Comprehensive Physiology Wiley Online Library

Structural Correlates of Transport in Distal Tubule and Collecting Duct Segments

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Structural Approaches
1.1 Light and Electron Microscopy
1.2 Electron Microscopy of Freeze‐Fractured and Freeze‐Dried Tissue
1.3 Enzyme Localization
1.4 Lectin and Antibody Localization Strategies
1.5 Quantitative Evaluation of Tubular Structures
2 Overview of Specialized Cell Types
2.1 Distal Convoluted Tubule Cells
2.2 Connecting Tubule Cells
2.3 Principal Cells
2.4 Intercalated Cells
3 Structural Changes Associated with Transport Regulation
3.1 Structural Correlates of Sodium and Potassium Transport
3.2 Structural Correlates of ADH Action
3.3 Intercalated Cells
Figure 1. Figure 1.

Thin sections of Lowicryl K4M–embedded rat kidney incubated with H. pomatia lectin‐gold complexes showing heterogeneous pattern of intercalated cell labeling in different parts of collecting duct. Lectin‐binding sites revealed by electron‐dense gold particles. In micrographs, intercalated cell on left; principal cell, on right. A: cells from cortical collecting duct; both cell types show labeling of apical plasma membrane and apical cytoplasmic vesicles. Degree of labeling is more intense on intercalated cell. B: part of collecting duct from inner stripe; in this case, principal cell is still labeled, but intercalated cell is very poorly labeled. × 14,000. Bars, 1 μm.

From Brown et al. 48
Figure 2. Figure 2.

Semithin section of Epon‐embedded rat kidney showing inner stripe of outer medulla. Section was incubated with H. pomatia lectin‐gold complexes to reveal lectin‐binding sites. A: section viewed with phase‐contrast microscopy to permit identification of cell types. Intercalated cells in collecting duct (arrows) can be identified by slightly darker cytoplasm and by appearance of nucleus, which has prominent nucleolus. B: same section as in A shown with bright‐field microscopy. Principal cells have intense apical labeling, whereas intercalated cells are virtually unlabeled (arrows). × 720. Bars, 20 μm.

From Brown et al. 48
Figure 3. Figure 3.

Superficial distal nephron in rat kidney. Distal tubule is composed of three segments: distal convoluted tubule (DCT), connecting tubule (CNT), and initial collecting tubule (ICT). Transitions between segments are gradual in rat and man, whereas in rabbit they are more abrupt. Cellular morphology of each tubular segment is indicated by arrows. Some intercalated cells are present in DCT in rat and man. In micropuncture literature, “early distal tubule” corresponds to DCT, and “late distal tubule” corresponds to ICT. Note that ICT and cortical collecting tubule (CCT) are both composed of principal and intercalated cells.

From Stanton 424
Figure 4. Figure 4.

Localization in cortical collecting duct principal cells of monoclonal antibody to Na+,K+‐ATPase with peroxidase‐conjugated antibody. Reaction product is prominent in infolded portions of basal cell membrane at left, but virtually absent from flat portions of membrane that directly opposes basal lamina (arrows). × 18,000.

From Kashgarian et al. 243
Figure 5. Figure 5.

Rabbit cortical collecting duct showing principal cells (PC) and intercalated cells (IC). A: isolated from control animal. B: DOCA‐treated animal showing marked amplification of basolateral membrane area in PC but not in IC. × 6,500.

From Wade et al. 491
Figure 6. Figure 6.

Summary of basolateral membrane (μm/cell) along distal nephron in control rats (open bars) and in rats given a high‐potassium diet for 4–6 weeks (hatched bars). DCTc, distal convoluted tubule cell; CNTc, connecting tubule cell; Ic, intercalated cell; Pc, principal cell; asterisks, significantly different from control (P < 0.05). Apical membrane did not change in any cell type within distal tubule

Data for cortical segments from ref. 415, and data for medullary collecting duct from ref. 350; from Stanton 426
Figure 7. Figure 7.

Effects of adrenalectomy (ADX) and selective hormone replacement on basolateral membrane of principal cells in initial collecting tubule (open bars) and in urinary potassium excretion, expressed as fractional excretion of potassium (FEK; hatched bars). Potassium excretion was measured during intravenous infusion of KCl. Data expressed as percentage of adrenal‐intact control rats. ADX animals were given either vehicle (0.9% NaCl), dexamethasone (DEX; 1.2 μg × 100−1 g × d−1), or aldosterone (ALDO; 0.5 μg × 100−1 g × d−1) for 10 days by osmotic minipump. The ADX + ALDO + Acute ALDO group was given chronic infusion of aldosterone plus acute infusion (0.2 μg × 100−1 g body weight bolus plus 0.2 μg × 100−1 g × h−1), begun 105 min before urine was collected and maintained throughout experiment. Data from adrenal‐intact animals given high‐potassium diet for 4 to 6 Weeks (K‐Adapt) are also shown. Asterisks, significantly different from control, indicated by dashed line.

From Stanton 424
Figure 8. Figure 8.

Effects of adrenal corticosteroids on infrastructure of principal cells in rat initial collecting tubule. A: adrenal‐intact, plasma aldosterone 4.4 ng/dl. B: adrenalectomized animals given aldosterone (2 μg × 100−1 g × d−1) for 10 days. Plasma aldosterone increased above control levels to 23.5 ng/dl. Note increase in area of basolateral membrane and in cell size. These changes in ultrastructure were similar to those in animals given high‐potassium diet (see Fig. 7). C: adrenalectomy and dexamethasone (1.2 μg × 100−1 g × d−1) for 10 days. Basolateral membrane was significantly less than in A and B and was unchanged from adrenalectomized animals. Bars, 1 μm.

From Stanton 424
Figure 9. Figure 9.

Relationship between Na+,K+‐ATPase and basolateral membrane area in different renal segments from rabbit. Segments are 1: proximal convoluted tubule (S1), 2: proximal straight tubule (S2), 3: cortical thick ascending limb, 4: cortical collecting duct (control), 5: thin descending limb, and 6a, 6b: cortical collecting duct values for control and DOCA‐treated animals, respectively.

From O'Neil 332
Figure 10. Figure 10.

Effects of aldosterone treatment on surface density of basolateral membrane (SvBLM) of principal cells in initial collecting tubule of rat. Sv is ratio of basolateral membrane area to cell volume. Adrenalectomized animals were given bolus of aldosterone (2 μg) and continuous infusion of aldosterone (2 μg × 100−1 g × d−1) and dexamethasone (1.2 μg × 100−1 g × d−1). Asterisks, significantly different from day 0. Numbers in parentheses indicate number of animals in each group. [From Stanton 424 and Wade et al. 492.]

Figure 11. Figure 11.

Effects of increase in sodium uptake on cellular ultrastructure of rat distal nephron. Sodium uptake was increased chronically (6 d) by giving adrenalectomized rats (given replacement doses of adrenal corticosteroids) high‐sodium diet and furosemide by osmotic minipump. Furosemide inhibits NaCl reabsorption by thick ascending limb of Henle's loop, thereby increasing NaCl delivery into distal tubule and hence cell NaCl uptake. A: distal convoluted tubule cell from control animal. × 3,800. B: distal convoluted tubule cell from animal on high‐salt diet. Note dramatic increase in cell volume and basolateral membrane area. × 3,800. C: connecting tubule cell from control animal. × 4,000. D: connecting tubule cell from animal on high‐salt diet. Note dramatic increase in cell volume and basolateral membrane area vs. cell from control animal. × 4,000. E: principal cell from control animal. × 4,630. F: principal cell from animal on high‐salt diet. Note increase in basolateral membrane area vs. E. × 4,630.

From Kaissling and Stanton 240
Figure 12. Figure 12.

Freeze‐fracture electron micrographs of apical plasma membrane from toad urinary bladder, showing ADH‐induced intramembrane particle aggregates (arrows). A: P‐face fracture showing linear organization of aggregated particles. B: E‐face fracture of same membrane region showing complementary parallel grooves. × 60,000.

From Kachadorian et al. 227
Figure 13. Figure 13.

Freeze‐fracture micrograph of apical plasma membrane P‐face of mouse kidney collecting duct principal cell, showing typical ADH‐induced IMP clusters (arrows). Small rounded or ovoid bumps on membrane are stubby microvilli. × 54,000. Bar, 0.5 μm.

From Brown et al. 49
Figure 14. Figure 14.

Freeze‐fracture micrograph of aggrephores in cytoplasm of toad urinary bladder granular cell when not stimulated by ADH. Favorable fractures show that characteristic P‐face particle aggregates and E‐face grooves of aggregates are arranged in a spiral in vesicle membrane. × 80,000. Bar, 0.3 μm.

From Coleman et al. 67
Figure 15. Figure 15.

Freeze‐fracture micrograph of ADH‐stimulated toad urinary bladder apical membrane showing membrane fusion events (asterisks). × 39,000.

From Wade 486
Figure 16. Figure 16.

Fracture showing aggrephore tubule with aggregates (arrows) fused with luminal membrane E‐face (LM‐E) in ADH‐stimulated bladder. × 46,000.

From Muller et al. 322
Figure 17. Figure 17.

A: camera lucida drawings from 1876 showing surface and sectioned views of frog skin epithelium. Mitochondria‐rich (MR) cells (flask) cells are pear‐shaped in perpendicular sections (top right) and have small, white, circular profiles when seen from the surface of epidermis (bottom left). Other drawings in A represent additional views of epidermal cells. [From Schulze 402.] B, C: sections of Epon‐embedded X. laevis skin shown for comparison. Flask cells appear somewhat larger in diameter in tangential section in C than in A, because level of sectioning was deeper in epithelium, at level of base of flask cells. B, C, × 400; bars, 25 μm.

From Ilic and Brown 212
Figure 18. Figure 18.

Camera lucida drawing from 1887 showing the surface of toad urinary bladder. Polygonal cells are granular cells; darker triangular or rectangular cells are MR cells, and circular cells with small white apices are goblet cells. This drawing bears remarkable resemblance to modern scanning micrographs of toad bladder surface.

From List 284
Figure 19. Figure 19.

Camera lucida drawing from 1876 of kidney tubule epithelia. Top right drawing represents early evidence for two distinct populations of cells in collecting duct; Darker cells are intercalated cells, and lighter cells are principal cells. Bright oval in center of each cell presumably indicates the nucleus. Other drawings illustrate additional nephron segment specialization.

From Schachowa 392
Figure 20. Figure 20.

Apical pole of intercalated cell from rat collecting duct shown by conventional electron microscopy. A: coating material on cytoplasmic side of plasma membrane can be readily seen (arrows) and is formed of stud‐like projections. B: by immunoelectron microscopy with anti‐proton pump antibodies followed by protein A‐gold, this coating material is specifically labeled, showing that it contains subunits of proton pump. Most gold particles lie directly over dense coating material that lines extensive apical microvilli and microplicae in this intercalated cell. A, × 100,000; bar, 0.1 μm. B, × 40,000; bar, 0.5 μm.

From Brown et al. 33
Figure 21. Figure 21.

Structure of cytoplasmic domain of proton pumps in vesicle from toad bladder MR cell shown by freeze‐drying and rotary‐shadowing of membranes from these cells. Proton pumps form para‐crystalline, hexagonally packed arrays on underside of plasma membrane and on cytoplasmic surface of specialized transporting vesicles. Arrays form membrane‐coating material that is apparent with conventional electron microscopy (see Fig. 20A). × 400,000. Bar, 50 nm.

From Brown et al. 33
Figure 22. Figure 22.

Characteristics of specialized transporting vesicles found in intercalated cells. A: freeze‐fracture micrograph of rod‐shaped IMPs on concave P‐faces; complementary elongated depressions are visible on convex E‐faces. B: anti‐proton pump immunogold labeling of vesicles from Lowicryl K4M–embedded kidney. Gold particles label cytoplasmic surface, revealing proton pumps in membrane of vesicles. C: endocytotic nature shown in micrograph of horseradish peroxidase–injected animal. Coated vesicles contain peroxidase reaction product, indicating that horseradish peroxidase has been internalized from cell surface. A, × 94,000; bar, 0.2 μm.B, × 15,000; bar, 0.1 μm. C, × 80,000; bar, 0.25 μm.

From Brown et al. 50
Figure 23. Figure 23.

Diagram summarizing main morphological features of principal cells (left) and intercalated cells (right) in kidney collecting duct. Principal cells have relatively few cytoplasmic organelles compared with intercalated cells and have few apical microvilli. In freeze‐fracture, apical plasma membrane has mainly globular IMPs (1) while basolateral plasma membrane (2) has characteristic orthogonal arrays of IMPs (arrowheads) of unknown function (see ref. 338). Intercalated cells have many mitochondria, many cytoplasmic vesicles, and often an elaborate apical array of microvilli and microplicae. In freeze‐fracture, rod‐shaped IMPs are found on parts of plasma membrane and on membrane of specialized cytoplasmic vesicles that transport proton pumps to and from cell surface (see Fig. 22). Some intercalated cells have rod‐shaped IMPs on apical plasma membranes (3); these are probably type A (proton‐secreting) intercalated cells. Other intercalated cells in cortical collecting ducts have similar rod‐shaped IMPs on basolateral plasma membrane (4); these are probably type B (bicarbonate‐secreting) intercalated cells. × 75,000. Bar, 0.25 μm.

From Brown and Orci 46
Figure 24. Figure 24.

Semithin sections of epoxy resin–embedded rat kidney, immunostained with anti‐proton ATPase antibodies followed by goat antirabbit IgG‐FITC. A: part of cortical collecting tubule. Principal cells are unstained, but intercalated cells have intense staining that in some cells is at apical pole while in others is located basally (arrows). These two patterns of staining represent location of proton pumps in A‐ and B‐type intercalated cells, respectively. B: part of inner stripe of outer medulla shown at lower magnification. Intercalated cells in collecting ducts (CD) are brightly stained; staining occurs only at apical pole. Only A‐type intercalated cells are present in this segment of the collecting duct. Some apical vesicles in adjacent thick ascending limbs (TAL) are weakly stained. A, × 1,000; bar, 10 μm. B, × 450; bar, 25 μm.

From Brown et al. 36


Figure 1.

Thin sections of Lowicryl K4M–embedded rat kidney incubated with H. pomatia lectin‐gold complexes showing heterogeneous pattern of intercalated cell labeling in different parts of collecting duct. Lectin‐binding sites revealed by electron‐dense gold particles. In micrographs, intercalated cell on left; principal cell, on right. A: cells from cortical collecting duct; both cell types show labeling of apical plasma membrane and apical cytoplasmic vesicles. Degree of labeling is more intense on intercalated cell. B: part of collecting duct from inner stripe; in this case, principal cell is still labeled, but intercalated cell is very poorly labeled. × 14,000. Bars, 1 μm.

From Brown et al. 48


Figure 2.

Semithin section of Epon‐embedded rat kidney showing inner stripe of outer medulla. Section was incubated with H. pomatia lectin‐gold complexes to reveal lectin‐binding sites. A: section viewed with phase‐contrast microscopy to permit identification of cell types. Intercalated cells in collecting duct (arrows) can be identified by slightly darker cytoplasm and by appearance of nucleus, which has prominent nucleolus. B: same section as in A shown with bright‐field microscopy. Principal cells have intense apical labeling, whereas intercalated cells are virtually unlabeled (arrows). × 720. Bars, 20 μm.

From Brown et al. 48


Figure 3.

Superficial distal nephron in rat kidney. Distal tubule is composed of three segments: distal convoluted tubule (DCT), connecting tubule (CNT), and initial collecting tubule (ICT). Transitions between segments are gradual in rat and man, whereas in rabbit they are more abrupt. Cellular morphology of each tubular segment is indicated by arrows. Some intercalated cells are present in DCT in rat and man. In micropuncture literature, “early distal tubule” corresponds to DCT, and “late distal tubule” corresponds to ICT. Note that ICT and cortical collecting tubule (CCT) are both composed of principal and intercalated cells.

From Stanton 424


Figure 4.

Localization in cortical collecting duct principal cells of monoclonal antibody to Na+,K+‐ATPase with peroxidase‐conjugated antibody. Reaction product is prominent in infolded portions of basal cell membrane at left, but virtually absent from flat portions of membrane that directly opposes basal lamina (arrows). × 18,000.

From Kashgarian et al. 243


Figure 5.

Rabbit cortical collecting duct showing principal cells (PC) and intercalated cells (IC). A: isolated from control animal. B: DOCA‐treated animal showing marked amplification of basolateral membrane area in PC but not in IC. × 6,500.

From Wade et al. 491


Figure 6.

