Comprehensive Physiology Wiley Online Library

Evaluation of Function in Single Segments of Isolated Renal Blood Vessels, Nephrons, and Collecting Ducts

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Glomerulus and Vessels
1.1 Mammalian
1.2 Nonmammalian
2 Proximal Tubule
2.1 Mammalian
2.2 Nonmammalian
3 Thin Limbs of Henle's Loop
3.1 Mammalian
4 Thick Ascending Limbs of Henle's Loop
4.1 Mammalian
4.2 Nonmammalian
5 Distal Convoluted and Connecting Segments
5.1 Mammalian
5.2 Nonmammalian
6 Collecting Tubules and Ducts
6.1 Mammalian
6.2 Nonmammalian
Figure 1. Figure 1.

Anatomic and functional segments of mammalian nephron and collecting systems that have been microdissected and studied in vitro. Glomeruli and arterioles from superficial or deep positions in cortex are connected to initial portion of proximal tubule. Proximal tubules arc comprised of three distinct segments that in deep nephrons extend into long thin descending limbs of Henle's loop. Superficial nephrons have very short thin descending and ascending segments. All nephrons have medullary and cortical ascending limbs that join short convoluted segments of distal tubule. Deep nephrons have highly complex connecting segments that via arcades unite distal convoluted tubules and cortical collecting duct. Arcades are not present in tubules derived from superficial nephrons. Cortical collecting duct enters outer medulla to form two axial segments in outer stripe. Branched collecting ducts are found in initial and terminal portions of inner medulla.

Figure 2. Figure 2.

Schematic illustration of method to study filtration across single glomerular capillaries in vitro. Glomeruli are held with micro‐pipette and thoroughly rinsed with solution of lower oncotic pressure than the plasma in capillary loops. This causes rapid filtration of fluid into capillaries, and diameter of glomerulus increases as glomerular volume increases. The filtration coefficient (Kf, LpA) is determined from initial slope of increase in glomerular volume versus time. Modification of original technique is shown in which afferent and efferent arterioles are occluded to prevent loss of capillary plasma into bath compartment during filtration.

From Savin (342a
Figure 3. Figure 3.

Data illustrating relationship between filtration coefficient, Kf, and volume of individual rat glomeruli studied in vitro. Wide range of glomerular volume reflects animals from newborn to adulthood, and glomeruli from deep and superficial locations in cortex. ○ 22–36‐day‐old rats; • 69–84‐day‐old rats; × 4–9‐day‐old rats; Δ superficial glomeruli, 120‐day‐old rats; ▴ deep glomeruli, 120‐day‐old rats.

From Savin et al. 344
Figure 4. Figure 4.

Method for studying isolated perfused glomeruli from dog kidney. Concentric pipettes (left) are advanced into afferent arteriole to perfuse capillaries and to record intracapillary hydrostatic pressure. Postglomerular perfusate is collected from efferent areriole with another pipette arrangement (right).

Courtesy of Terrance Fried and Richard Osgood
Figure 5. Figure 5.

Afferent (top) and efferent (bottom) arterioles dissected from rabbit superficial cortex. Each arteriole has been cannulated and lumenal pressure set at 70 mm Hg for afferent arteriole and 20 mm Hg for efferent arteriole. Bars, 20 μm.

Figure 6. Figure 6.

Direct proof of fluid absorption in isolated proximal tubules. Accumulation of fluid droplets on basolateral surface of proximal tubule perfused in oil bath.

Courtesy of Delon Barfuss and James Schafer.) Top: photomicrograph of S2 segment perfused in oil bath. (From Schafer 349.] Bottom: schematic diagram of procedure for collecting absorbate. [From Barfuss and Schafer 14
Figure 7. Figure 7.

Demonstration that rabbit scrum reversibly decreased urate and p‐aminohippurate (PAH) secretion in isolated perfused S2 proximal tubules. Tubules were perfused with a synthetic medium and perfused in the same medium (designated Burg) containing either bovine serum albumin (BSA) or commercial rabbit scrum (RS) proteins from Pel‐Freeze (PF). The nature of the bath proteins had no effect on net fluid absorption. B, bath; L, lumen.

