Comprehensive Physiology Wiley Online Library

Endocrine Control of Acid‐Base Balance

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Components of Renal Acid‐Base Regulation
1.1 Renal Acid Excretion
1.2 Glomerular Filtration
1.3 Urinary Buffers
1.4 Tubular H+/HCO3− Transport
2 Regulation by Peptide Hormones and Catecholamines
2.1 Signaling Intermediates
2.2 Angiotensin II
2.3 Adrenergic Catecholamines
2.4 Endothelin
2.5 Parathyroid Hormone
2.6 Dopamine
2.7 Atrial Natriuretic Factor
2.8 Insulin
3 Regulation by Steroid Hormones
3.1 Mineralocorticoids
3.2 Glucocorticoids
4 Regulation by Thyroid Hormone
Figure 1. Figure 1.

Renal synthesis and transport of NH3/NH4+. See text for explanation. [From Alpern and Preisig 4 with permission.]

Figure 2. Figure 2.

H+/HCO3 transport in the proximal tubule.

Figure 3. Figure 3.

H+/HCO3 transport in the thick ascending limb.

Figure 4. Figure 4.

H+/HCO3 transport in α (a) and β (b) intercalated cells.

Figure 5. Figure 5.

Correlation between proximal convoluted tubule (PCT) HCO3 absorption and luminal cAMP secretion in the rat proximal tubule. CON, control; SAR, saralasim; PTX, pertussis toxin; PT, pertussis toxin pretreatment, AII, angiotensin II; PTH, parathyroid hormone; [From Lin and Cogan 145 with permission.]

Figure 6. Figure 6.

Localization of angiotensin II receptots along the nephron. PCT, proximal convoluted tubule; PR, pars recta; MAL, medullary ascending limb; CAL, cortical ascending limb; DCT, distal convoluted tubule; CCT, cortical convoluted tubule; MCT, medullary convoluted tubule. [From Mujais et al. 162 with permission.]

Figure 7. Figure 7.

Regulation of proximal tubule Na+ absorption by angiotensin II. [From Harris and Navar 97 with permission.]

Figure 8. Figure 8.

Expression of ETB endothelin receptors leads to regulation of Na‐H exchanger 3 by endothelin‐I (ET‐1). [From Chu et al. 59 with permission.]

Figure 9. Figure 9.

Endothelin B (ETB) receptors increase cell Ca2+ [From Chu et al. 59 with permission.]

Figure 10. Figure 10.

Endothelin B (ETB) receptors increase tyrosine phosphorylation of focal adhesion proteins. [From Chu et al. 60 with permission.]

Figure 11. Figure 11.

Effect of aldosterone on the rate of H+ secretion expressed as a function of mucosal pH. [From Al‐Awgati et al. 2 with permission.]



Figure 1.

Renal synthesis and transport of NH3/NH4+. See text for explanation. [From Alpern and Preisig 4 with permission.]



Figure 2.

H+/HCO3 transport in the proximal tubule.



Figure 3.

H+/HCO3 transport in the thick ascending limb.



Figure 4.

H+/HCO3 transport in α (a) and β (b) intercalated cells.



Figure 5.

Correlation between proximal convoluted tubule (PCT) HCO3 absorption and luminal cAMP secretion in the rat proximal tubule. CON, control; SAR, saralasim; PTX, pertussis toxin; PT, pertussis toxin pretreatment, AII, angiotensin II; PTH, parathyroid hormone; [From Lin and Cogan 145 with permission.]



Figure 6.

Localization of angiotensin II receptots along the nephron. PCT, proximal convoluted tubule; PR, pars recta; MAL, medullary ascending limb; CAL, cortical ascending limb; DCT, distal convoluted tubule; CCT, cortical convoluted tubule; MCT, medullary convoluted tubule. [From Mujais et al. 162 with permission.]



Figure 7.

Regulation of proximal tubule Na+ absorption by angiotensin II. [From Harris and Navar 97 with permission.]



Figure 8.

Expression of ETB endothelin receptors leads to regulation of Na‐H exchanger 3 by endothelin‐I (ET‐1). [From Chu et al. 59 with permission.]



Figure 9.

Endothelin B (ETB) receptors increase cell Ca2+ [From Chu et al. 59 with permission.]



Figure 10.

Endothelin B (ETB) receptors increase tyrosine phosphorylation of focal adhesion proteins. [From Chu et al. 60 with permission.]



Figure 11.

Effect of aldosterone on the rate of H+ secretion expressed as a function of mucosal pH. [From Al‐Awgati et al. 2 with permission.]