Summary of basolateral membrane (μm/cell) along distal nephron in control rats (open bars) and in rats given a high‐potassium diet for 4–6 weeks (hatched bars). DCTc, distal convoluted tubule cell; CNTc, connecting tubule cell; Ic, intercalated cell; Pc, principal cell; asterisks, significantly different from control (P < 0.05). Apical membrane did not change in any cell type within distal tubule

Data for cortical segments from ref. 415, and data for medullary collecting duct from ref. 350; from Stanton 426


Figure 7.

Effects of adrenalectomy (ADX) and selective hormone replacement on basolateral membrane of principal cells in initial collecting tubule (open bars) and in urinary potassium excretion, expressed as fractional excretion of potassium (FEK; hatched bars). Potassium excretion was measured during intravenous infusion of KCl. Data expressed as percentage of adrenal‐intact control rats. ADX animals were given either vehicle (0.9% NaCl), dexamethasone (DEX; 1.2 μg × 100−1 g × d−1), or aldosterone (ALDO; 0.5 μg × 100−1 g × d−1) for 10 days by osmotic minipump. The ADX + ALDO + Acute ALDO group was given chronic infusion of aldosterone plus acute infusion (0.2 μg × 100−1 g body weight bolus plus 0.2 μg × 100−1 g × h−1), begun 105 min before urine was collected and maintained throughout experiment. Data from adrenal‐intact animals given high‐potassium diet for 4 to 6 Weeks (K‐Adapt) are also shown. Asterisks, significantly different from control, indicated by dashed line.

From Stanton 424


Figure 8.

Effects of adrenal corticosteroids on infrastructure of principal cells in rat initial collecting tubule. A: adrenal‐intact, plasma aldosterone 4.4 ng/dl. B: adrenalectomized animals given aldosterone (2 μg × 100−1 g × d−1) for 10 days. Plasma aldosterone increased above control levels to 23.5 ng/dl. Note increase in area of basolateral membrane and in cell size. These changes in ultrastructure were similar to those in animals given high‐potassium diet (see Fig. 7). C: adrenalectomy and dexamethasone (1.2 μg × 100−1 g × d−1) for 10 days. Basolateral membrane was significantly less than in A and B and was unchanged from adrenalectomized animals. Bars, 1 μm.

From Stanton 424


Figure 9.

Relationship between Na+,K+‐ATPase and basolateral membrane area in different renal segments from rabbit. Segments are 1: proximal convoluted tubule (S1), 2: proximal straight tubule (S2), 3: cortical thick ascending limb, 4: cortical collecting duct (control), 5: thin descending limb, and 6a, 6b: cortical collecting duct values for control and DOCA‐treated animals, respectively.

From O'Neil 332


Figure 10.

Effects of aldosterone treatment on surface density of basolateral membrane (SvBLM) of principal cells in initial collecting tubule of rat. Sv is ratio of basolateral membrane area to cell volume. Adrenalectomized animals were given bolus of aldosterone (2 μg) and continuous infusion of aldosterone (2 μg × 100−1 g × d−1) and dexamethasone (1.2 μg × 100−1 g × d−1). Asterisks, significantly different from day 0. Numbers in parentheses indicate number of animals in each group. [From Stanton 424 and Wade et al. 492.]



Figure 11.

Effects of increase in sodium uptake on cellular ultrastructure of rat distal nephron. Sodium uptake was increased chronically (6 d) by giving adrenalectomized rats (given replacement doses of adrenal corticosteroids) high‐sodium diet and furosemide by osmotic minipump. Furosemide inhibits NaCl reabsorption by thick ascending limb of Henle's loop, thereby increasing NaCl delivery into distal tubule and hence cell NaCl uptake. A: distal convoluted tubule cell from control animal. × 3,800. B: distal convoluted tubule cell from animal on high‐salt diet. Note dramatic increase in cell volume and basolateral membrane area. × 3,800. C: connecting tubule cell from control animal. × 4,000. D: connecting tubule cell from animal on high‐salt diet. Note dramatic increase in cell volume and basolateral membrane area vs. cell from control animal. × 4,000. E: principal cell from control animal. × 4,630. F: principal cell from animal on high‐salt diet. Note increase in basolateral membrane area vs. E. × 4,630.

From Kaissling and Stanton 240


Figure 12.

Freeze‐fracture electron micrographs of apical plasma membrane from toad urinary bladder, showing ADH‐induced intramembrane particle aggregates (arrows). A: P‐face fracture showing linear organization of aggregated particles. B: E‐face fracture of same membrane region showing complementary parallel grooves. × 60,000.

From Kachadorian et al. 227


Figure 13.

Freeze‐fracture micrograph of apical plasma membrane P‐face of mouse kidney collecting duct principal cell, showing typical ADH‐induced IMP clusters (arrows). Small rounded or ovoid bumps on membrane are stubby microvilli. × 54,000. Bar, 0.5 μm.

From Brown et al. 49


Figure 14.

Freeze‐fracture micrograph of aggrephores in cytoplasm of toad urinary bladder granular cell when not stimulated by ADH. Favorable fractures show that characteristic P‐face particle aggregates and E‐face grooves of aggregates are arranged in a spiral in vesicle membrane. × 80,000. Bar, 0.3 μm.

From Coleman et al. 67


Figure 15.

Freeze‐fracture micrograph of ADH‐stimulated toad urinary bladder apical membrane showing membrane fusion events (asterisks). × 39,000.

From Wade 486


Figure 16.

Fracture showing aggrephore tubule with aggregates (arrows) fused with luminal membrane E‐face (LM‐E) in ADH‐stimulated bladder. × 46,000.

From Muller et al. 322


Figure 17.

A: camera lucida drawings from 1876 showing surface and sectioned views of frog skin epithelium. Mitochondria‐rich (MR) cells (flask) cells are pear‐shaped in perpendicular sections (top right) and have small, white, circular profiles when seen from the surface of epidermis (bottom left). Other drawings in A represent additional views of epidermal cells. [From Schulze 402.] B, C: sections of Epon‐embedded X. laevis skin shown for comparison. Flask cells appear somewhat larger in diameter in tangential section in C than in A, because level of sectioning was deeper in epithelium, at level of base of flask cells. B, C, × 400; bars, 25 μm.

From Ilic and Brown 212


Figure 18.

Camera lucida drawing from 1887 showing the surface of toad urinary bladder. Polygonal cells are granular cells; darker triangular or rectangular cells are MR cells, and circular cells with small white apices are goblet cells. This drawing bears remarkable resemblance to modern scanning micrographs of toad bladder surface.

From List 284


Figure 19.

Camera lucida drawing from 1876 of kidney tubule epithelia. Top right drawing represents early evidence for two distinct populations of cells in collecting duct; Darker cells are intercalated cells, and lighter cells are principal cells. Bright oval in center of each cell presumably indicates the nucleus. Other drawings illustrate additional nephron segment specialization.

From Schachowa 392


Figure 20.

Apical pole of intercalated cell from rat collecting duct shown by conventional electron microscopy. A: coating material on cytoplasmic side of plasma membrane can be readily seen (arrows) and is formed of stud‐like projections. B: by immunoelectron microscopy with anti‐proton pump antibodies followed by protein A‐gold, this coating material is specifically labeled, showing that it contains subunits of proton pump. Most gold particles lie directly over dense coating material that lines extensive apical microvilli and microplicae in this intercalated cell. A, × 100,000; bar, 0.1 μm. B, × 40,000; bar, 0.5 μm.

From Brown et al. 33


Figure 21.

Structure of cytoplasmic domain of proton pumps in vesicle from toad bladder MR cell shown by freeze‐drying and rotary‐shadowing of membranes from these cells. Proton pumps form para‐crystalline, hexagonally packed arrays on underside of plasma membrane and on cytoplasmic surface of specialized transporting vesicles. Arrays form membrane‐coating material that is apparent with conventional electron microscopy (see Fig. 20A). × 400,000. Bar, 50 nm.

From Brown et al. 33


Figure 22.

Characteristics of specialized transporting vesicles found in intercalated cells. A: freeze‐fracture micrograph of rod‐shaped IMPs on concave P‐faces; complementary elongated depressions are visible on convex E‐faces. B: anti‐proton pump immunogold labeling of vesicles from Lowicryl K4M–embedded kidney. Gold particles label cytoplasmic surface, revealing proton pumps in membrane of vesicles. C: endocytotic nature shown in micrograph of horseradish peroxidase–injected animal. Coated vesicles contain peroxidase reaction product, indicating that horseradish peroxidase has been internalized from cell surface. A, × 94,000; bar, 0.2 μm.B, × 15,000; bar, 0.1 μm. C, × 80,000; bar, 0.25 μm.

From Brown et al. 50


Figure 23.

Diagram summarizing main morphological features of principal cells (left) and intercalated cells (right) in kidney collecting duct. Principal cells have relatively few cytoplasmic organelles compared with intercalated cells and have few apical microvilli. In freeze‐fracture, apical plasma membrane has mainly globular IMPs (1) while basolateral plasma membrane (2) has characteristic orthogonal arrays of IMPs (arrowheads) of unknown function (see ref. 338). Intercalated cells have many mitochondria, many cytoplasmic vesicles, and often an elaborate apical array of microvilli and microplicae. In freeze‐fracture, rod‐shaped IMPs are found on parts of plasma membrane and on membrane of specialized cytoplasmic vesicles that transport proton pumps to and from cell surface (see Fig. 22). Some intercalated cells have rod‐shaped IMPs on apical plasma membranes (3); these are probably type A (proton‐secreting) intercalated cells. Other intercalated cells in cortical collecting ducts have similar rod‐shaped IMPs on basolateral plasma membrane (4); these are probably type B (bicarbonate‐secreting) intercalated cells. × 75,000. Bar, 0.25 μm.

From Brown and Orci 46


Figure 24.

Semithin sections of epoxy resin–embedded rat kidney, immunostained with anti‐proton ATPase antibodies followed by goat antirabbit IgG‐FITC. A: part of cortical collecting tubule. Principal cells are unstained, but intercalated cells have intense staining that in some cells is at apical pole while in others is located basally (arrows). These two patterns of staining represent location of proton pumps in A‐ and B‐type intercalated cells, respectively. B: part of inner stripe of outer medulla shown at lower magnification. Intercalated cells in collecting ducts (CD) are brightly stained; staining occurs only at apical pole. Only A‐type intercalated cells are present in this segment of the collecting duct. Some apical vesicles in adjacent thick ascending limbs (TAL) are weakly stained. A, × 1,000; bar, 10 μm. B, × 450; bar, 25 μm.

