. A. Knepper, and S. R. Digiovanni. Evidence for dual signaling pathways for V2 vasopressin receptor in rat inner medullary collecting duct. Am. J. Physiol. 270 (Renal Fluid Electrolyte Physiol. 39): F623–F633, 1996.
 59. Ecelbarger, C. A., C.‐L., Chou, A. J. Lee, S. R. DiGiovanni, J. G. Verbalis, and M. A. Knepper. Escape from vasopressin‐induced antidiuresis: Role of vasopressin resistance of the collecting duct. Am. J. Physiol. 274: F1161–F1166, 1998.
 60. Ecelbarger, C. A., S., Nielsen, B. R. Olson, T. Murase, E. A. Baker, M. A. Knepper, and J. G. Verbalis. Role of renal aquaporins in escape from vasopressin‐induced antidiuresis in rat. J. Clin. Invest. 99: 1852–1863, 1997.
 61. Ecelbarger, C. A., J., Terris, G. Frindt, M. Echevarria, D. Marples, S. Nielsen, and M. A. Knepper. Aquaporin‐3 water channel localization and regulation in rat kidney. Am. J. Physiol. 269 (Renal Fluid Electrolyte Physiol. 38): F663–F672, 1995.
 62. Ecelbarger, C. A., J., Terris, J. R. Hoyer, S. Nielsen, J. B. Wade, and M. A. Knepper. Localization and regulation of the rat renal Na+–K+–2Cl‐ cotransporter, BSC‐1. Am. J. Physiol. 271 (Renal Fluid Electrolyte Physiol. 40): F619–F628, 1996.
 63. Ecelbarger, C. A., J. B., Wade, J. Terris, D. Marples, S. Nielsen, and M. A. Knepper. Localization and regulation of bumetanide‐sensitive cotransporter protein in rat kidney [abstract]. J. Am. Soc. Nephrol. 7: 335, 1995.
 64. Echevarria, M., E. E., Windhager, and G. Frindt. Selectivity of the renal collecting duct water channel aquaporin‐3. J. Biol. Chem. 271: 25079–25082, 1996.
 65. Edwards, B. R., and F. T. Larochelle, Jr.. Antidiuretic effect of endogenous oxytocin in dehydrated Brattleboro homozygous rats. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F453–F465, 1984.
 66. Edwards, R. M., B. A., Jackson, and T. P. Dousa. ADH‐sensitive cAMP system in papillary collecting duct: effect of osmolality and PGE2. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F311–F318, 1981.
 67. Edwards, R. M., W. Trizna, and L. B. Kinter. Renal microvascular effects of vasopressin and vasopressin antagonists. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F274–F278, 1989.
 68. Elalouf, J.‐M., D., Chabane‐Sari, N. Roinel, and C. de Rouffignac. NaCl and Ca delivery at the bend of rat deep nephrons decreases during antidiuresis. Am. J. Physiol. 252: F1055–F1064, 1987.
 69. Elalouf, J. M., N., Roinel, and C. DeRouffignac. Effects of antidiuretic hormone on electrolyte reabsorption and secretion in distal tubules of rat kidney. Pflugers Arch. 401: 167–173, 1984.
 70. Fahrenholz, F., E., Ufer, R. Postina, and E. Kojro. Identification of hormone binding and posttranslational cleavage sites in the renal V2 receptor. In: Neurohypophysis: Recent Progress of Vasopressin and Oxytocin Research, edited by T. Saito, K. Kurokawa, and S. Yoshida. Amsterdam: Elsevier, 1995, p. 423–431.
 71. Ferris, C. D., R. L., Huganir, S. Supattapone, and S. H. Snyder. Purified inositol 1,4,5‐trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles. Nature 342: 87–89, 1989.
 72. Field, M. J., B. A., Stanton, and G. H. Giebisch. Influence of ADH on renal potassium handling: a micropuncture and microperfusion study. Kidney Int. 25: 502–511, 1984.
 73. Firsov, D., B., Mandon, A. Morel, J. Merot, S. Lemout, A.‐C. Bellanger, C. DeRouffignac, J.‐M. Elalouf, and J.‐M. Buhler. Molecular analysis of vasopressin receptors in the rat nephron. Evidence for alternative splicing of the V2 receptor. Pflugers Arch. 429: 79–89, 1994.
 74. Flamion, B., and K. R. Spring. Water permeability of apical and basolateral cell membranes of rat inner medullary collecting duct. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F986–F999, 1990.
 75. Flamion, B., K. R., Spring, and M. Abramow. Adaptation of inner medullary collecting duct to dehydration involves a paracellular pathway. Am. J. Physiol. 268 (Renal Fluid Electrolyte Physiol. 37): F53–F63, 1995.
 76. Frigeri, A., M. A., Gropper, C. W. Turck, and A. S. Verkman. Immunolocalization of the mercurial‐insensitive water channel and glycerol intrinsic protein in epithelial plasma membranes. Proc. Natl. Acad. Sci. U.S.A. 92: 4328–4331, 1995.
 77. Froekiaer, J., D., Marples, M. A. Knepper, and S. Nielsen. Bilateral ureteral obstruction downregulates expression of the vasopressin sensitive aquaporin‐2 water channel in rat kidney. Am. J. Physiol. 270 (Renal Fluid Electrolyte Physiol. 39): F657–F668, 1996.
 78. Fryckstedt, J., and A. Aperia. Sodium‐dependent regulation of sodium, potassium‐adenosine‐tri‐phosphatase (Na+, K+‐ATPase) activity in medullary thick ascending limb of Henle segments. Effect of cyclic‐adenosine‐monophosphate guanosine‐nucleotide‐binding‐protein activity and arginine vasopressin. Acta Physiol. Scand. 144: 185–190, 1992.
 79. Fugiwara, T. M., K., Morgan, and D. G. Bichet. Molecular biology of diabetes insipidus. Annu. Rev. Med. 46: 331–343, 1995.
 80. Fujita, N., S. E., Ishikawa, S. Sasaki, G. Fujisawa, K. Fushimi, F. Marumo, and T. Saito. Role of water channel AQP‐CD in water retention in SIADH and cirrhotic rats. Am. J. Physiol. 269 (Renal Fluid Electrolyte Physiol. 38): F926–F931, 1995.
 81. Fushimi, K., S., Sasaki, T. Yamamoto, M. Hayashi, T. Furukawa, S. Uchida, M. Kuwahara, K. Ishibashi, M. Kawasaki, I. Kihara, and F. Marumo. Functional characterization and cell immunolocalization of AQP‐CD water channel in kidney collecting duct. Am. J. Physiol. 267 (Renal Fluid Electrolyte Physiol. 36): F573–F582, 1994.
 82. Fushimi, K., S., Uchida, Y. Hara, Y. Hirata, F. Marumo, and S. Sasaki. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361: 549–552, 1993.
 83. Gader, M. A., J., Dacosta, and J. D. Cash. A new vasopressin analogue and fibrinolysis. Lancet ii: 978–979, 1973.
 84. Galluci, E., S., Micelli, and C. Lippe. Nonelectrolyte permeability across thin lipid membranes. Arch Int. Physiol. Biochim. 79: 881–887, 1971.
 85. Gamble, J. L., C. F., McKhann, A. M. Butler, and E. Tuthill. Economy of water in renal function referable to urea. Am. J. Physiol. 109: 139–154, 1934.
 86. Gapstur, S. M., S., Homma, and T. P. Dousa. cAMP‐binding proteins in medullary tubules from rat kidney: effect of ADH. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F292–F300, 1988.