From Tanner et al. 407
Figure 8. Figure 8.

Response of S2 proximal tubules to sudden decrease in medium osmolality. Nonperfused segments were rinsed in medium of 147, 190, or 230 mOsm. Cell volume, adduced from changes in external tubule diameter, rapidly increased, after which cell volume progressively returned toward original baseline. Upon return of tubules to isotonic (295 mOsm) medium, tubule volume decreased below original baseline, indicating that intracellular solutes were lost during volume adjustment in hypotonic medium.

From Dellasega and Grantham 103
Figure 9. Figure 9.

Demonstration of net fluid secretion in nonperfused proximal S2 segment. Tubule at zero time was incubated in normal rabbit serum. Two, 5, and 10 min after adding human uremic serum to bath, tubule lumen appeared and expanded progressively, thereby proving that fluid was secreted by the segment.

Reproduced from Grantham et al. 148: the Journal of Clinical Investigation, 1973, 52: 2441–2450, by copyright permission of the American Society for Clinical Investigation
Figure 10. Figure 10.

Demonstration of net fluid secretion in flounder proximal tubule. Tubule segment was filled with paraffin oil and incubated without perfusion in medium that contained electrolytes but no known organic or inorganic secretagogues. Fluid secretion into tubule lumen was evinced by appearance of fluid that in focal areas broke the oil column.

Courtesy of Klaus W. Beyenbach
Figure 11. Figure 11.

Isolation of juxtaglomerular apparatus. Top: single perfused thick ascending limb from rabbit kidney with attached glomerulus (G). Perfusion was left to right. Arrow, macula densa. × 92.

Courtesy of Kevin Kirk.) Bottom: differential interference‐contrast image of macula densa during perfusion with hypoosmotic solution (70 mOsm). Note dilated intracellular space and pocket of extra‐glomerular mesangial cells (asterisk) (× 2,250
Figure 12. Figure 12.

Cellular heterogeneity in cortical collecting ducts. Left: Hoffman Modulation Contrast images of perfused segment with focal plane of focus on lumenal surface (A) and on midpoint of lateral wall (B). Asterisks indicate intercalated cells. Right: fluorescent images of fluorescein‐labeled peanut lectin bound to lumenal cell surfaces (A) and acridine orange localization of nuclei (B).

From O'Neil and Hayhurst 300
Figure 13. Figure 13.

Transmission electron micrograph cross sections of cortical collecting ducts perfused with hypotonic medium in vitro, (a) control tubule, (b) tubule treated with maximal concentration of vasopressin, demonstrating widely dilated intercellular spaces. L, lumen; BM, basement membrane; N, nucleus; Ic, intercalated cell; V, large vacuole; IS, intercellular space; arrows, cytoplasmic vacuoles in the ordinary living cells.

From Ganote et al. 131


Figure 1.

Anatomic and functional segments of mammalian nephron and collecting systems that have been microdissected and studied in vitro. Glomeruli and arterioles from superficial or deep positions in cortex are connected to initial portion of proximal tubule. Proximal tubules arc comprised of three distinct segments that in deep nephrons extend into long thin descending limbs of Henle's loop. Superficial nephrons have very short thin descending and ascending segments. All nephrons have medullary and cortical ascending limbs that join short convoluted segments of distal tubule. Deep nephrons have highly complex connecting segments that via arcades unite distal convoluted tubules and cortical collecting duct. Arcades are not present in tubules derived from superficial nephrons. Cortical collecting duct enters outer medulla to form two axial segments in outer stripe. Branched collecting ducts are found in initial and terminal portions of inner medulla.



Figure 2.

Schematic illustration of method to study filtration across single glomerular capillaries in vitro. Glomeruli are held with micro‐pipette and thoroughly rinsed with solution of lower oncotic pressure than the plasma in capillary loops. This causes rapid filtration of fluid into capillaries, and diameter of glomerulus increases as glomerular volume increases. The filtration coefficient (Kf, LpA) is determined from initial slope of increase in glomerular volume versus time. Modification of original technique is shown in which afferent and efferent arterioles are occluded to prevent loss of capillary plasma into bath compartment during filtration.

From Savin (342a


Figure 3.