From Brown et al. 36
References
 1. Abramow, M., R. Beauwens, and E. Cogan. Cellular events in vasopressin action. Kidney Int. 32 (Suppl. 21): S56–S66, 1987.
 2. Abramow, M., and L. Orci. On the “tightness” of the rabbit descending limb of the loop of Henle–physiological and morphological evidence. Int. J. Biochem. 12: 23–27, 1980.
 3. Adam, W.R., and J. K. Dawborn. Potassium tolerance in rats. Aust. J. Exp. Biol. 6: 757–768, 1968.
 4. Ait‐Mohamed, A.K., S. Marsy, C. Barlet, C. Khadouri, and A. Doucet. Characterization of N‐ethylmaleimide‐sensitive proton pump in the rat kidney. J. Biol. Chem. 261: 12526–12533, 1986.
 5. Alper, S. L., R. R. Kopito, S. M. Libresco, and H. F. Lodish. Cloning and characterization of a murine band 3—related cDNA from kidney and from a lymphoid cell line. J. Biol. Chem. 263 (17092–17099), 1988.
 6. Alper, S. L., J. Natale, S. Gluck, H. F. Lodish, and D. Brown. Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vacuolar H + ‐ATPase. Proc. Natl. Acad. Sci. USA 86: 5429–5433, 1989.
 7. Altman, L. G., B. S. Schneider, and D. S. Papermaster. Rapid embedding of tissues in Lowicryl K4M for immuoelectron microscopy. J. Histochem. Cytochem. 32: 1217–1223, 1984.
 8. Andrejewitsch, A. T. Uber das Epithel der Sammelrohren in der Saugerniere. University of Berne, 1919. Dissertation.
 9. Armbruster, B. L., E. Carlemalm, R. Chiovetti, R. M. Garavito, J. A. Hobot, E. Kellenberger, and W. Villiger. Specimen preparation using low temperature embedding resins. J. Microsc. 126: 77–85, 1982.
 10. Aronson, P. S. Mechanisms of active H + secretion in the proximal tubule. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol 14.): F647–F659, 1983.
 11. Backman, K. A., and J. P. Hayslett. Role of medullary collecting duct in potassium conservation. Pflugers Arch. 396: 297–300, 1983.
 12. Barajas, L., K. Powers, O. Carretero, A. G. Scicli, and T. Inagami. Immunocytochemical localization of renin and kallikrein in the rat renal cortex. Kidney Int. 29: 965–970, 1986.
 13. Barlet, C., and A. Doucet. Triiodothyronine enhances renal response to aldosterone in the rabbit collecting tubule. J. Clin. Invest. 79: 629–631, 1987.
 14. Barlet‐Bas, C., and A. Doucet. Aldosterone and sodium induce kidney Na‐K‐ATPase in vitro by two different mechanisms. In: Progress in Clinical and Biological Research, edited by J. C. Skou, J. G. Norby, A. B. Maunsbach, and M. Esmann. New York: Alan R. Liss, Inc., 1988, vol. 268, part B, p. 339–344.
 15. Barlet‐Bas, C., C. Khadouri, S. Marsy, and A. Doucet. Sodium‐independent in vitro induction of Na+, K + ‐ATPase by aldosterone in renal target cells: permissive effect of triiodothyronine. Proc. Natl. Acad. Sci. USA 85: 1707–1711, 1988.
 16. Bartels, H., and U. Welsch. Freeze‐fracture of the turtle lung. 2. Rod‐shaped particles in the plasma membrane of a mitochondria‐rich pneumocyte in Pseudemys (Chrysemys) scripta. Cell Tissue Res. 236: 453–457, 1984.
 17. Batlle, D. C. Segmental characterization of defects in collecting tubule acidification. Kidney Int. 30: 546–554, 1986.
 18. Beauwens, R., G. T. Kronnie, J. Snauwaert, and P. A. In't Veld. Polycations reduce vasopressin‐induced water flow by endocytic removal of water channels. Am. J. Physiol. 250 (Cell Physiol 19.): C729–C737, 1986.
 19. Beck, F. X., A. Dorge, E. Blumner, G. Giebisch, and K. Thurau. Cell rubidium uptake: a method for studying functional heterogeneity in the nephron. Kidney Int. 33: 642–651, 1988.
 20. Beck, F., A. Dorge, J. Mason, R. Rick, and K. Thurau. Element concentrations of renal and hepatic cells under potassium depletion. Kidney Int. 22: 250–256, 1982.
 21. Beck, F. X., A. Dorge, R. Rick, M. Schramm, and K. Thurau. Effect of potassium adaptation on the distribution of potassium, sodium and chloride across the apical membrane of renal tubular cells. Pflugers Arch. 409: 477–485, 1987.
 22. Behnke, O., and T. Zelander. Preservation of intercellular substances by the cationic dye Alcian blue in preparative procedures for electron microscopy. J. Ultrastruct. Res. 31: 424–438, 1970.
 23. Bello‐Reuss, E., and M. R. Weber. Electrophysiological studies of primary cultures of rabbit distal tubule cells. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol 21.): F899–F909, 1987.
 24. Ben Abdelkhalek, M., C. Barlet, and A. Doucet. Presence of an extramitochondrial anion‐stimulated ATPase in the rabbit kidney: localization along the nephron and effect of corticosteroids. J. Membr. Biol. 89: 225–240, 1986.
 25. Bengele, H. H., M. L. Graber, and E. A. Alexander. Effect of respiratory acidosis on acidification by the medullary collecting duct. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol 13.): F89–F94, 1983.
 26. Bengele, H. H., J. H. Schwartz, E. R. McNamara, and E. A. Alexander. Chronic metabolic acidosis augments acidification along the inner medullary collecting duct. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol 19.): F690–F694, 1986.
 27. Biemesderfer, D., B. Stanton, J. B. Wade, M. Kashgarian, and G. Giebisch. Ultrastructure of Amphiuma distal nephron: evidence for cellular heterogeneity. Am. J. Physiol. 256 (Cell Physiol 25.): C849–C857, 1989.
 28. Bohman, S.‐O. The ultrastructure of the rat renal medulla as observed after improved fixation methods. J. Ultrastruct. Res. 47: 329–360, 1974.
 29. Bourguet, J., J. Chevalier, and J. S. Hugon. Alterations in membrane‐associated particle distribution during antidiuretic challenge in frog urinary bladder epithelium. Biophys.]. 16: 627–639, 1976.
 30. Branton, D. Fracture faces of frozen membranes. Proc. Natl. Acad. Sci. USA 55: 1048–1056, 1966.
 31. Brown, D. Freeze‐fracture of Xenopus laevis kidney: rod‐shaped particles in the canalicular membrane of the collecting tubule flask cell. J. Ultrastruct. Res. 63: 35–40, 1978.
 32. Brown, D. Membrane recycling and epithelial cell function. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol 25.): F1–F12, 1989.
 33. Brown, D., S. Gluck, and J. Hartwig. Structure of the novel membrane‐coating material in proton‐secreting epithelial cells and identification as an H + ATPase. J. Cell Biol. 105: 1637–1648, 1987.
 34. Brown, D., A. Grosso, and R. C. Desousa. The amphibian epidermis: distribution of mitochondria‐rich cells and the effect of oxytocin. J. Cell Sci. 52: 197–213, 1981.
 35. Brown, D., A. Grosso, and R. C. Desousa. Correlation between water flow and intramembrane particle aggregates in toad epidermis. Am. J. Physiol. 245 (Cell Physiol 14.): C334–C342, 1983.
 36. Brown, D., S. Hirsch, and S. Gluck. An H + ‐ATPase in opposite plasma membrane domains in kidney epithelial cell subpopulations. Nature 331: 622–624, 1988.
 37. Brown, D., S. Hirsch, and S. Gluck. Localization of a proton‐pumping ATPase in rat kidney. J. Clin. Invest. 82: 2114–2126, 1988.
 38. Brown, D., V. Ilic, and L. Orci. Rod‐shaped particles in the plasma membrane of the mitochondria‐rich cell of amphibian epidermis. Anat. Rec. 192: 269–276, 1978.
 39. Brown, D., and T. Kumpulainen. Immunohistochemical localization of carbonic anhydrase on ultrathin frozen sections with protein A gold. Histochemistry 85: 153–158, 1985.
 40. Brown, D., T. Kumpulainen, J. Roth, and L. Orci. Immunohistochemical localization of carbonic anhydrase in postnatal and adult rat kidney. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol 14.): F110–F118, 1983.
 41. Brown, D., and R. Montesano. Membrane specialization in the rat epididymis. I. Rod‐shaped intramembrane particles in the apical (“mitochondria‐rich”) cell. J. Cell. Sci. 45: 187–198, 1980.
 42. Brown, D., R. Montesano, and L. Orci. Stretch induces granule exocytosis in toad urinary bladder. Cell Biol. Int. Rep. 5: 275–285, 1981.
 43. Brown, D., R. Montesano, and L. Orci. Patterns of filipin–sterol complex formation in intact erythrocyte membranes and particle‐aggregated ghost membranes. J. Histochem. Cytochem. 30: 702–706, 1982.
 44. Brown, D., and L. Orci. Vasopressin stimulates formation of coated pits in rat kidney collecting tubules. Nature 302: 253–255, 1983.
 45. Brown, D., and L. Orci. The “coat” of kidney intercalated cell tubulovesicles does not contain clathrin. Am. J. Physiol. 250 (Cell Physiol 19.): C605–C608, 1986.
 46. Brown, D., and L. Orci. Junctional complexes and cell polarity in the urinary tubule. J. Electron Microsc. Tech. 9: 145–170, 1988.
 47. Brown, D., J. Roth, T. Kumpulainen, and L. Orci. Ultrastructural localization of carbonic anhydrase: presence in intercalated cells of rat collecting tubule. Histochemistry 75: 209–213, 1982.
 48. Brown, D., J. Roth, and L. Orci. Lectin‐gold cytochemistry reveals intercalated cell heterogeneity along rat kidney collecting ducts. Am J. Physiol. 248 (Cell Physiol 17.): C348–C356, 1985.
 49. Brown, D., G. I. Shields, H. Valtin, J. F. Morris, and L. Orci. Lack of intramembranous particle clusters in collecting ducts of mice with nephrogenic diabetes insipidus. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol 18.): F582–F589, 1985.
 50. Brown, D., P. Weyer, and L. Orci. Nonclathrin‐coated vesicles are involved in endocytosis in kidney collecting duct intercalated cells. Anat. Rec. 218: 237–242, 1987.
 51. Brown, D., P. Weyer, and L. Orci. Vasopressin stimulates endocytosis in kidney collecting duct principal cells. Eur. J. Cell Biol. 46: 336–340, 1988.
 52. Bulger, R. E., R. E. Cronin, and D. C. Dobyan. Survey of the morphology of the dog kidney. Anat. Rec. 194: 41–65, 1979.
 53. Burch, H. B., T. E. Bross, C. A. Brooks, B. R. Cole, and O. H. Lowry. The distribution of six enzymes of oxidative metabolism along the rat nephron. J. Histochem. Cytochem. 32: 731–736, 1984.
 54. Cannon, C., J. Van Adelsberg, S. Kelly, and Q. Al‐Awqati. Carbon‐dioxide–induced exocytotic insertion of H + pumps in turtle‐bladder luminal membrane: role of cell pH and calcium. Nature 314: 443–446, 1985.
 55. Carlemalm, E., R. M. Garavito, and W. Villiger. Resin development for electron microscopy and an analysis of embedding at low temperature. J. Microsc. 126: 123–143, 1982.
 56. Carvounis, C. P., N. Franki, S. D. Levine, and R. M. Hays. Membrane pathways for water and solutes in the toad bladder: I. Independent activation of water and urea transport. J. Membr. Biol. 49: 253–268, 1979.
 57. Charney, A. N., P. Silva, A. Besarab, and F. H. Epstein. Separate effects of aldosterone, DOCA. and methylprednisolone on renal Na‐K‐ATPase. Am. J. Physiol. 227: 345–350, 1974.
 58. Chevalier, J., J. Bourguet, and J. S. Hugon. Membrane associated particles: distribution in frog urinary bladder epithelium at rest and after oxytocin treatment. Cell Tissue Res. 152: 129–140, 1974.
 59. Chevalier, J., M. Parisi, and J. Bourguet. The rate‐limiting step in hydroosmotic response of frog urinary bladder: a freeze‐fracture study at different temperatures and medium pH. Cell Tissue Res. 228: 345–355, 1983.
 60. Choi, J. K. The fine structure of the urinary bladder of the toad, Bufo marinus. J. Cell Biol. 16: 53–72, 1963.
 61. Citi, S., H. Sabanay, R. Jakes, B. Geiger, and J. Kendrick‐Jones. Cingulin, a new peripheral component of tight junctions. Nature 333: 272–276, 1988.
 62. Clapp, W. L., K. M. Madsen, J. W. Verlander, and C. C. Tisher. Intercalated cells of the rat inner medullary collecting duct. Kidney Int. 31: 1080–1087, 1987.
 63. Clapp, W. L., K. M. Madsen, J. W. Verlander, and C. C. Tisher. Morphologic heterogeneity along the rat inner medullary collecting duct. Lab. Invest. 60: 219–230, 1989.
 64. Claude, P., and D. A. Goodenough. Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia. J. Cell Biol. 58: 390–400, 1973.
 65. Clothier, R. H., R. T. S. Worley, and M. Balls. The structure and ultrastructure of the renal tubule of the urodele amphibian, Amphiuma means. J. Anat. 127: 491–504, 1978.
 66. Cohen, J. P., A. P. Hoffer, and S. Rosen. Carbonic anhydrase localization in the epididymis and testis of the rat: histochemical and biochemical analysis. Biol. Reprod. 14: 339–346, 1976.
 67. Coleman, R. A., H. W. Harris, Jr., and J. B. Wade. Visualization of endocytosed markers in freeze‐fracture studies of toad urinary bladder. J. Histochem. Cytochem. 35: 1405–1414, 1987.
 68. Coleman, R. A., and J. B. Wade. Endosomal sorting of particle aggregates and fluid‐phase markers following ADH reversal in toad bladder, abstracted. J. Am. Soc. Nephrol. 1: 673, 1990.
 69. Crayen, M.‐L., and W. Thoenes. Architecture and cell structures in the distal nephron of the rat kidney. Cytobiologie 17: 197–211, 1978.
 70. Croker, B. P., Jr., and C. C. Tisher. Factors affecting fluid movement and intercellular space formation in the toad bladder. Kidney Int. 1: 145–155, 1972.
 71. Davis, W. L., D. B. P. Goodman, R. G. Jones, and H. Rasmussen. The effects of cytochalasin B on the surface morphology of the toad urinary bladder epithelium: a scanning electron microscopic study. Tissue Cell 10: 451–462, 1978.
 72. Davis, W. L., D. B. P. Goodman, J. H. Martin, J. L. Matthews, and H. Rasmussen. Vasopressin‐induced changes in the toad urinary bladder epithelial surface. J. Cell Biol. 61: 544–547, 1974.
 73. Davis, W. L., D. B. P. Goodman, R. J. Schuster, H. Rasmussen, and J. H. Martin. Effects of cytochalasin B on the response of toad urinary bladder to vasopressin. J. Cell Biol. 63: 986–997, 1974.
 74. Davis, W. L., R. G. Jones, J. Ciumei, J. P. Knight, and D. B. P. Goodman. Electron‐microscopic and morphometric study of vesiculation in the epithelial cell layer of the toad urinary bladder: effect of antidiuretic hormone. Cell Tissue Res. 225: 619–631, 1982.
 75. Davis, W. L., R. G. Jones, and D. B. P. Goodman. Electron microscopic cytochemical localization of adenylate cyclase in amphibian urinary bladder epithelium: effects of antidiuretic hormone. J. Histochem. Cytochem. 35: 103–111, 1987.
 76. Davis, W. L., R. G. Jones, H. K. Hagler, G. R. Farmer, and D. B. P. Goodman. Histochemical and elemental localization of calcium in the granular cell subapical granules of the amphibian urinary bladder epithelium. Anat. Rec. 218: 229–236, 1987.
 77. Dermietzel, R., A. Leibstein, U. Frixen, U. Janssen‐Timmen, O. Traub, and K. Willecke. Gap junctions in several tissues share antigenic determinants with liver gap junctions. EMBO J. 3: 2261–2270, 1984.
 78. De Sousa, R. C., A. Grosso, and C. Rufener. Blockade of the hydrosmotic effect of vasopressin by cytochalasin B. Experientia 30: 175–177, 1974.
 79. Di Bona, D. R. Cytoplasmic involvement in ADH‐mediated osmosis across toad urinary bladder. Am. J. Physiol. 245 (Cell Physiol 14.): C297–C307, 1983.
 80. Di Bona, D. R., and M. M. Civan. Toad urinary bladder: intercellular spaces. Science 165: 503–504, 1969.
 81. Di Bona, D. R., and M. M. Civan. Clarification of the intercellular space phenomenon in toad urinary bladder. J. Membr. Biol. 7: 267–274, 1972.
 82. Di Bona, D. R., M. M. Civan, and A. Leaf. The cellular specificity of the effect of vasopressin on toad urinary bladder. J. Membr. Biol. 1: 79–91, 1969.
 83. Di Bona, D. R., and J. W. Mills. Distribution of Na + pump sites in transporting epithelia. Federation Proc. 38: 134–143, 1979.
 84. Di Bona, D. R., B. Sherman, V. A. Bobrycki, J. W. Mills, and A. D. C. MacKnight. Structural responses to voltage‐clamping in the toad urinary bladder. II. Granular cells and the natriferic action of vasopressin. J. Membr. Biol. 60: 35–44, 1981.
 85. Ding, G., N. Franki, J. Bourguet, and R. M. Hays. Role of vesicular transport in ADH‐stimulated aggregate delivery. Am. J. Physiol. 255 (Cell Physiol 24.): C641–C652, 1988.
 86. Ding, G., N. Franki, and R. M. Hays. Evidence for cycling of aggregate‐containing tubules in toad urinary bladder. Biol. Cell 55: 213–218, 1986.
 87. Ding, G. H., N. Franki, J. Condeelis and R. M. Hays. Vasopressin depolymerizes F‐actin in toad bladder epithelial cells. Am. J. Physiol. 260 (Cell Physiol 29.): C9–C16, 1991.
 88. Dixon, T. E., C. Clausen, D. Coachman, and B. Lane. Proton transport and membrane shuttling in turtle bladder epithelium. J. Membr. Biol. 94: 233–243, 1986.
