References |
1. |
Adelstein, R. S.
Regulation of contractile proteins by phosphorylation.
J. Clin. Invest.
72:
1863–1866,
1983.
|
2. |
Almahbobi, G.,
M. Korn, and
P. F. Hall.
Calmodulin induces phosphorylation of vimentin and myosin light chain and cell rounding in cultured adrenal cells. Europ.
J. Cell Biol.
63:
307–315,
1994.
|
3. |
Angelides, K. J.,
K. E. Smith, and
M. Takeda.
Assembly and exchange of intermediate filaments: Neurofilaments are dynamic structures.
J. Cell Biol.
108:
1495–1506,
1989.
|
4. |
Anholt, R. R. H.,
E. B. De Souza,
M. J. Kuhar, and
S. H. Snyder.
Depletion of benzodiazepine receptors after hypophysectomy.
J. Pharm.
110:
41–46,
1985.
|
5. |
Atcheson, J. B., and
F. H. Tyler.
Circadian rhythm in secretion of adrenal steroids.
Hormonal Peptides and Proteins.
X111:
89–125,
1987.
|
6. |
Barnea, E. R.,
F. Fares, and
M. Gavish.
Modulatory action of benzodiazepines on human term placental steriodogenesis in vitro.
Mol. Cell. Endrocrinol.
64:
155–159,
1989.
|
7. |
Basile, A. S., and
P. Skolnick.
Subcellular localisation of. “peripheral‐type” binding sites for benzodiazepines in rat brain.
J. Neurochem.
46:
305–308,
1986.
|
8. |
Besman, M. J.,
K. Yanagibashi,
T. D. Lee,
M. Kawamura,
P. F. Hall, and
J. E. Shively.
Identification of des‐(Gly‐Ile)‐endozepine as an effector of corticotropin‐dependent adrenal steroidogenesis: stimulation of cholesterol delivery is mediated by the periferal benzodiazepine receptor.
Proc. Natl. Acad. Sci. U.S.A.
86:
4897–4901,
1989.
|
9. |
Betz, G. and
P. F. Hall.
Steroidogenesis in adrenal tumor cells: Influence of cell shape.
Endocrinology
120:
2547–2554,
1987.
|
10. |
Boujrad, N.,
H. Vidic, and
V. Papadopoulos.
Acute action of human chorionic gonadotrophin on heydig tumor cells. Altered topography of the mitochondrial peripheral‐type benzodiazepine receptor.
Endocrinology
137:
5727–5730,
1996.
|
11. |
Brdiczka, D.
Contact sites between mitochondrial envelope membranes.
Biochim. Biophys. Acta.
1071:
291–312,
1991.
|
12. |
Bretscher, A.
Characterization and ultrastructural role of the main components of the intestinal microskeleton.
Cold Spring Harbor Symposia on Quantitative Biol.
XLVI:
871–880,
1982.
|
13. |
Brown, A. S. and
P. F. Hall.
Stimulation by endozepine of the side‐ chain cleavage of cholesterol in a reconstituted enzyme system.
Biochem. Biophys. Res. Commun.
180:
609–614,
1991.
|
14. |
Buckley, D. I., and
J. Ramachandran.
Characterization of ACTH receptors on adrenocortical cells.
Proc. Natl. Acad. Sci. U.S.A.
78:
7431–7435,
1981.
|
15. |
Burridge, K.
Are stress fibres contractile?
Nature
294:
691–692,
1981.
|
16. |
Bush, I. E.
Chemical and biological activity of adrenocortical steroids.
Pharmicol. Rev.
14:
317–445,
1962.
|
17. |
Cammas, F. M.,
S. Kapas,
S. Barker, and
A.T.L. Clark.
Cloning, characterization and expression of a functional mouse ACTH receptor.
Biochem. Biophys. Res. Commun.
212:
912–918,
1995.
|
18. |
Chanderbahn, R.,
B. J. Noland,
T. J. Scallen, and
G. V. Vahouny.
Sterol carrier protein 2. Delivery of cholesterol from adrenal lipid droplets to mitochondria for pregnenolone synthesis.
J. Biol. Chem.
257:
8928–8935,
1982.
|
19. |
Clark, B. J.,
J. Wells,
S. R. King, and
D. M. Stocco.
The purification, cloning and expression of a novel LH‐induced protein in MA‐10 mouse Leydig tumor cells.