References
 1. Al‐Awqati, Q., A., Muller, and P. R. Steinmetz. Transport of H against electrochemical gradients in turtle urinary bladder. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F502–F508, 1977.
 2. Al‐Awqati, Q., L. H., Norby, A. Mueller, and P. R. Steinmetz. Characteristics of stimulation of H transport by aldosterone in turtle urinary bladder. J. Clin. Invest. 58: 351–358, 1976.
 3. Alpern, R. J. Mechanism of basolateral membrane H/OH/HCO3 transport in the rat proximal convoluted tubule. J. Gen. Physiol. 86: 613–636, 1985.
 4. Alpern, R. J., and P. A. Preisig. Renal acid‐base transport. In: Diseases of the Kidney, edited by R. W. Schrier, and C. W. Gottschalk. New York: Little, Brown, 1997, p. 189–201.
 5. Alpern, R. J., and F. C. Rector, Jr., Renal acidification mechanisms. In: The Kidney, edited by B. M. Brenner. Philadelphia: Saunders, 1996, p. 408–471.
 6. Amemiya, M., J., Loffing, M. Lotscher, B. Kaissling, R. J. Alpern, and O. W. Moe. Expression of NHE‐3 in the apical membrane of rat renal proximal tubule and thick ascending limb. Kidney Int. 48: 1206–1215, 1995.
 7. Amemiya, M., Y., Yamaji, A. Cano, O. W. Moe, and R. J. Alpern. Acid incubation increases NHE‐3 mRNA abundance in OKP cells. Am. J. Physiol. 269 (Cell Physiol. 38): C126–C133, 1995.
 8. Aperia, A., A., Bertorello, and I. Seri. Dopamine causes inhibition of Na–K‐ATPase activity in rat proximal convoluted tubule segments. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F39–F45, 1987.
 9. Aperia, A., F., Ibarra, L.‐B. Svensson, C. Klee, and P. Greengard. Calcineurin mediates α‐adrenergic stimulation of Na+, K+ ATPase activity in renal tubule cells. Proc. Natl. Acad. Sci. U.S.A. 89: 7394–7397, 1992.
 10. Arai, H., S., Hori, I. Aramori, H. Ohkubo, and S. Nakanishi. Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348: 730–732, 1990.
 11. Azuma, K. K., D. F., Balkovetz, C. E. Magyar, L. Lescale‐Matys, Y. Zhang, R. Chambrey, D. G. Warnock, and A. A. McDonough. Renal Na+/H+ exchanger isoforms and their regulation by thyroid hormone. Am. J. Physiol. 270 (Cell Physiol. 39): C585–C592, 1996.
 12. Bakris, G. L., S., Bhandaru, V. Akerstrom, and R. N. Re. ACE inhibitor‐mediated attenuation of mesangial cell growth. A role for endothelin. Am. J. Hypertens. 7: 583–590, 1994.
 13. Bakris, G. L., and R. N. Re. Endothelin modulates angiotensin II‐induced mitogenesis of human mesangial cells. Am. J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F937–F942, 1993.
 14. Bank, N., and H. S. Aynedjian. A micropuncture study of the effect of parathyroid hormone on renal bicarbonate reabsorption. J. Clin. Invest. 58: 336–344, 1976.
 15. Barreto‐Chaves, M. L. M., and M. Mello‐Aires. Effect of luminal angiotensin II and ANP on early and late cortical distal tubule HCO3‐ reabsorption. Am. J. Physiol. 271 (Renal Fluid Electrolyte Physiol. 40): F977–F984, 1996.
 16. Baum, M. Evidence that parallel Na–H and Cl‐HCO3 (OH) anriporters transport NaCl in the proximal tubule. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F338–F345, 1987.
 17. Baum, M. Insulin stimulates volume absorption in the rabbit proximal convoluted tubule. J. Clin. Invest. 79: 1104–1109, 1987.
 18. Baum, M., M., Amemiya, V. Dwarakanath, R.J. Alpern, and O. W. Moe. Glucocorticoids regulate NHE‐3 transcription in OKP cells. Am. J. Physiol. 270 (Renal Fluid Electrolyte Physiol. 39): F164–F169, 1996.
 19. Baum, M., D., Biemesderfer, D. Gentry, and P. Aronson. Maturation of rabbit renal cortical NHE‐3 and NHE‐1: effect of glucocorticoids [abstract]. J. Am. Soc. Nephrol. 5: 247, 1994.
 20. Baum, M., A., Cano, and R.J. Alpern. Glucocorticoids stimulate Na/H antiporter in OKP cells. Am. J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F1027–F1031, 1993.
 21. Baum, M., and S. R. Hays. Phorbol myristate acetate and dioctanoylglycerol inhibit transport in rabbit proximal convoluted tubule. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F9–F14, 1988.
 22. Baum, M., O. W., Moe, D. L. Gentry, and R. J. Alpern. Effect of glucocorticoids on renal cortical NHE‐3 and NHE‐1 mRNA. Am. J. Physiol. 267 (Renal Fluid Electrolyte Physiol. 36): F437–F442, 1994.
 23. Baum, M., and R. Quigley. Glucocorticoids stimulate rabbit proximal convoluted tubule acidification. J. Clin. Invest. 91: 110–114, 1993.
 24. Baum, M., and R. D. Toto. Lack of a direct effect of atrial natriuretic factor in the rabbit proximal tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F66–F69, 1986.
 25. Baynash, A. G., K., Hosoda, A. Giaid, J. A. Richardson, N. Emoto, R. E. Hammer, and M. Yanagisawa. Interaction of endothelin‐3 with endothelin‐B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 79: 1277–1285, 1994.
 26. Beach, R. E., S. J., Schwab, P. C. Brazy, and V. W. Dennis. Norepinephrine increases Na+–K+‐ATPase and solute transport in rabbit proximal tubules. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F215–F220, 1987.
 27. Bello‐Reuss, E. Effect of catecholamines on fluid reabsorption by the isolated proximal convoluted tubule. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F347–F352, 1980.
 28. Bertorello, A., and A. Aperia. Inhibition of proximal tubule Na+‐K+‐ATPase activity requires simultaneous activation of DA, and DA2 receptors. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F924–F928, 1990.
 29. Bertorello, A., T., Hokfelt, M. Goldstein, and A. Aperia. Proximal tubule Na+‐K+‐ATPase activity is inhibited during high‐salt diet: evidence for DA‐mediated effect. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F795–F801, 1988.
 30. Bidet, M., J., Merot, M. Tauc, and P. Poujeol. Na–H exchanger in proximal cells isolated from kidney. II. Short‐term regulation by glucocorticoids. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F945–F951, 1987.
 31. Biemesderfer, D., J., Pizzonia, M. Exner, R. Reilly, P. Igarashi, and P. S. Aronson. NHE3: a Na/H exchanger isoform of the renal brush border. Am. J. Physiol. 265 (Renal Fluid Electrolyte Physiol. 34): F736–F742, 1993.
 32. Borensztein, P., P., Juvin, C. Vernimmen, J. Poggioli, M. Paillard, and M. Bichara. cAMP‐dependent control of Na/H antiport by AVP, PTH, and PGE2 in rat medullary thick ascending limb cells. Am. J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F354–F364, 1993.
 33. Boron, W. F., and E. L. Boulpaep. Intracellular pH regulation in the renal proximal tubule of the salamander: basolateral HCO3 transport. J. Gen. Physiol. 81: 53–94, 1983.
 34. Braam, B., K. D., Mitchell, J. Fox, and L. G. Navar. Proximal tubular secretion of angiotensin II in rats. Am. J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F891–F898, 1993.
 35. Brosius, F. C., III, S. L. Alper, A. M. Garcia, and H. F. Lodish. The major kidney band 3 gene transcript predicts an aminoterminal truncated band 3 polypeptide. J. Biol. Chem. 264: 7784–7787, 1989.
 36. Brown, G. P., and J. G. Douglas. Angiotensin II binding sites on isolated rat renal brush border membranes. Endocrinology 111: 1830–1836, 1982.
 37. Brunval, P., N., Hinglais, F. Alhenc‐Gelas, V. Tricotte, P. Corral, J. Menard, J. P. Camilleri, and J. Bariety. Angiotensin I converting enzyme in human intestine and kidney. Ultrastructural immunohistochemical localization. Histochemistry 85: 73–80, 1986.
 38. Burns, K. D., and R. C. Harris. Signaling and growth responses of LLC‐PK1/CL4 cells transfected with the rabbit AT1 ANG II receptor. Am. J. Physiol. 268 (Cell Physiol. 37): C925–C935, 1995.
