Comprehensive Physiology Wiley Online Library

Insulin‐Like Growth Factor I Actions on Somatic Growth

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Indirect Evidence that Insulin‐Like Growth Factor I Participates in the Regulation of Somatic Growth
1.1 Clinical: Correlations Between Growth and Insulin‐Like Growth Factor I Levels in Serum
1.2 Experimental: Growth Hormone‐Dependent Regulation of Insulin‐Like Growth Factor I mRNA and Protein Expression in Various Tissues and the Autocrine/Paracrine Versus Endocrine Role of Insulin‐Like Growth Factor I
2 Direct Evidence that Insulin‐Like Growth Factor I Promotes Growth
2.1 Insulin‐Like Growth Factor I as a Growth and Differentiation Factor In Vitro
2.2 Effects of Insulin‐Like Growth Factor I Administration on Growth In Vivo
2.3 Transgenic Animals Overexpressing Growth Hormone or Insulin‐Like Growth Factor I
2.4 Insulin‐Like Growth Factor I and Type 1 Insulin‐Like Growth Factor Receptor Knock‐Out Animals
2.5 The Somatomedin Hypothesis Revisited
Figure 1. Figure 1.

Dependence of immunoreactive (ir) serum insulin‐like growth factor I (IGF‐I) levels on chronological age and puberty in normal children. Mean levels and the 10th and 90th percentiles are given for Tanner stages P1 (closed circles and solid lines) and P2–P5 (open circles and broken lines). The number of subjects in each age group is between 20 and 100. The growth rate curve with the pubertal growth rate peaks for girls (stippled line) and boys (solid line).

Figure 2. Figure 2.

Left panel, dependence of insulin‐like growth factor I (IGF‐I) levels in serum as measured by radioimmunoassay on chronological age in girls (circles) as compared to those in boys (squares). The number of subjects in each group is between 10 and 80. Closed symbols represent mean values for all pubertal stages (P1–P5), open symbols represent mean values for pubertal stages P > 1, bars show the SEM (from J. Zapf and P. Sizonenko, unpublished). Right panel, height as percent of adult height plotted against chronological age for girls (broken line) and boys (solid line).

Modified from Prader 138, with permission
Figure 3. Figure 3.

Correlation between insulin‐like growth factor I (IGF‐I) levels in serum as measured by radioimmunoassay and growth rate in boys (left panel) and girls (right panel) during pubertal stages P1–P3.

From J. Zapf and P. Sizonenko, unpublished, with permission
Figure 4. Figure 4.

Age‐dependence of growth rate (left vertical axes) and insulin‐like growth factor I (IGF‐I) levels in serum as measured by radioimmunoassay (right vertical axes) in female (left panel) and male (right panel) pygmies and subjects of normal stature. Hatched columns show IGF‐I levels in pygmies, and open columns show IGF‐I levels in individuals of normal stature.

Modified from Merimee et al. 119, with permission
Figure 5. Figure 5.

Correlation between levels of growth hormone (GH) and insulin‐like growth factor I (IGF‐I) in serum as measured by radioimmunoassay in 24 acromegalic patients after surgical treatment or after radiotherapy or bromocriptine treatment. Upper panel, basal GH levels, lower panel, maximally suppressed GH levels after an oral glucose load.

Modified from Schatz et al. 162, with permission
Figure 6. Figure 6.

Effects of insulin‐like growth factor I (IGF‐I) on acetylcholine esterase activity as an index of muscle cell differentiation (A), and on cell multiplication (B) in primary chick embryo myoblasts after 4 days in culture. Columns give mean values of four different experiments each, and the bars indicate the SEM.

Modified from Schmid et al. 168, with permission
Figure 7. Figure 7.

Cell number and alkaline phosphatase activity (ratio of treated:control) in primary cultures of rat calvarium cells grown for 6 days in the absence or presence of increasing concentrations of insulin‐like growth factor I (IGF‐I).

From Schmid et al. 169 with permission
Figure 8. Figure 8.

Phase contrast micrographs of chick embryo myoblasts after 3 days of culture in the absence (A) and in the presence of 13 nM insulin‐like growth factor I (IGF‐I) (B).

From Schmid et al. 168 with permission
Figure 9. Figure 9.

Cell height (A) and cell volume (B) during the resting, proliferative, and hypertrophic phases of growth plate chondrocytes from the proximal tibia of hypophysectomized Wistar rats treated for 8 days with saline (stippled bars), 300 μg/d of rhIGF‐I (hatched bars), or 200 mU/d of rhGH (crosshatched bars), and of untreated age‐matched normal Wistar rats (open bars). (C and D) Electron micrographs of vertical sections through growth plate chondrocytes of the proximal tibia at the proliferative (C) and hypertrophic (D) activity phases. Upper left: untreated normal; upper right: saline‐treated hypophysectomized; lower left: rhIGF‐I‐treated; lower right: rhGH‐treated.

From Hunziker et al. 80 with permission
Figure 10. Figure 10.

(A) Cycle time (phase duration) and (B) cell turnover (cell number/column x day) of growth plate chondrocytes from the proximal tibia of hypophysectomized Wistar rats treated for 8 days with saline (stippled bars), 300 μg/d of rhIGF‐I (hatched bars) or 200 mU/d of rhGH (crosshatched bars), and of untreated, age‐matched, normal Wistar rats (open bars).

From Hunziker et al. 80 with permission
Figure 11. Figure 11.

Cell productivity (Δ cell height/hour, A cell volume/hour, and A matrix production/hour) in growth plate chondrocytes from the proximal tibia of hypophysectom Wistar rats treated for 8 days with saline (stippled bars), 300 μg/d of rhIGF‐I (hatched bars) or 200 mU/d of rhGH (crosshatched bars), and of untreated, age‐matched, normal Wistar rats (open bars).

From Hunziker et al. 80 with permission
Figure 12. Figure 12.

Molecular mass distribution of immunoreactive (ir) insulin‐like growth factor I (IGF‐I) in 1 ml serum of hypophysecto‐mized Wistar rats (same animals as in Figs. 21.21. 9–11) treated with saline, 200 mU/d of rhGH or 300 μg/d of rhIGF‐I, and in serum of untreated, age‐matched, normal Wistar rats. The sera were gel‐filtered over Sephadex G‐200, the fractions were pooled as indicated, dialyzed against 0.1 M NH4HCO3, lyophilized, dissolved in phosphate‐buffered saline‐0.2% human serum albumin, and then processed over SepPak columns to remove IGFBPs, as described in 204. IGF‐I was determined by radioimmunoassay. All points are the means of 3 gel filtration runs (2 runs for hypophysectomized controls). The bars indicate SEMs. When the [125I]iodo‐IGF‐I tracer was chromatographed on the same column, it eluted in pool 93–100.

Figure 13. Figure 13.

Serum insulin, serum insulin‐like growth factor I (IGF‐I) and blood sugar levels and growth indices in streptozotocin‐diabetic rats treated for 6 days with saline (diab.), 2.5 mg/d of rhIGF‐I, or 2.5 U/d of insulin (ins).

From Zapf et al., in preparation, with permission,
Figure 14. Figure 14.

Organ weights (expressed as g/100 g body weight) of streptozotocin‐diabetic rats treated for 6 days with saline (diab.), 2.5 mg/d of rhIGF‐I, or 2.5 U/d of insulin (ins.)

From Zapf et al., in preparation, with permission
Figure 15. Figure 15.

Cross sections through the thymus of a normal control rat (a) and of streptozotocin‐diabetic rats treated for 14 days with saline (b), 6 U/day of insulin (c), or 300 μg/day of rhIGF‐I (d). Staining was performed with hematoxilin/eosin. Magnification x 30.

From Binz et al. 18 with permission
Figure 16. Figure 16.

The somatomedin hypothesis revisited.



Figure 1.

Dependence of immunoreactive (ir) serum insulin‐like growth factor I (IGF‐I) levels on chronological age and puberty in normal children. Mean levels and the 10th and 90th percentiles are given for Tanner stages P1 (closed circles and solid lines) and P2–P5 (open circles and broken lines). The number of subjects in each age group is between 20 and 100. The growth rate curve with the pubertal growth rate peaks for girls (stippled line) and boys (solid line).



Figure 2.

Left panel, dependence of insulin‐like growth factor I (IGF‐I) levels in serum as measured by radioimmunoassay on chronological age in girls (circles) as compared to those in boys (squares). The number of subjects in each group is between 10 and 80. Closed symbols represent mean values for all pubertal stages (P1–P5), open symbols represent mean values for pubertal stages P > 1, bars show the SEM (from J. Zapf and P. Sizonenko, unpublished). Right panel, height as percent of adult height plotted against chronological age for girls (broken line) and boys (solid line).

