References |
1. |
Aizawa, A.,
T. Yoneyama,
K. Kazahari, and
M. Ono.
DNaseI‐hypersensitive sites in the chromatin of rat growth hormone gene locus and enhancer activity of regions with these sites.
Nucl. Acids Res.
23:
2236–2244,
1995.
|
2. |
Andersen, B.,
R. V. Pearse,
K. Jenne,
M. Sornson,
S.‐C. Lin,
A. J. Bartke, and
M. G. Rosenfeld.
The Ames' dwarf gene is required for pit‐1 gene activation.
Dev. Biol.
172:
495–503,
1995.
|
3. |
Andersen, B., and
M. G. Rosenfeld.
Pit‐1 determines cell types during development of the anterior pituitary gland.
J. Biol. Chem.
269:
29335–29338,
1994.
|
4. |
Argenton, F.,
S. Vianello,
S. Bernardini,
P. Jacquemin,
J. Martial,
A. Belayew,
L. Colombo, and
M. Bortolussi.
The transcriptional regulation of the growth hormone gene is conserved in vertebrate evolution.
Biochem. Biophys. Res. Commun.
192:
1360–1366,
1993.
|
5. |
Asa, S. L.,
K. Kovacs,
L. Stefaneau,
E. Horvath,
N. Billestrup,
C. Gonzales‐Manchon, and
W. Vale.
Pituitary adenomas in mice transgenic for growth hormone–releasing hormone.
Endocrinology
131:
2083–2089,
1992.
|
6. |
Ashar, H. R.,
M. S. Fejzo,
A. Tkachenko,
X. Zhou,
J. A. Fletcher,
S. Weremowicz,
C. C. Morton, and
K. Chada.
Disruption of the architectural factor HMGI‐C: DNA‐binding AT hook motifs fused in lipomas to distinct transcriptional regulatory domains.
Cell
82:
57–65,
1995.
|
7. |
Bach, I,
S. J. Rhodes,
R. V. Pearse,
T. Heinzel,
B. Gloss,
K. M. Scully,
P. E. Sawchenko, and
M. G. Rosenfeld.
P‐Lim, a LIM homeodomain factor, is expressed during pituitary organ and cell commitment and synergizes with Pit‐1.
Proc. Natl. Acad. Sci. USA
92:
2720–2724,
1995.
|
8. |
Bamberger, A.‐M.,
C. M. Bamberger,
L.‐P. Puy,
L. A. Puy,
Y. P. Loh, and
S. L. Asa.
Expression of pit‐1 messenger ribonucleic acid and protein in the human placenta.
J. Clin. Endocrinol. Metab.
80:
2021–2026,
1995.
|
9. |
Barinaga, M.,
L. M. Bilezikjian,
W. W. Vale,
M. G. Rosenfeld, and
R. M. Evans.
Independent effects of growth hormone releasing factor on growth hormone release and gene transcription.
Nature
314:
279–281,
1985.
|
10. |
Barinaga, M.,
G. Yamamoto,
C. Rivier,
W. Vale,
R. Evans, and
M. G. Rosenfeld.
Transcriptional regulation of growth hormone gene expression by growth hormone–releasing factor.
Nature
306:
84–85,
1983.
|
11. |
Barta, A.,
R. I. Richards,
J. D. Baxter, and
J. Shine.
Primary structure and evolution of the rat growth hormone gene.
Proc. Natl. Acad. Sci. USA
7:
4867–4871,
1981.
|
12. |
Bedo, G.,
P. Santisteban, and
A. Aranda.
Retinoic acid regulates growth hormone gene expression.
Nature
339:
231–234,
1989.
|
13. |
Behringer, R. R.,
L. S. Mathews,
R. D. Palmiter, and
R. L. Brinster.
Dwarf mice produced by genetic ablation of growth hormone‐expressing cells.
Genes Dev.
2:
453–461,
1988.
|
14. |
Bell, G. I., and
T. Reisine.
Molecular biology of somatostatin receptors.
Trends Neurosci.
16:
34–38,
1993.
|
15. |
Bennani‐Baiti, I. M.,
B. K. Jones,
S. A. Liebhaber, and
N. E. Cooke.
Physical linkage of the human growth hormone gene cluster and the skeletal muscle sodium channel α‐subunit gene (SCN4A) on chromosome 17.
Genomics
29:
647–652,
1995.
|
16. |
Bennani‐Baiti, I. M.,
N. E. Cooke, and
S. A. Liebhaber.
Physical linkage of the human growth hormone gene cluster and the CD79b (Igβ/B29) gene.
Genomics
48:
258–264,
1998.
|
17. |
Bennami‐Baiti, I. M.,
D. Song,
R. Iratni,
S. Asa,
S. A. Liebhaber, and
N. E. Cooke.
DNase I‐hypersensitive sites I and II of the human growth hormone locus control region are a major developmental activator of somatotrope gene expression.
Proc. Natl. Acad. Sci. USA
95:
10655–10660,
1998.
|
18. |
Bertherat, J.,
M. T. Bluet‐Pajot, and
J. Epelbaum.
Neuroendocrine regulation of growth hormone.
Eur. J. Endocrinol.
132:
12–24,
1995.
|
19. |
Bilezikjian, L. M.,
A. Z. Corrigan, and
W. Vale.
Activin‐A modulates growth hormone secretion from cultures of rat anterior pituitary cells.
Endocrinology
126:
2369–2376,
1990.
|
20. |
Bodner, M.,
J.‐L. Castrillo,
L. E. Theill,
T. Deerinck,
M. Ellisman, and
M. Karin.
The pituitary‐specific transcription factor GHF‐1 is a homeobox‐containing protein.
Cell
55:
505–518,
1988.
|
21. |
Borrelli, E.,
R. A. Heyman,
C. Arias,
P. E. Sawchenko, and
R. M. Evans.
Transgenic mice with inducible dwarfism.
Nature
339:
538–541,
1989.
|
22. |
Bowers, C. Y.
GH‐releasing peptides—structure and kinetics.
J. Pediatr. Endocrinol.
6:
21–31,
1993.
|
23. |
Brent, G. A.,
J. W. Harney,
D. D. Moore, and
P. R. Larsen.
Multihormonal regulation of the human, rat, and bovine growth hormone promoters; differential effects of 3′,5′‐cyclic adenosine monophosphate, thyroid hormone, and glucocorticoids.
Mol. Endocrinol.
1:
792–798,
1988.
|
24. |
Brindle, P. K., and
M. R. Montminy.
The CREB family of transcription activators.
Curr. Opin. Genet. Dev.
2:
199–204,
1992.
|
25. |
Burton, F. H.,
K. W. Hasel,
F. E. Bloom, and
J. G. Sutcliffe.
Pituitary hyperplasia and gigantism in mice caused by a cholera toxin transgene.
Nature
350:
74–77,
1991.
|
26. |
Castrillo, J.‐L.,
M. Bodner, and
M. Karin.
Purification of growth hormone‐specific transcription factor GHF‐1 containing homeobox.
Science
243:
814–817,
1989.
|
27. |
Chen, R. P.,
H. A. Ingraham,
M. N. Treacy,
V. R. Albert,
L. Wilson, and
M. G. Rosenfeld.
Autoregulation of pit‐1 gene expression mediated by two cis‐active promoter elements.