 89. Dobyan, D. C., and R. E. Bulger. Renal carbonic anhydrase. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol 12.): F311–F324, 1982.
 90. Dobyan, D. C., L. S. Magill, P. A. Friedman, S. C. Hebert, and R. E. Bulger. Carbonic anhydrase histochemistry in rabbit and mouse kidneys. Anat. Rec. 204: 185–197, 1982.
 91. Dorup, J. Structural adaptation of intercalated cells in rat renal cortex to acute metabolic acidosis and alkalosis. J. Ultrastruct. Res. 92: 119–131, 1985.
 92. Dorup, J. Ultrastructure of distal nephron cells in rat renal cortex. J. Ultrastruct. Res. 92: 101–118, 1985.
 93. Doucet, A., and A. I. Katz. Renal potassium adaptation: Na‐K‐ATPase activity along the nephron after chronic potassium loading. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol 7.): F380–F386, 1980.
 94. Doucet, A., and S. Marsy. Characterization of K‐ATPase activity in distal nephron: stimulation by potassium depletion. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol 22.): F418–F423, 1987.
 95. Dragsten, P. R., R. Blumenthal, and J. S. Handler. Membrane asymmetry in epithelia: is the tight junction a barrier to diffusion in the plasma membrane? Nature 294: 718–722, 1981.
 96. Dratwa, M., A. Lefurgey, and C. C. Tisher. Effect of vasopressin and serosal hypertonicity on toad urinary bladder. Kidney Int. 16: 695–703, 1979.
 97. Dratwa, M., C. C. Tisher, J. R. Sommer, and B. P. Croker. Intramembranous particle aggregation in toad urinary bladder after vasopressin stimulation. Lab. Invest. 40: 46–54, 1979.
 98. Drenckhahn, D., and C. Merte. Restriction of the human kidney band 3—like anion exchanger to specialized subdomains of the basolateral plasma membrane of intercalated cells. Eur. J. Cell Biol. 45: 107–115, 1987.
 99. Drenckhahn, D., M. Oelmann, P. Schaaf, M. Wagner, and S. Wagner. Band 3 is the basolateral anion exchanger of dark epithelial cells of turtle urinary bladder. Am. J. Physiol. 252 (Cell Physiol 21.): C570–C574, 1987.
 100. Drenckhahn, D., K. Schluter, D. P. Allen, and V. Bennett. Colocalization of band 3 with ankyrin and spectrin at the basal membrane of intercalated cells in the rat kidney. Science 230: 1287–1289, 1985.
 101. Eggena, P. Glutaraldehyde‐fixation method for determining the permeability to water of the toad urinary bladder. Endocrinology 91: 240–246, 1972.
 102. Eggena, P. Osmotic regulation of toad bladder responsiveness to neurohypophyseal hormones. J. Gen. Physiol. 60: 665–678, 1972.
 103. Elias, P. M., D. S. Friend, and J. Goerke. Membrane sterol heterogeneity: freeze‐fracture detection with saponins and filipin. J. Histochem. Cytochem. 27: 1247–1260, 1979.
 104. Ellis, D., T. D. Sothi, and E. D. Avner. Glucocorticoids modulate renal glucocorticoid receptors and Na‐K ATPase activity. Kidney Int. 32: 464–471, 1987.
 105. Ellis, S. J., W. A. Kachadorian, and V. A. Di Scala. Effect of an osmotic gradient on ADH‐induced intramembranous particle aggregates in toad bladder. J. Membr. Biol. 52: 181–184, 1980.
 106. Ellison, D. H., H. Velazquez, and F. S. Wright. Adaptation of the distal convoluted tubule of the rat: structural and functional effects of dietary salt intake and chronic diuretic infusion. J. Clin. Invest. 83: 113–126, 1989.
 107. Ellison, D. H., H. Velazquez, and F. S. Wright. Mechanism of sodium, potassium and chloride transport by the renal distal tubule. Miner. Electrolyte Metab. 13: 422–437, 1987.
 108. El Mernissi, G., D. Chabardes, A. Doucet, A. Hus‐Citharel, M. Imbert‐Ieboul, F. Lebouffant, M. Montegut, S. Siaume, and F. Morel. Changes in tubular basolateral membrane markers after chronic DOCA treatment. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol 14.): F100–F109, 1983.
 109. El Mernissi, G., and A. Doucet. Specific activity of Na‐K‐ATPase after adrenalectomy and hormone replacement along the rabbit nephron. Pflugers Arch. 402: 258–263, 1984.
 110. Erlij, D., I. Aelvoet, and W. Van Driessche. Exocytotic events unrelated to regulation of water permeability in amphibian tight epithelia: effects of oxytocin. PMA and insulin on membrane capacitance, water and Na + transport. Biol. Cell 66: 53–58, 1989.
 111. Ernst, S. A. Transport ATPase cytochemistry: ultrastructural localization of potassium‐dependent and potassium‐independent phosphatase activities in rat kidney cortex. J. Cell Biol. 66: 586–608, 1975.
 112. Ernst, S. A., and R. A. Ellis. The development of surface specialization in the secretory epithelium of the avian salt gland in response to osmotic stress. J. Cell Biol. 40: 305–321, 1969.
 113. Evan, A., J. Huser, H. H. Bengele, and E. A. Alexander. The effect of alterations in dietary potassium on collecting system morphology in the rat. Lab. Invest. 42: 668–675, 1980.
 114. Farman, N., and J. P. Bonvalent. Aldosterone binding in isolated tubules. III. Autoradiography along the rat nephron. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol 14.): F606–F614, 1983.
 115. Farquhar, M. G., and G. E. Palade. Cell junctions in amphibian skin. J. Cell Biol. 26: 263–291, 1965.
 116. Feyel, P., and R. Vieillefosse. Les secretions renales de l'uree et des chlorures: etude cytophysiologique. Arch. Anat. Microsc. 35: 5–53, 1939.
 117. Field, M. J., B. A. Stanton, and G. H. Giebisch. Differential acute effects of aldosterone, dexamethasone, and hyperkalemia on distal tubular potassium secretion in the rat kidney. J. Clin. Invest. 74: 1792–1802, 1984.
 118. Figueroa, C. D., I. Caorsi, J. Subiabre, and C. P. Vio. Immunoreactive kallikrein localization in the rat kidney: an immuno‐electron‐microscopic study. J. Histochem. Cytochem. 31 (1): 117–121, 1984.
 119. Finbow, M. E., J. Shuttleworth, A. E. Hamilton, and J. D. Pitts. Analysis of vertebrate gap junction protein. EMBO J. 2: 1479–1486, 1983.
 120. Fine, L. G., and L. M. Sakhrani. Proximal tubular cells in primary culture. Miner. Electrolyte Metab. 12: 51–57, 1986.
 121. Fine, L. G., N. Yanagawa, R. G. Schultze, M. Tuck, and W. Trizna. Functional profile of the isolated uremic nephron: potassium adaptation in the rabbit cortical collecting tubule. J. Clin. Invest. 64: 1033–1043, 1979.
 122. Foskett, J. K., and H. H. Ussing. Localization of chloride conductance to mitochondria‐rich cells in frog skin epithelium. J. Membr. Biol. 91: 251–258, 1986.
 123. Franki, N., G. H. Ding, N. Quintana, and R. M. Hays. Evidence that the heads of ADH‐sensitive aggrephores are clathrin‐coated vesicles: implications for aggrephore structure and function. Tissue Cell 18: 803–807, 1986.
 124. Frazier, L. W. Cellular changes in the toad urinary bladder in response to metabolic acidosis. J. Membr. Biol. 40: 165–177, 1978.
 125. Frederikson, O., K. Mollgard, and J. Rostgaard. Lack of correlation between transepithelial transport capacity and paracellular pathway ultrastructure in Alcian blue‐treated rabbit gallbladders. J. Cell Biol. 83: 383–393, 1979.
 126. Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature [Phys. Sci.] 241: 20–22, 1973.
 127. Friend, D. S., and E. L. Bearer. β‐Hydroxysterol distribution as determined by freeze‐fracture cytochemistry. Histochem. J. 13: 535–546, 1981.
 128. Friend, D. S., and N. B. Gilula. Variations in tight and gap junctions in mammalian tissues. J. Cell Biol. 53: 758–776, 1972.
 129. Fritsche, C., and J. H. Schwartz. Identification of the bicarbonate secretory cell of the turtle bladder. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol 18.): F858–F862, 1985.
 130. Ganote, C. E., J. J. Grantham, H. L. Moses, M. B. Burg, and J. Orloff. Ultrastructural studies of vasopressin effect on isolated perfused renal collecting tubules of the rabbit. J. Cell Biol. 36: 355–367, 1968.
 131. Garg, L. C., M. A. Knepper, and M. B. Burg. Mineralocorticoid effects on Na‐K‐ATPase in individual nephron segments. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol 9.): F536–F544, 1981.
 132. Garg, L. C., and N. Narang. Renal adaptation to potassium in the adrenalectomized rabbit. J. Clin. Invest. 76: 1065–1070, 1985.
 133. Garg, L. C., and N. Narang. Effects of potassium bicarbonate on distal nephron Na‐K‐ATPase in adrenalectomized rabbits. Pflugers Arch. 409: 126–131, 1987.
 134. Garty, H., and D. J. Benos. Characteristics and regulatory mechanisms of the amiloride‐blockable Na + channel. Physiol. Rev. 68: 309–373, 1988.
 135. Geering, K., M. Girardet, C. Bron, J. P. Kraehenbuhl, and B. C. Rossier. Hormonal regulation of (Na +, K +) ATPase biosynthesis in the toad bladder. J. Biol. Chem. 257: 10338–10343, 1982.
 136. Gilula, N. B., O. R. Reeves, and A. Steinbach. Metabolic coupling, ionic coupling and cell contacts. Nature 235: 262–265, 1972.
 137. Gitter, A. H., K. W. Beyenbach, C. W. Christine, P. Gross, W. W. Minuth, and E. Fromter. High‐conductance K + channel in apical membranes of principal cells cultured from rabbit renal cortical collecting duct anlagen. Pflugers Arch. 408: 282–290, 1987.
 138. Gluck, S., and Q. Al‐Awqati. Vasopressin increases water permeability by inducing pores. Nature 284: 631–632, 1980.
 139. Gluck, S., and Q. Al‐Awqati. An electrogenic proton‐translocating adenosine triphosphatase from bovine kidney medulla. J. Clin. Invest. 73: 1704–1710, 1984.
 140. Gluck, S., and J. Caldwell. Immunoaffinity purification and characterization of vacuolar H + ATPase from bovine kidney. J. Biol. Chem. 262: 15780–15789, 1987.
 141. Gluck, S., and J. Caldwell. Proton‐translocating ATPase from bovine kidney medulla: partial purification and reconstitution. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol 23.): F71–F79, 1988.
 142. Gluck, S., C. Cannon and Q. Al‐Awqati. Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H + pumps into the luminal membrane. Proc. Natl. Acad. Sci. USA 79: 4327–4331, 1982.
 143. Gluck, S., S. Kelly, and Q. Al‐Awqati. The proton translocating ATPase responsible for urinary acidification. J. Biol. Chem. 257: 9230–9233, 1982.
 144. Good, D. W., H. Velazquez, and F. S. Wright. Luminal influences on potassium secretion: low sodium concentration. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol 15.): F609–F619, 1984.
 145. Goodenough, D. A., and J.‐P. Revel. A fine structural analysis of intercellular junctions in the mouse. J. Cell Biol. 45: 272–290, 1970.
 146. Graber, M. L., H. H. Bengele, E. Mroz, C. Lechene, and E. A. Alexander. Acute metabolic acidosis augments collecting duct acidification rate in the rat. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol 10.): F669–F676, 1981.
 147. Graber, M., P. R. Brink, D. Dilillo, P. Devine, and E. Pastoriza‐Munoz. Permeabilizing the granular cell of toad and turtle bladder: lack of cell coupling. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol 22.): F588–F594, 1987.
 148. Grantham, J. J. Vasopressin: effect on deformability of urinary surface of collecting duct cells. Science 168: 1093–1095, 1970.
 149. Grantham, J. J., and M. Burg. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am. J. Physiol. 211: 255–259, 1966.
 150. Grantham, J. J., F. E. Cuppage, and D. Fanestil. Direct observation of toad bladder response to vasopressin. J. Cell Biol. 48: 695–699, 1971.
 151. Grantham, J. J., C. E. Ganote, M. B. Burg, and J. Orloff. Paths of transtubular water flow in isolated renal collecting tubules. J. Cell Biol. 41: 562–576, 1969.
 152. Griepp, E. B., W. J. Dolan, E. S. Robbins, and D. D. Sabatini. Participation of plasma membrane proteins in the formation of tight junctions by cultured epithelial cells. J. Cell Biol. 96: 693–702, 1983.
 153. Griffith, L. D., R. E. Bulger, and B. F. Trump. Fine structure of mucosubstances on “intercalated cells” from the rat distal convoluted tubule and collecting duct. Anat. Rec. 160: 643–662, 1968.
 154. Griffiths, G., K. Simons, G. Warren, and K. T. Tokuyasu. Immunoelectron microscopy using thin, frozen sections: application to the study of the intracellular transport of Semliki Forest virus spike glycoproteins. Methods Enzymol. 96: 466–485, 1983.
 155. Groniowski, J. W., W. Biczyskowa, and M. Walski. Electron microscope studies on the surface coat of the nephron. J. Cell Biol. 40: 585–601, 1969.
 156. Gronowicz, G., S. K. Masur, and E. Holtzman. Quantitative analysis of exocytosis and endocytosis in the hydroosmotic response of toad bladder. J. Membr. Biol. 52: 221–235, 1980.
 157. Grossman, E. B., and S. C. Hebert. Modulation of Na‐K‐ATPase activity in the mouse medullary thick ascending limb of Henle: effects of mineralocorticoids and sodium. J. Clin. Invest. 81: 885–892, 1988.
 158. Gundersen, H. J. G. Stereology and sampling of biological surfaces. In: Analysis of Organic and Biological Surfaces, edited by P. Echlin. New York, Wiley & Sons, 1984, p. 478–506.
 159. Gurich, R. W., and D. G. Warnock. Electrically neutral Na + ‐H + exchange in endosomes obtained from rabbit renal cortex. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol 20.): F702–F709, 1986.
 160. Hagege, J. Morphologie et histophysiologie des cellules intercalaires du tube urinaire des vertebres tetrapodes. Ann. Biol. 11: 105–143, 1972.
 161. Hagege, J., M. Gabe, and G. Richet. Scanning of the apical pole of distal tubule cells under differing acid‐base conditions. Kidney Int. 5: 137–146, 1974.
 162. Hagege, J., and G. Richet. Dark cells of the distal convoluted tubules and collecting ducts. I. Morphological data. Fortschr. Zool. 23: 289–298, 1975.
 163. Hagege, J., G. Richet, and M. Gabe. Augmentation du nombre des cellules intercalaires renales du rat soumis a une surcharge en bicarbonates alcalins. C. R. Acad. Sci. [III] 267: 1611–1613, 1968.
 164. Hancox, N. M., and J. Komender. Quantitative and qualitative changes in the “dark” cells of the renal collecting tubules in rats deprived of water. Q. J. Exp. Physiol. 48: 346–354, 1963.
 165. Handler, J. S., R. W. Butcher, E. W. Sutherland, and J. Orloff. The effect of vasopressin and of theophylline on the concentration of adenosine 3′,5′‐phosphate in the urinary bladder of the toad. J. Biol. Chem. 240: 4524–4526, 1965.
 166. Handler, J. S., and A. S. Preston. Study of enzymes regulating vasopressin‐stimulated cyclic AMP metabolism in separated mitochondria‐rich and granular epithelial cells of toad urinary bladder. J. Membr. Biol. 26: 43–50, 1976.
 167. Hansen, G. P., C. C. Tisher, and R. R. Robinson. Response of the collecting ducts to disturbances of acid‐base and potassium. Kidney Int. 17: 326–337, 1980.
 168. Hardy, M. A. Urea and Na + permeabilities in toad urinary bladder: one or two solute pathways? Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol 17.): F56–F63, 1985.
 169. Hardy, M. A., and D. R. Di Bona. Extracellular Ca + + and the effect of antidiuretic hormone on the water permeability of the toad urinary bladder: an example of flow‐induced alteration of flow. J. Membr. Biol. 67: 27–44, 1982.
 170. Hardy, M. A., and D. R. Di Bona. Microfilaments and the hydrosmotic action of vasopressin in toad urinary bladder. Am. J. Physiol. 243 (Cell Physiol 12.): C200–C204, 1982.
 171. Harmanci, M. C., W. A. Kachadorian, H. Valtin, and V. A. Di Scala. Antidiuretic hormone‐induced intramembranous alteration in mammalian collecting ducts. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol 4.): F440–F443, 1978.
 172. Harmanci, M. C., P. Stern, W. A. Kachadorian, H. Valtin, and V. A. Di Scala. Vasopressin and collecting duct intramembranous particle clusters: a dose‐response relationship. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol 8.): F560–F564, 1980.
 173. Harris, H. W. Jr. and J. S. Handler. The role of membrane turnover in the water permeability response to antidiuretic hormone. J. Membr. Biol. 103: 207–216, 1988.
 174. Harris, H. W., Jr., J. S. Handler, and R. Blumenthal. Apical membrane vesicles of ADH‐stimulated toad bladder are highly water permeable. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol 27.): F237–F243, 1990.
 175. Harris, H. W., Jr., D. Kikeri, A. Janoshazi, A. K. Solomon and M. L. Zeidel. High proton flux through membranes containing antidiuretic hormone water channels. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol 28.): F366–F371, 1990.