 87. Gellai, M., J. H., Silverstein, J.‐C. Hwang, F. T. Larochelle, and H. Valtin. Influence of vasopressin on renal hemodynamics in conscious Brattleboro rats. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F819–F827, 1984.
 88. Giebisch, G., and E. E. Windhager. Renal tubular transfer of sodium chloride and potassium. Am. J. Med. 36: 643–669, 1964.
 89. Gillin, A. G., and J. M. Sands. Characteristics of osmolaritystimulated urea transport in rat IMCD. Am. J. Physiol. 262 (Renal Fluid Electrolyte Physiol. 31): F1061–F1067, 1992.
 90. Gillin, A. G., R. A., Star, and J. M. Sands. Osmolaritystimulated urea transport in rat terminal IMCD: role of intracellular calcium. Am. J. Physiol. 265 (Renal Fluid Electrolyte Physiol. 34): F272–F277, 1993.
 91. Good, D. W. Sodium‐dependent bicarbonate absorption by cortical thick ascending limb. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F821–F829, 1985.
 92. Good, D. W. Inhibition of bicarbonate absorption by peptide hormones and cyclic adenosine monophosphate in rat medullary thick ascending limb. J. Clin. Invest. 85: 1006–1013, 1990.
 93. Good, D. W., and T. George. Regulation of HCO3‐ absorption by prostaglandin E2 and G proteins in rat medullary thick ascending limb. Am. J. Physiol. 270: (Renal Fluid Electrolyte Physiol. 39): F711–F717, 1996.
 94. Gottschalk, C. W., and M. Mylle. Micropuncture study of the mammalian urinary concentrating mechanism: evidence for the countercurrent hypothesis. Am. J. Physiol. 196: 927–936, 1959.
 95. Grantham, J. J., and M. B. Burg. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am. J. Physiol. 211: 255–259, 1966.
 96. Greger, R., and E. Schlatter. Properties of the basolateral membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 396: 325–334, 1983.
 97. Greger, R., and E. Schlatter. Properties of the lumen membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 396: 315–324, 1983.
 98. Greger, R., E., Schlatter, and F. Lang. Evidence for electroneutral sodium chloride cotransport in the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 396: 308–314, 1983.
 99. Hai, M. A., and S. Thomas. The time‐course of changes in renal composition during lysine vasopressin infusion in the rat. Pflugers Arch. 310: 297–319, 1969.
 100. Hall, D. A., and D. W. Varney. Effect of vasopressin on electrical potential difference and chloride transport in mouse medullary thick ascending limb of Henle's loop. J. Clin. Invest. 66: 792–802, 1980.
 101. Han, J. S., Y., Maeda, C. Ecelbarger, and M. A. Knepper. Vasopressin‐independent regulation of collecting duct water permeability. Am. J. Physiol. 266 (Renal Fluid Electrolyte Physiol. 35): F139–F146, 1994.
 102. Handler, J. S., R. W., Butcher, E. W. Sutherland, and J. Orloff. The effect of vasopressin and of theophylline on the concentration of adenosine‐3′,5′‐phosphate in the urinary bladder of the toad. J. Biol. Chem. 240: 4524–4526, 1965.
 103. Hargitay, B., and W. Kuhn. Das Multiplikationsprinzip als Grundlage der Harnkonzentrierung in der Niere. Z. Elektrochem. angew. phys. Chemie 55: 539–558, 1951.
 104. Harrison‐Bernard, L. M., and P. K. Carmines. Juxtamedullary microvascular responses to arginine vasopressin in rat kidney. Am. J. Physiol. 267 (Renal Fluid Electrolyte Physiol. 36): F249–F256, 1994.
 105. Hayashi, M., S., Sasaki, H. Tsuganezawa, T. Monkawa, W. Kitajima, K. Konishi, K. Fushimi, F. Marumo, and T. Saruta. Expression and distribution of aquaporin of collecting duct are regulated by V2 receptor in rat kidney. J. Clin. Invest. 94: 1778–1783, 1994.
 106. Hays, R. M., and A. Leaf. Studies on the movement of water through the isolated toad bladder and its modification by vasopressin. J. Gen. Physiol. 45: 905–919, 1962.
 107. Hebert, S. C., R. M., Culpepper, and T. E. Andreoli. NaCl transport in mouse medullary thick ascending limbs. I. Functional nephron heterogeneity and ADH‐stimulated NaCl co‐transport. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F412–F431, 1981.
 108. Hirasawa, A., K., Shibata, K. Kotosai, and G. Tsujimoto. Cloning, functional expression and tissue distribution of human cDNA for the vascular‐type vasopressin receptor. Biochem. Biophys. Res. Commun. 203: 72–79, 1994.
 109. Ho, K., G., Nichols, W. J. Lederer, J. Lytton, P. M. Vassilev, M. V. Kanazirska, and S. C. Hebert. Cloning and expression of an inwardly rectifying ATP‐regulated potassium channel. Nature 362: 31–38, 1993.
 110. Homma, S., S. M., Gapstur, A. N. K. Yusufi, and T. P. Dousa. In situ phosphorylation of proteins in MCTs microdissected from rat kidney: effect of AVP. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F512–F520, 1988.
 111. Hozawa, S., E. J., Holtzman, and D. A. Ausiello. cAMP motifs regulating transcription in the aquaporin‐2 gene. Am. J. Physiol. 270 (Cell Physiol. 39): C1695–C1702, 1996.
 112. Hutchins, A. M., P. A., Phillips, D. J. Venter, L. M. Burrell, and C. I. Johnston. Molecular cloning and sequencing of the gene encoding a sheep arginine vasopressin receptor type 1a receptor. Biochim. Biophys. Acta 1263: 266–270, 1995.
 113. Ichikawa, I., and B. M. Brenner. Evidence for glomerular actions of ADH and dibutyryl cyclic AMP in the rat. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F102–F117, 1977.
 114. Ikeda, M., K., Yoshitomi, M. Imai, and K. Kurokawa. Cell Ca2+ response to luminal vasopressin in cortical collecting tubule principal cells. Kidney Int. 45: 811–816, 1994.
 115. Imai, M., and J. P. Kokko. Sodium chloride, urea, and water transport in the thin ascending limb of Henle. Generation of osmotic gradients by passive diffusion of solutes. J. Clin. Invest. 53: 393–402, 1974.
 116. Imai, M., and E. Kusano. Effects of arginine vasopressin on the thin ascending limb of Henle's loop of hamsters. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F167–F172, 1982.
 117. Imbert, M., D., Chabardes, M. Montégut, A. Clique, and F. Morel. Adenylate cyclase activity along the rabbit nephron as measured in single isolated segments. Pflugers Arch. 354: 213–228, 1975.
 118. Imbert, M., D., Chabardes, M. Montégut, A. Clique, and F. Morel. Vasopressin dependent adenylate cyclase in single segments of rabbit kidney tubule. Pflugers Arch. 357: 173–186, 1975.
 119. Imbert‐Teboul, M., D., Chabardes, M. Montegut, A. Clique, and F. Morel. Vasopressin‐dependent adenylate cyclase activities in the kidney medulla: evidence for two separate sites of action. Endocrinology 102: 1254–1261, 1978.
 120. Inase, N., K., Fushimi, K. Ishibashi, S. Uchida, M. Ichioka, S. Sasaki, and F. Marumo. Isolation of human aquaporin 3 gene. J. Biol. Chem. 270: 17913–17916, 1995.
 121. Inoue, T., J. Terris, C. A. Ecelbarger, C.‐L. Chou, S. Nielsen, and M. A. Knepper. Vasopressin regulates apical targeting of aquaporin‐2 but not of UT1 urea transporter in renal collecting duct. Am. J. Physiol. 276: F559–F566, 1999.