Modified from Prader 138, with permission


Figure 3.

Correlation between insulin‐like growth factor I (IGF‐I) levels in serum as measured by radioimmunoassay and growth rate in boys (left panel) and girls (right panel) during pubertal stages P1–P3.

From J. Zapf and P. Sizonenko, unpublished, with permission


Figure 4.

Age‐dependence of growth rate (left vertical axes) and insulin‐like growth factor I (IGF‐I) levels in serum as measured by radioimmunoassay (right vertical axes) in female (left panel) and male (right panel) pygmies and subjects of normal stature. Hatched columns show IGF‐I levels in pygmies, and open columns show IGF‐I levels in individuals of normal stature.

Modified from Merimee et al. 119, with permission


Figure 5.

Correlation between levels of growth hormone (GH) and insulin‐like growth factor I (IGF‐I) in serum as measured by radioimmunoassay in 24 acromegalic patients after surgical treatment or after radiotherapy or bromocriptine treatment. Upper panel, basal GH levels, lower panel, maximally suppressed GH levels after an oral glucose load.

Modified from Schatz et al. 162, with permission


Figure 6.

Effects of insulin‐like growth factor I (IGF‐I) on acetylcholine esterase activity as an index of muscle cell differentiation (A), and on cell multiplication (B) in primary chick embryo myoblasts after 4 days in culture. Columns give mean values of four different experiments each, and the bars indicate the SEM.

Modified from Schmid et al. 168, with permission


Figure 7.

Cell number and alkaline phosphatase activity (ratio of treated:control) in primary cultures of rat calvarium cells grown for 6 days in the absence or presence of increasing concentrations of insulin‐like growth factor I (IGF‐I).

From Schmid et al. 169 with permission


Figure 8.

Phase contrast micrographs of chick embryo myoblasts after 3 days of culture in the absence (A) and in the presence of 13 nM insulin‐like growth factor I (IGF‐I) (B).

From Schmid et al. 168 with permission


Figure 9.

Cell height (A) and cell volume (B) during the resting, proliferative, and hypertrophic phases of growth plate chondrocytes from the proximal tibia of hypophysectomized Wistar rats treated for 8 days with saline (stippled bars), 300 μg/d of rhIGF‐I (hatched bars), or 200 mU/d of rhGH (crosshatched bars), and of untreated age‐matched normal Wistar rats (open bars). (C and D) Electron micrographs of vertical sections through growth plate chondrocytes of the proximal tibia at the proliferative (C) and hypertrophic (D) activity phases. Upper left: untreated normal; upper right: saline‐treated hypophysectomized; lower left: rhIGF‐I‐treated; lower right: rhGH‐treated.

From Hunziker et al. 80 with permission


Figure 10.

(A) Cycle time (phase duration) and (B) cell turnover (cell number/column x day) of growth plate chondrocytes from the proximal tibia of hypophysectomized Wistar rats treated for 8 days with saline (stippled bars), 300 μg/d of rhIGF‐I (hatched bars) or 200 mU/d of rhGH (crosshatched bars), and of untreated, age‐matched, normal Wistar rats (open bars).

From Hunziker et al. 80 with permission


Figure 11.

Cell productivity (Δ cell height/hour, A cell volume/hour, and A matrix production/hour) in growth plate chondrocytes from the proximal tibia of hypophysectom Wistar rats treated for 8 days with saline (stippled bars), 300 μg/d of rhIGF‐I (hatched bars) or 200 mU/d of rhGH (crosshatched bars), and of untreated, age‐matched, normal Wistar rats (open bars).

From Hunziker et al. 80 with permission


Figure 12.

Molecular mass distribution of immunoreactive (ir) insulin‐like growth factor I (IGF‐I) in 1 ml serum of hypophysecto‐mized Wistar rats (same animals as in Figs. 21.21. 9–11) treated with saline, 200 mU/d of rhGH or 300 μg/d of rhIGF‐I, and in serum of untreated, age‐matched, normal Wistar rats. The sera were gel‐filtered over Sephadex G‐200, the fractions were pooled as indicated, dialyzed against 0.1 M NH4HCO3, lyophilized, dissolved in phosphate‐buffered saline‐0.2% human serum albumin, and then processed over SepPak columns to remove IGFBPs, as described in 204. IGF‐I was determined by radioimmunoassay. All points are the means of 3 gel filtration runs (2 runs for hypophysectomized controls). The bars indicate SEMs. When the [125I]iodo‐IGF‐I tracer was chromatographed on the same column, it eluted in pool 93–100.



Figure 13.

Serum insulin, serum insulin‐like growth factor I (IGF‐I) and blood sugar levels and growth indices in streptozotocin‐diabetic rats treated for 6 days with saline (diab.), 2.5 mg/d of rhIGF‐I, or 2.5 U/d of insulin (ins).

From Zapf et al., in preparation, with permission,


Figure 14.

Organ weights (expressed as g/100 g body weight) of streptozotocin‐diabetic rats treated for 6 days with saline (diab.), 2.5 mg/d of rhIGF‐I, or 2.5 U/d of insulin (ins.)

From Zapf et al., in preparation, with permission


Figure 15.

Cross sections through the thymus of a normal control rat (a) and of streptozotocin‐diabetic rats treated for 14 days with saline (b), 6 U/day of insulin (c), or 300 μg/day of rhIGF‐I (d). Staining was performed with hematoxilin/eosin. Magnification x 30.

From Binz et al. 18 with permission


Figure 16.

The somatomedin hypothesis revisited.