 176. Harris, H. W., Jr., H. R. Murphy, M. C. Willingham, and J. S. Handler. Isolation and characterization of specialized regions of toad urinary bladder apical plasma membrane involved in the water permeability response to antidiuretic hormone. J. Membr. Biol. 96: 175–186, 1987.
 177. Harris, H. W., Jr., J. B. Wade, and J. S. Handler. Fluorescent markers to study membrane retrieval in antidiuretic hormone‐treated toad urinary bladder. Am. J. Physiol. 251 (Cell Physiol 20.): C274–C284, 1986.
 178. Harris, H. W., Jr., J. B. Wade, and J. S. Handler. Trans‐epithelial water flow regulates apical membrane retrieval in antidiuretic hormone‐stimulated toad urinary bladder. J. Clin. Invest. 78: 703–712, 1986.
 179. Harris, H. W., Jr., J. B. Wade, and J. S. Handler. Identification of specific apical membrane polypeptides associated with the antidiuretic hormone‐elicited water permeability increase in the toad urinary bladder. Proc. Natl. Acad. Sci. USA 85: 1942–1946, 1988.
 180. Hartwig, J. H., D. A. Ausiello, and D. Brown. Vasopressin‐induced changes in the three‐dimensional structure of toad bladder apical surface. Am. J. Physiol. 253 (Cell Physiol 22.): C707–C720, 1987.
 181. Hartwig, J. H., D. Brown, D. A. Ausiello, T. P. Stossel and L. Orci. Polarization of gelsolin and actin binding protein in kidney epithelial cells. J. Histochem. Cytochem. 38: 1145–1153, 1990.
 182. Hayashi, M., and A. I. Katz. The kidney in potassium depletion. I. Na +‐K +‐ATPase activity and [3H]ouabain binding in MCT. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F437–F446, 1987.
 183. Hayashi, M., and A. I. Katz. The kidney in potassium depletion. II. K + handling by the isolated perfused rat kidney. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F447–F452, 1987.
 184. Hayashi, M., V. L. Schuster, and J. B. Stokes. Absence of transepithelial anion exchange by rabbit OMCD: evidence against reversal of cell polarity. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol 24.): F220–F228, 1988.
 185. Hayhurst, R. A., and R. G. O'neil. Time‐dependent actions of aldosterone and amiloride on Na + ‐K +‐ATPase of cortical collecting duct. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol 23.): F689–F696, 1988.
 186. Hays, R. M., J. Chevalier, R. Gobin, and J. Bourguet. Fusion images and intramembrane particle aggregates during the action of antidiuretic hormone: a rapid‐freeze study. Cell Tissue Res. 240: 433–439, 1985.
 187. Hays, R. M., N. Franki, and G. Ding. Effects of antidiuretic hormone on the collecting duct. Kidney Int. 31: 530–537, 1987.
 188. Hays, R. M., and A. Leaf. Studies on the movement of water through the isolated toad bladder and its modification by vasopressin. J. Gen. Physiol. 45: 905–919, 1962.
 189. Hays, S. R., M. Baum, and J. P. Kokko. Effects of protein kinase C activation on sodium, potassium, chloride, and total CO2 transport in the rabbit cortical collecting tubule. J. Clin. Invest. 80: 1561–1570, 1987.
 190. Hayslett, J. P. Functional adaptation to reduction in renal mass. Physiol. Rev. 59: 137–164, 1979.
 191. Hayslett, J. P., and H. J. Binder. Mechanism of potassium adaptation. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol 12.): F103–F112, 1982.
 192. Hayslett, J. P., M. Kashgarian, and F. H. Epstein. Functional correlates of compensatory renal hypertrophy. J. Clin. Invest. 47: 774–782, 1968.
 193. Hebert, S. C., and T. E. Andreoli. Interactions of temperature and ADH on transport processes in cortical collecting tubules. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F470–F480, 1980.
 194. Heidenhain, R. Mikroskopische Beitrage zur Anatomie und Physiologie der Nieren. Arch. Mikrosk. Anat. 10: 1–50, 1874.
 195. Helman, S. I., T. C. Cox, and W. Van Driessche. Hormonal control of apical membrane Na transport in epithelia: studies with fluctuation analysis. J. Gen. Physiol. 82: 201–220, 1983.
 196. Hertzberg, E. L., and N. B. Gilula. Isolation and characterization of gap junctions from rat liver. J. Biol. Chem. 254: 2138–2147, 1979.
 197. Heuser, J. Three‐dimensional visualization of coated vesicle formation in fibroblasts. J. Cell Biol. 84: 560–583, 1980.
 198. Heuser, J. E., and S. R. Salpeter. Organization of acetylcholine receptors in quick‐frozen, deep‐etched, and rotary‐replicated Torpedo postsynaptic membrane. J. Cell Biol. 82: 150–173, 1979.
 199. Higashihara, E., and J. P. Kokko. Effects of aldosterone on potassium recycling in the kidney of adrenalectomized rats. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol 17.): F219–F227, 1985.
 200. Hirsch, D., M. Kashgarian, E. L. Boulpaep, and J. P. Hayslett. Role of aldosterone in the mechanism of potassium adaptation in the initial collecting tubule. Kidney Int. 26: 798–807, 1984.
 201. Hoch, B. S., M. B. Ast, M. J. Fusco, M. Jacoby, and S. D. Levine. Protein synthesis inhibitors attenuate water flow in vasopressin‐stimulated toad urinary bladder. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol 23.): F139–F144, 1988.
 202. Hoch, B. S., P. C. Gorfien, D. Linzer, M. J. Fusco, and S. D. Levine. Mercurial reagents inhibit flow through ADH‐induced water channels in toad bladder. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol 25.): F948–F953, 1989.
 203. Holthofer, H., B. A. Schulte, G. Pasternack, G. J. Siegel, and S. S. Spicer. Immunocytochemical characterization of carbonic anhydrase‐rich cells in the rat kidney collecting duct. Lab. Invest. 57: 150–156, 1987.
 204. Holthofer, H., B. A. Schulte, G. Pasternack, G. J. Siegel, and S. S. Spicer. Three distinct cell populations in rat kidney collecting duct. Am. J. Physiol. 253 (Cell Physiol 22.): C323–C328, 1987.
 205. Horisberger, J. D., M. Hunter, B. Stanton, and G. Giebisch. The collecting tubule of Amphiuma. II. Effects of potassium adaptation. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol 22.): F1273–F1282, 1987.
 206. Horster, M., H. Schmid, and U. Schmidt. Aldosterone in vitro restores nephron Na‐K‐ATPase of distal segments from adrenalectomized rabbits. Pflugers Arch. 384: 203–206, 1980.
 207. Horster, M. F., and M. Stopp. Transport and metabolic functions in cultured renal tubule cells. Kidney Int. 29: 46–53, 1986.
 208. Humbert, F., A. Grandchamp, C. Pricam, A. Perrelet, and L. Orci. Morphological changes in tight junctions of Necturus maculosus proximal tubules undergoing saline diuresis. J. Cell Biol. 69: 90–96, 1976.
 209. Humbert, F., R. Montesano, A. Grosso, R. C. De Sousa, and L. Orci. Particle aggregates in plasma and intracellular membranes of toad bladder (granular cell). Experientia 33: 1364–1367, 1977.
 210. Humbert, F., C. Pricam, A. Perrelet, and L. Orci. Specific plasma membrane differentiations in the cells of the kidney collecting tubule. J. Ultrastruct. Res. 52: 13–20, 1975.
 211. Ibarra, C., P. Ripoche, and J. Bourguet. Effect of mercurial compounds on net water transport and intramembrane particle aggregates in ADH‐treated frog urinary bladder. J. Membr. Biol. 110: 115–126, 1989.
 212. Ilic, V., and D. Brown. Modification of mitochondria‐rich cells in different ionic conditions: changes in cell morphology and cell number in the skin of Xenopus laevis. Anat. Rec. 196: 153–161, 1980.
 213. Imai, M. The connecting tubule: a functional subdivision of the rabbit distal nephron segments. Kidney Int. 15: 346–356, 1979.
 214. Imai, M., and R. Nakamura. Function of distal convoluted and connecting tubules studied by isolated nephron fragments. Kidney Int. 22: 465–472, 1982.
 215. Imbert‐Teboul, M., A. Doucet, S. Marsy, and S. Siaume‐Perez. Alterations of enzymatic activities along rat collecting tubule in potassium depletion. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol 22.): F408–F417, 1987.
 216. Jones, C. J., and R. W. Stoddart. A post‐embedding avidin–biotin peroxidase system to demonstrate the light and electron microscopic localization of lectin binding sites in rat kidney tubules. Histochem. J. 18: 371–379, 1986.
 217. Jones, S. M., G. Frindt, and E. E. Windhager. Effect of peritubular [Ca] or ionomycin on hydroosmotic response of CCTs to ADH or cAMP. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol 23.): F240–F253, 1988.
 218. Kachadorian, W. A., C. Casey, and V. A. Di Scala. Time course of ADH‐induced intramembranous particle aggregation in toad urinary bladder. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol 3.): F461–F465, 1978.
 219. Kachadorian, W. A., R. A. Coleman, and J. B. Wade. Water permeability and particle aggregates in ADH‐, cAMP‐, and forskolin‐treated toad bladder. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol 22.): F120–F125, 1987.
 220. Kachadorian, W. A., S. A. Ellis, and J. Muller. Possible roles for microtubules and microfilaments in ADH action on toad urinary bladder. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol 5.): F14–F20, 1979.
 221. Kachadorian, W. A., and S. D. Levine. Effect of distension on ADH‐induced osmotic water flow in toad urinary bladder. J. Membr. Biol. 64: 181–186, 1982.
 222. Kachadorian, W. A., S. D. Levine, J. B. Wade, V. A. Di Scala, and R. M. Hays. Relationship of aggregated intramembranous particles to water permeability in vasopressin‐treated toad urinary bladder. J. Clin. Invest. 59: 576–581, 1977.
 223. Kachadorian, W. A., J. Muller, and S. J. Ellis. Time‐dependent attenuation of water flow in antidiuretic hormone‐treated toad bladder. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol 19.): F845–F849, 1986.
 224. Kachadorian, W. A., J. Muller, and A. Finkelstein. Role of osmotic forces in exocytosis: studies of ADH induced fusion in toad urinary bladder. J. Cell Biol. 91: 584–588, 1981.
 225. Kachadorian, W. A., J. Muller, S. Rudich, and V. A. Di Scala. Relation of ADH effects to altered membrane fluidity in toad urinary bladder. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol 9.): F63–F69, 1981.
 226. Kachadorian, W. A., S. Sariban‐Sohraby, and K. R. Spring. Regulation of water permeability in toad urinary bladder at two barriers. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol 17.): F260–F265, 1985.
 227. Kachadorian, W. A., J. B. Wade, C. C. Uiterwyk, and V. A. Di Scala. Membrane structural and functional responses to vasopressin in toad bladder. J. Membr. Biol. 30: 381–401, 1977.
 228. Kachar, B., and T. S. Reese. Evidence for the lipidic nature of tight junction strands. Nature 296: 464–466, 1982.
 229. Kagowa, Y., and E. Racker. Partial resolution of the enzymes catalyzing oxidative phosphorylation. J. Biol. Chem. 246: 5477–5487, 1971.
 230. Kaissling, B. Ultrastructural characterization of the connecting tubule and the different segments of the collecting duct system in the rabbit kidney. In: Current Problems in Clinical Biochemistry, 8, Biochemical Nephrology, edited by U. Schmidt and W. G. Guder. Berlin: Huber, 1977, p. 435–446.
 231. Kaissling, B. Ultrastructural organization of the transition from the distal nephron to the collecting duct in the desert rodent Psammomys obesus. Cell Tissue Res. 212: 475–495, 1980.
 232. Kaissling, B. Structural aspects of adaptive changes in renal electrolyte secretion. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol 12.): F211–F226, 1982.
 233. Kaissling, B. Cellular heterogeneity of the distal nephron and its relation to function. Klin. Wochenschr. 63: 868–876, 1985.
 234. Kaissling, B. Structural adaptation to altered electrolyte metabolism by cortical distal segments. Federation Proc. 44: 2710–2716, 1985.
 235. Kaissling, B., S. Bachmann, and W. Kriz. Structural adaptation of the distal convoluted tubule to prolonged furosemide treatment. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol 17.): F374–F381, 1985.
 236. Kaissling, B., and W. Kriz. Structural analysis of the rabbit kidney. Adv. Anat. Embryol. Cell Biol. 56: 1–123, 1979.
 237. Kaissling, B., and W. Kriz. Axial heterogeneity of the “distal tubule.” Contrib. Nephrol. 33: 29–47, 1982.
 238. Kaissling, B., and M. Le Hir. Distal tubular segments of the rabbit kidney after adaptation to altered Na‐ and K‐intake. I. Structural changes. Cell Tissue Res. 224: 469–492, 1982.
 239. Kaissling, B., S. Peter, and W. Kriz. The transition of the thick ascending limb of Henle's loop into the distal convoluted tubule in the nephron of the rat kidney. Cell Tissue Res. 182: 111–118, 1977.
 240. Kaissling, B., and B. Stanton. Adaptation of distal tubule and collecting duct to increased sodium delivery. I. Ultrastructure. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol 24.): F1256–F1268, 1988.
 241. Karnaky, K. J. Jr., S. A. Ernst, and C. W. Philpott. Teleost chloride cell. I. Response of pupfish Cyprinodon variegatus gill Na,K‐ATPase and chloride cell fine structure to various high salinity environments. J. Cell Biol. 70: 144–156, 1976.
 242. Kashgarian, M., T. Ardito, D. J. Hirsch, and J. P. Hayslett. Response of collecting tubule cells to aldosterone and potassium loading. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol 22.): F8–F14, 1987.
 243. Kashgarian, M., D. Biemesderfer, M. Caplan, and B. Forbush III. Monoclonal antibody to Na,K‐ATPase: immunocytochemical localization along nephron segments. Kidney Int. 28: 899–913, 1985.
 244. Kashgarian, M., C. R. Taylor, H. J. Binder, and J. P. Hayslett. Amplification of cell membrane surface in potassium adaptation. Lab. Invest. 42: 581–588, 1980.
 245. Katz, U., W. V. Driessche, and C. Scheffey. The role of mitochondria‐rich cells in the chloride current conductance across toad skins. Biol. Cell 55: 245–250, 1985.
 246. Kimura, K., M. Takagi, T. Igari, M. Ishii, T. Ikeda, and S. Murao. Histochemical localization of kallikrein‐like pro‐phearg‐naphthylester esterase activity in the rat kidney. Histochemistry 75: 91–98, 1982.
 247. Kirk, K. L. Origin of ADH‐induced vacuoles in rabbit cortical collecting tubule. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol 23.): F719–F733, 1988.
 248. Kirk, K. L., A. Buku, and P. Eggena. Cell specificity of vasopressin binding in renal collecting duct: computer‐enhanced imaging of a fluorescent hormone analog. Proc. Natl. Acad. Sci. USA 84: 6000–6004, 1987.
 249. Kirk, K. L., J. A. Schafer, and D. R. Di Bona. Quantitative analysis of the structural events associated with antidiuretic hormone‐induced volume reabsorption in the rabbit cortical collecting tubule. J. Membr. Biol. 79: 65–74, 1984.
 250. Kissane, J. M. Quantitative histochemistry of the kidney. I. Segmental distribution of enzymes in the renal proximal tubule of normal rats. J. Histochem. Cytochem. 9: 578–584, 1961.
 251. Koechlin, N., J. M. Elalouf, B. Kaissling, N. Roinel, and C. De Rouffignac. A structural study of the rat proximal and distal nephron: effect of peptide and thyroid hormones. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol 25.): F814–F822, 1989.
 252. Koeppen, B. M. Electrophysiological identification of principal and intercalated cells in the rabbit outer medullary collecting duct. Pflugers Arch. 409: 138–141, 1987.
 253. Koeppen, B. M., B. A. Biagi, and G. H. Giebisch. Intracellular microelectrode characterization of the rabbit cortical collecting duct. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol 13.): F35–F47, 1983.
 254. Koeppen, B. M., and G. H. Giebisch. Mineralocorticoid regulation of sodium and potassium transport by the cortical collecting duct. In Regulation and Development of Membrane Transport Processes, edited by J. S. Graves, New York: John Wiley and Sons, 1985, p. 89–104.
 255. Kohn, O. F., P. P. Mitchell, and P. R. Steinmetz. Electroneutral bicarbonate secretion: coupling to apical and basolateral chloride transport, abstracted. Kidney Int. 33: 403, 1988.
 256. Kondo, Y., and M. Imai. Effects of glutaraldehyde fixation on renal tubular function. I. Preservation of vasopressin‐stimulated water and urea pathways in rat papillary collecting duct. Pflugers Arch. 408: 479–483, 1987.
 257. Koob, R., M. Zimmerman, W. Schoner, and D. Drenckhahn. Colocalization and coprecipitation of ankyrin and Na+,K+‐ATPase in kidney epithelial cells. Eur. J. Cell Biol. 45: 230–237, 1987.