 122. Ishibashi, K., S., Sasaki, K. Fushimi, S. Uchida, M. Kuwahara, H. Saito, T. Furukawa, K. Nakajima, Y. Yamaguchi, T. Go‐jobori, and F. Marumo. Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc. Natl. Acad. Sci. U.S.A. 91: 6269–6273, 1994.
 123. Ishibashi, K., M. Kuwahara, Y. Gu, Y. Kageyama, A. Tohsaka, F. Suzuki, F. Marumo and S. Sasaki. Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J. Biol. Chem. 20782–20786, 1997.
 124. Ishibashi, K., R. Kuriyama, M. Kuwahara, Y. Gu, S. Sasaki, and F. Marumo. Cloning and expression of two new aquaporins from testis (abstract). J. Am. Soc. Nephrol. 8: 18A, 1997.
 125. Jaenike, J. R. The influence of vasopressin on the permeability of the mammalian collecting duct to urea. J. Clin. Invest. 40: 144–151, 1961.
 126. Jamison, R. L., J., Buerkert, and F. Lacy. A micropuncture study of collecting tubule function in rats with hereditary diabetes insipidus. J. Clin. Invest. 50: 2444–2452, 1971.
 127. Jamison, R. L., and F. B. Lacy. Evidence for urinary dilution by the collecting tubule. Am. J. Physiol. 223: 898–902, 1972.
 128. Jap, B. K., and H. Li. Structure of the osmoregulated H2Ogawa. channel, AQP‐CHIP, in projection at 3.5 A resolution. J. Mol. Biol. 251: 413–20, 1995.
 129. Jard, S., C., Lombard, J. Marie, and G. Devillier. Vasopressin receptors from cultured mesangial cells resemble V1a type. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F41–F49, 1987.
 130. Jones, R. V. H., and H. E. De Wardener. Urine concentration after fluid deprivation or pitressin tannate in oil. BMJ 1: 271–274, 1956.
 131. Jung, J. S., G. M., Preston, B. L. Smith, W. B. Guggino, and P. Agre. Molecular structure of the water channel through aquaporin CHIP. The hour glass model. J. Biol. Chem. 269: 14648–14654, 1994.
 132. Jung, K. Y., and H. Endou. A novel vasopressin receptor in rat early proximal tubule. Biochem. Biophys. Res. Commun. 180: 131–137, 1991.
 133. Kadekoro, M., J. Y., Summy‐Long, S. Freeman, J. S. Harris, M. L. Terrell, and H. M. Eisenburg. Cerebral metabolic responses and vasopressin and oxytocin secretions during progressive water deprivation in rats. Am. J. Physiol. 262 (Regulatory Integrative Comp. Physiol. 31): R310–R317, 1992.
 134. Kaissling, B., and W. Kriz. Structural analysis of the rabbit kidney. Adv. Anat. Embryol. Cell Biol. 56: 1–123, 1979.
 135. Kato, A., M. Naruse, M. A. Knepper, and J. M. Sands. Long‐term regulation of inner medullary collecting duct urea transport in rat. J. Am. Soc. Nephrol. 9: 737–745, 1998.
 136. Katsushika, S., L., Chen, J.‐I. Kawabe, R. Nilakantan, N. J. Halnon, C. J. Homcy, and Y. Ishikawa. Cloning and characterization of a sixth adenylyl cyclase isoform: types V and Vi constitute a subgroup within the mammalian adenylyl cyclase family. Proc. Natl. Acad. Sci. U.S.A. 89: 8774–8778, 1992.
 137. Kiberd, B., C. R., Robertson, T. Larson, and R. L. Jamison. Effect of V2‐receptor‐mediated changes on inner medullary blood flow induced by AVP. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F576–F581, 1987.
 138. Kim, G.‐H., C. A. Ecelbarger, C. Mitchell, R. K. Packer, J. B. Wade, and M. A. Knepper. Vasopressin increases Na‐K‐2Cl cotransporter expression in thick ascending limb of Henle's loop. Am. J. Physiol. 276: F96–F103, 1999.
 139. Kirk, C. J., L. M., Rodrigues, and D. A. Hems. The influence of vasopressin and related peptides on glycogen phosphorylase activity and phosphatidylinositol metabolism in hepatocytes. Biochem. J. 178: 493–496, 1979.
 140. Kirk, C. J., T. R., Verrinder, and D. A. Hems. Rapid stimulation, by vasopressin and adrenaline, of inorganic phosphate incorporation into phosphatidylinositol in isolated hepatocytes. FEBS Lett. 83: 267–271, 1977.
 141. Kirk, C. J., T. R., Verrinder, and D. A. Hems. The influence of extracellulas calcium concentration on the vasopressinstimulated incorporation of inorganic phosphate into phosphatidylinositol in hepatocyte suspensions. Biochem. Soc. Trans. 6: 1031–1033, 1978.
 142. Kishore, B. K., B., Mandon, N. B. Oza, S. R. Digiovanni, R. A. Coleman, N. L. Ostrowski, J. B. Wade, and M. A. Knepper. Rat renal arcade segment expresses vasopressin‐regulated water channel and vasopressin V2 receptor. J. Clin. Invest. 97: 2763–2771, 1996.
 143. Kishore, B. K., J. M., Terris, and M. A. Knepper. Quantitation of aquaporin‐2 abundance in microdissected collecting ducts: axial distribution and control by AVP. Am. J. Physiol. 271 (Renal Fluid Electrolyte Physiol. 40): F62–F70, 1996.
 144. Knepper, M. A. Urea transport in isolated thick ascending limbs and collecting ducts from rats. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F634–F639, 1983.
 145. Knepper, M. A. The aquaporin family of molecular water channels. Proc. Natl. Acad. Sci. U.S.A. 91: 6255–6258, 1994.
 146. Knepper, M., and M. Burg. Organization of nephron function. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F579–F589, 1983.
 147. Knepper, M. A., C.‐L., Chou, and H. E. Layton. How is urine concentrated by the renal inner medulla? Contrib. Nephrol. 102: 144–160, 1993.
 148. Knepper, M. A., and S. Nielsen. Kinetic model of water and urea permeability regulation by vasopressin in collecting duct. Am. J. Physiol. 265 (Renal Fluid Electrolyte Physiol. 34): F214–F224, 1993.
 149. Knepper, M. A., R., Packer, and D. W. Good. Ammonium transport in the kidney. Physiol. Rev. 69: 179–249, 1989.
 150. Knepper, M. A., and F. C. Rector, Jr., Urinary concentration and dilution. In: The Kidney, edited by B. M. Brenner, and F. C. Rector, Jr. Philadelphia: Saunders, 1995, p. 532–570.
 151. Knepper, M. A., J. M., Sands, and C.‐L. Chou. Independence of urea and water transport in rat inner medullary collecting duct. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F610–F621, 1989.
 152. Knepper, M. A., and R. A. Star. The vasopressin‐regulated urea transporter in renal inner medullary collecting duct. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F393–F401, 1990.
 153. Koefoed‐Johnsen, V., and H. H. Ussing. The contributions of diffusion and flow to the passage of D2O through living membranes. Effect of neurohypophyseal hormone on isolated anuran skin. Acta Physiol. Scand. 28: 60–76, 1953.
 154. Kojro, E., and F. Fahrenholz. Ligand‐induced cleavage of the V2 vasopressin receptor by a plasma membrane metalloproteinase. J. Biol. Chem. 270: 1–6, 1995.
 155. Kokko, J. P., and F. C. Rector, Jr.. Countercurrent multiplication system without active transport in inner medulla. Kidney Int. 2: 214–223, 1972.