References
 1. Abe, H., M. E. Molitch, J. J. van Wyk, and L. E. Underwood. Human growth hormone and somatomedin C suppress the spontaneous release of growth hormone in unanesthetized rats. Endocrinology 113: 1319–1327, 1983.
 2. Akahane, K., A. Tojo, K. Tobe, M. Kasuga, A. Urabe, and F. Takaku. Binding properties and proliferative potency of insulin‐like growth factor I in fetal mouse liver cells. Exp. Hematol. 15: 1068–1073, 1987.
 3. Almqvist, W. H., D. Ikkos, and R. Luft. Studies on sulfation factor (SF) activity of human serum: serum SF in hypopituitarism and acromegaly. Acta Endocrinol. 36: 77–595, 1961.
 4. Ammann, P., R. Rizzoli, and J.‐Ph. Bonjour. Chronic infusion of IGF‐I increases bone mineral density (BMD) evaluated sequentially by dual energy X‐ray absorptiometry (DXA) in ovariectomized (OVX) osteopenic rats. J. Bone Miner. Res. 6: 218, 1991 (Abstract).
 5. Amselem, S., P. Duquesnoy, O. Attree, G. Novelli, S. Bousnina, M.‐C. Postel‐Vinay, and M. Goossens. Laron dwarfism and mutations of the growth hormone‐receptor gene. N. Engl. J. Med. 321: 989–995, 1989.
 6. Asakawa, K., K. Hizuka, R. Horikawa, I. Sukegawa, H. Demura, and K. Shizume. Effects of insulin‐like growth factor I or human growth hormone in fasted rats. Growth Regul. 2: 40–44, 1992.
 7. Aynsley‐Green, A., M. Zachmann, and A. Prader. Interrelation of the therapeutic effects of growth hormone and testosterone on growth in hypopituitarism. J. Paediatr. 89: 992–999, 1976.
 8. Bagi, C. M., R. Brommage, L. Deleon, S. Adams, D. Rosen, and A. Sommer. Benefit of systemically administered rhIGF‐I and rhIGF‐I/IGFBP‐3 on cancellous bone in ovariectomized rats. J. Bone Miner. Res. 9: 1301–1312, 1994.
 9. Baker, J., J.‐P. Liu, E. J. Robertson, and A. Efstratiadis. Role of insulin‐like growth factors in embryonic and postnatal growth. Cell 75: 73–82, 1993.
 10. Bala, R. M., and B. Bhaumick. Radioimmunoassay of a basic somatomedin: comparison of various assay techniques and somatomedin levels in various sera. J. Clin. Endocrinol. Metab. 49: 770–777, 1979.
 11. Barkan, A. L., I. Z. Beitins, and R. P. Kelch. Plasma insulinlike growth factor‐1/somatomedin C in acromegaly: correlation with the degree of growth hormone hypersecretion. J. Clin. Endocrinol. Metab. 67: 69–73, 1988.
 12. Barnard, R., K. M. Haynes, G. H. Werther, and M. J. Waters. The ontogeny of growth hormone receptors in the rabbit tibia. Endocrinology 122: 2562–2569, 1988.
 13. Baserga, R., and R. Rubin. Cell cycle and growth control. Crit. Rev. Eukaryot. Gene Expr. 3: 47–61, 1993.
 14. Bates, A. S., A. J. Evans, P. Jones, and R. N. Clayton. Assessment of GH status in acromegaly using serum growth hormone, serum insulin‐like growth factor‐I and urinary growth hormone excretion. Clin. Endocrinol. 42: 417–423, 1995.
 15. Baxter, R. C. Circulating binding proteins for the insulin‐like growth factors. Trends Endocrinol. Metab. 4: 91–96, 1993.
 16. Behringer, R. R., T. M. Lewin, C. J. Quaife, R. D. Palmiter, R. L. Brinster, and A. J. D'Ercole. Expression of insulin‐like growth factor I stimulates normal somatic growth in growth hormone‐deficient transgenic mice. Endocrinology 127: 1033–1040, 1990.
 17. Binoux, M., and P. Hossenlopp. Insulin‐like growth factor (IGF) and IGF‐binding proteins: comparison of human serum and lymph. J. Clin. Endocrinol. Metab. 67: 509–514, 1988.
 18. Binz, K., P. Joller, P. Froesch, H. Binz, J. Zapf, and E. R. Froesch. Repopulation of the atrophied thymus in diabetic rats by insulin‐like growth factor I. Proc. Natl. Acad. Sci. USA 87: 3690–3694, 1990.
 19. Blat, C., J. Villaudy, and M. Binoux. In vivo proteolysis of serum insulin‐like growth factor (IGF) binding protein‐3 results in increased availability of IGF to target cells. J. Clin. Invest. 93: 2286–2290, 1994.
 20. Boehme, K., M. Conscience‐Egli, T. Tschan, K. H. Winterhalter, P. Bruckner. Induction of proliferation or hypertrophy of chondrocytes in serum‐free culture: the role of insulin‐like growth factor‐I, insulin, or thyroxine. J. Cell. Biol. 116: 1035–1042, 1992.
 21. Breur, G. J., B. A. VanEnkevort, C. E. Farnum, and N. J. Wilsman. Linear relationship between the volume of hypertrophic chondrocytes and the rate of longitudinal bone growth in growth plates. J. Orthop. Res. 9: 348–359, 1991.
 22. Bürgi, H., W. A. Müller, R. E. Humbel, A. Labhart, and E. R. Froesch. Non‐suppressible insulin‐like activity of human serum. I. Physicochemical properties, extraction and partial purification. Biochim. Biophys. Acta 121: 349–359, 1966.
 23. Canalis, E. Effects of insulin‐like growth factor I on DNA and protein synthesis in cultured rat calvaria. J. Clin. Invest. 66: 709–719, 1980.
 24. Carlsson, L., M.S.R. G. Clark, A. Skottner, and I.C.A.F. Robinson. Growth hormone and growth in diabetic rats: effects of insulin and insulin‐like growth factor‐I infusions. J. Endocrinol. 122: 661–670, 1989.
 25. Chochinov, R. H., and W. H. Daughaday. Current concepts of somatomedin and other biologically related growth factors. Diabetes 25: 994–1007, 1976.
 26. Claustres, M., P. Chatelain, and C. Sultan. Insulin‐like growth factor I stimulates human erythroid colony formation in vitro. J. Clin. Endocrinol. Metab. 65: 78–82, 1986.
 27. Clemmons, D. R. IGF binding proteins: regulation of cellular actions. Growth Regul. 2: 80–87, 1992.
 28. Clemmons, D. R. IGF binding proteins and their functions. Mol. Reprod. Devel. 35: 368–375, 1993.
 29. Clemmons, D. R., J. J. Van Wyk, E. C. Ridgway, B. Kliman, R. N. Kjellberg, and L. E. Underwood. Evaluation of acromegaly by radioimmunoassay of somatomedin‐C. N. Engl. J. Med. 301: 1138–1142, 1979.
 30. Congote, L. F., A. Brox, F. K. Lin, H. S. Lu, and A. A. Fauser. The N‐terminal sequence of the major erythropoietic factor of an anephric patient is identical to insulin‐like growth factor I. J. Clin. Endocrinol. Metab. 72: 727–729, 1991.
 31. Daughaday, W. H., K. Hall, M. S. Raben, W. D. Salmon Jr., J. Van den Brande, and J. J. Van Wyk. Somatomedin: proposed designation for sulphation factor. Nature 235: 107, 1972.
 32. Daughaday, W. H., Z. Laron, A. Pertzelan, and J. N. Heins. Defective sulfation factor generation: a possible etiological link in dwarfism. Trans. Assoc. Am. Physicians 82: 129–138, 1969.
 33. Daughaday, W. H., and P. Rotwein. Insulin‐like growth factor I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr. Rev. 10: 68–91, 1989.
 34. Daughaday, W. H., W. D. Salmon Jr., and F. Alexander. Sulfation factor activity of sera from patients with pituitary disorders. J. Clin. Endocrinol. Metab. 19: 743–758, 1959.
 35. De Mellow, J.S.M., D. J. Handelsman, and R. C. Baxter. Short‐term exposure to insulin‐like growth factors stimulates testosterone production by testicular interstitial cells. Acta Endocrinol. 115: 483–489, 1987.
 36. D'Ercole, A. J., G. T. Applewhite, and L. E. Underwood. Evidence that somatomedin is synthesized by multiple tissues in the fetus. Dev. Biol. 75: 315–328, 1986.
 37. D'Ercole, A. J., D. J. Hill, A. J. Strain, and L. E. Underwood. Tissue and plasma somatomedin‐C/insulin‐like growth factor‐I concentrations in the human fetus during the 1st half of gestation. Pediatr. Res. 20: 253–255, 1986.
 38. D'Ercole, A. J., A. D. Stiles, and L. E. Underwood. Tissue concentrations of somatomedin C: further evidence for multiple sites of synthesis and paracrine or autocrine mechanisms of action. Proc. Natl. Acad. Sci. USA 81: 935–939, 1984.
 39. Donath, M. Y., J. Zapf, M. Eppenberger‐Eberhardt, E. R. Froesch, and H. M. Eppenberger. Insulin‐like growth factor I stimulates myofibril development and decreases smooth muscle a‐actin of adult cardiomyocytes. Proc. Natl. Acad. Sci. USA 91: 1686–1690, 1994.