J. Biol. Chem.
269:
28314–28320,
1994.
|
20. |
Conneely, O. M.,
E. B. De Souza,
D. R. Headon,
E. D. Olson,
F. Ungar, and
M. E. Dempsey.
Intramitochondrial movement of adrenal SCP with cholesterol in response to ACTH.
Proc. Natl. Acad. Sci. U.S.A.
81:
2970–2976,
1984.
|
21. |
Culty, M.,
H. Li,
N. Boujrad,
H. Amri,
H. Vidic,
B. Bernassau,
J. M. Reversai, and
V. Papadopoulos.
In vitro studies on the role of the peripheral‐type benzodiazepine receptor in steroidogenesis.
J. Steroid Biochem. Mol. Biol.
69:
123–130,
1999.
|
22. |
Dean, W. L., and
R. D. Gray.
Relationship between state of aggregation and catalytic activity of P450 LM2 and P450 reductase.
J. Biol. Chem.
257:
14679,
1983.
|
23. |
Eckert, B. S.
Alteration of intermediate filament distribution in PtK1 cells by acrylamide. Eur.
J. Cell Biol.
37:
169–174,
1985.
|
24. |
Epstein, L. F., and
N. R. Orme‐Johnson.
Regulation of steroid hormone biosynthesis. Identification of precursors of a phosphoprotein targeted to the mitochondrion in stimulated rat adrenal cortex cells.
J. Biol. Chem.
266:
19739–19745,
1991.
|
25. |
Feige, J. J.,
I. Vilgrain,
C. Brand,
S. Baelly, and
S. Souchelnilskuy.
Fine tuning of adrenocortical function by locally produced growth factors.
J. Endocrinol.
158:
7–19,
1998.
|
26. |
Ferrero, P.,
M. R. Santi,
E. Conti‐Tronconi,
E. Costa, and
A. Guidotti.
Study of a octadecaneuropeptide derived from DBI: biological activity and presence in rat brain.
Proc. Natl. Acad. Sci. U.S.A.
83:
827–831,
1986.
|
27. |
Fey, E. G.,
K. M. Wan, and
S. Penman.
Epithelial cytoskeletal framework and nuclear‐intermediate filament matrix.
J. Cell Biol.
98:
1973–1984,
1984.
|
28. |
Fottner, C.,
D. Engelhardt, and
M. M. Weber.
Regulation of steroidogenesis by insulin‐like growth factors in adult human adrenocortical cells.
J. Endocrinol.
158:
409–417,
1998.
|
29. |
Franke, W. W.,
M. Hergt, and
C. Grund.
Rearrangement of the vimentin cytoskeleton during adipose conversion: formation of an intermediate filament cage around lipid globules.
Cell
49:
131–141,
1987.
|
30. |
Gray, P. W.,
D. Glaister,
P. Seeburg,
A. Guidotti, and
E. Costa.
Cloning and expression of cDNA for human DBI a natural ligand of an allosteric regulatory site of a GABA type A receptor.
Proc. Natl. Acad. Sci. U.S.A.
83:
7547–7551,
1986.
|
31. |
Gremlich, H.,
U. Fringeli, and
R. Schwyzer.
Conformational changes of ACTH peptides interaction with lipid membranes revealed by infrared attenuated total reflection spectroscopy.
Biochemistry
22:
4257–4264,
1983.
|
32. |
Griffin, B. W.,
J. A. Peterson, and
R. W. Estabrook.
Cytochrome P‐450: Biophysical properties and catalytic function.
In: The Porphorins,
edited by D. Dolphin.
New York:
Academic Press,
1979,
p. 333–375.
|
33. |
Guarneri, P.,
V. Papadopoulos,
B. Pan, and
E. Costa.
Regulation of pregnenolone synthesis in C6‐2B glioma cells by 4'‐chlorodiazepam.
Proc. Natl. Sci. U.S.A.
83:
7547–7551,
1992.
|
34. |
Guidotti, A.,
C. M. Forchetti,
D. Konkel,
C. D. Bennett, and
E. Costa.
Isolation, characterization and purification to homogeneity of an endogenuous peptide with agonistic action of benzodiazepine receptors.
Proc. Natl. Acad. Sci. U.S.A.
80:
3531–3535,
1983.
|
35. |
Gunsalus, I. C.,
J. R. Meeks,
J. D. Lipscomb,
P. De Brunne, and
E. Munck.
Bacterial monooxygenase‐ the P450 cytochrome system.