 258. Kubat, B., M. Lorenzen, and E. Reale. Vasopressin‐induced intramembrane particle aggregates: a dose‐response relationship in the isolated cortical collecting duct of the rabbit kidney. Biol. Cell 66: 59–63, 1989.
 259. Kuhn, K., and E. Reale. Junctional complexes of the tubular cells in the human kidney as revealed with freeze‐fracture. Cell Tissue Res. 160: 193–205, 1975.
 260. Kumar, N. M., and N. B. Gilula. Cloning and characterization of human and rat liver cDNAs coding for a gap junction protein. J. Cell Biol. 103: 767–776, 1986.
 261. Kunau, R. T. Jr., and M. A. Whinnery. Potassium transfer in distal tubule of normal and remnant kidney. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol 4.): F186–F191, 1978.
 262. Larsen, E. H., H. H. Ussing, and K. R. Spring. Ion transport by mitochondria‐rich cells in toad skin. J. Membr. Biol. 99: 25–40, 1987.
 263. Lauer, B., and W. W. Minuth. Apico‐basal osmotic gradient induces transcytosis in cultured renal collecting duct epithelium. J. Membr. Biol. 101: 93–101, 1988.
 264. Leaf, A. Transepithelial transport and its hormonal control in toad bladder. Ergeb. Physiol. 56: 216–263, 1965.
 265. Lee, S.‐M. K., M. A. Chekal, and A. I. Katz. Corticosterone binding sites along the rat nephron. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol 13.): F504–F509, 1983.
 266. Lefurgey, A., M. Dratwa, and C. C. Tisher. Effects of colchicine and cytochalasin B on vasopressin‐ and cyclic adenosine monophosphate‐induced changes in toad urinary bladder. Lab. Invest. 45: 308–315, 1981.
 267. Lefurgey, A., and C. C. Tisher. Morphology of rabbit collecting duct. Am. J. Anat. 155: 111–124, 1979.
 268. Lefurgey, A., and C. C. Tisher. Time course of vasopressin‐induced formation of microvilli in granular cells of toad urinary bladder. J. Membr. Biol. 61: 13–19, 1981.
 269. Le Hir, M., and U. C. Dubach. Activities of enzymes of the tricarboxylic acid cycle in segments of rat nephrons. Pflugers Arch. 395: 239–243, 1982.
 270. Le Hir, M., and U. C. Dubach. The cellular specificity of lectin binding in the kidney. I. A light microscopical study in the rat. Histochemistry 74: 521–530, 1982.
 271. Le Hir, M., and U. C. Dubach. The cellular specificity of lectin binding in the kidney. II. A light microscopical study in the rabbit. Histochemistry 74: 531–540, 1982.
 272. Le Hir, M., B. Kaissling, and U. C. Dubach. Analysis of distal segments in the rabbit tubules after adaptation to altered Na and K intake. II. Changes in Na, K‐ATPase activity. Cell Tissue Res. 224: 493–504, 1982.
 273. Le Hir, M., B. Kaissling, B. M. Koeppen, and J. B. Wade. Binding of peanut lectin to specific epithelial cell types in kidney. Am. J. Physiol. 242 (Cell Physiol 11.): C117–C120, 1982.
 274. Lencer, W. I., D. Brown, D. A. Ausiello, and A. S. Verkman. Endocytosis of water channels in rat kidney: cell specificity and correlation with in vivo antidiuresis. Am. J. Physiol. 259 (Cell Physiol 28.): C920–C932, 1990.
 275. Lencer, W. I., A. S. Verkman, M. A. Arnaout, D. A. Ausiello and D. Brown. Endocytic vesicles from renal papilla which retrieve the vasopressin‐sensitive water channel do not contain a functional H +‐ATPase. J. Cell Biol. 111: 379–389, 1990.
 276. Levine, D. Z., and H. R. Jacobson. The regulation of renal acid secretion: new observations from studies of distal nephron segments. Kidney Int. 29: 1099–1109, 1986.
 277. Levine, S. D. The effects of calcium on water transport. Miner. Electrolyte Metab. 14: 31–39, 1988.
 278. Levine, S. D., N. Franki, and R. M. Hays. The effect of phloretin on water and solute movement in the toad bladder. J. Clin. Invest. 52: 1435–1442, 1973.
 279. Levine, S. D., and M. Jacoby. Comparison of effects of forskolin, cAMP, and vasopressin on Pf/Pd(w) of toad urinary bladder luminal membrane. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol 21.): F357–F360, 1987.
 280. Levine, S. D., and M. Jacoby. Localization of barriers to water flow in toad urinary bladder. Biol. Cell 66: 23–27, 1989.
 281. Levine, S. D., M. Jacoby, and A. Finkelstein. The water permeability of toad urinary bladder. II. The value of Pf/Pd (w) for the antidiuretic hormone‐induced water permeation pathway. J. Gen. Physiol. 83: 543–561, 1984.
 282. Levine, S. D., and W. A. Kachadorian. Barriers to water flow in vasopressin‐treated toad urinary bladder. J. Membr. Biol. 61: 135–139, 1981.
 283. Levine, S. D., and D. Schlondorff. The role of calcium in the action of vasopressin. Semin. Nephrol. 4: 144–158, 1984.
 284. List, J. H. Ueber einzellige Drusen (Bercherzellen) im Blasenepithele der amphiben. Arch. Mikrosk. Anat. 29: 147–156, 1887.
 285. Loewenstein, W. R., S. J. Socolar, S. Higashino, Y. Kanno, and N. Davidson. Intercellular communication: renal, urinary bladder, sensory and salivary gland cells. Science 149: 295–298, 1965.
 286. Lombard, W. E., J. P. Kokko, and H. R. Jacobsen. Bicarbonate transport in cortical and outer medullary collecting tubules. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol 13.): F289–F296, 1983.
 287. Lonnerholm, G. Histochemical demonstration of carbonic anhydrase activity in the rat kidney. Acta Physiol. Scand. 81: 433–439, 1971.
 288. Lonnerholm, G. Histochemical demonstration of carbonic anhydrase activity in human kidney. Acta Physiol. Scand. 88: 455–468, 1973.
 289. Lonnerholm, G., and Y. Ridderstrale. Intracellular distribution of carbonic anhydrase in the rat kidney. Kidney Int. 17: 162–174, 1980.
 290. Lorenzen, M., G. Frindt, A. Taylor, and E. E. Windhager. Quinidine effect on hydroosmotic response of collecting tubules to vasopressin and cAMP. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol 21.): F1103–F1111, 1987.
 291. Madsen, K. M., and C. C. Tisher. Cellular response to acute respiratory acidosis in rat medullary collecting duct. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol 14.): F670–F679, 1983.
 292. Madsen, K. M., and C. C. Tisher. Response of intercalated cells of rat outer medullary collecting duct to chronic metabolic acidosis. Lab. Invest. 51: 268–276, 1984.
 293. Madsen, K. M., and C. C. Tisher. Structure‐function relationships in H +‐secreting epithelia. Federation Proc. 44: 2704–2709, 1985.
 294. Madsen, K. M., and C. C. Tisher. Structural‐functional relationships along the distal nephron. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol 19.): F1–F15, 1986.
 295. Majack, R. A., and W. J. Larsen. The bicellular and reflexive junctions of renomedullary interstitial cells: functional implications of reflexive gap junctions. Am. J. Anat. 157: 181–189, 1980.
 296. Martinez‐Palomo, A. The surface coats of animal cells. Int. Rev. Cytol. 29: 29–76, 1970.
 297. Martinez‐Palomo, A., and D. Erlij. Structure of tight junctions in epithelia with different permeabilities. Proc. Natl. Acad. Sci. USA 72: 4487–4491, 1975.
 298. Marver, D. Evidence of corticosteroid action along the nephron. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol 15.): F111–F123, 1984.
 299. Masters, B. R., and D. D. Fanestil. Metabolic dependence of the offset of antidiuretic hormone–induced osmotic flow of water across the toad urinary bladder. J. Membr. Biol. 48: 237–247, 1979.
 300. Masur, S. K., S. Cooper, and M. S. Rubin. Effect of an osmotic gradient on antidiuretic hormone‐induced endocytosis and hydroosmosis in the toad urinary bladder. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol 16.): F370–F379, 1984.
 301. Masur, S. K., and G. Gronowicz. Ruthenium red and horseradish peroxidase used as a double marker to demonstrate endocytosis. Quantitative EM and cytochemical studies of ADH action in toad bladder. In: Membrane Biophysics II: Physical Methods in the Study of Epithelia, edited by M. A. Dinno, A. B. Callahan, and T. C. Rozzell. New York, Alan R. Liss, 1983, p. 173–185.
 302. Masur, S. K., E. Holtzman, I. L. Schwartz, and R. Walter. Correlation between pinocytosis and hydroosmosis induced by neurohypophyseal hormones and mediated by adenosine 3′,5′‐cyclic monophosphate. J. Cell Biol. 49: 582–594, 1971.
 303. Masur, S. K., Holtzman, E., and R. Walter. Hormone‐stimulated exocytosis in toad urinary bladder. J. Cell Biol. 52: 211–219, 1972.
 304. Masur, S. K., and S. Massardo. ADH and phorbol ester increase immunolabeling of the toad bladder apical membrane by antibodies made to granules. J. Membr. Biol. 96: 193–198, 1987.
 305. Masur, S. K., V. Sapirstein, and D. Rivero. Phorbol myristate acetate induces endocytosis as well as exocytosis and hydroosmosis in the toad urinary bladder. Biochim. Biophys. Acta 821: 286–296, 1985.
 306. Maunsbach, A. B. The influence of different fixatives and fixation methods on the ultrastructure of rat kidney proximal tubule cells. I. Comparison of different fixation methods and of glutaraldehyde, formaldehyde and osmium tetroxide fixatives. J. Ultrastruct. Res. 15: 242–282, 1966.
 307. McKinney, T. D., and M. B. Burg. Bicarbonate transport by rabbit cortical collecting tubules. J. Clin. Invest. 60: 766–768, 1977.
 308. Merz, W. A. Die Strecken messung an gerichteten Struktwuren in Mikroskop und ihre Anwedung zur Bestimmung von Oberflachen‐Volumen‐Relationen im Knochengewebe. Mikroskopie 22: 132–142, 1967.
 309. Mills, J. W., and L. E. Malick. Mucosal surface morphology of the toad urinary bladder: scanning electron microscope study of the natriferic and hydro‐osmotic response to vasopressin. J. Cell Biol. 77: 598–610, 1978.
 310. Montesano, R., A. Perrelet, P. Vassalli, and L. Orci. Absence of filipin–sterol complexes from large coated pits on the surface of culture cells. Proc. Natl. Acad. Sci. USA 76: 6391–6395, 1979.
 311. Moor, H., K. Muhlethaler, H. Waldner, and A. J. Frey‐Wyssling. A new freezing ultramicrotome. J. Biophys. Biochem. Cytol. 10: 1–13, 1961.
 312. Mordan, L. J., and F. G. Toback. Growth of kidney epithelial cells in culture: evidence for autocrine control. Am. J. Physiol. 246 (Cell Physiol 15.): C351–C354, 1984.
 313. Morel, F., D. Chabardes, and M. Imbert. Functional segmentation of the rabbit distal tubule by microdetermination of hormone‐dependent adenylate cyclase activity. Kidney Int. 9: 264–277, 1976.
 314. Morel, F., and A. Doucet. Hormonal control of kidney functions at the cell level. Physiol. Rev. 66: 377–468, 1986.
 315. Morel, F., M. Imbert‐Teboul, and D. Chabardes. Distribution of hormone‐dependent adenylate cyclase in the nephron and its physiological significance. Annu. Rev. Physiol. 43: 569–581, 1981.
 316. Mujais, S. K. Renal memory after potassium adaptation: role of Na + ‐K + ‐ATPase. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol 23.): F845–F850, 1988.
 317. Mujais, S. K., M. A. Chekal, J. P. Hayslett, and A. I. Katz. Regulation of renal Na + ‐K +‐ATPase in the rat: role of increased potassium transport. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol 20.): F199–F207, 1986.
 318. Mujais, S. K., M. A. Chekal, W. J. Jones, J. P. Hayslett, and A. I. Katz. Regulation of renal Na‐K‐ATPase in the rat: role of the natural mineralo‐ and glucocorticoid hormones. J. Clin. Invest. 73: 13–19, 1984.
 319. Mujais, S. K., M. A. Chekal, W. J. Jones, J. P. Hayslett, and A. I. Katz. Modulation of renal sodium‐potassium‐adenosine triphosphatase by aldosterone: effect of high physiologic levels on enzyme activity in isolated rat and rabbit tubules. J. Clin. Invest. 76: 170–176, 1985.
 320. Muller, J., and W. A. Kachadorian. Aggregate‐carrying membranes during ADH stimulation and washout in toad bladder. Am. J. Physiol. 247 (Cell Physiol 16.): C90–C98, 1984.
 321. Muller, J. and W. A. Kachadorian. Regulation of luminal membrane water permeability by water flow in toad urinary bladder. Biol. Cell 55: 219–224, 1985.
 322. Muller, J., W. A. Kachadorian, and V. A. Di Scala. Evidence that ADH‐stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells. J. Cell Biol. 85: 83–95, 1980.
 323. Murata, F., S. Tsuyama, S. Suzuki, H. Hamada, M. Ozawa, and T. Muramatsu. Distribution of glycoconjugates in the kidney by use of labeled lectins. J. Histochem. Cytochem. 31: 139–144, 1983.
 324. Murset, A. Untersuchungen über intoxications‐nephritis. University of Berne, 1885. Dissertation.
 325. Muto, S., G. Giebisch, and S. Sansom. Effects of adrenalectomy on CCD: evidence for differential response of two cell types. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol 22.): F742–F752, 1987.
 326. Muto, S., G. Giebisch, and S. Sansom. An acute increase of peritubular K stimulates K transport through cell pathways of CCT. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol 24.): F108–F114, 1988.
 327. Muto, S., S. Sansom, and G. Giebisch. Effects of a high potassium diet on electrical properties of cortical collecting ducts from adrenalectomized rabbits. J. Clin. Invest. 81: 376–380, 1988.
 328. Nicholson, G. L. Ultrastructural localization of lectin receptors. In: Advanced Techniques in Biological Electron Microscopy, edited by J. K. Koehler. Berlin: Springer, 1978, p. 1–38.
 329. Okkels, H. Differences entre les diverses cellules du troisieme segment du tube urinaire chez les vertebres. Bull. Histol. Appl. 6: 12–33, 1929.
 330. Oliver, J. New directions in renal morphology: a method, its results and its future. Harvey Lect. 40: 102–155, 1944.
 331. Oliver, J., M. MacDowell, L. G. Welt, M. A. Holliday, W. Hollander, Jr., R. W. Winter, T. F. Williams, and W. E. Segar. The renal lesions of electrolyte imbalance. I. The structural alterations in potassium‐depleted rats. J. Exp. Med. 106: 563–593, 1957.
 332. O'neil, R. G. Adrenal steroid regulation of potassium transport. In: Current Topics in Membranes and Transport: Potassium Transport: Physiology and Pathophysiology, edited by G. Giebisch. Orlando, FL: Academic, 1987, vol. 28, p. 185–206.
 333. O'neil, R. G., and R. A. Hayhurst. Functional differentiation of cell types of cortical collecting duct. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol 17.): F449–F453, 1985.
 334. O'neil, R. G., and R. A. Hayhurst. Sodium‐dependent modulation of the renal Na‐K‐ATPase: influence of mineralocorticoids on the collecting duct. J. Membr. Biol. 85: 169–179, 1985.
 335. O'neil, R. G., and S. I. Helman. Transport characteristics of renal collecting tubules: influences of DOCA and diet. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol 2.): F544–F558, 1977.
 336. O'neil, R. G., and S. C. Sansom. Electrophysiological properties of cellular and paracellular conductive pathways of the rabbit cortical collecting duct. J. Membr. Biol. 82: 281–295, 1984.
 337. Orci, L., F. Humbert, M. Amherdt, A. Grosso, R. C. De Sousa, and A. Perrelet. Patterns of membrane organization in toad bladder epithelium: a freeze‐fracture study. Experientia 31: 1335–1338, 1975.
 338. Orci, L., F. Humbert, D. Brown, and A. Perrelet. Membrane ultrastructure in urinary tubules. Int. Rev. Cytol. 73: 183–242, 1981.
 339. Orci, L., A. Perrelet, F. Malaisse‐Lagae, and P. Vassalli. Pore‐like structures in biological membranes. J. Cell Sci. 25: 157–162, 1977.
 340. Ordonez, N. G., and B. H. Spargo. The morphologic relationship of light and dark cells in potassium‐depleted rats. Am. J. Pathol. 84: 317–326, 1976.
 341. Pak Poy, R. F. K., and P. J. Bentley. Fine structure of the epithelial cells of the toad urinary bladder. Exp. Cell Res. 20: 235–237, 1960.
 342. Palmer, L. G., and M. Lorenzen. Antidiuretic hormone–dependent membrane capacitance and water permeability in the toad urinary bladder. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol 13.): F195–F204, 1983.
 343. Palmer, L. G., and N. Speez. Modulation of antidiuretic hormone‐dependent capacitance and water flow in toad urinary bladder. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol 15.): F501–F508, 1984.
 344. Palmer, L. G., and N. Speez. Stimulation of apical Na permeability and basolateral Na pump of toad urinary bladder by aldosterone. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol 19.): F273–F281, 1986.