 40. Drop, S.L.S., A.G.P. Schuller, D. J. Lindenbergh‐Kortleve, C. Groffen, A. Brinkman, and E. C. Zwarthoff. Structural aspects of the IGFBP family. Growth Regul. 2: 69–79, 1992.
 41. Eicher, E. M., and W. G. Beamer. Inherited ateolitic dwarfism in mice: characterization of the mutation little on chromosome 6. J. Hered. 67: 87–91, 1976.
 42. Eigenmann, J. E., D. F. Patterson, and E. R. Froesch. Body size parallels insulin‐like growth factor I levels but not growth hormone secretory capacity. Acta Endocrinol. 106: 448–453, 1984.
 43. Eppenberger‐Eberhardt, M., I. Flamme, V. Kurer, and H. M. Eppenberger. Reexpression of a‐smooth muscle actin isoform in cultured adult rat cardiomyocytes. Dev. Biol. 139: 269–278, 1990.
 44. Erdheim, J. Die Lebensvorgange im normalen Knorpel und seine Wucherung bei Akromegalie. Berlin und Wien: Julius Springer‐Verlag, 1931.
 45. Ernst, M., and E. R. Froesch. Osteoblastlike cells in a serum‐free methylcellulose medium form colonies: effects of insulin and insulinlike growth factor I. Calcif. Tissue Int. 40: 27–34, 1987.
 46. Ernst, M., and E. R. Froesch. Growth hormone dependent stimulation of osteoblast‐like cells in serum‐free cultures via local synthesis of insulin‐like growth factor I. Biochem. Biophys. Res. Commun. 151: 142–147, 1988.
 47. Florini, J. R., and D. Z. Ewton. Induction of gene expression in muscle by the IGFs. Growth Regul. 2: 23–29, 1992.
 48. Florini, J. R., D. Z. Ewton, S. L. Falen, and J. J. Van Wyk. Biphasic concentration dependency of stimulation of myoblast differentiation by somatomedins. Am. J. Physiol. 250 (Cell Physiol. 19): C771–C778, 1986.
 49. Florini, J. R., D. Z. Ewton, and J. A. Foster. Proteins induced by the IGFs in skeletal, smooth, and cardiac muscle: implication for cardiovascular diseases. In: Modern Concepts of Insulin‐Like Growth Factors, edited by E. M. Spencer. New York: Elsevier Science, 1991, p. 487–503.
 50. Flyvbjerg, A. The role of insulin‐like growth factor I in initial renal hypertrophy in experimental diabetes. In: Growth Hormone and Insulin‐like Growth Factor I in Human and Experimental Diabetes, edited by A. Flyvbjerg, H. Ørskov, and K.G.M.M. Alberti. Chichester: John Wiley & Sons, 1993, p. 271–306.
 51. Foster, J. A., C. B. Rich, and J. Florini. Insulin‐like growth factor I, somatomedin C, induces the synthesis of tropoelastin in aortic tissue. Collagen Rel. Res. 7: 161–169, 1987.
 52. Foster, J. A., C. B. Rich, M. L. Miller, M. R. Benedict, R. A. Richman, and J. R. Florini. Effect of age and IGF I administration on elastin gene expression in rat aorta. J. Gerontol. 45: B113–B118, 1990.
 53. Froesch, E. R., H. Burgi, E. B. Ramseier, P. Bally, and A. Labhart. Antibody‐suppressible and nonsuppressible insulin‐like activities in human serum and their physiological significance. An Insulin assay with adipose tissue of increased precision and specificity. J. Clin. Invest. 42: 1816–1834, 1963.
 54. Froesch, E. R., W. A. Müller, H. Bürgi, M. Waldvogel, and A. Labhart. Non‐suppressible insulin‐like activity of human serum. II. Biological properties of plasma extracts with non‐suppressible insulin‐like activity. Biochim. Biophys. Acta 121: 360–374, 1966.
 55. Froesch, E. R., J. Zapf, T. K. Audhya, E. Ben‐Porath, B. J. Segen, and K. D. Gibson. Nonsuppressible insulin‐like activity and thyroid hormones: major pituitary‐dependent sulfation factors for chick embryo cartilage. Proc. Natl. Acad. Sci. USA 73: 2904–2908, 1976.
 56. Furlanetto, R. W., L. E. Underwood, J. J. Van Wyk, and A. J. D'Ercole. Estimation of somatomedin‐C levels in normals and patients with pituitary disease by radioimmunoassay. J. Clin. Invest. 60: 648–657, 1977.
 57. Geffner, M. E., D. W. Golde, B. M. Lippe, A. K. Kaplan, N. Bersch, and C. H. Li. Tissues of the Laron dwarf are sensitive to insulin‐like growth factor I but not to growth hormone. J. Clin. Endocrinol. Metab. 64: 1042–1046, 1987.
 58. Glasscock, G. F., K.K.L. Gin, J. D. Kim, R. L. Hintz, and R. G. Rosenfeld. Ontogeny of pituitary regulation of growth in the developing rat: comparison of effects of hypophysectomy and hormone replacement on somatic and organ growth, serum insulin‐like growth factor‐I (IGF‐I) and IGF‐II levels, and IGF‐binding protein levels in the neonatal and juvenile rat. Endocrinology 128: 1036–1047, 1991.
 59. Glasscock, G. F., A. N. Hein, J. A. Miller, R. L. Hintz, and R. G. Rosenfeld. Effects of continuous infusion of insulin‐like growth factor I and II, alone and in combination with thyroxine or growth hormone, on the neonatal hypophysectomized rat. Endocrinology 130: 203–210, 1992.
 60. Glasscock, G. F., C. S. Nicoll. Hormonal control of growth in the infant rat. Endocrinology 109: 176–184, 1981.
 61. Godowski, P. J., D. W. Leung, L. R. Meacham, J. P. Galgani, R. Hellmiss, R. Keret, P. S. Rotwein, J. S. Parks, Z. Laron, and W. I. Wood. Characterization of the human growth hormone receptor gene and demonstration of a partial gene deletion in two patients with Laron‐type dwarfism. Proc. Natl. Acad. Sci. USA 86: 8083–8087, 1989.
 62. Gosteli, M. A., K. H. Winterhalter, C. Schmid, E. R. Froesch, and J. Zapf. Expression and regulation of insulin‐like growth factor‐I (IGF I) and IGF‐binding protein messenger ribonucleic acid levels in tissues of hypophysectomized rats infused with IGF I and growth hormone. Endocrinology 135: 2558–2567, 1994.
 63. Guevara‐Aguirre, J., A. L. Rosenbloom, P. J. Fielder, F. B. Diamond Jr., and R. G. Rosenfeld. Growth hormone receptor deficiency in Ecuador: clinical and biochemical phenotype in two populations. J. Clin. Endocrinol. Metab. 76: 417–423, 1993.
 64. Guevara‐Aguirre, J., O. Vasconez, V. Martinez, A. L. Martinez, A. L. Rosenbloom, F. B. Diamond Jr., S. E. Gargosky, L. Nonoshita, and R. G. Rosenfeld. A randomized, double blind, placebo‐controlled trial on safety and efficacy of recombinant human insulin‐like growth factor‐I in children with growth hormone receptor deficiency. J. Clin. Endocrinol. Metab. 80: 1393–1398, 1995.
 65. Guler, H.‐P., K. Binz, E. Eigenmann, S. Jäggi, D. Zimmermann, J. Zapf, and E. R. Froesch. Small stature and insulinlike growth factors: prolonged treatment of mini‐poodles with recombinant human insulin‐like growth factor I. Acta Endocrinol. 121: 456–464, 1989.
 66. Guler, H.‐P., J. Zapf, E. Scheiwiller, and E. R. Froesch. Recombinant human insulin‐like growth factor I stimulates growth and has distinct effects on organ size in hypophysectomized rats. Proc. Natl. Acad. Sci. USA 85: 4889–4893, 1988.
 67. Guler, H.‐P., J. Zapf, Chr. Schmid, and E. R. Froesch. Insulinlike growth factors I and II in healthy man. Estimations of half‐lives and production rates. Acta Endocrinol. 121: 753–758, 1989.
 68. Hall, K., J. Brandt, G. Enberg, and L. Fryklund. Immunoreactive somatomedin A in human serum. J. Clin. Endocrinol. Metab. 48: 271–278, 1979.
 69. Hall, K., K. Takano, L. Fryklund, and H. Sievertsson. Somatomedins. Adv. Metab. Disord. 8: 19–46, 1975.
 70. Han, V.K.M., J. M. Lauder, and A. J. D'Ercole. Characterization of somatomedin/insulin‐like growth factor receptors and correlation with biologic activity in cultured neonatal rat astroglial cell. J. Neurosci. 7: 501–511, 1987.
 71. Han, V.K.M., P. K. Lund, D. C. Lee, and A.J. D'Ercole. Expression of somatomedin/insulin‐like growth factor messenger ribonucleic acids in the human fetus: identification, characterization, and tissue distribution. J. Clin. Endocrinol. Metab. 66: 422–429, 1988.