 39. Butlen, D., M., Mistaoui, and F. Morel. Atrial natriuretic peptide receptors along the rat and rabbit nephrons: [125I] α‐rat atrial natriuretic peptide binding in microdissected glomeruli and tubules. Pflugers Arch. 408: 356–365, 1987.
 40. Campbell, D. J., and J. H. Habener. Regional distribution of angiotensinogen messenger RNA in rat adrenal and kidney. J. Hypertens. 4: S385–S387, 1987.
 41. Canfield, V. A., C. T., Okamoto, D. Chow, J. Dorfman, P. Gros, J. G. Forte, and R. Levenson. Cloning of the H,K‐ATPase β subunit. J. Biol. Chem. 265: 19878–19884, 1990.
 42. Cano, A., and M. Baum. T3 stimulates the activity of NHE3 by transcriptional activation [abstract]. J. Am. Soc. Nephrol. 7: 1253, 1996.
 43. Cano, A., R. T., Miller, R. J. Alpern, and P. Preisig. Angiotensin II stimulation of Na/H antiporter activity is cAMP‐independent in OKP cells. Am. J. Physiol. 266 (Cell Physiol. 35): C1603–C1608, 1994.
 44. Cano, A., P., Preisig, and R. J. Alpern. Cyclic adenosine monophosphate acutely inhibits and chronically stimulates Na/H antiporter in OKP cells. J. Clin. Invest. 92: 1632–1638, 1993.
 45. Cano, A., P. A., Preisig, R. T. Miller, and R. J. Alpern. PTH acutely inhibits and chronically stimulates the Na/H antiporter in OKP cells [abstract]. J. Am. Soc. Nephrol. 4: 834, 1993.
 46. Casavola, V., C., Helmle‐Kolb, and H. Murer. Separate regulatory control of apical and basolateral Na/H exchange in renal epithelial cells. Biochem. Biophys. Res. Commun. 165: 833–837, 1989.
 47. Chabardes, D., M., Imbert, A. Clique, M. Montegut, and F. Morel. PTH sensitive adenyl cyclase activity in different segments of the rabbit nephron. Pflugers Arch. 354: 229–239, 1975.
 48. Chan, Y. L. Adrenergic control of bicarbonate absorption in the proximal convoluted tubule of the rat kidney. Pflugers Arch. 388: 159–164, 1980.
 49. Chan, Y. L., and G. Giebisch. Relationship between sodium and bicarbonate transport in the rat proximal convoluted tubule. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F222–F230, 1981.
 50. Chen, M., M., Harris, A. Smart, X. He, M. Kretzler, J. Briggs, and J. Schnermann. Renin and renin mRNA in proximal tubules of the rat kidney. J. Clin. Invest. 94: 237–243, 1994.
 51. Chen, M., K., Todd‐Turla, W.‐H. Wang, X. Cao, A. Smart, F. C. Grosius, P. D. Killen, J. A. Keiser, J. P. Briggs, and J. Schnermann. Endothelin‐1 mRNA in glomerular and epithelial cells of kidney. Am. J. Physiol. 265 (Renal Fluid Electrolyte Physiol. 34): F542–F550, 1993.
 52. Cheng, H. F., B. N., Becker, K. D. Burns, and R. C. Harris. Angiotensin II upregulates type‐1 angiotensin II receptors in renal proximal tubule. J. Clin. Invest. 95: 2012–2019, 1995.
 53. Cheng, H.‐F., B. N., Becker, and R. C. Harris. Dopamine decreases expression of type‐1 angiotensin II receptors in renal proximal tubule. J. Clin. Invest. 97: 2745–2752, 1996.
 54. Cheng, L., P., Precht, D. Frank, and C. T. Liang. Dopamine stimulation of cAMP production in cultured opossum kidney cells. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F877–F882, 1990.
 55. Chobanian, M. C., and M. R. Hammerman. Insulin stimulates ammoniagenesis in canine renal proximal tubular segments. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F1171–F1177, 1987.
 56. Chobanian, M. D., and M. R. Hammerman. Parathyroid hormone stimulates ammoniagenesis in canine renal proximal tubular segments. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F847–F852, 1988.
 57. Chobanian, M. C., and C. M. Julin. Angiotensin II stimulates ammoniagenesis in canine renal proximal tubule segments. Am. J. Physiol. 260 (Renal Fluid Electrolyte Physiol. 29): F19–F26, 1991.
 58. Chobanian, M. C., C. M., Julin, K. H. Molteni, and P. C. Brazy. Growth hormone regulates ammoniagenesis in canine renal proximal tubule segments. Am. J. Physiol. 262 (Renal Fluid Electrolyte Physiol. 31): F878–F884, 1992.
 59. Chu, T. S., Y., Peng, A. Cano, M. Yanagisawa, and R. J. Alpern. Endothelinb receptor activates NHE‐3 by a Ca2+‐dependent pathway in OKP cells [abstract]. J. Clin. Invest. 97: 1454–1462, 1996.
 60. Chu, T.‐S., H., Tsuganezawa, Y. Peng, A. Cano, M. Yanagisawa, and R. J. Alpern. Role of tyrosine kinase pathways in ETb receptor activation of NHE3. Am. J. Physiol. 271 (Cell Physiol. 40): C763–C771, 1996.
 61. Clark, J. D., E. J. Cragoe, Jr., and L. E., Limbird. α2‐Adrenergic receptors regulate Na–H exchange via a cAMP‐dependent mechanism. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F977–F985, 1990.
 62. Cogan, M. G. Neurogenic regulation of proximal bicarbonate and chloride reabsorption. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F22–F26, 1986.
 63. Cohn, D. E., S., Klahr, and M. R. Hammerman. Metabolic acidosis and parathyroidectomy increase Na/H exchange in brush border vesicles. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F217–F222, 1983.
 64. Crowson, M. S., and G. E. Shull. Isolation and characterization of a cDNA encoding the putative distal colon H,K‐ATPase. J. Biol. Chem. 267: 13740–13748, 1992.
 65. DeFronzo, R. A., C. R., Cooke, R. Andres, G. R. Fabona, and P. J. Davis. The effect of insulin on renal handling of sodium, potassium, calcium, and phosphate in man. J. Clin. Invest. 55: 845–855, 1975.
 66. De Santo, N. G., G. Capasso, R. Kinne, B. Moewes, C. Carella, P. Anastasio, and C. Giordano. Tubular transport processes in proximal tubules of hypothyroid rats. Lack of relationship between thyroidal dependent rise of isotonic fluid reabsorption and Na+–K+‐ATPase activity. Pflugers Arch. 394: 294–301, 1982.
 67. De Santo, N. G., G. Capasso, C. Paduano, C. Carella, and C. Giordano. Tubular transport processes in proximal tubules of hypothyroid rats. Pflugers Arch. 384: 117–122, 1980.
 68. DiBona, G. F. The functions of the renal nerves. Rev. Physiol. Biochem. Pharmacol. 94: 75–181, 1982.
 69. Dominguez, J. H., K. W., Snowdowne, C. C. Freudenrich, T. Brown, and A. B. Borle. Intracellular messenger for action of angiotensin II on fluid transport in rabbit proximal tubule. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F423–F428, 1987.
 70. Douglas, J. G., M., Romero, and U. Hopfer. Signaling mechanisms coupled to the angiotensin receptor of proximal tubular epithelium. Kidney Int. 38: S43–S47, 1990.
 71. Dubrovsky, A. H. E., R. C., Nair, M. K. Byers, and D. Z. Levine. Renal net acid excretion in the adrenalectomized rat. Kidney Int. 19: 516–528, 1981.
 72. Dulin, N. O., P., Ernsberger, D. J. Suciu, and J. G. Douglas. Rabbit renal epithelial angiotensin II receptors. Am. J. Physiol. 267 (Renal Fluid Electrolyte Physiol. 36): F776–F782, 1994.
 73. Eiam‐Ong, S., S. A., Hilden, C. A. Johns, and N. E. Madias. Stimulation of basolateral Na+‐HCO3‐ cotransporter by angiotensin II in rabbit renal cortex. Am. J. Physiol. 265 (Renal Fluid Electrolyte Physiol. 34): F195–F203, 1993.
 74. Eiam‐Ong, S., S. A., Hilden, A. J. King, C. A. Johns, and N. E. Madias. Endothelin‐1 stimulates the apical Na/H and Na/HCO3 transporters in rabbit renal cortex. Kidney Int. 42: 18–24, 1992.
 75. Emoto, N., and M. Yanagasawa. Endothelin‐converting enzyme‐2 is a membrane‐bound, phosphoramidon‐sensitive metalloprotease with acidic pH optimum. J. Biol. Chem. 25: 15262–15268, 1995.
 76. Farman, N., A., Vandewalle, and J. P. Bonvalet. Autoradiographic determination of dexamethasone binding sites along the rabbit nephron. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F325–F334, 1983.