Data illustrating relationship between filtration coefficient, Kf, and volume of individual rat glomeruli studied in vitro. Wide range of glomerular volume reflects animals from newborn to adulthood, and glomeruli from deep and superficial locations in cortex. ○ 22–36‐day‐old rats; • 69–84‐day‐old rats; × 4–9‐day‐old rats; Δ superficial glomeruli, 120‐day‐old rats; ▴ deep glomeruli, 120‐day‐old rats.

From Savin et al. 344


Figure 4.

Method for studying isolated perfused glomeruli from dog kidney. Concentric pipettes (left) are advanced into afferent arteriole to perfuse capillaries and to record intracapillary hydrostatic pressure. Postglomerular perfusate is collected from efferent areriole with another pipette arrangement (right).

Courtesy of Terrance Fried and Richard Osgood


Figure 5.

Afferent (top) and efferent (bottom) arterioles dissected from rabbit superficial cortex. Each arteriole has been cannulated and lumenal pressure set at 70 mm Hg for afferent arteriole and 20 mm Hg for efferent arteriole. Bars, 20 μm.



Figure 6.

Direct proof of fluid absorption in isolated proximal tubules. Accumulation of fluid droplets on basolateral surface of proximal tubule perfused in oil bath.

Courtesy of Delon Barfuss and James Schafer.) Top: photomicrograph of S2 segment perfused in oil bath. (From Schafer 349.] Bottom: schematic diagram of procedure for collecting absorbate. [From Barfuss and Schafer 14


Figure 7.

Demonstration that rabbit scrum reversibly decreased urate and p‐aminohippurate (PAH) secretion in isolated perfused S2 proximal tubules. Tubules were perfused with a synthetic medium and perfused in the same medium (designated Burg) containing either bovine serum albumin (BSA) or commercial rabbit scrum (RS) proteins from Pel‐Freeze (PF). The nature of the bath proteins had no effect on net fluid absorption. B, bath; L, lumen.

From Tanner et al. 407


Figure 8.

Response of S2 proximal tubules to sudden decrease in medium osmolality. Nonperfused segments were rinsed in medium of 147, 190, or 230 mOsm. Cell volume, adduced from changes in external tubule diameter, rapidly increased, after which cell volume progressively returned toward original baseline. Upon return of tubules to isotonic (295 mOsm) medium, tubule volume decreased below original baseline, indicating that intracellular solutes were lost during volume adjustment in hypotonic medium.

From Dellasega and Grantham 103


Figure 9.

Demonstration of net fluid secretion in nonperfused proximal S2 segment. Tubule at zero time was incubated in normal rabbit serum. Two, 5, and 10 min after adding human uremic serum to bath, tubule lumen appeared and expanded progressively, thereby proving that fluid was secreted by the segment.

Reproduced from Grantham et al. 148: the Journal of Clinical Investigation, 1973, 52: 2441–2450, by copyright permission of the American Society for Clinical Investigation


Figure 10.

Demonstration of net fluid secretion in flounder proximal tubule. Tubule segment was filled with paraffin oil and incubated without perfusion in medium that contained electrolytes but no known organic or inorganic secretagogues. Fluid secretion into tubule lumen was evinced by appearance of fluid that in focal areas broke the oil column.

Courtesy of Klaus W. Beyenbach


Figure 11.

Isolation of juxtaglomerular apparatus. Top: single perfused thick ascending limb from rabbit kidney with attached glomerulus (G). Perfusion was left to right. Arrow, macula densa. × 92.

Courtesy of Kevin Kirk.) Bottom: differential interference‐contrast image of macula densa during perfusion with hypoosmotic solution (70 mOsm). Note dilated intracellular space and pocket of extra‐glomerular mesangial cells (asterisk) (× 2,250


Figure 12.

Cellular heterogeneity in cortical collecting ducts. Left: Hoffman Modulation Contrast images of perfused segment with focal plane of focus on lumenal surface (A) and on midpoint of lateral wall (B). Asterisks indicate intercalated cells. Right: fluorescent images of fluorescein‐labeled peanut lectin bound to lumenal cell surfaces (A) and acridine orange localization of nuclei (B).