Nature
346:
583–586,
1990
|
28. |
Chen, Y.,
Y.‐C. Liao,
D. H. Smith,
H. A. Barrera‐Saldana,
R. E. Gelinas, and
P. H. Seeburg.
The human growth hormone locus: nucleotide sequence, biology, and evolution.
Genomics
4:
479–497,
1989.
|
29. |
Cooke, N. E., and
J. D. Baxter.
Structural analysis of the prolactin gene suggests a separate origin for its 5′end.
Nature
297:
603–606,
1982.
|
30. |
Cooke, N. E., and
S. A. Liebhaber.
Molecular biology of the growth hormone—prolactin gene system.
Vitam. Horm.
50:
385–459,
1995.
|
31. |
Cooke, N. E.,
J. Ray,
J. G. Emery, and
S. A. Liebhaber.
Two distinct species of human growth hormone‐variant mRNA in the human placenta predict the expression of novel growth hormone proteins.
J. Biol. Chem.
263:
9001–9006,
1988.
|
32. |
Cooke, N. E.,
J. Ray,
M. A. Watson,
P. A. Estes,
B. A. Kuo, and
S. A. Liebhaber.
The human growth hormone gene and the highly homologous growth hormone variant gene display different splicing patterns.
J. Clin. Invest.
82:
270–275,
1988.
|
33. |
Conn, P. M., and
C. Y. Bowers.
A new receptor for growth hormone–releasing peptide.
Science
273:
923,
1996.
|
34. |
Corrigan, A. Z.,
L. M. Bilezikjian,
R. S. Carroll,
L. N. Bald,
C. H. Schmelzer,
B. M. Fendly,
A.J. Mason,
W. W. Chin,
R. H. Schwall, and
W. Vale.
Evidence for an autocrine role of activin B within rat anterior pituitary cultures.
Endocrinology
128:
1682–1684,
1991.
|
35. |
Das, P.,
L. Meyer,
H. M. Seyfert,
G. Brockmann, and
M. Schwerin.
Structure of the growth homone–encoding gene and its promoter in mice.
Gene
169:
209–213,
1996.
|
36. |
Day, R. N., and
K. H. Day.
An alternatively spliced form of Pit‐1 represses prolactin gene expression.
Mol. Endocrinol.
8:
374–381,
1994.
|
37. |
Day, R. N.,
S. Koike,
M. Kakai,
M. Muramatsu, and
R. A. Maurer.
Both pit‐1 and the estrogen receptor are required for estrogen responsiveness of the rat prolactin gene.
Mol. Endocrinol.
4:
1964–1971,
1990.
|
38. |
Day, R. N., and
R. A. Maurer.
The distal enhancer region of the rat prolactin gene contains elements conferring response to multiple hormones.
Mol. Endocrinol.
3:
3–9,
1989.
|
39. |
Delhase, M.,
V. Vila,
E. L. Hooghe‐Peters, and
J.‐L. Castrillo.
A novel pituitary transcription factor is produced by alternative splicing of the human GHF‐1/Pit‐1 gene.
Gene
155:
273–275,
1995.
|
40. |
de Zehger, F.,
M. Vanderschueren‐Lodeweyckx,
B. Spitz,
Y. Faijerson,
F. Blomberg,
A. Beckers,
G. Hennen, and
F. Frankenne.
Perinatal growth hormone (GH) physiology: effect of GH releasing factor on maternal and fetal secretion of pituitary and placental GH.
J. Clin. Endocrinol. Metab.
77:
520–522,
1990.
|
41. |
Dillon, N., and
F. Grosveld.
Transcriptional regulation of multigene loci: multilevel control.
Trends Genet.
9:
134–137,
1993.
|
42. |
Dirksen, W. P.,
R. K. Hampson,
Q. Sun, and
F. M. Rottman.
A purine‐rich exon sequence enhances alternative splicing of bovine growth hormone pre‐mRNA.
J. Biol. Ghent.
269:
6431–6436,
1994.
|
43. |
Dirksen, W. P.,
Q. Sun, and
F. M. Rottman.
Multiple splicing signals control alternative intron retention of bovine growth hormone pre‐mRNA.
J. Biol. Chem.
270:
5346–5350,
1995.
|
44. |
Dolle, P.,
J.‐L. Castrillo,
L. E. Theill,
T. Deerinck,
M. Ellisman, and
M. Karin.
Expression of GHF‐1 protein in mouse pituitaries correlates both temporally and spatially with the onset of growth hormone gene activity.
Cell
60:
809–820,
1990.
|
45. |
Eisenberg, J. C., and
S. C. R. Elgin.
Boundary functions in the control of gene expression.
Trends Genet.
7:
335–340,
1991.
|
46. |
Estes, P. A.,
N. E. Cooke, and
S. A. Liebhaber.
A difference in the splicing patterns of the closely related normal and variant human growth hormone gene transcripts is determined by a minimal sequence divergence between two potential splice‐acceptor sites.
J. Biol. Chem.
265:
19863–19870,
1990.
|
47. |
Estes, P. A.,
N. E. Cooke, and
S. A. Liebhaber.
A native RNA secondary structure controls alternative splice‐site selection and generates two human growth hormone isoforms.
J. Biol. Chem.
267:
14902–14908,
1992.
|
48. |
Estes, P. A.,
M. Urbanek,
J. Ray,
S. A. Liebhaber, and
N. E. Cooke.
Alternative splice site selection in the human growth hormone gene transcript and synthesis of the 20 kD isoform: role of high order transcript structure.
Acta Paediatr. Suppl.
399:
42–47,
1994.
|
49. |
Fero, M. L.,
M. Rivkin,
M. Tasch,
P. Porter,
C. E. Carow,
E. Firpo,
K. Polyak,
L.‐H. Tsai,
V. Broudy,
R. M. Perlmutter,
K. Kaushansky, and
J. M. Roberts.
A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27Kip‐deficient mice.
Cell
85:
733–744,
1996.
|
50. |
Fischberg, D. J.,
X. H. Chen, and
C. Bancroft.
A Pit‐1 phosphorylation mutant can mediate both basal and induced prolactin and growth hormone promoter activity.
Mol. Endocrinol.
8:
1447–1449,
1994.
|
51. |
Fitzpatrick, S. L.,
W. H. Walker, and
G. F. Saunders.
DNA sequences involved in the transcriptional activation of a human placental lactogen gene.
Mol. Endocrinol.
4:
1815–1826,
1990.
|
52. |
Forrester, W. C.,
E. Epner,
M. C. Driscoll,
T. Enver,
M. Brice,
T. Papayannopoulou, and
M. Groudine.
A deletion of the human β‐globin locus activation region causes a major alternation in chromatin structure and replication across the entire β‐globin locus.
Genes Dev.
4:
1637–1649,
1990.
|
53. |
Fox, S. R.,
M. T. Jong,
J. Casanova,
Z. S. Ye,
F. Stanley, and
H. H. Samuels.
The homeodomain protein, Pit‐1/GHF‐1, is capable of binding to and activating cell‐specific elements of both the growth hormone and prolactin gene promoter.
Mol. Endocrinol.
4:
1069–1080,
1990.
|
54. |
Gage, P. J.,
M. L. Brinkmeier,
L. M. Scarlett,
L. T. Knapp,
S. A. Camper, and
K. A. Mahon.
The Ames' dwarf gene, df, is required early in pituitary ontogeny for the extinction of rpx transcription and initiation of lineage‐specific cell proliferation.