 77. Felder, C. C., T., Campbell, F. Albrecht, and P. A. Jose. Dopamine inhibits Na–H exchanger activity in renal BBMV by stimulation of adenylate cyclase. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F297–F303, 1990.
 78. Felder, C. C., A. M., McKelvey, M. S. Gitler, G. M. Eisner, and P. A. Jose. Dopamine receptor subtypes in renal brush border and basolateral membranes. Kidney Int. 36: 183–193, 1989.
 79. Felder, R. A., and P. A. Jose. Dopamine, receptors in rat kidneys identified with 125I‐Sch 23982. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F970–F976, 1988.
 80. Freiberg, J. M., J., Kinsella, and B. Sacktor. Glucocorticoids increase the Na+‐H+ exchange and decrease the Na+ gradient–dependent phosphate‐uptake systems in renal brush border membrane vesicles. Proc. Natl. Acad. Sci. U.S.A. 79: 4932–4936, 1982.
 81. Garcia, N. H., and J. L. Garvin. Endothelin's biphasic effect on fluid absorption in the proximal straight tubule and its inhibitory cascade. J. Clin. Invest. 93: 2572–2577, 1994.
 82. Gariepy, C. E., D. T., Cass, and M. Yanagisawa. Null mutation of endothelin receptor type B gene in spotting lethal rats causes aganglionic megacolon and white coat color. Proc. Natl. Acad. Sci. U.S.A. 93: 867–872, 1996.
 83. Garvin, J. L. Inhibition of Jv by ANF in rat proximal straight tubules requires angiotensin. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F907–F911, 1989.
 84. Garvin, J. L. ANF inhibits norepinephrine‐stimulated fluid absorption in rat proximal straight tubules. Am. J. Physiol. 263 (Renal Fluid Electrolyte Physiol. 32): F581–F585, 1992.
 85. Garvin, J. L., M. B., Burg, and M. A. Knepper. Active NH4 absorption by the thick ascending limb. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F57–F65, 1988.
 86. Geibel, J. Giebisch, and W. F. Boron. Angiotensin II stimulates both Na–H exchange and Na/HCO3 cotransport in the rabbit proximal tubule. Proc. Natl. Acad. Sci. U.S.A. 87: 7917–7920, 1990.
 87. Gesek, F. A., and A. C. Schoolwerth. Hormonal interactions with proximal Na+‐H+ exchanger. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F514–F521, 1990.
 88. Gesek, F. A., and J. W. Strandhoy. Dual interactions between α2‐adrenoceptor agonists and the proximal Na+‐H+ exchanger. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F636–F642, 1990.
 89. Gilford, J. D., L., Rome, and J. H. Galla. H–K‐ATPase activity in rat collecting duct segments. Am. J. Physiol. 262 (Renal Fluid Electrolyte Physiol. 31): F692–F695, 1992.
 90. Good, D. W. Sodium‐dependent bicarbonate absorption by cortical thick ascending limb of rat kidney. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F821–F829, 1985.
 91. Good, D. W. Inhibition of bicarbonate absorption by peptide hormones and cyclic adenosine monophosphate in rat medullary thick ascending limb. J. Clin. Invest. 85: 1006–1013, 1990.
 92. Good, D. W. Hyperosmolality inhibits bicarbonate absorption in rat medullary thick ascending limb via a protein‐tyrosine kinase‐dependent pathway. J. Biol. Chem. 270: 9883–9889, 1995.
 93. Good, D. W., M. A., Knepper, and M. B. Burg. Ammonia and bicarbonate transport by thick ascending limb of rat kidney. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F35–F44, 1984.
 94. Guntupalli, J., and T. D. DuBose. Effects of endothelin on rat renal proximal tubule Na–Pi cotransport and Na–H exchange. Am. J. Physiol. 266 (Renal Fluid Electrolyte Physiol. 35): F658–F666, 1994.
 95. Hamm, L. L., D., Trigg, D. Martin, C. Gillespie, and J. Buerkert. Transport of ammonia in the rabbit cortical collecting tubule. J. Clin. Invest. 75: 478–485, 1985.
 96. Hammond, T. G., A. N. K., Yusufi, F. G. Knox, and T. P. Dousa. Administration of atrial natriuretic factor inhibits sodium‐coupled transport in proximal tubules. J. Clin. Invest. 75: 1983–1989, 1985.
 97. Harris, P. J., and L. G. Navar. Tubular transport responses to angiotensin. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F621–F630, 1985.
 98. Harris, P. J., D., Thomas, and T. O. Morgan. Atrial natriuretic peptide inhibits angiotensin‐stimulated proximal tubular sodium and water reabsorption. Nature 326: 697–698, 1987.
 99. Harris, P. J., and J. A. Young. Dose‐dependent stimulation and inhibition of proximal tubular sodium reabsorption by angiotensin II in the rat kidney. Pflugers Arch. 367: 295–297, 1977.
 100. Hayashi, M., Y., Yamaji, W. Kitajima, and T. Saruta. Effects of high salt intake on dopamine production in rat kidney. Am. J. Physiol. 260 (Endocrinol. Metab. 23): E675–E679, 1991.
 101. Hays, S., J. P., Kokko, and H. R. Jacobson. Hormonal regulation of proton secretion in rabbit medullary collecting duct. J. Clin. Invest. 78: 1279–1286, 1986.
 102. Hays, S. R. Mineralocorticoid modulation of apical and basolateral membrane H/OH/HCO3 transport processes in the rabbit inner stripe of outer medullary collecting duct. J. Clin. Invest. 90: 180–187, 1992.
 103. Hays, S. R., M., Baum, and J. P. Kokko. Effects of protein kinase C activation on sodium, potassium, chloride, and total CO2 transport in the rabbit cortical collecting tubule. J. Clin. Invest. 80: 1561–1570, 1987.
 104. Hein, L., G. S., Barsh, R. E. Pratt, V. J. Dzau, and B. K. Kobilka. Behavioral and cardiovascular effects of disrupting the angiotensin II type‐2 receptor gene in mice. Nature 377: 744–747, 1995.
 105. Hosoda, K., R. E., Hammer, J. A. Richardson, A. G. Baynash, J. C. Cheung, A. Giaid, and M. Yanagisawa. Targeted and natural (piebald‐lethal) mutations of endothelin‐B receptor gene produce megacolon associated with spotted coat color in mice. Cell 79: 1267–1276, 1994.
 106. Houillier, P., R., Chambrey, J. M. Achard, M. Froissart, J. Poggioli, and M. Paillard. Signaling pathways in the biphasic effect of angiotensin II on apical Na/H antiport activity in proximal tubule. Kidney Int. 50: 1496–1505, 1996.
 107. Hruska, K. A., D., Moskowitz, P. Esbrit, R. Civitelli, S. West‐brook, and M. Huskey. Stimulation of inositol trisphosphate and diacylglycerol production in renal tubular cells by parathyroid hormone. J. Clin. Invest. 79: 230–239, 1987.
 108. Huang, C.‐H., J., Lewicki, L. K. Johnson, and M. G. Cogan. Renal mechanism of action of rat atrial natriuretic factor. J. Clin. Invest. 75: 769–773, 1985.
 109. Hulter, H. N., L. P., Ilnicki, J. A. Harbottle, and A. Sebastian. Impaired renal H secretion and NH3 production in mineralocorticoid‐deficient glucocorticoid‐replete dogs. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F136–F146, 1977.
 110. Hulter, H. N., J. H., Licht, R. D. Glynn, and A. Sebastian. Renal acidosis in mineralocorticoid deficiency is not dependent on NaCl depletion or hyperkalemia. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F283–F294, 1979.
 111. Hulter, H. N., and J. C. Peterson. Acid‐base homeostasis during chronic PTH excess in humans. Kidney Int. 28: 187–192, 1985.
 112. Hulter, H. N., J. F., Sigala, and A. Sebastian. Effects of dexamethasone on renal and systemic acid‐base metabolism. Kidney Int. 20: 43–49, 1981.
 113. Hulter, H. N., R. D., Toto, L. P. Ilnicki, B. Halloran, and A. Sebastian. Metabolic alkalosis in models of primary and secondary hyperparathyroid states. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F450–F461, 1983.
 114. Ichiki, T., P. A., Labosky, C. Shiota, S. Okuyama, Y. Imagawa, A. Fogo, F. Niimura, I. Ichikawa, B. L. M. Hogan, and T. Inagami. Effects on blood pressure and exploratory behavior of mice lacking angiotensin II type‐2 receptor. Nature 377: 748–750, 1995.