 345. Parisi, M. and J. Bourguet. The single file hypothesis and the water channels induced by antidiuretic hormone. J. Membr. Biol. 71: 189–193, 1983.
 346. Parisi, M., and J. Bourguet. Effects of cellular acidification on ADH‐induced intramembrane particle aggregates. Am. J. Physiol. 246 (Cell Physiol. 15): C157–159, 1984.
 347. Parisi, M., J. Merot, and J. Bourguet. Glutaraldehyde fixation preserves the permeability properties of the ADH‐induced water channels. J. Membr. Biol. 86: 239–245, 1985.
 348. Parisi, M., M. Pisam, J. Merot, J. Chevalier, and J. Bourguet. The role of microtubules and microfilaments in the hydroosmotic response to antidiuretic hormone. Biochim. Biophys. Acta 817: 333–342, 1985.
 349. Paul, D. L. Molecular cloning of cDNA for rat liver gap junction protein. J. Cell Biol. 103: 123–134, 1986.
 350. Peachey, L. D., and H. Rasmussen. Structure of the toad's urinary bladder as related to its physiology. J. Biophys. Biochem. Cytol. 10: 529–553, 1961.
 351. Pearl, M., and A. Taylor. Actin filaments and vasopressin‐stimulated water flow in toad urinary bladder. Am. J. Physiol. 245 (Cell Physiol 14.): C28–C39, 1983.
 352. Pearl, M., and A. Taylor. Role of the cytoskeleton in the control of transcellular water flow by vasopressin in amphibian urinary bladder. Biol. Cell 55: 163–172, 1985.
 353. Petty, K. J., J. P. Kokko, and D. Marver. Secondary effect of aldosterone on Na‐K ATPase activity in the rabbit cortical collecting tubule. J. Clin. Invest. 68: 1514–1521.
 354. Pinto da Silva, P., and B. Kachar. On tight junction structure. Cell 28: 441–450, 1982.
 355. Preuss, H. G. Symposium on compensatory renal growth. Kidney Int. 23: 569–646, 1984.
 356. Pricam, C., F. Humbert, A. Perrelet, and L. Orci. A freeze‐etch study of the tight junctions of the rat kidney tubules. Lab. Invest. 30: 286–291, 1974.
 357. Pricam, C., F. Humbert, A. Perrelet, and L. Orci. Gap junctions between mesangial and lacis cells. J. Cell Biol. 63: 349–354, 1974.
 358. Pringent, A., M. Bichara, and M. Paillard. Hydrogen transport in papillary collecting duct of rabbit kidney. Am. J. Physiol. 248 (Cell Physiol 17.): C241–C246, 1985.
 359. Pumplin, D. W., and D. M. Fambrough. (Na + ‐K +)‐ATPase correlated with a major group of intramembrane particles in freeze‐fracture replicas of cultured chick myotubes. J. Cell Biol. 97: 1214–1225, 1983.
 360. Rabinowitz, L., R. L. Sarason, H. Yamauchi, K. K. Yamanaka, and P. A. Tzendzalian. Time course of adaptation to altered K intake in rats and sheep. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol 16.): F607–F617, 1984.
 361. Rambourg, A. Morphological and histochemical aspects of glycoproteins at the cell surface. Int. Rev. Cytol. 31: 57–114, 1971.
 362. Rastegar, A., D. Biemesderfer, M. Kashgarian, and J. P. Hayslett. Changes in membrane surfaces of collecting duct cells in potassium adaptation. Kidney Int. 18: 293–301, 1980.
 363. Revel, J.‐P., and M. J. Karnovsky. Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol. 33: C7–C12, 1967.
 364. Rhodin, J. Anatomy of kidney tubules. Int. Rev. Cytol. 7: 485–534, 1958.
 365. Richet, G., and J. Hagege. Dark cells of the distal convoluted tubules and collecting ducts. II. Physiological significance. Fortschr. Zool. 23: 299–306, 1975.
 366. Rick, R., and D. R. Di Bona. Intracellular solute gradients during osmotic water flow: an electron‐microprobe analysis. J. Membr. Biol. 96: 85–94, 1987.
 367. Rick, R., C. Roloff, A. Dorge, F. X. Beck, and K. Thurau. Intracellular electrolyte concentrations in the frog skin epithelium: effect of vasopressin and dependence on the Na concentration in the bathing media. J. Membr. Biol. 78: 129–145, 1984.
 368. Ridderstrale, Y., M. Kashgarian, B. Koeppen, G. Giebisch, D. Stetson, T. Ardito, and B. Stanton. Morphological heterogeneity of the rabbit collecting duct. Kidney Int. 34: 655–670, 1988.
 369. Riddle, C. V., and S. A. Ernst. Structural simplicity of the zonula occludens in the electrolyte‐secreting epithelium of the avian salt gland. J. Membr. Biol. 45: 21–35, 1979.
 370. Rielle, J. C., D. Brown, and L. Orci. Differences in glycocalyx composition between cells of the cortical thick ascending limb of Henle and the macula densa revealed by lectin–gold cytochemistry. Anat. Rec. 218: 243–248, 1987.
 371. Rosen, S. Localization of carbonic anhydrase activity in the vertebrate nephron. Histochemistry 4: 35–48, 1972.
 372. Rosen, S., J. A. Oliver, and P. R. Steinmetz. Urinary acidification and carbonic anhydrase distribution in bladders of Dominican and Columbian toads. J. Membr. Biol. 15: 193–205, 1974.
 373. Rossier, B. C. Biosynthesis of (Na+,K+)‐ATPase in amphibian epithelial cells. Current Top. Membr. Trans. 20: 125–145, 1983.
 374. Rossier, B. C., K. Geering, and J. P. Kraehenbul. Regulation of the sodium pump: how and why? Trends Biochem. Sci. 12: 483–487, 1987.
 375. Roth, J. Application of lectin‐gold complexes for electron microscopic localization of glycoconjugates in thin sections. J. Histochem. Cytochem. 31: 987–999, 1983.
 376. Roth, J. The colloidal gold marker system for light and electron microscopic cytochemistry. In: Techniques in Immunocytochemistry, edited by G. R. Bullock and P. Petrusz. London: Academic, 1983, vol. 2, p. 217–284.
 377. Roth, J., M. Bendayan, and L. Orci. Ultrastructural localization of intracellular antigens by the use of protein A‐gold complex. J. Histochem. Cytochem. 26: 1074–1081, 1978.
 378. Roth, J., and D. J. Taatjes. Glycocalyx heterogeneity of rat kidney urinary tubule: demonstration with a lectin‐gold technique specific for sialic acid. Eur. J. Cell Biol. 39: 449–457, 1985.
 379. Rozengurt, E. Early signals in the mitogenic response. Science 234: 161–166, 1986.
 380. Rudneff, M. Ueber die epidermoidale Schicht der Froschhaut. Arch. Mikrosk. Anat. 1: 295–298, 1865.
 381. Sabolic, I., and G. Burckhardt. Characteristics of the proton pump in renal rat cortical vesicles. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol 19.): F817–F826, 1986.
 382. Salehmoghaddam, S., T. Bradley, N. Mikhail, B. Badie‐Dezfooly, E. P. Nord, W. Trizna, R. Kheyfets, and L. G. Fine. Hypertrophy of basolateral Na‐K pump activity in the proximal tubule of the remnant kidney. Lab. Invest. 53: 443–452, 1985.
 383. Sands, J. M., H. Nonoguchi, and M. A. Knepper. Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments. Am. J. Physiol. 253: (Renal Fluid Electrolyte Physiol. 22): F823–F832, 1987.
 384. Sansom, S., S. Agulian, S. Muto, V. Illig, and G. Giebisch. K activity of CCD principal cells from normal and DOCA‐treated rabbits. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol 25.): F136–F142, 1989.
 385. Sansom, S. C., S. Muto, and G. Giebisch. Na‐dependent effects of DOCA on cellular transport properties of CCDs from ADX rabbits. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol 22.): F753–F759, 1987.
 386. Sansom, S. C., and R. G. O'neil. Mineralocorticoid regulation of apical cell membrane Na + and K + transport of the cortical collecting duct. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol 17.): F858–F868, 1985.
 387. Sansom, S. C., and R. G. O'neil. Effects of mineralocorticoids on transport properties of cortical collecting duct basolateral membrane. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol 20.): F743–F757, 1986.
 388. Sasaki, J., S. Tilles, J. Condeelis, J. Carboni, L. Meiteles, N. Franki, R. Bolon, C. Robertson, and R. M. Hays. Electron‐microscopic study of the apical region of the toad bladder epithelial cell. Am. J. Physiol. 247 (Cell Physiol 16.): C268–C281, 1984.
 389. Satlin, L. M., and G. J. Schwartz. Postnatal maturation of rabbit renal collecting duct: intercalated cell function. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol 22.): F622–F635, 1987.
 390. Satlin, L. M., and G. J. Schwartz. Cellular remodeling of HCO3− ‐secreting cells in rabbit renal collecting duct in response to an acidic environment. J. Cell Biol. 109: 1279–1288, 1989.
 391. Sato, A., and S. S. Spicer. Cell specialization in collecting tubules of the guinea pig kidney: carbonic anhydrase activity and glycosaminoglycan production in different cells. Anat. Rec. 202: 431–443, 1982.
 392. Schachowa, S. Untersuchungen uber die Niere. University of Berne, 1876. Dissertation.
 393. Schafer, J. A., and S. L. Troutman. Potassium transport in cortical collecting tubules from mineralocorticoid‐treated rat. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol 22.): F76–F88, 1987.
 394. Scherzer, P., H. Wald, and J. W. Czaczkes. Na,K‐ATPase in isolated rabbit tubules after unilateral nephrectomy and Na + loading. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol 17.): F565–F573, 1985.
 395. Scherzer, P., H. Wald, and M. M. Popovtzer. Enhanced glomerular filtration and Na + ‐K + ‐ATPase with furosemide administration. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F910–F915, 1987.
 396. Schiefferdecker, P. Zur Kenntnis des Baues der Schleimdrusen. Arch. Mikrosk. Anat. 23: 382–412, 1881.
 397. Schiller, A., and R. Taugner. Freeze‐fracturing and deep‐etching with the volatile cryoprotectant ethanol reveals true membrane surfaces of kidney structures. Cell Tissue Res. 210: 57–69, 1980.
 398. Schiller, A., and R. Taugner. Heterogeneity of tight junctions along the collecting duct in the renal medulla: a freeze‐fracture study in rat and rabbit. Cell Tissue Res. 223: 603–614, 1982.
 399. Schlatter, E., and J. A. Schafer. Electrophysiological studies in principal cells of rat cortical collecting tubules: ADH increases the apical membrane Na + ‐conductance. Pflugers Arch. 409: 81–92, 1987.
 400. Schon, D. A., K. A. Backman, and J. P. Hayslett. Role of the medullary collecting duct in potassium excretion in potassium adapted animals. Kidney Int. 20: 655–662, 1981.
 401. Schulte, B. A., and S. S. Spicer. Histochemical evaluation of mouse and rat kidneys with lectin–horseradish peroxidase conjugates. Am. J. Anat. 168: 345–362, 1983.
 402. Schulze, F. E. Epithel‐ und Drusen‐Zellen. Arch. Mikrosk. Anat. Entwmech. 3: 137–203, 1876.
 403. Schuster, V. L. Cyclic adenosine monophosphate‐stimulated bicarbonate secretion in rabbit cortical collecting tubules. J. Clin. Invest. 75: 2056–2064, 1985.
 404. Schuster, V. L., S. M. Bonsib, and M. L. Jennings. Two types of collecting duct mitochondria‐rich (intercalated) cells: lectin and band 3 cytochemistry. Am. J. Physiol. 251 (Cell Physiol 20.): C347–C355, 1986.
 405. Schwartz, G. J., and Q. Al‐Awqati. Carbon dioxide causes exocytosis of vesicles containing H + pumps in isolated perfused proximal and collecting tubules. J. Clin. Invest. 75: 1638–1644, 1985.
 406. Schwartz, G. J., J. Barasch and Q. Al‐Awqati. Plasticity of functional epithelial polarity. Nature 318: 368–371, 1985.
 407. Schwartz, G. J., and M. B. Burg. Mineralocorticoid effects on cation transport by cortical collecting tubules in vitro. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol 4.): F576–F585, 1978.
 408. Schwartz, G. J., L. M. Satlin, and J. E. Bergmann. Fluorescent characterization of collecting duct cells: a second H + ‐secreting type. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol 24.): F1003–F1014, 1988.
 409. Scott, W. N., V. S. Sapirstein, and M. J. Yoder. Partition of tissue functions in epithelia: localization of enzymes in “mitochondria‐rich” cells of toad urinary bladder. Science 184: 797–800, 1974.
 410. Severs, N. J., and H. Robenek. Detection of microdomains in biomembranes: an appraisal of recent developments in freeze‐fracture cytochemistry. Biochim. Biophys. Acta 737: 373–408, 1983.
 411. Shareghi, G. R., and L. C. Stoner. Calcium transport across segments of the rabbit distal nephron in vitro. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol 4.): F367–F375, 1978.
 412. Shi, L.‐B., D. Brown, and A. S. Verkman. Water, proton, and urea transport in toad bladder endosomes that contain the vasopressin‐sensitive water channel. J. Gen. Physiol. 95: 941–960, 1990.
 413. Shi, L.‐B., and A. S. Verkman. Very high water permeability in vasopressin‐induced endocytic vesicles from toad urinary bladder. J. Gen. Physiol. 94: 1101–1115, 1989.
 414. Silver, R. B., J. B. Wade, and L. G. Palmer. cAMP induced changes in capacitance, water permeability and Na reabsorption in skin and urinary bladder of the urodele amphibian (Ambystoma tigrinum), abstracted. FASEB J. 2: A1304, 1988.
 415. Silverblatt, F. J., and R. E. Bulger. Gap junctions occur in vertebrate renal proximal tubule cells. J. Cell Biol. 47: 513–515, 1970.
 416. Simson, J. A. V., S. S. Spicer, J. Chao, L. Grimm, and H. S. Margolius. Kallikrein localization in rodent salivary glands and kidneys with the immunoglobulin‐enzyme bridge technique. J. Histochem. Cytochem. 27: 1567–1576, 1979.
 417. Slot, J. W., and H. J. Geuze. A new method of preparing gold probes for multiple‐labeling cytochemistry. Eur. J. Cell Biol. 38: 87–93, 1985.
 418. Smith, J. D., M. J. Bia, and R. A. De Fronzo. Clinical disorders of potassium metabolism. In: Fluid Electrolyte and Acid‐Base Disorders, edited by A. I. Ariett and R. A. De Fronzo. New York: Churchill Livingstone, 1985, p. 413–509.
 419. Spicer, S. S., P. J. Stoward, and R. E. Tashian. The immunohistolocalization of carbonic anhydrase in rodent tissues. J. Histochem. Cytochem. 27: 820–831, 1979.
 420. Spiegel, S., R. Blumenthal, P. H. Fishman, and J. S. Handler. Gangliosides do not move from apical to basolateral plasma membrane in cultured epithelial cells. Biochim. Biophys. Acta 821: 310–318, 1985.
 421. Spinelli, F., A. Grosso, and R. C. De Sousa. The hydroosmotic effect of vasopressin: a scanning electron microscope study. J. Membr. Biol. 23: 139–156, 1975.
 422. Spring, K. R., and H. H. Ussing. The volume of mitochondria‐rich cells of frog skin epithelium. J. Membr. Biol. 92: 21–26, 1986.
 423. Staehelin, L. A. Further observations on the fine structure of freeze‐cleaved tight junctions. J. Cell Sci. 13: 763–786, 1973.
 424. Stanton, B. A. Role of adrenal hormones in regulating distal nephron structure and ion transport. Federation Proc. 44: 2717–2727, 1985.
 425. Stanton, B. A. Regulation by adrenal corticosteroids of sodium and potassium transport in loop of Henle and distal tubule of rat kidney. J. Clin. Invest. 78: 1612–1620, 1986.
 426. Stanton, B. A. Renal potassium adaptation: cellular mechanisms and morphology. Curr. Top. Membr. Transp. 28: 225–267, 1987.
 427. Stanton, B. A., D. Biemesderfer, D. Stetson, M. Kashgarian, and G. Giebisch. Cellular ultrastructure of Amphiuma distal nephron: effects of exposure to potassium. Am. J. Physiol. 247 (Cell Physiol 16.): C204–C216, 1984.
 428. Stanton, B. A., D. Biemesderfer, J. B. Wade, and G. Giebisch. Structural and functional study of rat distal nephron: effects of K + adaptation and K + depletion. Kidney Int. 19: 36–48, 1981.
 429. Stanton, B., and G. Giebisch. Potassium transport by the renal distal tubule: effects of potassium loading. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol 12.): F487–F493, 1982.
 430. Stanton, B. A., G. Giebisch, G. Klein‐Robbenhaar, J. Wade, and R. A. De Fronzo. Effects of adrenalectomy and chronic adrenal corticosteroid replacement on potassium transport in rat kidney. J. Clin. Invest. 75: 1317–1326, 1985.
 431. Stanton, B. A., A. Janzen, G. Klein‐Robbenhaar, R. De‐Fronzo, G. Giebisch, and J. Wade. Ultrastructure of rat initial collecting tubules: effect of adrenal corticosteroid treatment. J. Clin. Invest. 75: 1327–1334, 1985.
 432. Stanton, B. A., and B. Kaissling. Adaptation of distal tubule and collecting duct to increased sodium delivery. II. Na + and K + transport. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol 24.): F1269–F1275, 1988.
 433. Stanton, B. A., and B. Kaissling. Regulation of epithelial ion transport and cell growth by sodium. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F1–F10, 1989.
 434. Stanton, B. A., L. Pan, H. Deetjen, V. Guckian, and G. Giebisch. Independent effects of aldosterone and potassium on induction of potassium adaptation in rat kidney. J. Clin. Invest. 79: 198–206, 1987.