Mol. Endocrinol.
10:
1570–1581,
1996.
|
55. |
Garcia‐Villalba, P.,
M. Au‐Fliegner,
H. H. Samuels, and
A. Aranda.
Interaction of thyroid hormone and retinoic acid receptors on the regulation of the rat growth hormone gene promoter.
Biochem. Biophys. Res. Commun.
191:
580–586,
1993.
|
56. |
Garcia‐Villalba, P.,
A. M. Jimenez‐Lara, and
A. Aranda.
Vitamin D interferes with transactivation of the growth hormone gene by thyroid hormone and retinoic acid.
Mol. Cell. Biol.
16:
318–327,
1996.
|
57. |
Gaylinn, B. D.,
J. K. Harrison,
J. R. Zysk,
C. E. Lyons,
K. R. Lynch, and
M. O. Thorner.
Molecular cloning and expression of a human anterior pituitary receptor for growth hormone–releasing hormone.
Mol. Endocrinol.
7:
77–84,
1993.
|
58. |
Godfrey, P.,
J. O. Rahal,
W. G. Beamer,
N. G. Copeland,
N. A. Jenkins, and
K. E. Mayo.
GHRH receptor of little mice contains a missense mutation in the extracellular domain that disrupts receptor function.
Nat. Genet.
4:
227–232,
1993.
|
59. |
Gross, D. S., and
W. T. Garrard.
Nuclease hypersensitive sites in chromatin.
Annu. Rev. Biochem.
57:
159–197,
1988.
|
60. |
Grosveld, F.,
G. Blom van Assendelft,
D. R. Greaves, and
G. Kollias.
Position‐independent, high‐level expression of the human β‐globin gene in transgenic mice.
Cell
51:
975–985,
1987.
|
61. |
Guerin, S. L.,
M. J. Anzivino,
R. J. Roy, and
D. D. Moore.
Expression of the rGH gene is under the influence of a cell‐type‐specific silencer element.
Eur. J. Biochem.
213:
399–404,
1992.
|
62. |
Guerin, S. L., and
D. D. Moore.
DNAsel footprint analysis of nuclear proteins from pituitary and nonpituitary cells that specifically bind to the rat growth hormone promoter and 5′regulatory region.
Mol. Endocrinol.
2:
1101–1107,
1988.
|
63. |
Guillemin, R.,
P. Brazeau,
P. Bohlen,
F. Esch,
N. Ling, and
W. B. Wehrenberg.
Growth hormone–releasing factor from a human pancreatic tumor that caused acromegaly.
Science
218:
585–587,
1982.
|
64. |
Gutierrez‐Hartmann, A.
INSIGHT: Pit‐1/GHF‐1: a pituitary‐specific transcription factor linking general signaling pathways to cell‐specific gene expression.
Mol. Endocrinol.
8:
1447–1449,
1994.
|
65. |
Haider, G.,
P. Callaerts, and
W. J. Gehring.
Induction of ectopic eyes by targeted expression of the eyeless gene in
Drosophila. Science
267:
1788–1792,
1995.
|
66. |
Hammer, R. E.,
R. D. Palmiter, and
R. L. Brinster.
Partial correction of murine hereditary growth disorder by germ‐line incorporation of a new gene.
Nature
311:
65–67,
1984.
|
67. |
Hampson, R. K.,
L. La Follette, and
F. M. Rottman.
Alternative processing of bovine growth hormone mRNA is influenced by downstream exon sequences.
Mol. Cell. Biol.
9:
1604–1610,
1989.
|
68. |
Haugen, B. R.,
D. F. Gordon,
A. R. Nelson,
W. M. Wood, and
E. C. Ridgway.
The combination of Pit‐1 and Pit‐1T have a synergistic stimulatory effect on the thyrotropin β‐subunit promoter but not the growth hormone and prolactin promoters.
Mol. Endocrinol.
8:
1574–1582,
1994.
|
69. |
He, X.,
M. N. Treacy,
D. M. Simmons,
H. A. Ingraham,
L. W. Swanson, and
M. G. Rosenfeld.
Expression of a large family of POU‐domain regulatory genes in mammalian brain development.
Nature
340:
35–41,
1989.
|
70. |
Hermesz, E.,
S. Mackem, and
K. A. Mahon.
Rpx: a novel anterior‐restricted homeobox gene progressively activated in the prechordal plate, anterior neural plate, and Rathke's pouch of the mouse embryo.
Development
122:
41–52,
1996.
|
71. |
Herr, W.,
R. A. Sturm,
R. G. Clerc,
L. M. Corcoran,
D. Baltimore,
P. A. Sharp,
H. A. Ingraham,
M. G. Rosenfeld,
M. Finney, and
G. Ruvkun.
The POU domain: a large conserved region in the mammalian pit‐1, oct‐1, oct‐2, and Caenorhabditis elegans unc‐86 gene products.
Genes Dev.
2:
1513–1516,
1988.
|
72. |
Hodin, R. A.,
M. A. Lazar,
B. I. Wintman,
D. S. Darling,
R. J. Koenig,
P. R. Larsen,
D. D. Moore, and
W. W. Chin.
Identification of a thyroid hormone receptor that is pituitary‐specific.
Science
244:
76–79,
1989.
|
73. |
Holloway, J. M.,
D. P. Szeto,
K. M. Scully,
C. K. Glass, and
M. G. Rosenfeld.
Pit‐1 binding to specific DNA sites as a monomer or dimer determines gene‐specific use of a tyrosine‐dependent synergy domain.
Genes Dev.
9:
1992–2006,
1995.
|
74. |
Huber, M. C.,
F. X. Bosch,
A. E. Sippel, and
C. Bonifer.
Chromosomal position effects in chicken lysozyme gene transgenic mice are correlated with suppression of DNasel hypersensitive site formation.
Nucleic Acids Res.
22:
4195–4201,
1994.
|
75. |
Ingraham, H. A.,
R. Chen,
H. J. Mangalam,
H. P. Elsholtz,
S. E. Flynn,
C. R. Lin,
D. M. Simmons,
L. Swanson, and
M. G. Rosenfeld.
A tissue‐specific transcription factor containing a homeodomain specifies a pituitary phenotype.
Cell
55:
519–529,
1988.
|
76. |
Ingraham, H. A.,
S. E. Flynn,
J. W. Voss,
V. R. Albert,
M. S. Kapiloff,
L. Wilson, and
M. G. Rosenfeld.
The POU‐specific domain of pit‐1 is essential for sequence‐specific, high affinity DNA binding and DNA‐dependent pit‐1–pit‐1 interactions.
Cell
61:
1021–1033,
1990.
|
77. |
Isaksson, O. G. P.,
S. Eden, and
J.‐O. Jansson.
Mode of action of pituitary growth hormone on target tissues.
Annu. Rev. Physiol.
47:
483–499,
1985.
|
78. |
Jacobson, E. M.,
P. Li,
A. Leondel‐Rio, and
M. G. Rosenfeld.
Structure of Pit‐1 POU domain bound to DNA as a dimer: unexpected arrangement and flexibility.
Genes Dev.
11:
198–212,
1997.
|
79. |
Jacquemin, P.,
E. Alsat,
C. Oury,
A. Belayew,
M. Muller,
D. Evain‐Brion, and
J. A. Martial.
The enhancers of the human placental lactogen B, A, and L genes: progressive activation during in vitro trophoblast differentiation and importance of the DF‐3 element in determining their respective activities.