In: Molecular Mechanisms of Oxygen Activation,
edited by O. Hayashi.
New York:
Academic Press,
1974,
p. 559–574.
|
36. |
Hall, P. F.
Electron transport in relation to steroid biosynthesis.
Biochemistry
6:
2794–2802,
1967.
|
37. |
Hall, P. F.
A possible role for transhydrogenation in side‐chain cleavage of cholesterol.
Biochemistry
11:
2891–2897,
1972.
|
38. |
Hall, P. F.
Cellular organization for steroidogenesis.
Int. Rev. Cytol.
86:
53–74,
1984.
|
39. |
Hall, P. F.
The role of cytochromes P450 in the synthesis of steroid hormones.
Vitam. Horm.
42:
315–336,
1985a.
|
40. |
Hall, P. F.
Trophic stimulation of steroidogenesis: In search of the elusive trigger.
Recent Prog. Horm. Res.
41:
1–22,
1985b.
|
41. |
Hall, P. F.
Cytochromes P450 and the regulation of steroid synthesis.
Steroids
48:
131–153,
1986.
|
42. |
Hall, P. F.
ACTH and corticosteroidogenesis.
Hormonal Peptides and Proteins
Vol. X111:
89–125,
1987.
|
43. |
Hall, P. F.
Cytochromes P450 in steroidogenesis: Are these enzymes more specific than those of drug metabolism?
Clin. Exp. Pharmacol. Physiol.
16:
485–489,
1989.
|
44. |
Hall, P. F.,
The role of endozepine in the action of ACTH on adrenal cortex.
In: Transmitter Amino Acid Receptors: Structures, Transduction, and Models for Drug Development,
Fidia Research Foundation Symposium Series,
Vol. 6,
edited by E. A. Barnard, and
E. Costa.
New York:
Thieme Medical Publishers,
1991,
p. 167–175.
|
45. |
Hall, P. F.,
Testicular steroid synthesis: organization and regulation.
In: The Physiology of Reproduction.
Second Edition,
edited by E. Knobil and
J. D. Neill.
New York:
Raven Press, Ltd,
1994,
p. 1335–1369.
|
46. |
Hall, P. F.
The role of endozepine in the regulation of steroidogenesis.
Mol. Neurobiol.
10:
1–17,
1995.
|
47. |
Hall, P. F.,
The roles of cytochromes P450 in the regulation of steroidogenesis.
In: Cellular Mechanisms. Handbook of Physiology,
Vol. 1,
edited by P. M. Conn.
Washington, DC:
American Physiology Society,
In Press.
1997.
|
48. |
Hall, P. F., and
G. Almahbobi.
The roles of microfilaments and intermediate filaments in adrenal steroidogenesis.
In: Histology of the Mammalian Adrenal Cortex. Microscopy Research Techniques, edited by G. Nussdorfer. In Press.
1996.
|
49. |
Hall, P. F., and
M. Nakamura.
The inflence of ACTH on transport of a cholesteryl linoleate‐ low density lipoprotein complex into adrenal tumor cells.
J. Biol. Chem.
254:
12547–12554,
1979.
|
50. |
Hall, P. F.,
S. Osawa, and
C. L. Thomasson.
A role for calmodulin in the regulation of steroidogenesis.
J. Cell Biol.
90:
402–407,
1981.
|
51. |
Han, E.,
T. R. Evans, and
J. F. Nelson.
Adrenocortical responsiveness to ACTF is enhanced in chronically food‐restricted rates.
J. Nutrition
128:
1415–1420,
1998.
|
52. |
Heinrichs, C.,
C. Tsigos,
J. Deschepper,
R. Dews, and
R. Collen.
Familial ACTH unresponsiveness associated with alacrima and achalasia.
Eur. J. Pediatr.
154:
191–196,
1995.
|
53. |
Hitchcock, S. S.,
L. Carlsson, and
U. Lindberg.
Depolymerization of F‐actin by DNase I.
Cell
7:
531–542,
1976.
|
54. |
Hollenbeck, P. J.,
A. D. Bershadsky,
O. Y. Pletjuskina,
I. S. Tint, and
J. M. Vasiliev.
Intermediate filament collapse is an ATP‐dependent and actin‐dependent process.