 72. Hattner, R., B. N. Epker, and H. M. Frost. Suggested sequential mode of control of changes in cell behavior in adult bone remodeling. Nature 206: 489–490, 1965.
 73. Hintz, R. L., F. Liu, and G. Seegan. Characterization of an insulin‐like growth factor I/somatomedin C radioimmunoassay specific for the C‐peptide region. J. Clin. Endocrinol. Metab. 55: 927–930, 1982.
 74. Hizuka, N., K. Takano, K. Shizume, K. Asakawa, M. Miyakawa, I. Tanaka, and R. Horikawa. Insulin‐like growth factor I stimulates growth in normal growing rats. Eur. J. Pharmacol. 125: 143–146, 1986.
 75. Hock, J. M., M. Centrella, and E. Canalis. Insulin‐like growth factor I has independent effects on bone matrix formation and cell replication. Endocrinology 122: 254–260, 1988.
 76. Holder, A. T., E. M. Spencer, and M. A. Preece. Effect of bovine growth hormone and a partially pure preparation of somatomedin on various growth parameters in hypopituitary dwarf mice. J. Endocrinol. 89: 275–282, 1981.
 77. Holder, A. T., M. Wallis. Actions of growth hormone, prolactin and thyroxine on serum somatomedin‐like activity and growth in hypopituitary dwarf mice. J. Endocrinol. 74: 223–229, 1977.
 78. Hunziker, E. B., R. Schenk, and L. M. Cruz Orive. Quantitation of chondrocyte performance in growth‐plate cartilage during longitudinal bone growth. J. Bone Joint Surg. Am. 69: 162–173, 1987.
 79. Hunziker, E. B., and R. K. Schenk. Physiological mechanisms adopted by chondrocytes in regulating longitudinal bone growth in rats. J. Physiol. (Lond.) 414: 55–71, 1989.
 80. Hunziker, E. B., J. Wagner, and J. Zapf. Differential effects of insulin‐like growth factor I and growth hormone on developmental stages of rat growth plate chondrocytes in vivo. J. Clin. Invest. 93: 1078–1086, 1994.
 81. Hutchinson, L. A., J. K. Findley, and A. C. Herington. Growth hormone and insulin‐like growth factor I accelerate PMSG‐induced differentiation of granulosa cells. Mol. Cell. Endocrinol. 55: 61–69, 1988.
 82. Hynes, M. A., J. J. Van Wyk, P. J. Brooks, A. J. D'Ercole, M. Jansen, and P. K. Lund. Growth hormone dependence of somatomedin‐C/insulin‐like growth factor‐I and insulin‐like growth factor‐II messenger ribonucleic acids. Mol. Endocrinol. 1: 233–242, 1987.
 83. Ibbotson, K. J., C. M. Orcutt, S. M. D'Souza, C. L. Paddock, J. A. Arthur, M. L. Jankowsky, and R. W. Boyce. Contrasting effects of parathyroid hormone and insulin‐like growth factor I in an aged ovariectomized rat model of postmenopausal osteoporosis. J. Bone Miner. Res. 7: 425–432, 1992.
 84. Isaksson, O.G.P., J.‐O. Jansson, and I.A.M. Gause. Growth hormone stimulates longitudinal bone growth directly. Science 216: 1237–1239, 1982.
 85. Isgaard, J., C. Möller, O.G.P. Isaksson, A. Nilsson, L. S. Mathews, and G. Norstedt. Regulation of insulin‐like growth factor messenger ribonucleic acid in rat growth plate by growth hormone. Endocrinology 122: 1515–1520, 1988.
 86. Kalu, D. N., C. C. Liu, E. Salerno, M. Salih, R. Echon, M. Ray, and B. W. Hollis. Insulin‐like growth factor‐I partially prevents ovariectomy‐induced bone loss: a comparative study with human parathyroid hormone (1–38). J. Bone Miner. Res. 6: 221, 1991 (Abstract).
 87. Kasson, B. G., and A.J.W. Hsueh. Insulin‐like growth factor I augments gonadotropin‐stimulated androgen biosynthesis by cultured rat testicular cells. Mol. Cell. Endocrinol. 52: 27–34, 1987.
 88. Knauer, D. J., and G. L. Smith. Inhibition of biological activity of multiplication‐stimulating activity by binding to its carrier protein. Proc. Natl. Acad. Sci. USA 77: 7252–7256, 1980.
 89. Kostyo, J. L., and O. Isaksson. Growth hormone and the regulation of somatic growth. In: International Review of Physiology, Reproductive Physiology II, edited by R. O. Greep, Baltimore: University Park Press, 13: 225–255, 1977.
 90. Kurtz, A., W. Härtl, W. Jelkmann, J. Zapf, and C. Bauer. Activity in fetal bovine serum that stimulates erythroid colony formation in fetal mouse livers is insulin‐like growth factor I. J. Clin. Invest. 76: 1643–1648, 1985.
 91. Kurtz, A., W. Jelkmann, and C. Bauer. A new candidate for the regulation of erythropoiesis: insulin‐like growth factor I. FEES Lett. 149: 105–108, 1982.
 92. Kurtz, A., J. Zapf, K.‐U. Eckardt, G. Clemons, E. R. Froesch, and C. Bauer. Insulin‐like growth factor I stimulates erythropoiesis in hypophysectomized rats. Proc. Natl. Acad. Sci. USA 85: 7825–7829, 1988.
 93. Laron, Z., S. Anin, Y. Klipper‐Aurbach, and B. Klinger. Effects of insulin‐like growth factor I on linear growth, head circumference, and body fat in patients with Laron‐type dwarfism. Lancet 339: 1258–1961, 1992.
 94. Laron, Z., B. Klinger, W. Blum, A. Silbergeld, and M. Ranke. IGF binding protein 3 in patients with Laron type dwarfism: effect of exogenous rIGF‐I. Clin. Endocrinol. 36: 301–304, 1992.
 95. Laron, Z., P. Lilos, and B. Klinger. Growth curves for Laron syndrome. Arch. Dis. Child. 68: 768–770, 1993.
 96. Laron, Z., A. Pertzelan, and S. Mannheimer. Genetic pituitary dwarfism with high serum concentration of growth hormone—a new inborn error of metabolism? Isr. J. Med. Sci. 2: 152–155, 1966.
 97. Lassarre, C., S. Hardouin, F. Daffos, F. Forestier, F. Frankenne, and M. Binoux. Serum insulin‐like growth factors and insulinlike growth factor binding proteins in the human fetus. Relationships with growth in normal subjects and in subjects with intrauterine growth retardation. Pediatr. Res. 29: 219–225, 1991.
 98. Lee, P.D.K., C. A. Conover, and D. R. Powell. Regulation and function of insulin‐like growth factor binding protein‐1. Proc. Soc. Exp. Biol. Med. 204: 4–29, 1993.
 99. Lindahl, A., J. Isgaard, L. Carlsson, and O.G.P. Isaksson. Differential effects of growth hormone and insulin‐like growth factor I on colony formation of epiphyseal chondrocytes in suspension culture in rats of different ages. Endocrinology 121: 1061–1069, 1987.
 100. Lindahl, A., J. Isgaard, and O.G.P. Isaksson. Growth hormone in vivo potentiates the stimulatory effect of insulin‐like growth factor‐1 in vitro on colony formation of epiphyseal chondrocytes isolated from hypophysectomized rats. Endocrinology 121: 1070–1075, 1987.
 101. Lindahl, A., J. Isgaard, A. Nilsson, and O.G.P. Isaksson. Growth hormone potentiates colony formation of epiphyseal chondrocytes in suspension culture. Endocrinology 118: 1843–1848, 1986.
 102. Lindahl, A., A. Nilsson, O.G.P. Isaksson. Effects of growth hormone and insulin‐like growth factor I on colony formation of rabbit epiphyseal chondrocytes at different stages of maturation. J. Endocrinol. 115: 263–271, 1987.
 103. Liu, J.‐P., J. Baker, A. S. Perkins, E. J. Robertson, and A. Efstratiadis. Mice carrying null mutations of the genes encoding insulin‐like growth factor I (IGF‐I) and type 1 IGF receptor (IGF1r). Cell 75: 59–72, 1993.
 104. Lund, P. K., B. M. Moats‐Staats, M. A. Hynes, J. G. Simmons, M. Jansen, A. J. D'Ercole, and J. J. Van Wyk. Somatomedin‐C/insulin‐like growth factor‐I and insulin‐like growth factor‐II mRNAs in rat fetal and adult tissues. J. Biol. Chem. 261: 14539–14544, 1986.
 105. Machwate, M., E. Zerath, X. Holy, P. Pastoureau, and P. J. Marie. Insulin‐like growth factor‐I increases trabecular bone formation and osteoblastic cell proliferation in unloaded rats. Endocrinology 134: 1031–1038, 1994.
 106. Maes, M., J. M. Ketelslegers, and L. E. Underwood. Low plasma somatomedin‐C in streptozotocin induced diabetes mellitus: correlation with changes in somatogenic and lactogenic liver binding sites. Diabetes 32: 1060–1069, 1983.