DNA Cell Biol.
15:
845–854,
1996.
|
80. |
Jacquemin, P.,
J.‐J. Hwang,
J. A. Martial,
P. Dolle, and
I. Davidson.
A novel family of developmentally regulated mammalian transcription factors containing the TEA/ATTS DNA binding domain.
J. Biol. Chem.
271:
217715–21785,
1996.
|
81. |
Jacquemin, P.,
C. Oury,
B. Peers,
A. Morin,
A. Belayew, and
J. A. Martial.
Characterization of a single strong tissue‐specific enhancer downstream from the three human genes encoding placental lactogen.
Mol. Cell. Biol.
14:
93–103,
1994.
|
82. |
Japon, M. A.,
M. Rubinstein, and
M. J. Low.
In situ hybridization analysis of anterior pituitary hormone gene expression during fetal mouse development.
J. Histochem. Cytochem.
42:
1117–1125,
1994.
|
83. |
Jiang, S.‐W., and
N. L. Eberhardt.
The human chorionic somatomammotropin gene enhancer is composed of multiple DNA elements that are homologous to several SV40 enhansons.
J. Biol. Chem.
14:
10384–10392,
1994.
|
84. |
Jiang, S.‐W., and
N. L. Eberhardt.
Involvement of a protein distinct from transcription enhancer factor‐1 (TEF‐1) in mediating human chorionic somatomammotropin gene enhancer function through the GT‐IIC enhanson in choriocarcinoma and COS cells.
J. Biol. Chem.
270:
13906–13915,
1995.
|
85. |
Jiang, S.‐W., and
N. L. Eberhardt.
TEF‐1 trans‐repression in BeWo cells is mediated through interactions with the TATA‐binding protein, TBP.
J. Biol. Chem.
271:
9510–9518,
1996.
|
86. |
Jiang, S.‐W.,
A. R. Shepard, and
N. L. Eberhardt.
An initiator element is required for maximal human chorionic somatomammotropin gene promoter and enhancer function.
J. Biol. Chem.
270:
3683–3692,
1995.
|
87. |
Jiang, S.‐W.,
M. A. Trujillo, and
N. L. Eberhardt.
Human chorionic somatomammotropin enhancer function is mediated by cooperative binding of TEF‐1 and CSEF‐1 to multiple, low affinity binding sites.
Mol. Endocrinol.
11:
1223–1232,
1997.
|
88. |
Jimenez, G.,
A. M. Ford,
T. Enver, and
A. Boronat.
Multiple changes in chromatin structure precede the transcriptional activation of the human growth hormone locus in placental cells.
Mol. Cell. Endocrinol.
96:
53–60,
1993.
|
89. |
Jones, B. K.,
B. R. Monks,
S. A. Liebhaber, and
N. E. Cooke.
The human growth hormone gene is regulated by a multicomponent locus control region.
Mol. Cell. Biol.
15:
7010–7021,
1995.
|
90. |
Kapiloff, M. S.,
Y. Farkash,
M. Wegner, and
M. G. Rosenfeld.
Variable effects of phosphorylation of pit‐1 dictated by the DNA response elements.
Science
253:
786–789,
1991.
|
91. |
Karin, M.,
J.‐L. Castrillo, and
L. E. Theill.
Growth hormone gene regulation: a paradigm for cell‐type‐specific gene activation.
Trends Genet.
6:
92–96,
1990.
|
92. |
Kellum, R., and
P. Schedl.
A position‐effect assay for boundaries of higher order chromosomal domains.
Cell
64:
941–950,
1991.
|
93. |
Kim, S.‐W.,
I.‐M. Ahn, and
P. R. Larsen.
In vivo genomic foot‐printing of thyroid hormone‐responsive genes in pituitary tumor cell lines.
Mol. Cell. Biol.
16:
4465–4477,
1996.
|
94. |
Kiyokawa, H.,
R. D. Kineman,
K. O. Manova‐Todorova,
V. C. Soares,
E. S. Hoffman,
M. Ono,
D. Khanam,
A. C. Hayday,
L. A. Frohman, and
A. P. Koff.
Enhanced growth of mice lacking cyclin‐dependent kinase inhibitor function of p27 Kip.
Cell
85:
721–732,
1996.
|
95. |
Konzak, K. E., and
D. D. Moore.
Functional isoforms of Pit‐1 generated by alternative messenger RNA splicing.
Mol. Endocrinol.
6:
241–247,
1992.
|
96. |
Krumlauf, R.
Hox genes and pattern formation in the branchial region of the vertebrate head.
Trends Genet.
9:
106–112,
1993.
|
97. |
Labarriere, N.,
P. L. Selvais,
F. P. Lemaigre,
A. Michel,
D. M. Maiter, and
G. G. Rousseau.
A novel transcriptional activator originating from an upstream promoter in the human growth hormone gene.
J. Biol. Chem.
270:
19205–19208,
1995.
|
98. |
Lamonerie, T.,
J. J. Tremblay,
C. Lanctot,
M. Therrien,
Y. Gauthier, and
J. Drouin.
Ptx 1, a bicoid‐related homeo box transcription factor involved in transcription of the proopiomelanocortin gene.
Genes Dev.
10:
1284–1295,
1996.
|
99. |
Landis, C. A.,
S. B. Masters,
A. Spada,
A. M. Pace,
H. R. Bourne, and
L. Vallar.
GTPase inhibiting mutations activate the a chain of Gs and stimulate adenyl cyclase in human pituitary tumors.
Nature
340:
692–696,
1989.
|
100. |
Lecomte, C. M.,
A. Renard, and
J. A. Martial.
A new natural hGH variant—17.5 kd—produced by alternative splicing. An additional consensus sequence which might play a role in branchpoint selection.
Nucleic Acids Res.
15:
6331–6348,
1987.
|
101. |
Leidig, F.,
A. R. Shephard,
W. G. Zhang,
A. Stelter,
P. A. Cattini, and
J. D. Baxter.
Thyroid hormone responsiveness in human growth hormone‐related genes: possible correlation with receptor‐induced DNA conformational changes.
J. Biol. Chem.
267:
913–921,
1992.
|
102. |
Lew, D.,
H. Brady,
K. Klausing,
K. Yaginuma,
L. E. Theill,
C. Stauber,
M. Karin, and
P. L. Mellon.
GHF‐1 promoter targeted immortalization of a somatotropic progenitor cell results in dwarfism in transgenic mice.
Genes Dev.
7:
683–693,
1993.
|
103. |
Lewin, B.
Commitment and activation at pol II promoters: a tail of protein‐protein interactions.
Cell
61:
1161–1164,
1990.
|
104. |
Lewis, U. J.
Growth hormone: what is it and what does it do?
Trends Endocrinol. Metab.
3:
117–121,
1992.
|
105. |
Lewis, U. J.,
J. T. Dunn,
L. F. Bonewald,
B. K. Seavey, and
W. P. Vanderlaan.
A naturally occurring structural variant of human growth hormone.
J. Biol. Chem.
253:
2679–2687,
1978.
|
106. |
Li, H.,
P. S. Zeitler,
M. T. Valerius,
K. Small, and
S. S. Potter.
Gsh‐1, an orphan Hox gene, is required for normal pituitary development.
EMBO J.