J. Cell Sci.
92:
621–631,
1989.
|
55. |
Igarashi, I., and
T. Kimura.
ACTH‐mediated changes in rat adrenal mitochondrial phospholipids.
J. Biol. Chem.
259:
10745–10753,
1984.
|
56. |
Iida, S.,
E. P. Widmaier, and
P. F. Hall.
The influence of plasma membrane cholesterol on the response of adrenal cells to ACTH.
Endocrinology
120:
801–808,
1987.
|
57. |
John, M. E.,
M. C. John,
V. Boggaram,
E. R. Simpson, and
M. R. Waterman.
Transcriptional regulation of steroid hydroxylation genes by corticotropin.
Proc. Natl. Acad. Sci. U.S.A.
83:
4715–4719,
1986.
|
58. |
Kimura, T.
ACTH stimulation of cholesterol side‐chain cleavage.
Mol. Cell. Biochem.
36:
105,
1981a.
|
59. |
Kimura, T.
ACTH stimulation of cholesterol side‐chain cleavage in adrenocortical mitochondria.
Mol. Cell. Biochem.
36:
105–122,
1981b.
|
60. |
Klymkowsky, M. W.,
J. B. Bachant, and
A. Domingo.
Functions of intermediate filaments.
Cell Motil. Cytoskeleton
14:
309–331,
1989.
|
61. |
Krueger, K. E., and
V. Papadopoulos.
Peripheral type benzodiazepine recepetors mediate translocation of cholesterol from outer to inner mitochondrial membranes in adrenocortical cells.
J. Biol. Chem.
265:
15015–15022,
1990.
|
62. |
L'Allemand, D.,
A. Penhoat,
W. Blum, and
J. M. Saez.
Is there a local IGF‐system in human adrenocortical cells?
Mol. Cell. Endocrinol.
140:
169–173,
1998.
|
63. |
Lambeth, J. D.,
L. M. Green, and
F. Millett.
Adrenodoxin interaction with adrenodoxin reductase and cytochrome P450 scc.
J. Biol. Chem.
259:
100265–10031,
1984.
|
64. |
Lambeth, J. D.,
D. W. Seybert,
J. R. Lancaster,
J. C. Salerno, and
H. Kamin.
Steroidogenic electron transport in adrenal cortex mitochondria.
Mol. Cell. Biochem.
45:
13–31,
1982.
|
65. |
Lee, H. S., and
J. J. Mrotek.
The effect of intermediate filaments on steriodogenesis and cytoskeleton in Y‐1 mouse adrenal tumor cells.
Cell Biol. Int. Rep.
8:
463–482,
1984.
|
66. |
Lewis, G. P.,
Physiological mechanisms controlling activity of adrenal medulla.
In: Handbook of Physiology, Section 7, Vol V1,
edited by H. Blaschko,
G. Sayers, and
A. D. Smith.
Washington, DC:
American Physiology Society,
1975,
p. 309–319.
|
67. |
Li, Z.,
D. Park, and
F. S. La Bella.
ACTH(1–10) and (11–24) promote adrenal steroidogenesis by different mechanisms.
Endocrinology
125:
592–596,
1989.
|
68. |
Light, K.,
P. J. Jenkins,
A. Weber,
C. Perrett, and
A.J.L. Clark.
Are activating mutations of the ACTH receptor involved in adrenal cortical neoplasia?
Life Sci.
56:
1523–1527,
1995.
|
69. |
Lin, D.,
S. Terus,
J. F. Strauss III,
B. J. Clark,
D. M. Stocco,
P. Saenger,
A. Rogol, and
W. L. Miller.
Role of acute regulatory protein in adrenal and gonadal steriodogenesis.
Science
267:
1828–1830,
1995.
|
70. |
Mason, J. I.,
J. R. Arthur, and
G. S. Boyd.
Control of sterol metabolism in rat adrenal mitochrondria.
Biochem. J.
174:
1045–1051,
1978.
|
71. |
Mason, J. W.
A review of psychoendocrine research on the adrenal cortical system.
J. Am. Psychosomat. Soc.
30:
576–607,
1968.
|
72. |
Mertz, L. M., and
R. C. Pedersen.
The kinetics of steroidogenesis activator polypeptide.
J. Biol. Chem.
264:
15274–15274,
1989.
|
73. |
Mochetti, I.,
R. Einstein, and
J. Brousuis.
Putative DBI peptide: cDNA clones from rat.
Proc. Natl. Acad. Sci. U.S.A.