 115. Iino, Y., and M. B. Burg. Effect of parathyroid hormone on bicarbonate absorption by proximal tubules in vitro. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F387–F391, 1979.
 116. Ingelfinger, J. R., W. M., Zuo, E. A. Fon, K. E. Ellison, and V. J. Dzau. In situ hybridization evidence for angiotensinogen mRNA in the rat proximal tubule. J. Clin. Invest. 85: 417–423, 1990.
 117. Inoue, A., M., Yanagisawa, S. Kimura, Y. Kasuya, T. Miyauchi, K. Goto, and T. Masaki. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc. Natl. Acad. Sci. U.S.A. 86: 2863–2867, 1989.
 118. Ismail‐Beigi, F., and I. S. Edelman. The mechanism of the calorigenic action of thyroid hormone. J. Gen. Physiol. 57: 710–722, 1971.
 119. Ito, H., Y., Hirata, S. Adachi, M. Tanaka, M. Tsujino, A. Koike, A. Nogami, F. Marumo, and M. Hiroe. Endothelin‐1 is an autocrine/paracrine factor in the mechanism of angiotensin II–induced hypertrophy in cultures of rat cardiomyocytes. J. Clin. Invest. 92: 398–403, 1993.
 120. Jaisser, F., J.‐D., Horisberger, K. Geering, and B. C. Rossier. Mechanisms of urinary K and H excretion: primary structure and functional expression of a novel H,K‐ATPase. J. Cell Biol. 123: 1421–1429, 1993.
 121. Jourdain, M., C., Amiel, and G. Friedlander. Modulation of Na–H exchange activity by angiotensin II in opossum kidney cells. Am. J. Physiol. 263 (Cell Physiol. 32): C1141–C1147, 1992.
 122. Kahn, A. M., G. M., Dolson, M. K. Hise, S. C. Bennett, and E. J. Weinman. Parathyroid hormone and dibutyryl cAMP inhibit Na/H exchange in renal brush border vesicles. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F212–F218, 1985.
 123. Kambayashi, Y., S., Bardhan, K. Takahaski, S. Tsuzuki, H. Inui, T. Hamakubo, and T. Inagami. Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J. Biol. Chem. 268: 24543–24546, 1993.
 124. Kandasamy, R. A., F. H., Yu, R. Harris, A. Boucher, J. W. Hanrahan, and J. Orlowski. Plasma membrane Na+/H+ exchanger isoforms (NHE‐1,‐2, and‐3) are differentially responsive to second messenger agonists of the protein kinase A and C pathways. J. Biol. Chem. 270: 29209–29216, 1995.
 125. Karim, Z., N., Defontaine, M. Paillard, and J. Poggioli. Protein kinase C isoforms in rat kidney proximal tubule: acute effect of angiotensin II. Am. J. Physiol. 269 (Cell Physiol. 38): C134–C140, 1995.
 126. Kikeri, D., A., Sun, M. L. Zeidel, and S. C. Hebert. Cell membranes impermeable to NH3. Nature 339: 478–480, 1989.
 127. Kinsella, J., and B. Sacktor. Thyroid hormones increase Na+‐H+ exchange activity in renal brush border membranes. Proc. Natl. Acad. Sci. U.S.A. 82: 3606–3610, 1985.
 128. Kinsella, J. L., and P. S. Aronson. Interaction of NH4 and Li with the renal microvillus membrane Na–H exchanger. Am. J. Physiol. 241 (Cell Physiol. 10): C220–C226, 1981.
 129. Kinsella, J. L., T., Cujkit, and B. Sactor. Na–H exchange activity in renal brush border membrane vesicles in response to metabolic acidosis: the role of glucocorticoids. Proc. Natl. Acad. Sci. U.S.A. 81: 630–634, 1984.
 130. Kinsella, J. L., J. M., Freiberg, and B. Sacktor. Glucocorticoid activation of Na/H exchange in renal brush border vesicles: kinetic effects. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F233–F239, 1985.
 131. Koeppen, B. M., and S. I. Helman. Acidification of luminal fluid by the rabbit cortical collecting tubule perfused in vitro. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F521–F531, 1982.
 132. Kohno, M., T., Horio, M. Ikeda, K. Yokokawa, T. Fukui, K. Yasunari, N. Kurihara, and T. Takeda. Angiotensin II stimulates endothelin‐1 secretion in cultured rat mesangial cells. Kidney Int. 42: 860–866, 1992.
 133. Krapf, R. Basolateral membrane H/OH/HCO3 transport in the rat cortical thick ascending limb. J. Clin. Invest. 82: 234–241, 1988.
 134. Kudrycki, K. E., and G. E. Shull. Primary structure of the rat kidney band 3 anion exchange protein deduced from a cDNA. J. Biol. Chem. 264: 8185–8192, 1989.
 135. Kudrycki, K. E., and G. E. Shull. Rat kidney band 3 Cl/HCO3 exchanger mRNA is transcribed from an alternative promoter. Am. J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F540–F547, 1993.
 136. Kuwahara, M., S., Sasaki, and F. Marumo. Mineralocorticoids and acidosis regulate H/HCO3 transport of intercalated cells. J. Clin. Invest. 89: 1388–1394, 1992.
 137. Kyossev, Z., P. D., Walker, and W. B. Reeves. Immunolocalization of NAD‐dependent 11β‐hydroxysteroid dehydrogenase in human kidney and colon. Kidney Int. 49: 271–281, 1996.
 138. Leviel, F., P., Borensztein, P. Houillier, M. Paillard, and M. Bichara. Electroneutral K/HCO3 cotransport in cells of medullary thick ascending limb of rat kidney. J. Clin. Invest. 90: 869–878, 1992.
 139. Levine, D. Z., M., Iacovitti, S. Buckman, and K. D. Burns. Role of angiotensin II in dietary modulation of rat late distal tubule bicarbonate flux in vivo. J. Clin. Invest. 97: 120–125, 1996.
 140. Levine, D. Z., M., Iacovitti, S. Buckman, and V. Harrison. In vivo modulation of rat distal tubule net HCO3 flux by VIP, isoproterenol, angiotensin II, and ADH. Am. J. Physiol. 266 (Renal Fluid Electrolyte Physiol. 35): F878–F883, 1994.
 141. Levine, S. A., M. H., Montrose, C. M. Tse, and M. Donowitz. Kinetics and regulation of three cloned mammalian Na+/H+ exchangers stably expressed in a fibroblast cell line. J. Biol. Chem. 368: 25527–25535, 1994.
 142. Li, L., Y. P., Wang, A. W. Capparelli, O. D. Jo, and N. Yanagawa. Effect of luminal angiotensin II on proximal tubule fluid transport: role of apical phospholipase A2. Am. J. Physiol. 266 (Renal Fluid Electrolyte Physiol. 35): F202–F209, 1994.
 143. Liu, F. Y., and M. G. Cogan. Angiotensin II: a potent regulator of acidification in the rat early proximal convoluted tubule. J. Clin. Invest. 80: 272–275, 1987.
 144. Liu, F. Y., and M. G. Cogan. Angiotensin II stimulation of hydrogen ion secretion in the rat early proximal tubule. J. Clin. Invest. 82: 601–607, 1988.
 145. Liu, F. Y., and M. G. Cogan. Angiotensin II (AII) stimulates early proximal bicarbonate absorption in the rat by decreasing cyclic adenosine monophosphate. J. Clin. Invest. 84: 83–91, 1989.
 146. Liu, F. Y., and M. G. Cogan. Role of protein kinase C in proximal bicarbonate absorption and angiotensin signalling. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F927–F933, 1990.
 147. Lorentz, W. B., Jr.. The effect of cyclic AMP and dibutyryl cyclic AMP on the permeability characteristics of the renal tubule. J. Clin. Invest. 53: 1250–1257, 1974.
 148. Lorentz, W. B., Jr.. Effect of parathyroid hormone on renal tubular permeability. Am. J. Physiol. 231: 1401–1407, 1976.
 149. Marchetti, J., S., Rouseau, and F. Alhenc‐Gelas. Angiotensin I converting enzyme and kinin‐hydrolyzing enzyme along the rabbit nephron. Kidney Int. 31: 744–751, 1987.
 150. Massry, S. G., K., Kurokawa, A. I. Arieff, and C. Ben‐Isaac. Metabolic acidosis of hyperparathyroidism. Arch. Intern. Med. 134: 385–387, 1974.
 151. McDonough, A. A., T. A., Brown, B. Horowitz, R. Chiu, J. Schlotterbeck, J. Bowen, and C. A. Schmitt. Thyroid hormone coordinately regulates Na+–K+‐ATPase α‐ and β‐subunit mRNA levels in kidney. Am. J. Physiol. 254 (Cell Physiol. 23): C323–C329, 1988.