 156. Kondo, Y., and M. Imai. Effects of glutaraldehyde fixation on renal tubular function. I. Preservation of vasopressinstimulated water and urea pathways in rat papillary collecting duct. Pflugers Arch. 408: 479–483, 1987.
 157. Kraft, A. S., and W. B. Anderson. Phorbol esters increase the amount of Ca2+, phospholipid‐dependent protein kinase associated with plasma membrane. Nature 301: 621–623, 1983.
 158. Kremer, S. G., W. V., Breuer, and K. L. Skorecki. Vasoconstrictor hormones depolarize renal glomerular mesangial cells by activating chloride channels. J. Cell. Physiol. 138: 97–105, 1989.
 159. Kriz, W. Der architektonische und funktionelle Aufbau der Rattenniere. Z. Zellforsch. 82: 495–535, 1967.
 160. Kudo, L. H., K. R., César, W. C. Ping, and A. S. Rocha. Effect of peritubular hypertonicity on water and urea transport of inner medullary collecting duct. Am. J. Physiol. 262 (Renal Fluid Electrolyte Physiol. 31): F338–F347, 1992.
 161. Kuhn, W., and A. Ramel. Activer Salztransport als möglicher (und wahrscheinlicher) Einzeleffekt bei der Harnkonzentrierung in der Niere. Helv. Chim. Acta 42: 628–660, 1959.
 162. Kuhn, W., and K. Ryffel. Herstellung konzentrierter Lösungen aus verdünnten durch blosse Membranwirkung. Ein Modellversuch zur Funktion der Niere. Hoppe‐Seylers Z. Physiol. Chemie. 276: 145–178, 1942.
 163. Kurokawa, K., and S. G. Massry. Interaction between catecholamines and vasopressin on renal medullary cyclic AMP of rat. Am. J. Physiol. 225: 825–829, 1973.
 164. Kuwahara, M., K., Fushimi, Y. Terada, L. Bai, F. Marumo, and S. Sasaki. cAMP‐dependent phosphorylation stimulates water permeability of aquaporin‐collecting duct water channel protein expressed in Xenopus oocytes. J. Biol. Chem. 270: 10384–10387, 1995.
 165. Kuwahara, M., and A. S. Verkman. Pre‐steady‐state analysis of the turn‐on and turn‐off of water permeability in the kidney collecting tubule. J. Membr. Biol. 110: 57–65, 1989.
 166. Lande, M. B., I., Jo, M. L. Zeidel, M. Somers, and H. W. Harris, Jr.. Phosphorylation of aquaporin‐2 does not alter the membrane water permeability of rat papillary water channel‐containing vesicles. J. Biol. Chem. 271: 5552–5557, 1996.
 167. Lankford, S. P., C.‐L., Chou, Y. Terada, S. M. Wall, J. B. Wade, and M. A. Knepper. Regulation of collecting duct water permeability independent of cAMP‐mediated AVP response. Am. J. Physiol. 261 (Renal Fluid Electrolyte Physiol. 30): F554–F566, 1991.
 168. Lassiter, W. E., C. W., Gottschalk, and M. Mylle. Micropuncture study of net transtubular movement of water and urea in nondiuretic mammalian kidney. Am. J. Physiol. 200: 1139–1146, 1961.
 169. Layton, H. E., M. A., Knepper, and C.‐L. Chou. Permeability criteria for effective function of passive countercurrent multiplier. Am. J. Physiol. 270 (Renal Fluid Electrolyte Physiol. 39): F9–F20, 1996.
 170. Lencer, W. I., D., Brown, D. A. Ausiello, and A. S. Verkman. Endocytosis of water channels in rat kidney: cell specificity and correlation with in vivo antidiuresis. Am. J. Physiol. 259 (Cell Physiol. 28): C920–C932, 1990.
 171. Liard, J.‐F. Peripheral vasodilatation induced by a vasopressin analogue with selective V2‐agonism in dogs. Am. J. Physiol. 256 (Heart Circ. Physiol. 25): H1621–H1626, 1989.
 172. Lolait, S. J., A. M., O'Carroll, L. C. Mahan, C. C. Felder, D. C. Button, W. S. Young, E. Mezey, and M. J. Brownstein. Extrapituitary expression of the rat V1b vasopressin receptor gene. Proc. Natl. Acad. Sci. U.S.A. 92: 6783–6787, 1995.
 173. Lolait, S. J., A.‐M., O'Carroll, O. W. McBride, M. Konig, A. Morel, and M. J. Brownstein. Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature 357: 336–339, 1992.
 174. Lytle, C., and B. Forbush. Regulatory phosphorylation of the secretory Na–K–Cl cotransporter: modulation by cytoplasmic Cl. Am. J. Physiol. 270 (Cell Physiol. 39): C437–C448, 1996.
 175. Ma, T., H., Hasegawa, W. R. Skach, A. Frigeri, and A. S. Verkman. Expression, functional analysis, and in situ hybridization of a cloned rat kidney collecting duct water channel. Am. J. Physiol. 266 (Cell Physiol. 35): C189–C197, 1994.
 176. Madsen, K. M., and C. C. Tisher. Structural–functional relationships along the distal nephron. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F1–F15, 1986.
 177. Maeda, Y., J. S., Han, C. C. Gibson, and M. A. Knepper. Vasopressin and oxytocin receptors coupled to Ca2+ mobilization in rat inner medullary collecting duct. Am. J. Physiol. 265 (Renal Fluid Electrolyte Physiol. 34): F15–F25, 1993.
 178. Maeda, Y., B. L., Smith, P. Agre, and M. A. Knepper. Quantification of aquaporin‐CHIP water channel protein in microdissected renal tubules by fluorescence‐based ELISA. J. Clin. Invest. 95: 422–428, 1995.
 179. Mannucci, P. M., M. T., Canciani, L. Rota, and B. S. Donovan. Response of factor VIII/von Willebrand factor to DDAVP in healthy subjects and patients with haemophilia A and von Willebrand's disease. Br. J. Haematol. 47: 283–293, 1981.
 180. Marchingo, A. J., J. M., Abrahams, E. A. Woodcock, A. I. Smith, F. A. O. Mendelsohn, and C. I. Johnston. Properties of [3H]‐desamino‐8‐d‐arginine vasopressin as a radioligand for vasopressin V2‐receptors in rat kidney. Endocrinology 122: 1328–1336, 1988.
 181. Marples, D., S., Christensen, E. I. Christensen, and S. Nielsen. Lithium‐induced downregulation of aquaporin‐2 water channel expression in rat kidney medulla. J. Clin. Invest. 95: 1838–1845, 1995.
 182. Marples, D., J., Frokiaer, J. Dorup, M. A. Knepper, and S. Nielsen. Hypokalemia‐induced downregulation of aquaporin‐2 water channel expression in rat kidney medulla and cortex. J. Clin. Invest. 97: 1960–1968, 1996.
 183. Marples, D., M. A., Knepper, E. I. Christensen, and S. Nielsen. Redistribution of aquaporin‐2 water channels induced by vasopressin in rat kidney inner medullary collecting duct. Am. J. Physiol. 269 (Cell Physiol. 38): C655–C664, 1995.
 184. Matsamura, Y., S. Uchida, T. Rai, S. Sasaki, and F. Marumo. Transcriptional regulation of aquaporin‐2 water channel gene by cAMP. J. Am. Soc. Nephrol. 8: 861–867, 1997.
 185. McNicholas, C. M., W., Wang, K. Ho, S. C. Hebert, and G. Giebisch. Regulation of ROMK1 K+ channel activity involves phosphorylation processes. Proc. Natl. Acad. Sci. U.S.A. 91: 8077–8081, 1994.