15:
714–724,
1996.
|
107. |
Li, S.,
E. B. Crenshaw III,
E. J. Rawson,
D. M. Simmons,
L. W. Swanson, and
M. G. Rosenfeld.
Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU‐domain gene pit‐1.
Nature
347:
528–533,
1990.
|
108. |
Liebhaber, S. A.,
M. Urbanek,
J. Ray,
R. S. Tuan, and
N. E. Cooke.
Characterization and histological localization of human growth hormone‐variant gene expression in the placenta.
J. Clin. Invest.
83:
1985–1991,
1989.
|
109. |
Lin, S.‐C.,
C. R. Lin,
I. Gukovsky,
A. J. Lusis,
P. E. Sawchenko, and
M. G. Rosenfeld.
Molecular basis of the little mouse phenotype and implications for cell type‐specific growth.
Nature
364:
208–214,
1993.
|
110. |
Lipkin, S. M.,
A. M. Naar,
K. A. Kalla,
R. A. Sack, and
M. G. Rosenfeld.
Identification of a novel zinc finger protein binding a conserved element critical for pit‐1 dependent growth hormone gene expression.
Genes Dev.
7:
1674–1687,
1993.
|
111. |
Lira, S. A.,
E. B. Crenshaw,
C. K. Glass,
L. W. Swanson, and
M. G. Rosenfeld.
Identification of rat growth hormone sequences targeting pituitary expression in transgenic mice.
Proc. Natl. Acad. Sci. USA
85:
4755–4759,
1988.
|
112. |
Lira, S. A.,
K. A. Kalla,
C. K. Glass,
D. W. Drolet, and
M. G. Rosenfeld.
Synergistic interactions between Pit‐1 and other elements are required for effective somatotroph rat growth hormone gene expression in transgenic mice.
Mol. Endocrinol.
7:
694–701,
1993.
|
113. |
Liu, K.,
E. P. Sandgren,
R. D. Palmiter, and
A. Stein.
Rat growth hormone gene introns stimulate nucleosome alignment in vitro and in transgenic mice.
Proc. Natl. Acad. Sci. USA
92:
7724–7728,
1995.
|
114. |
Lyons, J.,
C. A. Landis,
G. Harsh,
L. Vallar,
K. Grünewald,
H. Feichtinger,
Q.‐Y. Dug,
O. H. Clark,
E. Kawasakai,
H. R. Bourne, and
F. McCormick.
Two G protein oncogenes in human endocrine tumors.
Science
249:
655–659,
1990.
|
115. |
Lytras, A., and
P. A. Cattini.
Human chorionic somatomammotropin gene enhancer activity is dependent on the blockade of a repressor mechanism.
Mol. Endocrinol.
8:
478–489,
1994.
|
116. |
Lytras, A.,
R. M. Surabhi,
J. F. Zhang,
Y. Jin, and
P. A. Cattini.
“Repair” of the chorionic somatomammotropin‐A “enhancer” region reveals a novel functional element in the chorionic somatomammotropin‐B enhancer.
Mol. Cell. Endocrinol.
119:
1–10,
1996.
|
117. |
MacKenzie, A.,
M. W. Ferguson, and
P. T. Sharpe.
Hox‐7 expression during murine craniofacial development.
Development
113:
601–611,
1991.
|
118. |
MacLeod, J. N.,
A. K. Lee,
S. A. Liebhaber, and
N. E. Cooke.
Developmental control and alternative splicing of the placentally expressed transcripts from the human growth hormone gene cluster.
J. Biol. Chem.
267:
14219–14226,
1992.
|
119. |
Mangalam, H. J.,
V. R. Albert,
H. A. Ingraham,
M. Kapiloff,
L. Wilson,
C. Nelson,
H. Elsholtz, and
M. G. Rosenfeld.
A pituitary POU domain protein, Pit‐1, activates both growth hormone and prolactin promoters transcriptionally.
Genes Dev.
3:
946–958,
1989.
|
120. |
Mayo, K.,
R. E. Hammer,
L. W. Swanson,
R. L. Brinster,
M. G. Rosenfeld, and
R. M. Evans.
Dramatic pituitary hyperplasia in transgenic mice expressing a human growth hormone–releasing factor gene.
Mol. Endocrinol.
2:
606–612,
1988.
|
121. |
Mayo, K. E.
A little lesson in growth regulation.
Nat. Genet.
12:
8–9,
1996.
|
122. |
Mayo, K. E.,
P. A. Godfrey,
S. T. Suhr,
D. Kulik, and
J. O. Rahal.
Growth hormone–releasing hormone: synthesis and signaling.
Recent Prog. Harm. Res.
50:
35–72,
1995.
|
123. |
McCormick, A.,
H. Brady,
J. Fukushima, and
M. Karin.
The pituitary‐specific regulatory gene GHF1 contains a minimal cell type‐specific promoter centered around its TATA box.
Genes Dev.
4:
1490–1503,
1991.
|
124. |
McCormick, A.,
H. Brady,
L. E. Theill, and
M. Karin.
Regulation of the pituitary‐specific homeobox gene GHF1 by cell‐autonomous and environmental cues.
Nature
345:
829–832,
1990.
|
125. |
McCormick, A.,
D. Wu,
J.‐L. Castrillo,
S. Dana,
J. Strobl,
E. B. Thompson, and
M. Karin.
Extinction of growth hormone expression in somatic cell hybrids involves repression of the specific trans‐activator GHF‐1.
Cell
55:
379–389,
1988.
|
126. |
Meyer, T. E., and
J. F. Habener.
Cyclic adenosine 3′,5′‐monophosphate response element binding protein (CREB) and related transcription‐activating deoxyribonucleic acid‐binding proteins.
Endocr. Rev.
14:
269–290,
1993.
|
127. |
Mirkovitch, J.,
M. E. Mirault, and
U. K. Laemmli.
Organization of the higher‐order chromatin loop: specific DNA attachment sites on nuclear scaffold.
Cell
39:
223–232,
1984.
|
128. |
Misra‐Press, A.,
N. E. Cooke, and
S. A. Liebhaber.
Complex alternative splicing partially inactivates the human chorionic somatomammotropin‐like (hCS‐L) gene.
J. Biol. Chem.
269:
23220–23229,
1994.
|
129. |
Morris, A. E.,
B. Kloss,
R. E. McChesney,
C. Bancroft, and
L. A. Chasin.
An alternatively spliced Pit‐1 isoform altered in its ability to transactivate.
Nucleic Acids Res.
20:
1355–1361,
1992.
|
130. |
Morse, R. H.
Transcribed chromatin.
Trends Biochem. Sci.
17:
23–26,
1992.
|
131. |
Murphy, D.,
K. Pardy,
V. Seah, and
D. Carter.
Posttranscriptional regulation of rat growth hormone gene expression: increased message stability and nuclear polyadenylation accompany thyroid hormone depletion.
Mol. Cell Biol.
12:
2624–2632,
1992.
|
132. |
Nachtigal, M. W.,
B. E. Nickel, and
P. A. Cattini.
Pituitary‐specific repression of placental members of the human growth hormone gene family: a possible mechanism for locus regulation.
J. Biol. Chem.
268:
8473–8479,
1993.
|
133. |
Nachtigal, M. W.,
B. E. Nickel,
M. E. Klassen,
W. G. Zhang,
N. L. Eberhardt, and
P. A. Cattini.
Human chorionic somatomammotropin and growth hormone gene expression in rat pituitary tumor cells is dependent on proximal promoter sequences.