 152. McKinney, T. D., and P. Myers. Bicarbonate transport by proximal tubules: effect of parathyroid hormone and dibutyryl cyclic AMP. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F166–F174, 1980.
 153. McKinney, T. D., and P. Myers. PTH inhibition of bicarbonate transport by proximal convoluted tubules. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F127–F134, 1980.
 154. Mercier, O., M., Bichara, M. Paillard, and A. Prigent. Effects of parathyroid hormone and urinary phosphate on collecting duct hydrogen secretion. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F802–F809, 1986.
 155. Michael, U. F., J., Kelley, and C. A. Vaamonde. Impaired renal bicarbonate reabsorption in the hypothyroid rat. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F536–F540, 1979.
 156. Mishina, T., D. W., Scholer, and I. S. Edelman. Glucocorticoid receptors in rat kidney cortical tubules enriched in proximal and distal segments. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F38–F45, 1981.
 157. Mitnick, P., A., Greenberg, T. Coffman, E. Kelepouris, C.J. Wolf, and S. Goldfarb. Effects of two models of hypercalcemia on renal acid base metabolism. Kidney Int. 21: 613–620, 1982.
 158. Moe, O. W., M., Amemiya, and Y. Yamaji. Activation of protein kinase A acutely inhibits and phosphorylates Na/H exchanger NHE‐3. J. Clin. Invest. 96: 2187–2194, 1995.
 159. Moe, O. W., K., Ujiie, R. A. Star, R. T. Miller, J. Widell, R. J. Alpern, and W. L. Henrich. Renin expression in renal proximal tubule. J. Clin. Invest. 91: 774–779, 1993.
 160. Morduchowicz, G. A., D., Sheikh‐Hamad, B. E. Dwyer, N. Stern, O. D. Jo, and N. Yanagawa. Angiotensin II directly increases rabbit renal brush‐border membrane sodium transport: presence of local signal transduction system. J. Membr. Biol. 122: 43–53, 1991.
 161. Morell, G., D., Steplock, S. Shenolikar, and E.J. Weinman. Identification of a putative Na/H exchanger regulatory cofactor in rabbit renal BBM. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F867–F871, 1990.
 162. Mujais, S. K., S., Kauffman, and A. I. Katz. Angiotensin II binding sites in individual segments of the rat nephron. J. Clin. Invest. 77: 315–318, 1986.
 163. Mukoyama, M., M., Nakajima, M. Horiuchi, H. Sasamura, R. E. Pratt, and V. J. Dzau. Expression cloning of type 2 angiotensin II receptor reveals a unique class of seventransmembrane receptors. J. Biol. Chem. 268: 24539–24542, 1993.
 164. Murphy, T. J., R. W., Alexander, K. K. Griendling, M.S. Runge, and K. E. Bernstein. Isolation of a cDNA encoding the vascular type‐1 angiotensin II receptor. Nature 351: 233–236, 1991.
 165. Nagami, G. T. Luminal secretion of ammonia in the mouse proximal tubule perfused in vitro. J. Clin. Invest. 81: 159–164, 1988.
 166. Nagami, G. T. Effect of angiotensin II on ammonia production and secretion by mouse proximal tubules perfused in vitro. J. Clin. Invest. 89: 925–931, 1992.
 167. Nagami, G. T. Effect of luminal angiotensin II on ammonia production and secretion by mouse proximal tubules. Am. J. Physiol. 269 (Renal Fluid Electrolyte Physiol. 38): F86–F92, 1995.
 168. Naray‐Fejes‐Toth, A., E., Rusvai, and G. Fejes‐Toth. Mineralocorticoid receptors and 11β‐steroid dehydrogenase activity in renal principal and intercalated cells. Am. J. Physiol. 266 (Renal Fluid Electrolyte Physiol. 35): F76–F80, 1994.
 169. Nelson, R. D., X. L., Guo, K. Masood, D. Brown, M. Kalkbrenner, and S. Gluck. Selectively amplified expression of an isoform of the vacuolar H‐ATPase 56‐kilodalton subunit in renal intercalated cells. Proc. Natl. Acad. Sci. U.S.A. 89: 3541–3545, 1992.
 170. Nonoguchi, H., M. A., Knepper, and V. C. Manganiello. Effects of atrial natriuretic factor on cyclic guanosine monophosphate and cyclic adenosine monophosphate accumulation in microdissected nephron segments from rats. J. Clin. Invest. 79: 500–507, 1987.
 171. Nord, E. P., M.J., Howard, A. Hafezi, P. Moradeshagi, S. Vaystub, and P. A. Insel. Alpha2 adrenergic agonists stimulate Na–H antiport activity in the rabbit renal proximal tubule. J. Clin. Invest. 80: 1755–1762, 1987.
 172. Orlowski, J., R. A., Kandasamy, and G. E. Shull. Molecular cloning of putative members of the Na/H exchanger gene family. J. Biol. Chem. 267: 9331–9339, 1992.
 173. Pastoriza‐Munoz, E., R. M., Harrington, and M. L. Graber. Parathyroid hormone decreases HCO3 reabsorption in the rat proximal tubule by stimulating phosphatidylinositol metabolism and inhibiting base exit. J. Clin. Invest. 89: 1485–1495, 1992.
 174. Paxton, W. G., M., Runge, C. Horaist, C. Cohen, R. W. Alexander, and K. E. Bernstein. Immunohistochemical localization of rat angiotensin II AT1 receptor. Am. J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F989–F995, 1993.
 175. Peng, Y., A., Cano, M. Yanagisawa, and R. J. Alpern. ETa and ETb receptors activate similar signaling pathways, but only ETb receptors activate NHE‐3 [abstract]. J. Am. Soc. Nephrol. 7: 1683, 1996.
 176. Peng, Y., O. W., Moe, M. Yanagisawa, and R.J. Alpern. ETb receptor induces activation and phosphorylation of NHE‐3 [abstract]. J. Am. Soc. Nephrol. 7: 1258, (in press), 1996.
 177. Perez, G. O., J. R., Oster, F. H. Katz, and C. A. Vaamonde. The effect of acute metabolic acidosis on plasma Cortisol, renin activity and aldosterone. Horm. Res. 11: 12–21, 1979.
 178. Poggioli, J., G., Lazar, P. Houillier, J. P. Gardin, J. M. Achard, and M. Paillard. Effects of angiotensin II and nonpeptide receptor antagonists on transduction pathways in rat proximal tubule. Am. J. Physiol. 263 (Cell Physiol. 32): C750–C758, 1992.
 179. Pollock, A. S., D. G., Warnock, and G. J. Strewler. Parathyroid hormone inhibition of Na–H antiporter activity in a cultured renal cell line. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F217–F225, 1986.
 180. Preisig, P. A., and R.J. Alpern. Pathways for apical and basolateral membrane NH3 and NH4 movement in rat proximal tubule. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F587–F593, 1990.
 181. Preisig, P. A., and R. J. Alpern. Increased Na/H antiporter and Na/3HCO3 symporter activities in chronic hyperfiltration. J. Gen. Physiol. 97: 195–217, 1991.
 182. Preisig, P. A., H. E., Ives, E. J. Cragoe, R. J. Alpern, and F. C. Rector, Jr.. Role of the Na/H antiporter in rat proximal tubule bicarbonate absorption. J. Clin. Invest. 80: 970–978, 1987.
 183. Preisig, P. A., and F. C. Rector, Jr.. Role of Na–H antiport in rat proximal tubule NaCl absorption. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F461–F465, 1988.
 184. Puffenberger, E. G., K., Hosoda, S. S. Washington, K. Nakao, D. deWit, M. Yanagisawa, and A. Chakravarti. A missense mutation of the endothelin‐B receptor gene in multigenic Hirschsprung's disease. Cell 79: 1257–1266, 1994.
 185. Puschett, J. B., and P. Zurbach. Acute effects of parathyroid hormone on proximal bicarbonate transport in the dog. Kidney Int. 9: 501–510, 1976.
 186. Quan, A., and M. Baum. Endogenous production of angiotensin II modulates rat proximal tubule transport. J. Clin. Invest. 97: 2878–2882, 1996.
 187. Ribeiro, C. P., and L. J. Mandel. Parathyroid hormone inhibits proximal tubule Na–K‐ATPase activity. Am. J. Physiol. 262 (Renal Fluid Electrolyte Physiol. 31): F209–F216, 1992.
 188. Richoux, J. P., J. L., Cordonnier, J. Bouhnik, E. Clausen, P. Corvol, J. Menard, and G. Grignon. Immunocytochemical localization of angiotensinogen in rat liver and kidney. Cell Tissue Res. 233: 439–451, 1983.