 186. Michell, R. H., C. J., Kirk, and M. M. Billah. Hormonal stimulation of phosphatidylinositol breakdown, with particular reference to the hepatic effects of vasopressin. Biochem. Soc. Trans. 7: 861–865, 1979.
 187. Mignery, G. A., C. L. Newton, B. T. Archer III, and T. Sudhof. Structure and expression of the rat inositol 1,4,5‐triphosphate receptor. J. Biol. Chem. 265: 12679–12685, 1990.
 188. Miyamoto, E., J. F., Kuo, and P. Greengard. Cyclic nucleotide–dependent protein kinases. III. Purification and properties of adenosine 3′,5′‐monophosphate‐dependent protein kinase from bovine brain. J. Biol. Chem. 244: 6395–6402, 1969.
 189. Moffat, D. B., and J. Fourman. The vascular pattern of the rat kidney. J. Anat. 97: 543–553, 1963.
 190. Molony, D. A., W. B., Reeves, S. C. Hebert, and T. E. Andreoli. ADH increases apical Na+,K+,2Cl‐ entry in mouse medullary thick ascending limb of the loop of Henle. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F177–F187, 1987.
 191. Morel, A., A.‐M., O'Carroll, M. J. Brownstein, and S. J. Lolait. Molecular cloning and expression of a rat V1a arginine vasopressin receptor. Nature 356: 523–526, 1992.
 192. Morel, F., D., Chabardes, and M. Imbert‐Teboul. Vasopressin action sites along the nephron [in French]. J. Physiol. Paris 77: 615–620, 1981.
 193. Morel, F., D., Chabardes, M. Imbert‐Teboul, F. Le Bouffant, A. Hus‐Citharel, and M. Montegut. Multiple hormonal control of adenylate cyclase in distal segments of the rat kidney. Kidney Int. 11: S55–S62, 1982.
 194. Morgan, T., and R. W. Berliner. Permeability of the loop of Henle, vasa recta, and collecting duct to water, urea, and sodium. Am. J. Physiol. 215: 108–115, 1968.
 195. Morgan, T., F., Sakai, and R. W. Berliner. In vitro permeability of medullary collecting ducts to water and urea. Am. J. Physiol. 214: 574–581, 1968.
 196. Nadler, S. P., S. C., Hebert, and B. M. Brenner. PGE2, forskolin, and cholera toxin interactions in rabbit cortical collecting tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F127–F135, 1986.
 197. Nakagawa, T., H., Okano, T. Furuichi, J. Aruga, and K. Mikoshiba. The subtypes of the mouse inositol 1,4,5‐triphosphate receptor are expressed in a tissue‐specific and developmentally specific manner. Proc. Natl. Acad. Sci. U.S.A. 88: 6244–6248, 1991.
 198. Nakanishi, K., D. L., Mattson, V. Gross, R. J. Roman, and A. W. J. Cowley. Control of renal medullary blood flow by vasopressin V1 and V2 receptors. Am. J. Physiol. 269 (Regulatory Integrative Comp. Physiol. 38): R193–R200, 1995.
 199. Newton, A. C. Protein kinase C: structure, function, and regulation. J. Biol. Chem. 270: 28495–28498, 1995.
 200. Nielsen, S., and P. Agre. The aquaporin family of water channels in kidney. Kidney Int. 48: 1057–1068, 1995.
 201. Nielsen, S., C.‐L., Chou, D. Marples, E. I. Christensen, B. K. Kishore, and M. A. Knepper. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin‐CD water channels to plasma membrane. Proc. Natl. Acad. Sci. U.S.A. 92: 1013–1017, 1995.
 202. Nielsen, S., S. R., Digiovanni, E. I. Christensen, M. A. Knepper, and H. W. Harris. Cellular and subcellular immunolocalization of vasopressin‐regulated water channel in rat kidney. Proc. Natl. Acad. Sci. U.S.A. 90: 11663–11667, 1993.
 203. Nielsen, S., and M. A. Knepper. Vasopressin activates collecting duct urea transporters and water channels by distinct physical processes. Am. J. Physiol. 265 (Renal Fluid Electrolyte Physiol. 34): F204–F213, 1993.
 204. Nielsen, S., A. B. Maunsbach, C. A. Ecelbarger, and M. A. Knepper. Ultrastructural localization of Na‐K‐2Cl cotransporter in thick ascending limb and macula densa of rat kidney. Am. J. Physiol. 275: F885–F893, 1998.
 205. Nielsen, S., J., Muller, and M. A. Knepper. Vasopressin‐ and cAMP‐induced changes in ultrastructure of isolated perfused inner medullary collecting ducts. Am. J. Physiol. 265 (Renal Fluid Electrolyte Physiol. 34): F225–F238, 1993.
 206. Nielsen, S., B. L., Smith, E. I. Christensen, M. A. Knepper, and P. Agre. CHIP28 water channels are localized in constitutively water‐permeable segments of the nephron. J. Cell Biol. 120: 371–383, 1993.
 207. Nielsen, S., J., Terris, D. Andersen, C. Ecelbarger, J. Frokiaer, D. Marples, M. A. Knepper, and J. S. Petersen. Congestive heart failure in rats is associated with increased expression and targeting of aquaporin‐2 water channel in collecting duct. Proc. Natl. Acad. Sci. U.S.A. 94: 5450–5455, 1997.
 208. Nielsen, S., J., Terris, C. P. Smith, M. A. Hediger, C. A. Ecelbarger, and M. A. Knepper. Cellular and subcellular localization of the vasopressin‐regulated urea transporter in rat kidney. Proc. Natl. Acad. Sci. U.S.A. 93: 5495–5500, 1996.
 209. Nishizuka, Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334: 661–665, 1988.
 210. Nitschke, R., U., Frobe, and R. Greger. Antidiuretic hormone acts via V1 receptors on intracellular calcium in the isolated perfused rabbit cortical thick ascending limb. Pflugers Arch. 417: 622–632, 1991.
 211. Nonoguchi, A., A., Owada, N. Kobayashi, M. Takayama, Y. Terada, J. Koike, K. Ujiie, F. Marumo, T. Sakai, and K. Tomita. Immunohistochemical localization of V2 vasopressin receptor along the nephron and functional role of luminal V2 receptor in terminal inner medullary collecting ducts. J. Clin. Invest. 96: 1768–1778, 1995.
 212. Oksche, A., A., Moller, J. Dickson, W. Rosenthal, W. Rasher, D. G. Bichet, and W. Rosenthal. Two novel mutations in the aquaporin‐2 and the vasopressin V2 receptor genes in patients with congenital nephrogenic diabetes insipidus. Hum. Genet. 98: 587–589, 1996.
 213. Olives, B., S., Martial, M. G. Mattei, G. Matassi, G. Rousselet, P. Ripoche, J. P. Cartron, and P. Bailly. Molecular characterization of a new urea transporter in human kidney. FEBS Lett. 386: 156–160, 1996.
 214. Olives, B., P., Neau, P. Bailly, M. A. Hediger, G. Rousselet, J. P. Cartron, and P. Ripoche. Cloning and functional expression of a urea transporter from human bone marrow cells. J. Biol. Chem. 269: 31649–31652, 1994.
 215. Ostrowski, N. L., S. J., Lolait, D. J. Bradley, A.‐M. O'Carroll, M. J. Brownstein, and W. S. Young, III.. Distribution of V1a and V2 vasopressin receptor messenger ribonucleic acids in rat liver, kidney, pituitary and brain. Endocrinology 131: 533–535, 1992.