83:
7221–7225,
1986.
|
74. |
Mrotek, J. J., and
P. F. Hall.
The influence of cytochalasin B on the response of adrenal tumor cells to ACTH and cyclic AMP.
Biochem. Biophys. Res. Commun.
4:
891–896,
1975.
|
75. |
Mrotek, J. J., and
P. F. Hall.
Response of adrenal tumor cells to ACTH: site of inhibition by cytochalasin B.
Biochemistry
16:
3177–3181,
1977.
|
76. |
Nakajin, S., and
P. F. Hall.
Microsomal cytochrome P450 from neonatal pig testis: purification and properties of a C21 steroid side‐chain cleavage system (17‐hydroxylase and C17,20 lyase).
J. Biol. Chem.
256:
3871–3878,
1981.
|
77. |
Nakajin, S.,
M. Shinoda,
M. Hanui,
J. E. Shively, and
P. F. Hall.
The C21 steroid side‐chain cleavage system from porcine adrenal micromes: purification and characterization of the 17‐hydroxylase‐ C17,20 lyase Cytochrome P450
J. Biol. Chem.
259:
3971–3978,
1984.
|
78. |
Ong, Y., and
D.I.B. Kerr.
GABA receptors in peripheral tissues.
Life Sci.
46:
1489–1589,
1990.
|
79. |
Orme‐Johnson, N. R.
Distinctive properties of adrenal cortex mitochondoria.
Biochim. Biophys. Acta.
1020:
213–231,
1990.
|
80. |
Osawa, S.,
G. Betz, and
P. F. Hall.
Role of actin in the responses of adrenal cells to ACTH and cyclic AMP: inhibition by DNase I.
J. Cell Biol.
99:
1335–1342,
1984.
|
81. |
Papadopoulos, V.
Structure and function of peripheral‐type benzodiazepine receptor in steroidogenic cells.
Proc. Soc. Exper. Biol. Med.
217:
130–142,
1984.
|
82. |
Papadopoulos, V.,
P. Guaneri,
K. E. Krueger,
A. Guidotti, and
E. Costa.
Pregnenolone biosynthesis in C6‐2B glioma cell mitochondria: regulation by a DBI receptor.
Proc. Natl. Acad. Sci. U.S.A.
89:
5113–5117,
1992.
|
83. |
Papadopoulos, V., and
P. F. Hall.
Isolation and characterization of protein kinase C from Y‐1 adrenal cell cytoskeleton.
J. Cell Biol.
108:
553–567,
1989.
|
84. |
Papadopoulos, V.,
A. G. Muklin,
E. Costa, and
K. E. Krueger.
Peripheral type benzodiazepine receptor is functionally linked to Leydig cell steroidogenesis.
J. Biol. Chem.
265:
3772–3779.
1990.
|
85. |
Papadopoulos, V.,
E. P. Widmaier, and
P. F. Hall.
The role of calmodulin in the responses to ACTH of plasma membranes from adrenal cells.
Endocrinology
126:
2465–2473,
1990.
|
86. |
Parker, K. L., and
B. P. Schimmer.
Transcriptional regulation of the adrenal steroidogenic enzymes.
Trends Endocrinol. Metab.
4:
46–51,
1993.
|
87. |
Pedersen, R. C., and
A. Brownie.
Cholesterol side‐chain cleavage in rat adrenal cortex: isolation of a cycloheximide‐sensitive activator peptide.
Proc. Natl. Acad. Sci. U.S.A.
80:
1882–1886,
1983.
|
88. |
Pellegrini, A.,
M. Grieco,
G. Materazzi,
M. Gesi, and
M. P. Riccardi.
Stress‐induced morphohistochemical and functional changes in rat adrenal cortex.
Histochemical J.
30:
695–701,
1998.
|
89. |
Pollard, T., and
R. R. Weihing.
Actin and myosin and cell movement.
Crit. Rev. Biochem.
2:
1–65,
1974.
|
90. |
Pon, L. A.,
L. F. Epstein, and
N. R. Orme‐ Johnson.
Protein synthesis requirement for acute ACTH stimulation of adrenal steroidogenesis.
Endocr. Res.
12:
429–446,
1986.
|
91. |
Quing, L.,
L. Grimelius,
A. Höög,
H. Johansson,
M. Kjellman, and
A. Larsson.
Characteristics of the action of endothelin‐1 related protein in human adrenal cortex and in cortical lesions.