 107. Mandel, S., E. Moreland, V. Nichols, C. Hanna, and S. Lafranchi. Changes in insulin‐like growth factor‐I (IGF‐I), IGF‐binding protein‐3, growth hormone (GH)‐binding protein, erythrocyte IGF‐I receptors, and growth rate during GH treatment. J. Clin. Endocrinol. Metab. 80: 190–194, 1995.
 108. Martha, P. M., A. D. Rogol, J. D. Veldhuis, J. R. Kerrigan, D. W. Goodman, and R. M. Blizzard. Alterations in the pulsatile properties of circulating growth hormone concentrations during puberty in boys. J. Clin. Endocrinol. Metab. 69: 563–570, 1989.
 109. Maruo, T., M. Hayashi, H. Matsuo, Y. Ueda, H. Morikawa, and M. Mochizuki. Comparison of the facilitative roles of insulin and insulin‐like growth factor I in the functional differentiation of granulosa cells: in vitro studies with the porcine model. Acta Endocrinol. 117: 230–240, 1988.
 110. Mathews, L. S., R. E. Hammer, R. R. Behringer, A. J. D'Ercole, G. I. Bell, R. L. Brinster, and R. D. Palmiter. Growth enhancement of transgenic mice expressing human insulin‐like growth factor I. Endocrinology 123: 2827–2833, 1988.
 111. Mathews, L. S., R. E. Hammer, R. L. Brinster, and R. D. Palmiter. Expression of insulin‐like growth factor I in transgenic mice with elevated levels of growth hormone is correlated with growth. Endocrinology 123: 433–437, 1988.
 112. Mathews, L. S., G. Norstedt, and R. D. Palmiter. Regulation of insulin‐like growth factor I gene expression by growth hormone. Proc. Natl. Acad. Sci. USA 83: 9343–9347, 1986.
 113. McCarthy, T. L., M. Centrella, and E. Canalis. Regulatory effects of insulin‐like growth factors I and II on bone collagen synthesis in rat calvaria cultures. Endocrinology 124: 301–309, 1989.
 114. McMorris, F. A., T. M. Smith, S. Dealvo, and R. W. Furlanetto. IGF‐I/somatomedin‐C: a potent inducer of oligodendrocyte sdevelopment. Proc. Natl. Acad. Sci. USA 83: 822–826, 1986.
 115. Merchav, S., M. Lake, and A. Skottner. Comparative studies of the granulopoietic enhancing effects of biosynthetic human insulin‐like growth factors I and II. J. Cell. Physiol. 157: 178–183, 1993.
 116. Merchav, S., I. Tatarsky, and Z. Hochberg. Enhancement of erythropoiesis in vitro by human growth hormone is mediated by insulin‐like growth factor I. Br. J. Haematol. 70: 267–271, 1988.
 117. Merchav, S., I. Tatarsky, and Z. Hochberg. Enhancement of human granulopoiesis in vitro by biosynthetic insulin‐like growth factor I/somatomedin C and human growth hormone. J. Clin. Invest. 81: 791–797, 1988.
 118. Merimee, T. J., J. Zapf, and E. R. Froesch. Insulin‐like growth factors in the fed and fasted states. J. Clin. Endocrinol. Metab. 55: 999–1002, 1982.
 119. Merimee, T. J., J. Zapf, B. Hewlett, and L. L. Cavalli‐Sforza. Insulin‐like growth factors in pygmies. The role of puberty in determining final stature. N. Engl. J. Med. 316: 906–911, 1987.
 120. Meuli, C., J. Zapf, and E. R. Froesch. NSILA‐carrier protein abolishes the action of nonsuppressible insulin‐like activity (NSILA‐S) on perfused rat heart. Diabetologia 14: 255–259, 1978.
 121. Meyer, O. O., E. W. Thewlis, and H. P. Rusch. The hypophysis and hemopoiesis. Endocrinology 28: 932–944, 1940.
 122. Morell, B., and E. R. Froesch. Fibroblasts as an experimental tool in metabolic and hormone studies. II. Effects of insulin and nonsuppressible insulin‐like activity (NSILA‐S) on fibroblasts in culture. Europ. J. Clin. Invest. 3: 119–123, 1973.
 123. Müller, K., and R. Cortesi. Insulin‐like growth factor‐I increases trabecular bone mass in the ovariectomized rat. J. Bone Miner. Res. 6: 221, 1991 (abstract).
 124. Müller, K., R. Cortesi, D. Modrowski, and P. J. Marie. Stimulation of trabecular bone formation by insulin‐like growth factor I in adult ovariectomized rats. Am. J. Physiol. 267 (Endocrinol. Metab. 30): E1–E6, 1994.
 125. Murphy, L. J., G. I. Bell, M. L. Duckworth, and H. G. Friesen. Identification, characterization, and regulation of a rat complementary deoxyribonucleic acid which encodes insulin‐like growth factor‐I. Endocrinology 121: 684–691, 1987.
 126. Muta, K., S. B. Krantz, M. C. Bondurant, and A. Wickrema. Distinct roles of erythropoietin, insulin‐like growth factor I, and stem cell factor in the development of erythroid progenitor cells. J. Clin. Invest. 94: 34–43, 1994.
 127. Nilsson, A., B. Carlsson, J. Isgaard, O.G.P. Isaksson, and L. Rymo. Regulation by GH of insulin‐like growth factor‐I mRNA expression in rat epiphyseal growth plate as studied with in‐situ hybridization. J. Endocrinol. 125: 67–74, 1990.
 128. Nilsson, A., J. Isgaard, A. Lindahl, A. Dahlström, A. Skottner, and O.G.P. Isaksson. Regulation by growth hormone of number of chondrocytes containing IGF I in rat growth plate. Science 233: 571–574, 1986.
 129. Ohlsson, C., O. Isaksson, and A. Lindahl. Clonal analysis of rat tibia growth plate chondrocytes in suspension culture—differential effects of growth hormone and insulin‐like growth factor I. Growth Regul. 4: 1–7, 1994.
 130. Orlowski, C. C., and S. D. Chernausek. Discordance of serum and tissue somatomedin levels in growth hormone‐stimulated growth in the rat. Endocrinology 123: 44–49, 1988.
 131. O'Sullivan, U., P. D. Gluckman, B. H. Breier, S. Woodall, R. A. Siddiqui, and S. N. McCutcheon. Insulin‐like growth factor‐I (IGF‐I) in mice reduces weight loss during starvation. Endocrinology 125: 2793–2794, 1989.
 132. Palmiter, R. L. Brinster, R. E. Hammer, M. E. Trumbauer, M. G. Rosenfeld, N. C. Birnberg, and R. M. Evans. Dramatic growth of mice that develop from eggs microinjected with metallothionein‐growth hormone fusion genes. Nature 300: 611–615, 1982.
 133. Palmiter, G. Norstedt, R. E. Gelinas, R. E. Hammer, and R. L. Brinster. Metallothionein‐human GH fusion genes stimulate growth or mice. Science 222: 809–814, 1983.
 134. Pardee, A. B. G1 events and regulation of cell proliferation. Science 246: 603–608, 1989.
 135. Pfeilschifter, J., M. Oechsner, A. Naumann, R. G. K. Gronwald, H. W. Minne, and R. Ziegler. Stimulation of bone matrix apposition in vitro by local growth factors: a comparison between insulin‐like growth factor I, platelet‐derived growth factor, and transforming growth factor b. Endocrinology 127: 69–75, 1990.
 136. Philipps, A. F., B. Persson, K. Hall, M. Lake, A. Skottner, R. Sanengen, and V. R. Sara. The effects of biosynthetic insulinlike growth factor‐1 supplementation on somatic growth, maturation, and erythropoiesis on the neonatal rat. Pediatr. Res. 23: 298–305, 1988.
 137. Pierson, R. W. Jr., and H. M. Temin. The partial purification from calf serum of a fraction with multiplication‐stimulating activity for chicken fibroblasts in cell culture and with nonsuppressible insulin‐like activity. J. Cell. Physiol. 79: 319–330, 1972.
 138. Prader, A. Physiology of human growth. In: Advances in Paediatric Endocrinology, edited by C. Pintor, E. E. Müller, S. Loche and M. I. New. Milano: Pythagora Press and Berlin: Springer‐Verlag, 1992, p. 1–11.
 139. Quaife, C. J., L. S. Mathews, C. A. Pinkert, R. E. Hammer, R. L. Brinster, and R. D. Palmiter. Histopathology associated with elevated levels of growth hormone and insulin‐like growth factor I in transgenic mice. Endocrinology 124: 40–48, 1989.
 140. Ratajczak, M. Z., W. I. Kuczynski, K. Onodera, J. Moore, J. Ratajczak, D. A. Kregenow, K. DeRiel, and A. M. Gewirtz. A reappraisal of the role of insulin‐like growth factor I in the regulation of human hematopoiesis. J. Clin. Invest. 94: 320–327, 1994.
 141. Rechler, M. M. Insulinlike growth factor binding proteins. Vitam. Horm. 47: 1–114, 1993.