 216. Ostrowski, N. L., W. S. Young III, M. A. Knepper, and S. J. Lolait. Expression of vasopressin V1a and V2 receptor messenger ribonucleic acid in the liver and kidney of embryonic, developing, and adult rats. Endocrinology 133: 1849–1859, 1993.
 217. Packer, R. K., S. S., Desai, K. Hornbuckle, and M. A. Knepper. Role of countercurrent multiplication in renal ammonium handling—regulation of medullary ammonium accumulation. J. Am. Soc. Nephrol. 2: 77–83, 1991.
 218. Pallone, T. L. Characteriztion of the urea transporter in outer medullary descending vasa recta. Am. J. Physiol. 267 (Regulatory Integrative Comp. Physiol. 36): R260–R267, 1994.
 219. Peter, J., H., Burbach, R. A. Adan, S. J. Lolait, F. W. Van Leeuwen, E. Mezey, M. Palkovits, and C. Barberis. Molecular neurobiology and pharmacology of the vasopressin/oxytocin receptor family. Cell. Mol. Neurobiol. 15: 573–595, 1995.
 220. Phillips, P. A., J. M., Abrahams, J. M. Kelly, V. Mooser, D. Trinder, and C. I. Johnston. Localization of vasopressin binding sites in rat tissues using specific V1 and V2 selective ligands. Endocrinology 126: 1478–1484, 1990.
 221. Preston, G. M., and P. Agre. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc. Natl. Acad. Sci. U.S.A. 88: 11110–11114, 1991.
 222. Promeneur, D., G., Rousselet, L. Bankir, P. Bailly, J. P. Cartron, P. Ripoche, and M. M. Trin‐Trang‐Tan. Evidence for distinct vascular and tubular urea transporters in the rat kidney. J. Am. Soc. Nephrol. 7: 852–860, 1996.
 223. Reif, M. C., S. L., Troutman, and J. A. Schafer. Sustained response to vasopressin in isolated rat cortical collecting tubule. Kidney Int. 26: 725–732, 1984.
 224. Reif, M. C., S. L., Troutman, and J. A. Schafer. Sodium transport by rat cortical collecting tubule: effects of vasopressin and desoxycorticosterone. J. Clin. Invest. 77: 1291–1298, 1986.
 225. Rhee, S. G., and K. D. Choi. Regulation of inositol phospholipid‐specific phospholipase C isozymes. J. Biol. Chem. 267: 12393–12396, 1992.
 226. Rocha, A. S., and J. P. Kokko. Sodium chloride and water transport in the medullary thick ascending limb of Henle. J. Clin. Invest. 52: 612–624, 1973.
 227. Rocha, A. S., and L. H. Kudo. Water, urea, sodium, chloride, and potassium transport in the in vitro isolated perfused papillary collecting duct. Kidney Int. 22: 485–491, 1982.
 228. Rollhäuser, H., W., Kriz, and W. Heinke. Das Gefässystem der Rattenniere. Z. Zellforsch. 64: 381–403, 1964.
 229. Ross, C. A., S. K., Danoff, M. J. Schell, S. H. Snyder, and A. Ullrich. Three additional inositol 1,4,5‐triphosphate receptors: molecular cloning and differential localization in brain and peripheral tissues. Proc. Natl. Acad. Sci. U.S.A. 89: 4265–4269, 1992.
 230. Ruggles, B. T., N., Murayama, J. L. Werness, S. M. Gapstur, M. D. Bentley, and T. P. Dousa. The vasopressin‐sensitive adenylate cyclase in collecting tubules and in thick ascending limb of Henle's loop of human and canine kidney. J. Clin. Endocrinol. Metab. 60: 914–921, 1985.
 231. Sabolic, I., T., Katsura, J. M. Verbabatz, and D. Brown. The AQP2 water channel: effect of vasopressin treatment, microtubule disruption, and distribution in neonatal rats. J. Membr. Biol. 143: 165–177, 1995.
 232. Sabolic, I., G., Valenti, J.‐M. Verbabatz, A. N. Van Hoek, A. S. Verkman, D. A. Ausiello, and D. Brown. Localization of the CHIP28 water channel in rat kidney. Am. J. Physiol. 263 (Cell Physiol. 32): C1225–C1233, 1992.
 233. Sands, J. M., and M. A. Knepper. Urea permeability of mammalian inner medullary collecting duct system and papillary surface epithelium. J. Clin. Invest. 79: 138–147, 1987.
 234. Sands, J. M., M., Naruse, J. D. Jacobs, J. N. Wilcox, and J. D. Klein. Changes in aquaporin‐2 protein contribute to the urine concentrating defect in rats fed a low‐protein diet. J. Clin. Invest. 97: 2807–2814, 1996.
 235. Sands, J. M., H., Nonoguchi, and M. A. Knepper. Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F823–F832, 1987.
 236. Sands, J. M., and D. C. Schrader. An independent effect of osmolality on urea transport in rat terminal inner medullary collecting ducts. J. Clin. Invest. 88: 137–142, 1991.
 237. Sasaki, S., and M. Imai. Effects of vasopressin on water and NaCl transport across the in vitro perfused medullary thick ascending limb of Henle's loop of mouse, rat and rabbit kidneys. Pflugers Arch. 383: 215–221, 1980.
 238. Sawyer, W. H. Effect of posterior pituitary extract on permeability of frog skin to water. Am. J. Physiol. 164: 44–48, 1951.
 239. Schlatter, E., and R. Greger. cAMP increases the basolateral Cl‐ conductance in the isolated perfused medullary thick ascending limb of Henle's loop of the mouse. Pflugers Arch. 405: 367–376, 1985.
 240. Schmidt‐Nielsen, B., B., Graves, and J. Roth. Water removal and solute additions determining increases in renal medullary osmolality. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F472–F482, 1983.
 241. Seibold, A., P., Brabet, W. Rosenthal, and M. Birnbaumer. Structure and chromosomal localization of the human antidiuretic hormone receptor gene. Am. J. Hum. Genet. 51: 1078–1083, 1992.
 242. Shayakul, C., M. A., Knepper, C. P. Smith, S. R. Digiovanni, and M. A. Hediger. Different localization and physiologic response of two alternatively spliced urea transporter (UT) mRNAs in the rat kidney (abstract). Federation Proc. 10: A273, 1996.
 243. Shayakul, C., A., Steel, and M. A. Hediger. Molecular cloning and characterization of the vasopressin‐regulated urea transporter of rat kidney collecting ducts. J. Clin. Invest. 98: 2580–2587, 1996.
 244. Siga, E., A., Champigneulle, and M. Imbert‐Teboul. cAMP‐dependent effect of vasopressin and calcitonin on cytosolic calcium in rat CCD. Am. J. Physiol. 267 (Renal Fluid Electrolyte Physiol. 36): F354–F365, 1994.
 245. Smith, B. L., and P. Agre. Erythrocyte Mr 28,000 transmembrane protein exists as a multiple subunit oligomer similar to channel proteins. J. Biol. Chem. 266: 6407–6415, 1991.
 246. Smith, C. P., W.‐S., Lee, S. Martial, M. A. Knepper, G. You, J. M. Sands, and M. A. Hediger. Cloning and regulation of expression of the rat kidney urea transporter (rUT2). J. Clin. Invest. 96: 1556–1563, 1995.
 247. Smith, C. P., C., Shayakul, G. You, W.‐S. Lee, S. Martial, H. S. Mackenzie, J. M. Sands, M. A. Knepper, and M. A. Hediger. Molecular characterization and regulation of expression of the vasopressin‐regulated urea transporter [abstract]. J. Am. Soc. Nephrol. 6: 329, 1995.