 189. Rix, E. D., D., Ganten, B. Schull, T. Unger, and R. Taugner. Converting‐enzyme in the choroid plexus, brain, and kidney: immunocytochemical and biochemical studies in rats. Neurosci. Lett. 22: 125–130, 1981.
 190. Romero, M. F., M. A., Hediger, E. L. Boulpaep, and W. F. Boron. Physiology of the cloned Ambystoma tigrinum renal electrogenic Na/HCO3 cotransporter (aNBC): I. Role of HCO3‐ [abstract]. J. Am. Soc. Nephrol. 7: 1259, 1996.
 191. Romero, M. F., A. T., Madhun, U. Hopfer, and J. G. Douglas. An epoxygenase metabolite of arachidonic acid 5,6‐epoxy‐eicosatrienoic acid mediates angiotensin‐induced natriuresis in proximal tubular epithelium. In: Advances in Prostaglandin, Thromboxane, and Leukotriene Research, edited by B. Sameulsson. New York: Raven, 1990, vol. 21, p. 205–208.
 192. Rouse, D., S., Williams, and W. N. Suki. Clonidine inhibits fluid absorption in the rabbit proximal convoluted renal tubule. Kidney Int. 38: 80–85, 1990.
 193. Ruiz, O. S., and J. A. L. Arruda. Regulation of the renal Na–HCO3 cotransporter by cAMP and Ca‐dependent protein kinases. Am. J. Physiol. 262 (Renal Fluid Electrolyte Physiol. 31): F560–F565, 1992.
 194. Saccomani, G., K. D., Mitchell, and L. G. Navar. Angiotensin II stimulation of Na/H exchange in proximal tubule cells. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F1188–F1195, 1990.
 195. Sakurai, T., M., Yanagisawa, Y. Takuwa, H. Miyazaki, S. Kimura, K. Goto, and T. Masaki. Cloning of a cDNA encoding a non‐isopeptide‐selective subtype of the endothelin receptor. Nature 348: 732–735, 1990.
 196. Sardet, C., A., Franchi, and J. Pouyssegur. Molecular cloning, primary structure, and expression of the human growth factor‐activatable Na/H antiporter. Cell 56: 271–280, 1989.
 197. Sartorius, O. W., D., Calhoon, and R. F. Pitts. Studies on the interrelationships of the adrenal cortex and renal ammonia excretion by the rat. Endocrinology 52: 256–265, 1953.
 198. Sasaki, K., Y., Yamano, S. Bardhan, N. Iwai, J. J. Murray, M. Hasegawa, Y. Matsuda, and T. Inagami. Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type‐1 receptor. Nature 351: 230–233, 1991.
 199. Sasaki, S., and F. Marumo. Mechanisms of inhibition of proximal acidification by PTH. Am. J. Physiol. 260 (Renal Fluid Electrolyte Physiol. 29): F833–F838, 1991.
 200. Schelling, J. R., A. S., Hanson, R. Marzec, and S. L. Linas. Cytoskeleton‐dependent endocytosis is required for apical type 1 angiotensin II receptor–mediated phospholipase C activation in cultured rat proximal tubule cells. J. Clin. Invest. 90: 2472–2480, 1992.
 201. Schelling, J. R., and S. L. Linas. Angiotensin II‐dependent proximal tubule sodium transport requires receptor–mediated endocytosis. Am. J. Physiol. 266 (Cell Physiol. 35): C669–C675, 1994.
 202. Schelling, J. R., H., Singh, R. Marzec, and S. L. Linas. Angiotensin II‐dependent proximal tubule sodium transport is mediated by cAMP modulation of phospholipase C. Am. J. Physiol. 267 (Cell Physiol. 36): C1239–C1245, 1994.
 203. Scholer, D. W., T., Mishina, and I. S. Edelman. Distribution of aldosterone receptors in rat kidney cortical tubules enriched in proximal and distal segments. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F360–F366, 1979.
 204. Schuster, V. L. Cyclic adenosine monophosphate–stimulated bicarbonate secretion in rabbit cortical collecting tubules. J. Clin. Invest. 75: 2056–2064, 1985.
 205. Schuster, V. L., J. P., Kokko, and H. R. Jacobson. Angiotensin II directly stimulates sodium transport in rabbit proximal convoluted tubules. J. Clin. Invest. 73: 507–515, 1984.
 206. Sebastian, A., M., Schambelan, S. Lindenfeld, and R. C. Morris, Jr.. Amelioration of metabolic acidosis with fludrocortisone therapy in hyporeninemic hypoaldosteronism. N. Engl. J. Med. 297: 576–583, 1977.
 207. Seikaly, M. G., B. S. Arant, Jr., and F. D. Seney, Jr.. Endogenous angiotensin concentrations in specific intrarenal fluid compartments of the rat. J. Clin. Invest. 86: 1352–1357, 1990.
 208. Seri, I., B. C., Kone, S. R. Gullans, A. Aperia, B. M. Brenner, and B. J. Ballermann. Locally formed dopamine inhibits Na+‐K+‐ATPase activity in rat renal cortical tubule cells. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F666–F673, 1988.
 209. Sheikh‐Hamad, D., Y.‐P., Wang, O. D. Jo, and N. Yanagawa. Dopamine antagonizes the actions of angiotensin II in renal brush‐border membrane. Am. J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F737–F743, 1993.
 210. Shull, G. E., and J. B. Lingrel. Molecular cloning of the rat stomach (H + K)‐ATPase. J. Biol. Chem. 261: 16788–16791, 1986.
 211. Simonson, M. S., S., Wann, P. Mene, G. R. Dubyak, M. Kester, Y. Nakazato, J. R. Sedor, and M. J. Dunn. Endothelin stimulates phospholipase C, Na+/H+ exchange, c‐fos expression, and mitogenesis in rat mesangial cells. J. Clin. Invest. 83: 708–712, 1989.
 212. Soleimani, M., and P. S. Aronson. Ionic mechanism of Na: HCO3 cotransport in renal basolateral membrane vesicles (BLMV). J. Biol. Chem. 264: 18302–18308, 1989.
 213. Steinmetz, P. R., and L. R. Lawson. Effect of luminal pH of ion permeability and flows of Na and H in turtle bladder. Am. J. Physiol. 220: 1573–1580, 1971.
 214. Stone, D. K., D. W., Seldin, J. P. Kokko, and H. R. Jacobson. Mineralocorticoid modulation of rabbit medullary collecting duct acidification: a sodium independent effect. J. Clin. Invest. 72: 77–83, 1983.
 215. Stone, D. K., and X. S. Xie. Proton translocating ATPases: issues in structure and function. Kidney Int. 33: 767–774, 1988.
 216. Sun, A. M., K. P., Yip, Y. Liu, J. N. Centracchio, C. M. Tse, M. Donowitz, and L. D. Dworkin. NHE‐2 is present in the apical membrane of medullary thick ascending limb (MTAL) [abstract]. J. Am. Soc. Nephrol. 7: 1261, 1996.
 217. Sundaresan, P. R., T. L., Fortin, and S. L. Kelvie. α‐ and β‐adrenergic receptors in proximal tubules of rat kidney. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F848–F856, 1987.
 218. Takemoto, F., S., Uchida, E. Ogata, and K. Kurokawa. Endothelin‐1 and endothelin‐3 binding to rat nephrons. Am. J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F827–F832, 1993.
 219. Terada, Y., K., Tomita, H. Nonoguchi, and F. Marumo. Different localization of two types of endothelin receptor mRNA in microdissected rat nephron segments using reverse transcription and polymerase chain reaction assay. J. Clin. Invest. 90: 107–112, 1992.
 220. Terada, Y., K., Tomita, H. Nonoguchi, and F. Marumo. PCR localization of angiotensin II receptor and angiotensinogen mRNAs in rat kidney. Kidney Int. 43: 1251–1259, 1993.
 221. Terada, Y., K., Tomita, H. Nonoguchi, T. Yang, and F. Marumo. Expression of endothelin‐3 mRNA along rat nephron segments using polymerase chain reaction. Kidney Int. 44: 1273–1280, 1993.
 222. Todd‐Turla, K. M., J., Schnermann, G. Fejes‐Toth, A. Naray‐Fejes‐Toth, A. Smart, P. D. Killen, and J. P. Briggs. Distribution of mineralocorticoid and glucocorticoid receptor mRNA along the nephron. Am. J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F781–F791, 1993.
 223. Tse, C. M., S. R., Brant, M. S. Walker, J. Pouyssegur, and M. Donowitz. Cloning and sequencing of a rabbit cDNA encoding an intestinal and kidney‐specific Na/H exchanger isoform (NHE‐3). J. Biol. Chem. 267: 9340–9346, 1992.
 224. Tse, C. M., S. A., Levine, C. H. C. Yun, M. H. Montrose, P. J. Little, J. Pouyssegur, and M. Donowitz. Cloning and expression of a rabbit cDNA encoding a serum‐activated ethylisopropylamiloride‐resistant epithelial Na/H exchanger isoform (NHE‐2). J. Biol. Chem. 268: 11917–11924, 1993.