 142. Rechler, M. M., and A. L. Brown. Insulinlike growth factor binding proteins: Gene structure and expression. Growth Regul. 2: 55–68, 1992.
 143. Rieu, M., F. Girard, H. Bricaire, and M. Binoux. The importance of insulin‐like growth factor (somatomedin) measurements in the diagnosis and surveillance of acromegaly. J. Clin. Endocrinol. Metab. 55: 147–153, 1982.
 144. Rinderknecht, E., and R. E. Humbel. Amino‐terminal sequences of two polypeptides from human serum with nonsuppressible insulin‐like and cell‐growth‐promoting activities: evidence for structural homology with insulin B chain. Proc. Natl. Acad. Sci. USA 73: 4379–4381, 1976.
 145. Rinderknecht, E., and R. E. Humbel. Polypeptides with nonsuppressible insulin‐like and cell‐growth promoting activities in human serum: isolation, chemical characterization, and some biological properties of forms I and II. Proc. Natl. Acad. Sci. USA 73: 2365–2369, 1976.
 146. Rinderknecht, E., and R. E. Humbel. Primary structure of human insulin‐like growth factor II. FEBS Lett. 89: 283–286, 1978.
 147. Rinderknecht, E., and R. E. Humbel. The amino acid sequence of human insulin‐like growth factor I and its structural homology with proinsulin. J. Biol. Chem. 253: 2769–2776, 1978.
 148. Roberts, C. T. Jr., A. L. Brown, D. E. Graham, S. Seelig, S. Berry, K. H. Gabbay, and M. M. Rechler. Growth hormone regulates the abundance of insulin‐like growth factor I RNA in adult rat liver. J. Biol. Chem. 261: 10025–10028, 1986.
 149. Roberts, C. T. Jr., S. R. Lasky, W. L. Lowe, Jr., W. T. Seaman, D. LeRoith. Molecular cloning of rat insulin‐like growth factor I complementary deoxyribonucleic acids: differential messenger ribonucleic acid processing and regulation by growth hormone in extrahepatic tissues. Mol. Endocrinol. 1: 243–248, 1987.
 150. Roelfsema, F., M. Frolich, and H. Van Dulken. Somatomedin C levels in treated and untreated patients with acromegaly. Clin. Endocrinol. 26: 1377–1440, 1987.
 151. Rosenbloom, A., J. Guevara‐Aguirre, R. Rosenfeld, and P. Fielder. The little women of Loja: growth hormone receptor deficiency in an inbred population of southern Ecuador. N. Engl. J. Med. 323: 1367–1374, 1990.
 152. Rosenfeld, R. G., S. F. Kemp, and R. L. Hintz. Constancy of somatomedin response to growth hormone treatment of hypopituitary dwarfism, and lack of correlation with growth rate J. Clin. Endcrinol. Metab. 53: 611–617, 1981.
 153. Rosenfeld, R. G., G. Lamson, H. Pham, Y. Oh, C. Conover, D. D. De Leon, S. M. Donovan, I. Ocrant, and L. Giudice. Insulinlike growth factor‐binding proteins. Recent Prog. Horm. Res. 46: 99–163, 1990.
 154. Rosenfeld, R. G., A. L. Rosenbloom, and J. Guevara‐Aguirre. Growth hormone (GH) insensitivity due to primary GH receptor deficiency. Endocr. Rev. 15: 369–390, 1994.
 155. Rudman, D., S. D. Moffitt, P. M. Fernhoff, W. J. McKenzie, J. M. Kenny, and R. P. Bain. The relation between growth velocity and serum somatomedin C concentration. J. Clin. Endocrinol. Metab. 52: 622–627, 1981.
 156. Russell, S. M., and E. M. Spencer. Local injections of human or rat growth hormone or of purified human somatomedin‐C stimulate unilateral tibial epiphyseal growth in hypophysectomized rats. Endocrinology 116: 2563–2567, 1985.
 157. Rutishauser, J., Ch. Schmid, Ch. Hauri, E. R. Froesch, and J. Zapf. Growth hormone, but not insulin‐like growth factor I, induces a serum protease activity for insulin‐like growth factor binding protein‐3 in hypophysectomized rats in vivo. FEBS Lett. 334: 23–26, 1993.
 158. Salmon, W. D. Jr., and W. H. Daughaday. Sulfation factor, a serum component mediating the action of growth hormone in stimulating incorporation of sulfate into cartilage. J. Clin. Invest. 35: 733, 1956.
 159. Salmon, W. D. Jr., and W. H. Daughaday. A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J. Lab. Clin. Med. 49: 825–836, 1957.
 160. Savage, M. O., W. F. Blum, M. B. Ranke, M. C. Postel‐Vinay, A. M. Cotterill, K. Hall, P. G. Chatelain, M. A. Preece, R. G. Rosenfeld, K. Danielson, and P. Wilton. Clinical features and endocrine status in patients with growth hormone insensitivity (Laron syndrome). J. Clin. Endocrinol. Metab. 77: 1465–1471, 1993.
 161. Sawada, K., S. B. Krantz, E. N. Dessypris, S. T. Koury, and S. T. Sawyer. Human colony‐forming units‐erythroid do not require accessory cells, but do require direct interaction with insulin‐like growth factor I and/or insulin for erythroid development. J. Clin. Invest. 83: 1701–1709, 1989.
 162. Schatz, H., H. Stracke, and J. Zapf. Diagnostik bei Akromegalie. Dtsch. med. Wschr. 108: 1391–1395, 1983.
 163. Scheiwiller, E., H.‐P. Guler, J. Merryweather, C. Scandella, W. Maerki, J. Zapf, and E. R. Froesch. Growth restoration of insulin‐deficient diabetic rats by recombinant human insulinlike growth factor I. Nature 323: 169–171, 1986.
 164. Schlechter, N. L., S. M. Russell, E. M. Spencer, and C. S. Nicoll. Evidence suggesting that the direct growth‐promoting effect of growth hormone on cartilage in vivo is mediated by local production of somatomedin. Proc. Natl. Acad. Sci. USA 83: 7932–7934, 1986.
 165. Schlumpf, U., R. Heimann, J. Zapf, and E. R. Froesch. Non‐suppressible insulin‐like activity and sulphation activity in serum extracts of normal subjects, acromegalics and pituitary dwarfs. Acta Endocrinol. 81: 28–42, 1976.
 166. Schmid, C., H. P. Guler, D. Rowe, and E. R. Froesch. Insulinlike growth factor I regulates type I procollagen mRNA steady state levels in bone of rats. Endocrinology 125: 1575–1580, 1989.
 167. Schmid, C., I. Schläpfer, M. A. Gosteli‐Peter, E. R. Froesch, and J. Zapf. Expression, effects and fate of IGFBP‐5 are different in normal and malignant osteoblastic cells. Progr. Growth Factor Res. 6: 167–173, 1996.
 168. Schmid, Ch., T. Steiner, and E. R. Froesch. Preferential enhancement of myoblast differentiation by insulin‐like growth factors (IGF I and IGF II) in primary cultures of chicken embryonic cells. FEBS Lett. 161: 117–121, 1983.
 169. Schmid, C., T. Steiner, and E. R. Froesch. Insulin‐like growth factor I supports differentiation of cultured osteoblast‐like cells. FEBS Lett. 173: 48–52, 1984.
 170. Schmid, C., T. Steiner, and E. R. Froesch. Insulin‐like growth factors stimulate synthesis of nucleic acids and glycogen in cultured calvaria cells. Calcif. Tissue Int. 35: 578–585, 1983.
 171. Schoenle, E., J. Zapf, C. Hauri, T. Steiner, and E. R. Froesch. Comparison of in vivo effects of insulin‐like growth factors I and II and of growth hormone in hypophysectomized rats. Acta Endocrinol. 108: 167–174, 1985.
 172. Schoenle, E., J. Zapf, R. E. Humbel, and E. R. Froesch. Insulinlike growth factor I stimulates growth in hypophysectomized rats. Nature 296: 252–253, 1982.
 173. Shea, B. T., R. E. Hammer, and R. L. Brinster. Growth allometry of the organs in giant transgenic mice. Endocrinology 121: 1924–1930, 1987.
 174. Shimasaki, S., and N. Ling. Identification and molecular characterization of insulin‐like growth factor binding proteins (IGFBP‐1,‐2,‐3,‐4,‐5 and‐6). Prog. Growth Factor Res. 3: 243–266, 1991.
 175. Shinar, D. M., N. Endo, D. Halperin, G. A. Rodan, and M. Weinreb. Differential expression of insulin‐like growth factor‐I (IGF‐I) and IGF‐II messenger ribonucleic acid in growing rat bone. Endocrinology 132: 1158–1167, 1993.
 176. Skottner, A., R. G. Clark, I.C.A.F. Robinson, and L. Fryklund. Recombinant human insulin‐like growth factor: testing the somatomedin hypothesis in hypophysectomized rats. J. Endocrinol. 112: 123–132, 1987.
 177. Smith, P. J., L. S. Wise, R. Berkowitz, C. Wan, and C. S. Rubin. Insulin‐like growth factor‐I is an essential regulator of the differentiation of 3T3–L1 adipocytes. J. Biol. Chem. 263: 9402–9408, 1988.