 248. Smrcka, A. V., J. R., Hepler, K. O. Brown, and P. C. Sternweis. Regulation of polyphosphoinositide‐specific phospholipase C activity by purified Gq. Science 251: 804–807, 1991.
 249. Snyder, H. M., T. D., Noland, and M. D. Breyer. cAMP‐dependent protein kinase mediates hydroosmotic effect of vasopressin in collecting duct. Am. J. Physiol. 263: (Cell Physiol. 32): C147–C153, 1992.
 250. Star, R. A. Apical membrane limits urea permeation across the rat inner medullary collecting duct. J. Clin. Invest. 86: 1172–1178, 1990.
 251. Star, R. A., H., Nonoguchi, R. Balaban, and M. A. Knepper. Calcium and cyclic adenosine monophosphate as second messengers for vasopressin in the rat inner medullary collecting duct. J. Clin. Invest. 81: 1879–1888, 1988.
 252. Stoeckel, M. E., M. J., Freund‐Mercier, J. M. Palacios, P. Richard, and A. Porte. Autoradiographic localization of binding sites for oxytocin and vasopressin in the rat kidney. J. Endocrinol. 113: 179–182, 1986.
 253. Strange, K., M. C., Willingham, J. S. Handler, and H. W. Harris, Jr.. Apical membrane endocytosis via coated pits is stimulated by removal of antidiuretic hormone from isolated, perfused rabbit cortical collecting tubule. J. Membr. Biol. 103: 17–28, 1988.
 254. Südhof, T. C., C. L. Newton, B. T. Archer III, Y. A. Ushkaryov, and G. A. Mignery. Structure of a novel InsP3 receptor. EMBO J. 10: 3199–3206, 1991.
 255. Sugimoto, T., M., Saito, S. Mochizuki, Y. Watanabe, S. Hashimoto, and H. Kawashima. Molecular cloning and functional expression of a cDNA encoding the human V1b receptor. J. Biol. Chem. 269: 27088–27092, 1994.
 256. Sun, A., E. B., Grossman, M. Lombardi, and S. C. Hebert. Vasopressin alters the mechanism of apical Cl‐ entry from Na+: Cl‐ to Na+:K+:2Cl‐ cotransport in mouse medullary thick ascending limb. J. Membr. Biol. 120: 83–94, 1991.
 257. Sun, A. M., D., Kikeri, and S. C. Hebert. Vasopressin regulates apical and basolateral Na+‐H+ antiporters in mouse medullary thick ascending limbs. Am. J. Physiol. 262 (Renal Fluid Electrolyte Physiol. 31): F241–F247, 1992.
 258. Takahashi, N., Y., Kondo, O. Ito, Y. Igarashi, K. Omata, and K. Abe. Vasopressin stimulates Cl‐ transport in ascending thin limb of Henle's loop in hamster. J. Clin. Invest. 95: 1623–1627, 1995.
 259. Tamaki, T., K., Kiyomoto, H. He, A. Tomohiro, A. Nishiyama, K. Aki, S. Kimura, and Y. Abe. Vasodilation induced by vasopressin V2 receptor stimulation in afferent arterioles. Kidney Int. 49: 722–729, 1996.
 260. Tanimura, A., K., Kurihara, S. J. Reshkin, and R. J. Turner. Involvement of direct phosphorylation in the regulation of the rat parotid Na+‐K+‐2Cl‐ cotransporter. J. Biol. Chem. 270: 25252–25258, 1995.
 261. Taylor, S. J. cAMP‐dependent protein kinase. J. Biol. Chem. 264: 8443–8446, 1989.
 262. Taylor, S. J., H. Z., Chae, S. G. Rhee, and J. H. Exton. Activation of the β1 isozyme of phospholipase C by α subunits of the Gq class of G proteins. Nature 350: 516–518, 1991.
 263. Terada, Y., K., Tomita, H. Nonoguchi, and T. Yang. Different localization and regulation of two types of vasopressin receptor messenger RNA in microdissected rat nephron segments using reverse transcription polymerase chain reaction. J. Clin. Invest. 92: 2339–2345, 1993.
 264. Terris, J., C. A., Ecelbarger, D. Marples, M. A. Knepper, and S. Nielsen. Distribution of aquaporin‐4 water channel expression within rat kidney. Am. J. Physiol. 269 (Renal Fluid Electrolyte Physiol. 38): F775–F785, 1995.
 265. Terris, J., C. A., Ecelbarger, S. Nielsen, and M. A. Knepper. Long‐term regulation of four renal aquaporins in rat. Am. J. Physiol. 271 (Renal Fluid Electrolyte Physiol. 40): F414–F422, 1996.
 266. Terris, J., C. A. Ecelbarger, J. M. Sands, and M. A. Knepper. Long‐term regulation of renal urea transporter protein in rat. J. Am. Soc. Nephrol. 9: 729–736, 1998.
 267. Thibonnier, M., C., Auzan, Z. Madhun, P. Wilkens, L. Berti‐Mattera, and E. Clauser. Molecular cloning, sequencing, and functional expression of a cDNA encoding the human V1a vasopressin receptor. J. Biol. Chem. 269: 3304–3310, 1994.
 268. Tomita, K., J. J., Pisano, M. B. Burg, and M. A. Knepper. Effects of vasopressin and bradykinin on anion transport by the rat cortical collecting duct. J. Clin. Invest. 77: 136–141, 1986.
 269. Tomita, K., J. J., Pisano, and M. A. Knepper. Control of sodium and potassium transport in the cortical collecting duct of the rat. Effects of bradykinin, vasopressin, and deoxycorticosterone. J. Clin. Invest. 76: 132–136, 1985.
 270. Torikai, S., and M. Imai. Effects of solute concentration on vasopressin stimulated cyclic AMP generation in the rat medullary thick ascending limbs of Henle's loops. Pflugers Arch. 400: 306–308, 1984.
 271. Torikai, S., M. S., Wang, K. L. Klein, and K. Kurokawa. Adenylate cyclase and cell cyclic AMP of rat cortical thick ascending limb of Henle. Kidney Int. 20: 649–654, 1981.
 272. Trinh‐Trang‐Tan, M. M., L., Bankir, L. Doucet, G. El Mernissi, M. Imbert‐Teboul, M. Montegut, S. Siaume, and F. Morel. Influence of chronic ADH treatment of adenylate cyclase and ATPase activity in distal nephron segments of diabetes insipidus Brattleboro rats. Pflugers Arch. 405: 216–222, 1985.
 273. Trinh‐Trang‐Tan, M.‐M., N., Bouby, M. Doute, and L. Bankir. Effect of long‐ and short‐term antidiuretic hormone availability on internephron heterogeneity in the adult rat. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F879–F888, 1984.
 274. Turner, M. R., and T. L. Pallone. Vasopressin constricts outer medullary descending vasa recta isolated from rat kidneys. Am. J. Physiol. 272 (Renal Physiol. 41): F147–F151, 1997.
 275. Uchida, S., S., Sasaki, K. Fushimi, and F. Marumo. Isolation of human Aquaporin‐CD gene. J. Biol. Chem. 269: 23451–23455, 1994.
 276. Ufer, E., R., Postin, V. Gorbulev, and F. Fahrenholz. An extracellular residue determines the agonist specificity of V2 vasopressin receptors. FEES Lett. 362: 19–23, 1994.
 277. Ullrich, K. J., and K. H. Jarausch. Untersuchungen zum Problem der Harnkonzentrierung und Harnverdünnung. Pflugers Arch. 262: S537–S550, 1956.