 225. Tsuganezawa, H., P. A., Preisig, O. W. Moe, and R. J. Alpern. Activation of NHE‐3 by angiotensin II (Ang II) is mediated by c‐Src kinase [abstract]. J. Am. Soc. Nephrol. 7: 1292, 1996.
 226. Wang, T., and Y. L. Chan. Neural control of distal tubular bicarbonate and fluid transport. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F72–F76, 1989.
 227. Wang, T., and Y. L. Chan. Mechanism of angiotensin II action on proximal tubular transport. J. Pharmacol. Exp. Ther. 252: 689–695, 1990.
 228. Wang, T., and Y. L. Chan. Time‐ and dose‐dependent effects of protein kinase C on proximal bicarbonate transport. J. Membr. Biol. 117: 131–139, 1990.
 229. Wang, T., and Y. L. Chan. The role of phosphoinositide turnover in mediating the biphasic effect of angiotensin II on renal tubular transport. J. Pharmacol. Exp. Ther. 256: 309–317, 1991.
 230. Wang, T., and G. Giebisch. Effects of angiotensin II on electrolyte transport in the early and late distal tubule in rat kidney. Am. J. Physiol. 271 (Renal Fluid Electrolyte Physiol. 40): F143–F149, 1996.
 231. Wang, T., G., Malnic, G. Giebisch, and Y. L. Chan. Renal bicarbonate reabsorption in the rat. IV. Bicarbonate transport mechanisms in the early and late distal tubule. J. Clin. Invest. 91: 2776–2784, 1993.
 232. Wang, Z., J., Orlowski, and G. E. Shull. Primary structure and functional expression of a novel gastrointestinal isoform of the rat Na/H exchanger. J. Biol. Chem. 268: 11925–11928, 1993.
 233. Ward, P. E., E. G., Erdos, C. D. Gedney, R. B. Dowben, and R. C. Reynolds. Isolation of membrane bound renal enzyme that metabolizes kinins and angiotensin. Biochem. J. 157: 543–650, 1976.
 234. Weiner, I. D., A. R., New, A. E. Milton, and C. C. Tisher. Regulation of luminal alkalinization and acidification in the cortical collecting duct by angiotensin II. Am. J. Physiol. 269 (Renal Fluid Electrolyte Physiol. 38): F730–F738, 1995.
 235. Weinman, E. J., W. P., Dubinsky, K. Fisher, D. Steplock, Q. Dinh, L. Chang, and S. Shenolikar. Regulation of reconstituted renal Na/H exchanger by calcium‐dependent protein kinases. J. Membr. Biol. 103: 237–244, 1988.
 236. Weinman, E. J., W. P., Dubinsky, and S. Shenolikar. Reconstitution of cAMP‐dependent protein kinase regulated renal Na–H exchanger. J. Membr. Biol. 101: 11–18, 1988.
 237. Weinman, E. J., S. C., Sansom, T. F. Knight, and H. O. Senekjian. Alpha and beta adrenergic agonists stimulate water absorption in the rat proximal tubule. J. Membr. Biol. 69: 107–111, 1982.
 238. Weinman, E. J., and S. Shenolikar. Protein kinase C activates the renal apical membrane Na/H exchanger. J. Membr. Biol. 93: 133–139, 1986.
 239. Weinman, E. J., S., Shenolikar, and A. M. Kahn. cAMP‐associated inhibition of Na–H exchanger in rabbit kidney brush‐border membranes. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F19–F25, 1987.
 240. Weinman, E. J., D., Steplock, G. Bui, N. Yuan, and S. Shenolikar. Regulation of renal Na+‐H+ exchanger by cAMP‐dependent protein kinase. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F1254–F1258, 1990.
 241. Weinman, E. J., D., Steplock, and S. Schenolikar. cAMP‐mediated inhibition of the renal brush border membrane Na–H exchanger requires a dissociable phosphoprotein cofactor. J. Clin. Invest. 92: 1781–1786, 1993.
 242. Weinman, E. J., D., Steplock, Y. Wang, and S. Shenolikar. Characterization of a protein cofactor that mediates protein kinase A regulation of the renal brush border membrane Na+‐H+ exchanger. J. Clin. Invest. 95: 2143–2149, 1995.
 243. Welsh, C., G., Dubyak, and J. G. Douglas. Relationship between phospholipase C activation and prostaglandin E2 and cyclic adenosine monophosphate production in rabbit tubular epithelial cells. J. Clin. Invest. 81: 710–719, 1988.
 244. Wiederkehr, M. R., H., Zhao, and O. W. Moe. Acute regulation of Na/H exchanger NHE‐3 by protein kinase C (PKC) [abstract]. J. Am. Soc. Nephrol. 7: 1292, 1996.
 245. Wilcox, C. S., D. A., Cemerikic, and G. Giebisch. Differential effects of acute mineralo‐ and glucocorticosteroid administration on renal acid elimination. Kidney Int. 21: 546–556, 1982.
 246. Winaver, J., J. C., Burnett, G. M. Tyce, and T. P. Dousa. ANP inhibits Na+‐H+ antiport in proximal tubular brush border membrane: role of dopamine. Kidney Int. 38: 1133–1140, 1990.
 247. Wingo, C. S. Active proton secretion and potassium absorption in the rabbit outer medullary collecting duct: functional evidence for H/K‐ATPase. J. Clin. Invest. 84: 361–365, 1989.
 248. Winkel, G. K., C., Sardet, J. Pouyssegur, and H. E. Ives. Role of cytoplasmic domain of the Na+/H+ exchanger in hormonal activation. J. Biol. Chem. 268: 3396–3400, 1993.
 249. Wolf, G., P. D., Killen, and E. G. Neilson. Intracellular signalling of transcription and secretion of type IV collagen after angiotensin II–induced cellular hypertrophy in cultured proximal tubular cells. Cell Regulation 2: 219–227, 1991.
 250. Wong, K. R., C. A., Berry, and M. G. Cogan. α1‐Adrenergic control of chloride transport in the rat S1 proximal tubule. Am. J. Physiol. 270 (Renal Fluid Electrolyte Physiol. 39): F1049–F1056, 1996.
 251. Woodcock, E. A., and C. I. Johnston. Inhibition of adenylate cyclase by angiotensin II in rat renal cortex. Endocrinology 111: 1687–1691, 1982.
 252. Woodcock, E. A., and C. I. Johnston. Selective inhibition by epinephrine of parathyroid hormone–stimulated adenylate cyclase in rat renal cortex. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F721–F726, 1982.
 253. Xu, D., N., Emoto, A. Giaid, C. Slaughter, S. Kaw, D. deWit, and M. Yanagisawa. ECE‐1: a membrane‐bound metalloprotease that catalyzes the proteolytic activation of big endothelin‐1. Cell 78: 473–485, 1994.
 254. Yamaguchi, I., P. A., Jose, M. M. Mouradian, L. M. Canessa, F. J. Monsma, Jr., D. R. Sibley, K. Takeyasu, and R. A. Felder. Expression of dopamine D1a receptor gene in proximal tubule of rat kidneys. Am. J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F280–F285, 1993.
 255. Yamaji, Y., M., Amemiya, A. Cano, P. A. Preisig, R. T. Miller, O. W. Moe, and R. J. Alpern. Overexpression of csk inhibits acid‐induced activation of NHE‐3. Proc. Natl. Acad. Sci. U.S.A. 92: 6274–6278, 1995.
 256. Yanagisawa, M., H., Kurihara, S. Kimura, Y. Tomobe, M. Kobayashi, Y. Mitsui, Y. Yazaki, K. Goto, and T. Masaki. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411–415, 1988.
 257. Yonemura, K., L., Cheng, B. Sacktor, and J. L. Kinsella. Stimulation by thyroid hormone of Na+‐H+ exchange activity in cultured opossum kidney cells. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F333–F338, 1990.
 258. Yoshitomi, K., B. C., Burckhardt, and E. Fromter. Rheogenic sodium‐bicarbonate cotransport in the peritubular cell membrane of rat renal proximal tubule. Pflugers Arch. 405: 360–366, 1985.
 259. Yun, C. H. C., S. H., Oh, M. Zizak, D. Steplock, M. Tse, S. Tsao, E. J. Weinman, and M. Donowitz. Regulatory proteins identified by a yeast two‐hybrid system reconstitute NHE3 inhibition by cAMP [abstract]. J. Am. Soc. Nephrol. 7: 1264, 1996.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Robert J. Alpern. Endocrine Control of Acid‐Base Balance. Compr Physiol 2011, Supplement 22: Handbook of Physiology, The Endocrine System, Endocrine Regulation of Water and Electrolyte Balance: 570-603. First published in print 2000. doi: 10.1002/cphy.cp070315