 435. Steer, C. J., M. Bisher, R. Blumenthal, and A. C. Steven. Detection of membrane cholesterol by filipin in isolated rat liver coated vesicles is dependent upon removal of the clathrin coat. J. Cell Biol. 98: 315, 1984.
 436. Steinmetz, P. R. Epithelial hydrogen ion transport. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, p. 1441–1470.
 437. Steinmetz, P. R. Cellular organization of urinary acidification. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol 20.): F173–F187, 1986.
 438. Sternberg, W. H., E. Farber, and C. E. Dunlap. Histochemical localization of specific oxidative enzymes. II. Localization of diphosphopyridine nucleotide and triphosphopyridine nucleotide diaphorases and the succinic dehydrogenase system in the kidney. J. Histochem. Cytochem. 4: 266, 1956.
 439. Stetson, D. L., R. Beauwens, J. Palmisano, P. P. Mitchell, and P. R. Steinmetz. A double‐membrane model for urinary bicarbonate secretion. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol 18.): F546–F552, 1985.
 440. Stetson, D. L., S. A. Lewis, W. Alles, and J. B. Wade. Evaluation by capacitance measurements of antidiuretic hormone induced membrane area changes in toad bladder. Biochim. Biophys. Acta 689: 267–274, 1982.
 441. Stetson, D. L., and P. R. Steinmetz. Role of membrane fusion in CO2 stimulation of proton secretion by turtle bladder. Am. J. Physiol. 245 (Cell Physiol 14.): C113–C120, 1983.
 442. Stetson, D. L., and P. R. Steinmetz. α and β types of carbonic anhydrase–rich cells in turtle bladder. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol 18.): F553–F565, 1985.
 443. Stetson, D. L., and P. R. Steinmetz. Correlation between apical intramembrane particles and H + secretion rates during CO2 stimulation in turtle bladder. Pflugers Arch. 407 (2S): 80–84, 1986.
 444. Stetson, D. L., and J. B. Wade. Ultrastructural characterization of cholesterol distribution in toad bladder using filipin. J. Membr. Biol. 74: 131–138, 1983.
 445. Stetson, D. L., J. B. Wade, and G. Giebisch. Morphologic alterations in the rat medullary collecting duct following potassium depletion. Kidney Int. 17: 45–56, 1980.
 446. Stevenson, B. R., and D. A. Goodenough. Zonulae occludentes in junctional complex‐enriched fractions from mouse liver. Preliminary morphological and biochemical characterization. J. Cell Biol. 98: 1209–1221, 1984.
 447. Stevenson, B. R., M. B. Heintzelman, J. M. Anderson, S. Citi, and M. S. Mooseker. ZO‐1 and cingulin: tight junction proteins with distinct identities and localizations. Am. J. Physiol. 257 (Cell Physiol. 26): C621–C628, 1989.
 448. Stevenson, B. R., J. D. Siliciano, M. S. Mooseker, and D. A. Goodenough. Identification of ZO‐1: a high molecular weight polypeptide associated with the tight junction (zonula occludentes) in a variety of epithelia. J. Cell Biol. 103: 755–766, 1986.
 449. Stokes, J. B. Potassium secretion by cortical collecting tubule: relation to sodium absorption, luminal sodium concentration, and transepithelial voltage. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol 10.): F395–F402, 1981.
 450. Stokes, J. B. Mineralocorticoid effect on K + permeability of the rabbit cortical collecting tubule. Kidney Int. 28: 640–645, 1985.
 451. Stone, D. K., D. W. Seldin, J. P. Kokko, and H. R. Jacobson. Mineralocorticoid modulation of rabbit medullary collecting duct acidification: a sodium‐independent effect. J. Clin. Invest. 72: 77–83, 1983.
 452. Strange, K., and K. R. Spring. Absence of significant cellular dilution during ADH‐stimulated water reabsorption. Science 235: 1068–1070, 1987.
 453. Strange, K., and K. R. Spring. Cell membrane water permeability of rabbit cortical collecting duct. J. Membr. Biol. 96: 27–43, 1987.
 454. Strange, K., M. C. Willingham, J. S. Handler, and H. W. Harris, Jr. Apical membrane endocytosis via coated pits is stimulated by removal of antidiuretic hormone from isolated, perfused rabbit cortical collecting tubule. J. Membr. Biol. 103: 17–28, 1988.
 455. Taylor, A., E. Eich, M. Pearl, A. S. Brem, and E. Q. Peeper. Cytosolic calcium and the action of vasopressin in toad urinary bladder. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol 21.): F1028–F1041, 1987.
 456. Taylor, A., M. Mamelak, E. Reaven, and R. Maffly. Vasopressin: possible role of microtubules and microfilaments in its action. Science 181: 347–350, 1973.
 457. Thatcher, J. S., and A. W. Radike. Tolerance to potassium intoxication in the albino rat. Am. J. Physiol. 151: 138–146, 1947.
 458. Thoenes, W., and K. H. Langer. Relationship between cell structures of renal tubules and transport mechanisms. In: Renal Transport and Diuretics, edited by K. Thurau and H. Gahrmarker. New York: Springer‐Verlag, 1969, p. 37–65.
 459. Tillack, T. W., and S. C. Kinskey. A freeze‐etch study of the effects of filipin on liposomes and human erythrocyte membranes. Biochim. Biophys. Acta 323: 43–54, 1973.
 460. Tisher, C. C., R. E. Bulger, and H. Valtin. Morphology of renal medulla in water diuresis and vasopressin‐induced anti‐diuresis. Am. J. Physiol. 220: 87–94, 1971.
 461. Tisher, C. C., and W. E. Yarger. Lanthanum permeability of tight junctions along the collecting duct of the rat. Kidney Int. 7: 35–43, 1975.
 462. Toback, F. G. Induction of growth in kidney epithelial cells in culture by Na +. Proc. Natl. Acad. Sci. USA 77: 6654–6656, 1980.
 463. Toback, F. G., N. G. Ordonez, S. L. Bortz, and B. H. Spargo. Zonal changes in renal structure and phospholipid metabolism in potassium‐deficient rats. Lab. Invest. 34: 115–124, 1976.
 464. Tokuyasu, K. T. Immunocytochemistry on ultrathin frozen sections. Histochem. J. 12: 381–403, 1980.
 465. Tyler, D. W. Localization of renal kallikrein in the dog. Experientia 34: 621–622, 1978.
 466. Vail, W. J., D. Papahadjopoulos, and M. A. Moscarello. Interaction of a hydrophobic protein with liposomes: evidence for particles seen in freeze fracture as being proteins. Biochim. Biophys. Acta 345: 463–467, 1974.
 467. Van Adelsberg, J., and Q. Al‐Awqati. Regulation of cell pH by Ca + 2‐mediated exocytotic insertion of H + ‐ATPases. J. Cell Biol. 102: 1638–1645, 1986.
 468. Van Deurs, B., and J. K. Koehler. Tight junctions in choroid plexus epithelium: a freeze‐fracture study including complementary replicas. J. Cell Biol. 80: 662–673, 1979.
 469. Vandewalle, A., F. Cluzeaud, M. Chavance, and J.‐P. Bonvalet. Cellular heterogeneity of uridine incorporation in collecting tubules: effect of DOCA. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol 17.): F552–F564, 1985.
 470. Vandewalle, A., N. Farman, P. Bencsath, and J. P. Bonvalet. Aldosterone binding along the rabbit nephron: an autoradiographic study on isolated tubules. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F172–F179, 1981.
 471. Van Meer, G., and K. Simons. The function of tight junctions in maintaining differences in lipid composition between the apical and basolateral cell surface domains. EMBO J. 5: 1455–1464, 1986.
 472. Van Meer, G., and K. Simons. The tight junction does not allow lipid molecules to diffuse from one epithelial cell to the next. Nature 322: 639–641, 1986.
 473. Velazquez, H., D. W. Good, and F. S. Wright. Mutual dependence of sodium and chloride absorption by renal distal tubule. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol 16.): F904–F911, 1984.
 474. Verkleij, A. J., B. De Kruijff, W. J. Gerritsen, R. A. Demel, L. L. M. Van Deenen, and P. H. J. Ververgaert. Freeze‐etch electron microscopy of erythrocytes, Acholeplasma laid‐lawii cells and liposomal membranes after the action of filipin and amphotericin B. Biochim. Biophys. Acta 291: 577–581, 1973.
 475. Verkman, A. S., and R. J. Alpern. Kinetic transport model for cellular regulation of pH and solute concentration in the renal proximal tubule. Biophys. J. 51: 533–546, 1987.
 476. Verkman, A. S., W. I. Lencer, D. Brown, and D. A. Ausiello. Endosomes from kidney collecting tubule cells contain the vasopressin‐sensitive water channel. Nature 333: 268–269, 1988.
 477. Verkman, A. S., and S. K. Masur. Very low osmotic permeability and membrane fluidity in isolated toad bladder granules. J. Membr. Biol. 104: 241–251, 1988.
 478. Verkman, A. S., P. Weyer, D. Brown, and D. A. Ausiello. Functional water channels are present in clathrin‐coated vesicles. J. Biol. Chem. 264: 20608–20613, 1989.
 479. Verlander, J. W., K. M. Madsen, P. S. Low, D. P. Allen, and C. C. Tisher. Immunocytochemical localization of band 3 protein in the rat collecting duct. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F115–F125, 1988.
 480. Verlander, J. W., K. M. Madsen, and C. C. Tisher. Effect of acute respiratory acidosis on two populations of intercalated cells in rat cortical collecting duct. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F1142–F1156, 1987.
 481. Verrey, F., E. Schaerer, P. Zoerkler, M. P. Paccolat, K. Geering, J. P. Kraehenbuhl, and B. C. Rossier. Regulation by aldosterone of Na+,K+‐ATPase mRNAs, protein synthesis, and sodium transport in cultured kidney cells. J. Cell Biol. 104: 1231–1237, 1987.
 482. Vio, C. P., and C. D. Figueroa. Subcellular localization of renal kallikrein by ultrastructural immunocytochemistry. Kidney Int. 28: 36–42, 1985.
 483. Wade, J. B. Membrane structural specialization of the toad urinary bladder revealed by the freeze‐fracture technique: II. The mitochondria‐rich cell. J. Membr. Biol. 26: 111–126, 1976.
 484. Wade, J. B. Membrane structural specialization of the toad urinary bladder revealed by the freeze‐fracture technique. III. Location, structure and vasopressin dependence of intramembrane particle arrays. J. Membr. Biol. 40: 281–296, 1978.
 485. Wade, J. B. Hormonal modulation of epithelial structure. Curr. Top. Membr. Transp. 13: 123–147, 1980.
 486. Wade, J. B. Modulation of membrane structure in the toad urinary bladder by vasopressin. In: Water Transport Across Epithelia, edited by H. H. Ussing, N. Bindslev, N. A. Lassen, and O. Sten‐Knudsen. Copenhagen: Munksgaard, 1981, vol. 15, p. 422–430.
 487. Wade, J. B. Membrane structural studies of the action of vasopressin. Federation Proc. 44: 2687–2692, 1985.
 488. Wade, J. B., and W. A. Kachadorian. Cytochalasin B inhibition of toad bladder apical membrane responses to ADH. Am. J. Physiol. 255 (Cell Physiol 24.): C526–C530, 1988.
 489. Wade, J. B., and C. McCusker. Comprehensive quantitation of apical membrane aggregates inserted by ADH, abstracted. Kidney Int. 37: 592, 1990.
 490. Wade, J. B., C. McCusker, and R. A. Coleman. Evaluation of granule exocytosis in toad urinary bladder. Am. J. Physiol. 251 (Cell Physiol 20.): C380–C386, 1986.
 491. Wade, J. B., R. G. O'neil, J. L. Pryor, and E. L. Boulpaep. Modulation of cell membrane area in renal collecting tubules by corticosteroid hormones. J. Cell Biol. 81: 439–445, 1979.
 492. Wade, J. B., B. A. Stanton, M. J. Field, M. Kashgarian, and G. Giebisch. Morphological and physiological responses to aldosterone: time course and sodium dependence. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol 28.): F88–F94, 1990.
 493. Wade, J. B., D. L. Stetson, and S. A. Lewis. ADH action: evidence for a membrane shuttle mechanism. Ann. N.Y. Acad. Sci. 372: 106–117, 1981.
 494. Wagner, S., R. Vogel, R. Lietzke, R. Koob, and D. Drenckhahn. Immunochemical characterization of a band 3—like anion exchanger in collecting duct of human kidney. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F213–F221, 1987.
 495. Walser, M. N. Reversible stimulation of sodium transport in the toad bladder by stretch. J. Clin. Invest. 48: 1714–1723, 1969.
 496. Walsh‐Reitz, M. M., H. N. Aithal, and F. G. Toback. Na regulates growth of kidney epithelial cells induced by lowering extracellular K concentration. Am. J. Physiol. 247 (Cell Physiol 16.): C321–C326, 1984.
 497. Walsh‐Reitz, M. M., S. L. Gluck, S. Waack, and F. G. Toback. Lowering extracellular Na + concentration releases autocrine growth factors from renal epithelial cells. Proc. Natl. Acad. Sci. USA 83: 4764–4768, 1986.
 498. Warncke, J., and B. Lindemann. Effect of ADH on the capacitance of apical epithelial membranes. In: Int. Congr. Physiol. Sci., 28th, Budapest, 1980. New York: Pergamon, 1981, p. 129–133.
 499. Weibel, E. R. Stereological Methods: Practical Methods for Biological Morphometry. London: Academic, 1979, vol. 1.
 500. Weibel, E. R., and R. P. Bolender. Stereological techniques for electron microscopic morphometry. In: Principles and Techniques of Electron Microscopy, edited by M. A. Hayat. New York: Van Nostrand, 1973, vol. 3, p. 237–296.
 501. Welling, L. W., A. P. Evan, and D. J. Welling. Shape of cells and extracellular channels in rabbit collecting ducts. Kidney Int. 20: 211–222, 1981.
 502. Welling, L. W., A. P. Evan, D. J. Welling, and V. H. Gattone III. Morphometric comparison of rabbit cortical connecting tubules and collecting ducts. Kidney Int. 23: 358–367, 1983.
 503. Wendelaar Bonga, S. E. Morphometrical analysis with the light and electron microscope of the kidney of the anadromous three‐spined stickleback Gasterosteus aculeatus, form trachurus, from freshwater and from sea water. Z. Zellforsch. 137: 563–588, 1973.
 504. Weyer, P., D. Brown, and L. Orci. Lectin‐gold labeling of glycoconjugates in normal and Brattleboro rat papilla: effect of vasopressin. Am. J. Physiol. 254 (Cell Physiol 23.): C450–C458, 1988.
 505. Whitear, M. The location of silver in frog epidermis after treatment by Ranvier's method, and possible implication of the flask cells in transport. Z. Zellforsch. Mikrosk. Anat. 133: 455–461, 1972.
 506. Whitear, M. Flask cells and epithelial dynamics in frog skin. J. Zool. 175: 107–149, 1975.
 507. Wiederholt, M., and B. Wiederholt. Der Einfluss von Dexamethason auf die Wasser‐und Electrolyt‐tausscheidung adrenaleketomierter Ratten. Pflugers Arch. 302: 57–78, 1968.
 508. Wingo, C. S. Effect of ouabain on K secretion in cortical collecting tubules from adrenalectomized rabbits. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol 16.): F588–F595, 1984.
 509. Wingo, C. S. Potassium transport by medullary collecting tubule of rabbit: effects of variation in K intake. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol 22.): F1136–F1141, 1987.
 510. Wingo, C. S., J. P. Kokko, and H. R. Jacobson. Effects of in vitro aldosterone on the rabbit cortical collecting tubule. Kidney Int. 28: 51–57, 1985.
 511. Wingo, C. S., D. W. Seldin, J. P. Kokko, and H. R. Jacobson. Dietary modulation of active potassium secretion in the cortical collecting duct. J. Clin. Invest. 70: 579–586, 1982.
 512. Woodhall, P. B., and C. C. Tisher. Response of the distal tubule and cortical collecting duct tk vasopressin in the rat. J. Clin. Invest. 52: 3095–3108, 1973.
 513. Wright, F. S., N. Strieder, N. B. Fowler, and G. Giebisch. Potassium secretion by distal tubule after potassium adaptation. Am. J. Physiol. 221: 437–448, 1971.
 514. Yoshimura, F., and M. Nemoto. Cytological studies on the special cells in the epithelium of the junctional and collecting segments in the mammalian renal tubules. J. Med. Sci. 2: 315–329, 1953.
 515. Yu, J., and D. Branton. Reconstitution of intramembrane particles in recombinants of erythrocyte protein band 3 and lipid: effect of spectrin–actin association. Proc. Natl. Acad. Sci. USA 73: 3891–3895, 1976.
 516. Zalups, R. K., B. A. Stanton, J. B. Wade and G. Giebisch. Structural adaptation in initial collecting tubule following reduction in renal mass. Kidney Int. 27: 636–642, 1985.
 517. Zervos, A. S., J. Hope, and W. H. Evans. Preparation of a gap junction fraction from uteri of pregnant rats: the 28 kD polypeptides of uterus, liver, and heart gap junctions are homologous. J. Cell Biol. 101: 1363–1370, 1985.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

James B. Wade, Bruce A. Stanton, Dennis Brown. Structural Correlates of Transport in Distal Tubule and Collecting Duct Segments. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 169-226. First published in print 1992. doi: 10.1002/cphy.cp080104