Nucleic Acids Res.
17:
4327–4337,
1989.
|
134. |
Nakayama, K.,
N. Ishida,
M. Shirane,
A. Inomata,
T. Inoue,
N. Shishido,
Horii,
D. Y. Loh, and
K. Nsakayama.
Mice lacking p27Kip display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors.
Cell
85:
707–720,
1995.
|
135. |
Nickel, B. E., and
P. A. Cattini.
Nuclease sensitivity of the human growth hormone–chorionic somatomammotropin locus in pituitary and placenta suggest different mechanisms for tissue‐specific regulation.
Mol. Cell. Endocrinol.
118:
155–162,
1996.
|
136. |
Nickel, B. E.,
E. Kardami, and
P. A. Cattini.
Differential expression of human placental growth‐hormone variant and chorionic somatomammotropin in culture.
Biochem. J.
267:
653–658,
1990.
|
137. |
Nowakowski, B. E., and
R. A. Maurer.
Multiple Pit‐1 binding sites facilitate estrogen responsiveness of the prolactin gene.
Mol. Endocrinol.
8:
1742–1749,
1994.
|
138. |
Ohta, K.,
Y. Nobukuni,
H. Mitsubuchi,
S. Fujimoto,
N. Matsuo,
H. Inagaki,
F. Endo, and
I. Matsuda.
Mutation in the Pit‐1 gene in children with combined pituitary hormone deficiency.
Biochem. Biophys. Res. Commun.
189:
851–855,
1992.
|
139. |
Ohta, K.,
Y. Nobukuni,
H. Mitsubuchi,
T. Ohta,
T. Tohma,
Y. Jinno,
F. Endo, and
I. Matsuda.
Characterization of the gene encoding human pituitary‐specific transcription factor, Pit‐1.
Gene
122:
387–388,
1992.
|
140. |
Okimura, Y.,
P. W. Howard, and
R. A. Maurer.
Pit‐1 binding sites mediate transcriptional responses to cyclic adenosine 3′,5′‐monophosphate through a mechanism that does not require inducible phosphorylation of Pit‐1.
Mol. Endocrinol.
8:
1559–1565,
1994.
|
141. |
Oliver, G.,
A. Mailhos,
R. Wehr,
N. G. Copeland,
N. A. Jenkins, and
P. Gruss.
Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development.
Development
121:
4045–4055,
1995.
|
142. |
Ono, M.,
T. Harigai,
T. Kaneko,
Y. Sato,
S. Ihara, and
H. Kawauchi.
Pit‐1/GHF‐1 involvement in the gene expression of somatolactin.
Mol. Endocrinol.
8:
109–115,
1994.
|
143. |
Owerbach, D.,
W. J. Rutter,
N. E. Cooke,
J. A. Martial, and
T. B. Shows.
The prolactin gene is located on chromosome 6 in humans.
Science
209:
289–291,
1981.
|
144. |
Paek, I., and
R. Axel.
Glucocorticoids enhance stability of human growth hormone mRNA.
Mol. Cell. Biol.
7:
1496–1507,
1987.
|
145. |
Palmetshofer, A.,
D. Zechner,
T. A. Luger, and
A. Barta.
Splicing variants of the human growth hormone mRNA: detection in pituitary, mononuclear cells and dermal fibroblasts.
Mol. Cell. Endocrinol.
113:
225–234,
1995.
|
146. |
Pan, W. T.,
Q. Liu, and
C. Bancroft.
Identification of a growth hormone gene promoter repressor element and its cognate double‐and single‐stranded DNA‐binding protein.
J. Biol. Chem.
265:
7022–7028,
1990.
|
147. |
Panetta, R.,
M. T. Greenwood,
A. Warszynska,
L. L. Demchyshyn,
R. Day,
H. B. Niznik,
C. B. Srikant, and
Y. C. Patel.
Molecular cloning, functional characterization, and chromosomal localization of a human somatostatin receptor (somatostatin receptor type 5) with preferential affinity for somatostatin‐28.
Mol. Pharmacol.
45:
417–427,
1994.
|
148. |
Parks, J. S.,
H. Abdul‐Latif,
E. Kinoshita,
L. R. Meacham,
R. W. Pfäffle, and
M. Brown.
Genetics of growth hormone gene expression.
Horm. Res.
40:
54–61,
1993.
|
149. |
Patel, N.,
E. Alsat,
A. Igout,
F. Baron,
G. Hennen,
D. Porquet, and
D. Evain‐Brion.
Glucose inhibits human placental GH secretion, in vitro.
J. Clin. Endocrinol. Metab.
80:
1743–1746,
1995.
|
150. |
Patel, Y. C., and
W. O'Neill.
Peptides derived from cleavage of prosomatostatin at carboxyl‐and amino‐terminal segments: characterization of tissue and secreted forms in the rat.
J. Biol. Chem.
263:
745–751,
1988.
|
151. |
Peritz, L. N.,
E. J. Fodor,
D. W. Silversides,
P. A. Cattini,
J. D. Baxter, and
N. L. Eberhardt.
The human growth hormone gene contains both positive and negative control elements.
J. Biol. Chem.
263:
5005–5007,
1988.
|
152. |
Pfäffle, R. W.,
G. E. DiMattia,
J. S. Parks,
M. R. Brown,
J. M. Wit,
M. Jansen,
H. van der Nat,
J. L. van den Brandt,
M. G. Rosenfeld, and
H. A. Ingraham.
Mutation of the POU‐specific domain of pit‐1 and hypopituitarism without pituitary hypoplasia.
Science
257:
1118–1121,
1992.
|
153. |
Prager, D.,
S. Gebremedhin, and
S. Melmed.
An insulin‐induced DNA‐binding protein for the human growth hormone gene.
J. Clin. Invest.
85:
1680–1685,
1990.
|
154. |
Radovick, S.,
M. Nations,
Y. Du,
L. A. Berg,
B. D. Weintraub, and
F. E. Wondisford.
A mutation in the POU‐homeodomain of pit‐1 responsible for combined pituitary hormone deficiency.
Science
257:
1115–1118,
1992.
|
155. |
Rhodes, S. J.,
R. Chen,
G. E. DiMattia,
K. M. Scully,
K. A. Kalla,
S. C. Lin,
V. C. Yu, and
M. G. Rosenfeld.
A tissue‐specific enhancer confers Pit‐1–dependent morphogen inducibility and autoregulation on the pit‐1 genes.
Genes Dev.
7:
913–932,
1993.
|
156. |
Robertson, M.
Homeoboxes, POU proteins and the limits to promiscuity.
Nature
336:
522–524,
1988.
|
157. |
Rogers, B. L.,
M. G. Sobnosky, and
G. F. Saunders.
Transcriptional enhancer within the human placental lactogen and growth hormone multigene cluster.
Nucleic Acids Res.
14:
7647–7659,
1986.
|
158. |
Rosenfeld, M. G.,
I. Bach,
L. Erkman,
P. Li,
C. Lin,
S. Lin,
R. McEvilly,
A. Ryan,
S. Rhodes,
M. Schonnemann, and
K. Scully.
Transcriptional control of cell phenotypes in the neuroendocrine system.
Recent Prog. Horm. Res.