Histochem. Cell. Biol.
111:
33–37,
1999.
|
92. |
Ritta, M. N.,
M. B. Campos, and
R. S. Calandra.
Effect of GABA and benzodiazepines on testicular androgen production.
Life Sci.
40:
791–798.
|
93. |
Samuels, L. T.,
L. Bussman,
K. Matsumoto, and
R. A. Huseby.
Organization of androgen biosynthesis in the testis.
J. Steroid Biochem. Mol. Biol.
6:
291–298,
1975.
|
94. |
Sarria, A. J.,
S. R. Panani, and
R. M. Evans.
A functional role for vimentin intermediate filaments in the metabolism of liprotein‐ derived cholesterol in human SW‐13 cells.
J. Biol. Chem.
267:
19455–19463,
1992.
|
95. |
Shiver, T. M.,
D. L. Sackett,
L. Knipling, and
J. Wolff.
Intermediate filaments and steroidogenesis in adrenal Y‐1 cells: acrylamide stimulation of steroid production.
Endocrinology
131:
201–207,
1992.
|
96. |
Shoyab, M.,
L. E. Gentry,
H. Marquardt, and
G. J. Todaro.
Isolation and characterization of a putative endogenous benzodiazepineoid (endozepine) from bovine and human brain.
J. Biol. Chem.
261:
11968–11973,
1986.
|
97. |
Simpson, E. R., and
M. R. Waterman.
Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH.
Ann. Rev. Physiol.
550:
427–440,
1988.
|
98. |
Sligar, S. G.
Coupling of spin, substrate, and redox equilibria in cytochrome P450.
Biochemistry
15:
5399,
1976.
|
99. |
Stocco, D. M.
StAR protein.
Vitam. Horm.
55:
399–441,
1999.
|
100. |
Stocco, D. M., and
B. J. Clark.
The role of StAR protein in steroidogenesis.
Steroids
62:
29–36,
1997.
|
101. |
Urquhart, J.,
Physiological actions of ACTH.
In: Handbook of Physiology, Section 7, Vol IV Part 2,
edited by E. Knobil and
W. H. Sawyer,
Washington, DC:
American Physiology Society,
1974,
p. 133–157.
|
102. |
Verma, A., and
S. H. Snyder.
Peripheral benzodiazepine receptors.
Ann. Rev. Pharmacol.
29:
307–322,
1989.
|
103. |
White, R. E., and
M. J. Coon.
Oxygen activation by cytochrome P450.
Ann. Rev. Biochem.
49:
315–339,
1980.
|
104. |
Yanagibashi, K.
Calcium as second messenger in cortoidogenic action of ACTH.
Endocrinol. Japon.
26:
227–232,
1979.
|
105. |
Yanagibashi, K., and
P. F. Hall.
Role of electron transport in the regulation of lyase activity of C21 side‐chain cleavage P450 from porcine adrenal and testicular microsomes.
J. Biol. Chem.
261:
8429–8433,
1982.
|
106. |
Yanagibashi, K.,
Y. Ohno,
M. Kawamura, and
P. F. Hall.
The regulation of intracellular transport of cholesterol in bovine adrenal cells: Purification of a novel protein.
Endocrinology
123:
2075–2082,
1988.
|
107. |
Yanagibashi, K.,
Y. Ohno,
N. Nakamichi,
T. Matsui,
K. Hyashida,
M. Takamura,
K. Yamada,
S. Tou, and
M. Kawamura.
Peripheral type benzodiazepam receptors are involved in the regulation of cholesterol side‐chain cleavage in adrenocortical mitochondria.
J. Biochem.
106:
1026–1029,
1989.
|
108. |
Yanagibashi, K.,
Y. Ohno,
N. Nakamichi,
T. Matsui,
K. Hyashida,
M. Takamura,
K. Yamada,
S. Tou, and
M. Kawamura.
Diazepam potentiates the corticogenic response of bovine fasciculata cells to dibutyryl cyclic AMP.
Jpn. J. Pharmacol.
51:
341–355,
1989b.
|
109. |
Zely, A.,
H. Li,
K. Castello,
V. Papadopoulos, and
E. P. Widmaier.
Development of Expression of peripheral‐type benzodiazepine receptor and advent of steroidogenesis in rat adrenal cells.
Endocrinology
140:
859–864,
1999.
|