 178. Spencer, E. M., C. C. Liu, E.C.C. Si, and G. A. Howard. In vivo actions of insulin‐like growth factor‐I (IGF‐I) on bone formation and resorption in rats. Bone 12: 12–26, 1991.
 179. Stiles, C. D., G. T. Capone, C. D. Scher, A. H. Antoniades, J. J. Van Wyk, and W. J. Pledger. Dual control of cell growth by somatomedins and platelet‐derived growth factor. Proc. Natl. Acad. Sci. USA 76: 1279–1283, 1979.
 180. Surmacz, P. Nugent, Z. Pietrzkowski, and R. Baserga. The role of the IGF I receptor in the regulation of cdc2 mRNA levels in fibroblasts. Exp. Cell Res. 199: 275–278, 1992.
 181. Tannenbaum, G. S. Growth hormone secretory dynamics in streptozotocin diabetes: evidence of a role for endogenous circulating somatostatin. Endocrinology 108: 76–82, 1981.
 182. Thissen, J.‐P., L. E. Underwood, D. Maker, M. Maes, D. R. Clemmons, and J. M. Ketelslegers. Failure of insulin‐like growth factor‐I (IGF‐I) infusion to promote growth in protein‐restricted rats despite normalization of serum IGF‐I concentrations. Endocrinology 128: 885–890, 1991.
 183. Tobias, J. H., J.W.M. Chow, and T. J. Chambers. Opposite effects of insulin‐like growth factor‐I on the formation of trabecular and cortical bone in adult female rats. Endocrinology 131: 2387–2392, 1992.
 184. Tomas, F. M., S. E. Knowles, C. S. Chandler, G. L. Francis, P. C. Owens, and F. J. Ballard. Anabolic effects of insulin‐like growth factor‐I (IGF‐I) and an IGF‐I variant in normal female rats. J. Endocrinol. 137: 413–421, 1993.
 185. Tomas, F. M., S. E. Knowles, P. C. Owens, C. S. Chandler, G. L. Francis, and F. J. Ballard. Insulin‐like growth factor‐I and more potent variants restore growth of diabetic rats without inducing all characteristic insulin effects. Biochem. J. 291: 781–786, 1993.
 186. Tomas, F. M., S. E. Knowles, P. C. Owens, L. C. Read, C. S. Chandler, S. E. Gargosky, and F. J. Ballard. Increased weight gain, nitrogen retention and muscle protein synthesis following treatment of diabetic rats with insulin‐like growth factor (IGF)‐I and des(1–3)IGF‐I. Biochem. J. 276: 547–554, 1991.
 187. Trippel, S. B., J. J. Van Wyk, M. B. Foster, and M. E. Svoboda. Characterization of a specific somatomedin‐C receptor on isolated bovine growth plate chondrocytes. Endocrinology 112: 2128–2136, 1983.
 188. Underwood, L. E., R. L. Hintz, S. J. Voina, and J. J. Van Wyk. Human somatomedin, the growth hormone‐dependent sulfation factor, is anti‐lipolytic. J. Clin. Endocrinol. Metab. 35: 194–198, 1972.
 189. Van Buul‐Offers, S. Hormonal and other inherited growth disturbances in mice with special reference to the Snell dwarf mouse. Acta Endocrinol. 103: 1–47, 1983.
 190. Van Buul‐Offers, S., I. Ueda, and J. L. Van den Brande. Biosynthetic somatomedin C (SM‐C/IGF‐I) increases the length and weight of Snell dwarf mice. Pediatr. Res. 20: 827–827, 1986.
 191. Van Buul‐Offers, S., and J. L. van den Brande. Effect of growth hormone and peptide fractions containing somatomedin activity on growth and cartilage metabolism of Snell dwarf mice. Acta Endocrinol. 92: 242–257, 1979.
 192. Van Wyk, J. J., L. E. Underwood, J. B. Baseman, R. L. Hintz, D. R. Clemmons, and R. N. Marshall. Explorations of the insulin‐like and growth‐promoting properties of somatomedin by membrane receptor assays. Adv. Metab. Disord. 8: 128–150, 1975.
 193. Vetter, U., J. Zapf, W. Heit, G. Helbing, E. Heinze, E. R. Froesch, and W. M. Teller. Human fetal and adult chondrocytes. J. Clin. Invest. 77: 1903–1908, 1986.
 194. Vetter, U., J. Zapf, I. Henrichs, C. Gammert, E. Heinze, and W. Pirsig. Human nasal septal cartilage: analysis of intracellular enzyme activities, glycogen content, cell density and clonal proliferation of septal chondrocytes of healthy adults and acromegalic patients. Connect. Tissue Res. 18: 243–254, 1989.
 195. Walker, D. G., M. E. Simpson, C. W. Asling, and H. M. Evans. Growth and differentiation in the rat following hypophysectomy at 6 days of age. Anat. Rec. 106: 539–554, 1950.
 196. Walker, J., J. J. Van Wyk, and L. E. Underwood. Stimulation of statural growth by recombinant insulin‐like growth factor‐I in a child with growth hormone insensitivity syndrome (Laron type). J. Pediatr. 121: 641–646, 1992.
 197. Wang, E., J. Wang, E. Chin, J. Zhou, and C. A. Bondy. Cellular patterns of insulin‐like growth factor system gene expression in murine chondrogenesis and osteogenesis. Endocrinology 136: 2741–2751, 1995.
 198. Wass, J. A. H., D. R. Clemmons, L. E. Underwood, I. Barrow, G. M. Besser, and J. J. Van Wyk. Changes in circulating somatomedin C levels in bromocriptine treated acromegaly. Clin. Endocrinol. 17: 369–377, 1987.
 199. Werther, G. A., K. M. Haynes, R. Barnard, and M. J. Waters. Visual demonstration of growth hormone receptors on human growth plate chondrocytes. J. Clin. Endcrinol. Metab. 70: 1725–1731, 1990.
 200. Wilton, P. (on behalf of the Kabi Pharmacia Study Group). Treatment with recombinant insulin‐like growth factor‐I of children with growth hormone receptor deficiency (Laron syndrome). Acta Paediatr. (Suppl.) 282: 137–141, 1992.
 201. Zachmann, M. Wechselbeziehungen zwischen Wachstumshormon und Testosteron. Acta Paediatr. 4: 125–140, 1980.
 202. Zapf, J. Physiological role of the insulin‐like growth factor binding proteins. Eur. J. Endocrinol. 132: 645–54, 1995.
 203. Zapf, J., C. Hauri, M. Waldvogel, and E. R. Froesch. Acute metabolic effects and half‐lives of intravenously administered insulinlike growth factors I and II in normal and hypophysectomized rats. J. Clin. Invest. 77: 1768–1775, 1986.
 204. Zapf, J., C. Hauri, M. Waldvogel, E. Futo, H. Häsler, K. Binz, H. P. Guler, C. Schmid, and E. R. Froesch. Recombinant human insulin‐like growth factor I induces its own specific carrier protein in hypophysectomized and diabetic rats. Proc. Natl. Acad. Sci. USA 86: 3813–3817, 1989.
 205. Zapf, J., E. Schoenle, and E. R. Froesch. Insulin‐like growth factor I and II: some biological actions and receptor binding characteristics of two purified constituents of nonsuppressible insulin‐like activity of human serum. Eur. J. Biochem. 87: 285–296, 1978.
 206. Zapf, J., E. Schoenle, G. Jagars, I. Sand, J. Grunwald, and E. R. Froesch. Inhibition of the action of nonsuppressible insulin‐like activity on isolated rat fat cells by binding to its carrier protein. J. Clin. Invest. 63: 1077–1084, 1979.
 207. Zapf, J., M. Waldvogel, and E. R. Froesch. Binding of nonsuppressible insulinlike activity to human serum. Evidence for a carrier protein. Arch. Biochem. Biophys. 168: 638–645, 1975.
 208. Zapf, J., H. Walter, and E. R. Froesch. Radioimmunological determination of insulinlike growth factors I and II in normal subjects and in patients with growth disorders and extrapancreatic tumor hypoglycemia. J. Clin. Invest. 68: 1321–1330, 1981.
 209. Zezulak, K. M., H. Green. The generation of insulin‐like growth factor‐1‐sensitive cells by growth hormone action. Science 233: 551–553, 1986.
 210. Zingg, A. E., and E. R. Froesch. Effects of partially purified preparations with nonsuppressible insulin‐like activity (NSILA‐S) on sulfate incorporation into rat and chicken cartilage. Diabetologia 9: 472–476, 1973.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

J. Zapf, E. R. Froesch. Insulin‐Like Growth Factor I Actions on Somatic Growth. Compr Physiol 2011, Supplement 24: Handbook of Physiology, The Endocrine System, Hormonal Control of Growth: 663-699. First published in print 1999. doi: 10.1002/cphy.cp070521