51:
217–238,
1996.
|
159. |
Roy, R. J.,
L. Vallieres,
S. Leclerc, and
S. L. Guerin.
The rat growth hormone proximal silencer contains a novel DNA‐binding site for multiple nuclear proteins that represses basal promoter activity.
Eur. J. Biochem.
225:
419–432,
1994.
|
160. |
Samuels, H. H.,
A. Aranda,
J. Casanova,
R. P. Copp,
F. Flug,
B. M. Forman,
Z. D. Horowitz,
L. Janocko,
H. Y. Park, and
A. Pascual.
Identification of the cis‐acting elements and transacting factors that mediate cell‐specific and thyroid hormone stimulation of growth hormone gene expression.
Recent Prog. Horm. Res.
44:
53–114,
1988.
|
161. |
Sato, M., and
L. A. Frohman.
Differential effects of central and peripheral administration of growth hormone (GH) and insulin‐like growth factor on hypothalamic GH‐releasing hormone and somatostatin gene expression in GH‐deficient dwarf rats.
Endocrinology
133:
793–799,
1993.
|
162. |
Sciarra, J. J.,
S. L. Kaplan, and
M. M. Grumbach.
Localization of anti‐human growth hormone serum within the human placenta: evidence for a human chorionic growth hormone–prolactin.
Nature
199:
1005–1006,
1963.
|
163. |
Seeburg, P. H.
The human growth hormone gene family: nucleotide sequences show recent divergence and predict a new polypeptide hormone.
DNA
1:
239–249,
1982.
|
164. |
Shawlot, W., and
R. R. Behringer.
Requirement for Lim 1 in head‐organizer function.
Nature
374:
425–430,
1995.
|
165. |
Sheng, H. Z.,
A. B. Zhadanov,
B. Mosinger,
T. Fuji,
S. Bertuzzi,
A. Grinberg,
E. J. Lee,
S.‐P. Huang,
K. A. Mahon, and
H. Westphal.
Specification of pituitary cell lineages by the LIM homeobox gene
Lhx3. Science
272:
1004–1007,
1996.
|
166. |
Shepard, A. R.,
W. Zhang, and
N. L. Eberhard.
Two CGTCA motifs and a GHF‐1/Pit‐1 binding site mediate cAMP‐dependent protein kinase A regulation of human growth hormone gene expression in rat anterior pituitary GC cells.
J. Biol. Chem.
269:
1804–1814,
1994.
|
167. |
Simmons, D. M.,
J. W. Voss,
H. A. Ingraham,
J. M. Holloway,
R. S. Broide,
M. G. Rosenfeld, and
L. W. Swanson.
Pituitary cell phenotypes involve cell‐specific Pit‐1 mRNA translation and synergistic interactions with other classes of transcription factors.
Genes Dev.
4:
695–711,
1990.
|
168. |
Smith, R. G.,
K. Cheng,
W. R. Schoen,
S. S. Pong,
G. Hickey,
T. Jacks,
B. Butler,
W. W. Chan,
L. Y. Chaung, and
F. Judith.
A nonpeptidyl growth hormone secretagogue.
Science
260:
1640–1643,
1993.
|
169. |
Soares, M. J.,
T. N. Faria,
K. F. Roby, and
S. Deb.
Pregnancy and the prolactin family of hormones: coordination of anterior pituitary, uterine, and placental expression.
Endocr. Rev.
12:
402–423,
1991.
|
170. |
Sornson, M. W.,
W. Wu,
J. S. Dasen,
S. E. Flynn,
D. J. Norman,
S. M. O'Connell,
I. Gukovsky,
C. Carriere,
A. K. Ryan,
A. P. Miller,
L. Zuo,
A. S. Gleiberman,
B. Andersen,
W. G. Beamer, and
M. G. Rosenfeld.
Pituitary lineage determination by the Prophet of Pit‐1 homeodomain factor defective in Ames' dwarfism.
Nature
384:
327–333,
1996.
|
171. |
Soto, J. L.,
J.‐L. Castrillo,
F. Dominguez, and
C. Dieguez.
Regulation of the pituitary‐specific transcription factor GHF‐1/Pit‐1 messenger ribonucleic acid levels by growth hormone‐secretagogues in rat anterior pituitary cells in monolayer culture.
Endocrinology
136:
3863–3870,
1995.
|
172. |
Steinfelder, H. J.,
S. Radovick, and
F. E. Wondisford.
Hormonal regulation of the thyrotropin β‐subunit gene by phosphorylation of the pituitary‐specific transcription factor Pit‐1.
Proc. Natl. Acad. Sci. USA
89:
5942–5945,
1992.
|
173. |
Stephanou, A., and
S. Handwerger.
Identification of a composite steroid hormone response element on the human placental lactogen promoter.
Mol. Cell. Endocrinol.
112:
123–129,
1995.
|
174. |
Stephanou, A., and
S. Handwerger.
The nuclear factor NF‐IL6 activates human placental lactogen gene expression.
Biochem. Biophys. Res. Commun.
206:
215–222,
1995.
|
175. |
Stephanou, A.,
R. Ross, and
S. Handwerger.
Regulation of human placental lactogen expression by 1,25‐dihydroxyvitamin D3.
Endocrinology
135:
2651–2656,
1994.
|
176. |
Stephanou, A.,
M. Shah,
B. Richardson, and
S. Handwerger.
The ARP‐1 orphan receptor represses steroid‐mediated stimulation of human placental lactogen gene expression.
J. Mol. Endocrinol.
16:
221–227,
1996.
|
177. |
Stief, A.,
D. M. Winter,
W. H. Striding, and
A. E. Sippel.
A nuclear DNA attachment element mediates elevated and position‐independent gene activity.
Nature
341:
343–345,
1989.
|
178. |
Strobl, J. S.,
G. J. van Eys, and
E. B. Thompson.
Dexamethasone control of growth hormone mRNA levels in GH3 pituitary cells is cycloheximide‐sensitive and primarily posttranscriptional.
Mol. Cell. Endocrinol.
66:
71–82,
1989.
|
179. |
Struthers, R. S.,
D. Gaddy‐Kurten, and
W. W. Vale.
Activin inhibits binding of transcription factor Pit‐1 to the growth hormone promoter.
Proc. Natl. Acad. Sci. USA
89:
11451–11455,
1992.
|
180. |
Struthers, R. S.,
W. W. Vale,
C. Arias,
P. E. Sawchenko, and
M. R. Montminy.
Somatotroph hypoplasia and dwarfism in transgenic mice expressing a non‐phosphorylatable CREB mutant.
Nature
339:
538–541,
1991.
|
181. |
Sturm, R. A., and
W. Herr.
The POU domain is a bipartite DNA‐binding structure.
Nature
336:
601–604,
1988.
|
182. |
Suen, C. S., and
W. W. Chin.
Ligand‐dependent, Pit‐1/growth hormone factor‐1 (GHF‐1)‐independent transcriptional stimulation of rat growth hormone gene expression by thyroid hormone receptors in vitro.
Mol. Cell. Biol.
13:
1719–1727,
1993
|
183. |
Sugawara, A.,
P. M. Yen, and
W. W. Chin.
9‐cis Retinoic acid regulation of rat growth hormone gene expression: potential roles of multiple nuclear hormone receptors.
Endocrinology
135:
1956–1962,
1994.
|
184. |
Sun, Q.,
A. Mayeda,
R. K. Hampson,
A. R. Krainer, and
F. M. Rottman.
General splicing factor SF1/ASF promotes alternative splicing by binding to an exonic splicing enhancer.