 278. Valtin, H. Sequestration of urea and non‐urea solutes in renal tissue of rats with hereditary diabetes insipidus. Effect of vasopressin and dehydration on the countercurrent mechanism. J. Clin. Invest. 45: 337–345, 1966.
 279. Valtin, H. The discovery of the Brattleboro rat, recommended nomenclature and the question of proper controls. Ann. N.Y. Acad. Sci. 394: 1–9, 1982.
 280. Wade, J. B., S., Nielsen, R. A. Coleman, and M. A. Knepper. Long‐term regulation of collecting duct water permeability: Freeze‐fracture analysis of isolated tubules. Am. J. Physiol. 266: F273–F230, 1994.
 281. Wade, J. B., D. L., Stetson, and S. A. Lewis. ADH action: evidence for a membrane shuttle mechanism. Ann. N.Y. Acad. Sci. 372: 106–117, 1981.
 282. Walker, A. M., P. A., Bott, J. Oliver, and M. C. MacDowell. The collection and analysis of fluid from single nephrons of the mammalian kidney. Am. J. Physiol. 134: 580–595, 1941.
 283. Wall, S. M., J. S., Han, C.‐L. Chou, and M. A. Knepper. Kinetics of urea and water permeability activation by vasopressin in rat terminal IMCD. Am. J. Physiol. 262 (Renal Fluid Electrolyte Physiol. 31): F989–F998, 1992.
 284. Walz, T., B. L. Smith, P. Agre, and A. Engel. The three‐dimensional structure of human erythrocyte aquaporin CHIP. EMBO J. 13: 2985–2993, 1994.
 285. Walz, T., D. Typke, B. L. Smith, P. Agre, and A. Engel. Projection map of aquaporin‐1 determined by electron crystallography [letter]. Nature Struct. Biol. 2: 730–732, 1995.
 286. Wang, W. H. Two types of K+ channel in thick ascending limb of rat kidney. Am. J. Physiol. 267 (Renal Fluid Electrolyte Physiol. 36): F599–F605, 1994.
 287. Watters, J. J., C. W., Wilkinson, and D. M. Dorsa. Glucocorticoid regulation of vasopressin V1a receptors in rat forebrain. Brain Res. Mol. Brain Res. 38: 276–284, 1996.
 288. Weihprecht, H., J. N., Lorenz, J. P. Briggs, and J. Schnermann. Vasoconstrictor effect of angiotensin and vasopressin in isolated rabbit afferent arterioles. Am. J. Physiol. 261 (Renal Fluid Electrolyte Physiol. 30): F273–F282, 1991.
 289. Windle, R. J., M. L., Forsling, C. P. Smith, and R. J. Balment. Patterns of neurohypophysial hormone release during dehydration in the rat. J. Endocrinol. 137: 311–319, 1993.
 290. Wirz, H. Der osmotische Druck in den corticalin Tubuli der Rattenniere. Helv. Physiol. Pharmacol. Acta 14: 353–362, 1956.
 291. Wirz, H., B., Hargitay, and W. Kuhn. Lokalisation des Konzentrierungsprozesses in der Niere durch direkte Kryoskopie. Helv. Physiol. Acta 9: 196–207, 1951.
 292. Wittner, M., A. D. Stefano, B. Mandon, N. Roinel, and C. de Rouffignac. Stimulatiion of NaCl reabsorption by antidiuretic hormone in the cortical thick ascending limb of Henle's loop of the mouse. Pflügers Arch. 419: 212–214, 1991.
 293. Wittner, M., A. Di Stefano, P. Wangemann. R. Nitschke, R. Greger, C. Bailly, C. Amiel, N. Roinel, and C. De Rouffignac. Differential effects of ADH on sodium, chloride, potassium, calcium and magnesium transport in cortical and medullary thick ascending limbs of mouse nephron. Pflugers Arch. 412: 516–523, 1988.
 294. Woodhall, P. B., and C. C. Tisher. Response of the distal tubule and cortical collecting duct to vasopressin in the rat. J. Clin. Invest. 52: 3095–3108, 1973.
 295. Xu, D.‐L., P.‐Y., Martin, M. O'Hara, J. St. John, T. Pattison, X. Meng, K. Morris, J. K. Kim, and R. W. Schrier. Upregulation of aquaporin‐2 water channel expression in chronic heart failure rat. J. Clin. Invest. 99: 1500–1505, 1997.
 296. Xu, Y., B., Olives, P. Bailly, E. Fisher, P. Ripoche, P. Ronco, J.‐P. Cartron, and E. Rondeau. Endothelial cells of the kidney vasa recta express the urea transporter HUT11. J. Am. Soc. Nephrol. 51: 138–146, 1997.
 297. Xu, Z.‐C., Y., Yan, and S. C. Hebert. Phosphorylation of the ATP‐sensitive, inwardly rectifying K+ channel, ROMK, by cyclic AMP‐dependent protein kinase. J. Biol. Chem. 271: 9313–9319, 1996.
 298. Yamamoto, N., S., Sasaki, K. Fushimi, K. Ishibashi, E. Yaiota, K. Kawasaki, F. Marumo, and I. Kihara. Vasopressin increases AQP‐CD water channel in the apical membrane of collecting duct cells without affecting AQP3 distribution in Brattleboro rat. Am. J. Physiol. 268 (Cell Physiol. 37): C1546–C1551, 1995.
 299. Yamamoto, T., S., Sasaki, K. Fushimi, K. Kawasaki, E. Yaoita, K. Oota, K. Hirata, F. Marumo, and I. Kihara. Localization and expression of a collecting duct water channel, aquaporin, in hydrated and dehydrated rats. Exp. Nephrol. 3: 193–201, 1995.
 300. Yasui, M., T.‐H. Kwon, M. A. Knepper, S. Nielsen, and P. Agre. Aquaporin‐6: An intracellular vesicle water channel protein in renal epithelia. Proc. Natl. Acad. Sci. U.S.A. 96: 5808–5813, 1999.
 301. Yasui, M., S. M. Zelinin, G. Celsi, and A. Aperia. Adenylate cyclase‐coupled vasopressin receptor activates AQP2 promotor via a dual effect on CRE and AP1 elements. Am. J. Physiol. 272: F443–F450, 1997.
 302. You, G., C. P., Smith, Y. Kanai, W.‐S. Lee, M. Stelzner, and M. A. Hediger. Cloning and characterization of the vasopressin‐regulated urea transporter. Nature 365: 844–847, 1993.
 303. Yun, C. H., C. M., Tse, and M. Donowitz. Chimeric Na+H+ exchangers: an epithelial membrane‐bound N‐terminal domain requires an epithelial cytoplasmic C‐terminal domain for regulation by protein kinases. Proc. Natl. Acad. Sci. U.S.A. 92: 10723–10727, 1997.
 304. Zhang, R., and A. S. Verkman. Urea transport in freshly isolated and cultured cells from rat inner medullary collecting duct. J. Membr. Biol. 117: 253–261, 1990.
 305. Zimmerhackl, B., C. R., Robertson, and R. L. Jamison. Effect of arginine vasopressin on medullary blood flow. A videomicroscopic study in the rat. J. Clin. Invest. 76: 770–778, 1985.
 306. Zimmerhackl, B. L., C. R., Robertson, and R. L. Jamison. The medullary microcirculation. Kidney Int. 31: 641–647, 1987.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Mark A. Knepper, Heinz Valtin, Jeff M. Sands. Renal Actions of Vasopressin. Compr Physiol 2011, Supplement 22: Handbook of Physiology, The Endocrine System, Endocrine Regulation of Water and Electrolyte Balance: 496-529. First published in print 2000. doi: 10.1002/cphy.cp070313