Genes Dev.
7:
2598–2608,
1993.
|
185. |
Szeto, D. P.,
A. K. Ryan,
S. M. O'Connell, and
M. G. Rosenfeld.
P‐OTX: a PIT‐1–interacting homeodomain factor expressed during anterior pituitary gland development.
Proc. Natl. Acad. Sci. USA
93:
7706–7710,
1996.
|
186. |
Tang, K.,
A. Bartke,
C. S. Gardiner,
T. E. Wagner, and
J. S. Yun.
Gonadotropin secretion, synthesis, and gene expression in human growth hormone transgenic mice and in Ames' dwarf mice.
Endocrinology
132:
2518–2524,
1993.
|
187. |
Tatsumi, K.,
K. Miyai,
T. Notomi,
K. Kaibe,
N. Amino,
Y. Mizuno, and
H. Kohno.
Cretinism with combined hormone deficiency caused by a mutation in the pit‐1 gene.
Nat. Genet.
1:
56–58,
1992.
|
188. |
Theill, L. E.,
J.‐L. Castrillo,
D. Wu, and
M. Karin.
Dissection of functional domains of the pituitary‐specific transcription factor GHF‐1.
Nature
342:
945–948,
1989.
|
189. |
Theill, L. E.,
K. Hattori,
D. Lazzaro,
J.‐L. Castrillo, and
M. Karin.
Differential splicing of the GHF1 primary transcript gives rise to two functionally distinct homeodomain proteins.
EMBO J.
11:
2261–2269,
1992.
|
190. |
Theill, L., and
M. Karin.
Transcriptional control of GH expression and anterior pituitary development.
Endocr. Rev.
14:
670–689,
1993.
|
191. |
Thorner, M. O.,
R. L. Perryman,
M.J. Cronin,
A. D. Rogol,
M. Draznin,
A. Johanson,
W. Vale,
E. Horvath, and
K. Kovacs.
Somatotroph hyperplasia. Successful treatment of acromegaly by removal of a pancreatic islet tumor secreting a growth hormone–releasing factor.
Clin. Invest.
70:
965–977,
1982.
|
192. |
Treier, M., and
M. G. Rosenfeld.
The hypothalamic–pituitary axis: co‐development of two organs.
Curr. Opin. Cell Biol.
8:
833–843,
1996.
|
193. |
Tuggle, C. K., and
A. Trenkle.
Control of growth hormone synthesis.
Domest. Anim. Endocrinol.
13:
1–33,
1966.
|
194. |
Umesono, K.,
V. Giguere,
C. K. Glass,
M. G. Rosenfeld, and
R. M. Evans.
Retinoic acid and thyroid hormone induce gene expression through a common responsive element.
Nature
336:
262–265,
1988.
|
195. |
Vila, V.,
O. Jimenez,
A. Guell, and
J.‐L. Castrillo.
Pit‐1 and Pit‐2 role in growth hormone gene regulation.
J. Pediatr. Endocrinol.
6:
225–228,
1993.
|
196. |
Vinson, C. R.,
P. B. Sigler, and
S. L. McKnight.
Scissors‐grip model for DNA recognition by a family of leucine zipper proteins.
Science
246:
911–916,
1989.
|
197. |
Voss, J. W.,
L. Wilson,
S. J. Rhodes, and
M. G. Rosenfeld.
An alternative Pit‐1 RNA splicing product reveals modular binding and nonmodular transcriptional activities of the POU‐specific domain.
Mol. Endocrinol.
7:
1551–1560,
1993.
|
198. |
Voz, M. D.,
B. Peers,
A. Belayew, and
J. S. Martial.
Characterization of an unusual thyroid response unit in the promoter of the human placental lactogen gene.
J. Biol. Chem.
266:
13397–13408,
1991.
|
199. |
Vyas, P.,
M. A. Vickers,
D. L. Simmons,
H. Ayybu,
C. F. Craddock, and
D. R. Higgs.
Cis‐acting sequences regulating expression of the human α‐globin cluster lie within constitutively open chromatin.
Cell
69:
781–793,
1992.
|
200. |
Wagner, E. F.,
L. Covarrubias,
T. A. Stewart, and
B. Mintz.
Prenatal lethalities in mice homozygous for human growth hormone gene sequences integrated in the germ line.
Cell
35:
647–655,
1983.
|
201. |
Wajnrajch, M. P.,
J. M. Gertner,
M. D. Harbison,
S. C. Chua, and
R. L. Leibel.
Nonsense mutation in the human growth hormone–releasing hormone receptor causes growth failure analogous to the little (lit) mouse.
Nat. Genet.
12:
88–90,
1996.
|
202. |
Walker, W. H.,
S. L. Fitzpatrick,
H. A. Barrera‐Saldana,
D. Resendez‐Perez, and
G. F. Saunders.
The human placental lactogen genes: structure, function, evolution, and transcriptional regulation.
Endocr. Rev.
12:
316–328,
1991.
|
203. |
Walker, W. H.,
S. K. Fitzpatrick, and
G. F. Saunders.
Human placental lactogen transcriptional enhancer: tissue specificity and binding with specific proteins.
J. Biol. Chem.
265:
12940–12948,
1990.
|
204. |
Wight, P. A.,
M. D. Crew, and
S. R. Spindler.
Sequences essential for activity of the thyroid hormone responsive transcription stimulatory element of the rat growth hormone gene.
Mol. Endocrinol.
2:
536–542,
1988.
|
205. |
Wu, H.,
R. Devi, and
W. B. Malarkey.
Localization of growth hormone messenger ribonucleic acid in the human immune system—a clinical research center study.
J. Clin. Endocrinol. Metab.
8:
1278–1282,
1996.
|
206. |
Xiang, X.,
K. Benson, and
K. Chada.
Minimouse: disruption of the pygmy locus in a transgenic insertional mutant.
Science
247:
967–969,
1990.
|
207. |
Yamada, S.,
J. Hata, and
S. Yamashita.
Molecular cloning of fish Pit‐1 cDNA and its functional binding to the promoter of a gene expressed in the pituitary.
J. Biol. Chem.
268:
24361–24366,
1993.
|
208. |
Yamashita, S., and
S. Melmed.
Insulin‐like growth factor I action on rat anterior pituitary cells: suppression of growth hormone secretion and messenger ribonucleic acid levels.
Endocrinology
118:
176–182,
1986.
|
209. |
Ye, Z. S.,
B. M. Forman,
A. Aranda,
A. Pascual,
H. Y. Park,
J. Casanova, and
H. H. Samuels.
Rat growth hormone gene expression. Both cell‐specific and thyroid hormone response elements are required for thyroid hormone regulation.
J. Biol. Chem.
263:
7821–7829,
1988.
|
210. |
Zhadanov, A. B.,
S. Bertuzzi,
M. Taira,
I. B. Dawid, and
H. Westphal.
Expression pattern of the murine LIM class homeobox gene Lhx3 in subsets of neural and neuroendocrine tissues.
Dev. Dyn.
202:
354–364,
1995.
|
211. |
Zhou, X.,
K. F. Benson,
H. R. Ashar, and
K. Chada.
Mutation responsible for the mouse pygmy phenotype in the develop‐mentally regulated factor HMGI‐C.
Nature
376:
771–774,
1995.
|