From O'Neil and Hayhurst 300


Figure 13.

Transmission electron micrograph cross sections of cortical collecting ducts perfused with hypotonic medium in vitro, (a) control tubule, (b) tubule treated with maximal concentration of vasopressin, demonstrating widely dilated intercellular spaces. L, lumen; BM, basement membrane; N, nucleus; Ic, intercalated cell; V, large vacuole; IS, intercellular space; arrows, cytoplasmic vacuoles in the ordinary living cells.

From Ganote et al. 131
References
 1. Abramow, M. Effects of ethacrynic acid on the isolated colecting tubule. J. Clin. Invest. 53: 796–804, 1974.
 2. Abramow, M., and M. Dratwa. Effect of vasopressin on the isolated human collecting duct. Nature 250: 492–493, 1974.
 3. Almeida, A. J., and M. B. Burg. Sodium transport in the rabbit connecting tubule. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F330–F334, 1982.
 4. Al‐Zahid, G., J. A. Schafer, S. L. Troutman, and T. E. Andreoli. Effect of antidiuretic hormone on water and solute permeation, and the activation energies for these processes, in mammalian cortical collecting tubules. J. Membr. Biol. 31: 103–129, 1977.
 5. Andreoli, T. E., and J. A. Schafer. Volume absorption in the pars recta. III. Luminal hypotonicity as a driving force for isotonic volume absorption. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F349–F355, 1978.
 6. Andreoli, T. E., J. A. Schafer, S. L. Troutman, and M. L. Watkins. Solvent drag component of Cl− flux in superficial proximal straight tubules: evidence for a paracellular component of isotonic fluid absorption. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F455–F462, 1979.
 7. Andreoli, T. E., J. A. Schafer, and S. L. Troutman. Perfusion rate‐dependence of transepithelial osmosis in isolated proximal convoluted tubules: estimation of the hydraulic conductance. Kidney Int. 14: 263–269, 1978.
 8. Atkins, J. L., and M. B. Burg. Bicarbonate transport by isolated perfused rat collecting ducts. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F485–F489, 1985.
 9. Balaban, R. S., V. W. Dennis, and L. J. Mandel. Microfluorometric monitoring of NAD redox state in isolated perfused renal tubules. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F337–F342, 1981.
 10. Barfuss, D. W., and W. H. Dantzler. Glucose transport in isolated perfused proximal tubules of snake kidney. Am. J. Physiol. 231: 1716–1728, 1976.
 11. Barfuss, D. W., J. M. Mays, and J. A. Schafer. Peritubular uptake and transepithelial transport of glycine in isolated proximal tubules. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F324–F333, 1980.
 12. Barfuss, D. W., and J. A. Schafer. Active amino acid absorption by proximal convoluted and proximal straight tubules. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F149–F162, 1979.
 13. Barfuss, D. W., and J. A. Schafer. Flow dependence of nonelectrolyte absorption in the nephron. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F163–F174, 1979.
 14. Barfuss, D. W., and J. A. Schafer. Collection and analysis of absorbate from proximal straight tubules. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F597–F604, 1981.
 15. Barfuss, D. W., and J. A. Schafer. Differences in active and passive glucose transport along the proximal nephron. Am. J. Physiol. 141 (Renal Fluid Electrolyte Physiol. 10): F322–F332, 1981.
 16. Barfuss, D. W., and J. A. Schafer. Hyperosmolality of absorbate from isolated rabbit proximal tubules. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F130–F139, 1984.
 17. Barfuss, D. W., and J. A. Schafer. Rate of formation and composition of absorbate from proximal nephron segments. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F117–F129, 1984.
 18. Baum, M., and C. A. Berry. Evidence for neutral transcellular NaCl transport and neutral basolateral chloride exit in the rabbit proximal convoluted tubule. J. Clin. Invest. 74: 205–211, 1984.
 19. Baum, M., and C. A. Berry. Peritubular protein modulates neutral active NaCl absorption in rabbit proximal convoluted tubule. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F790–F795, 1985.
 20. Baum, M., and R. D. Toto. Lack of a direct effect of atrial natriuretic factor in the rabbit proximal tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F66–F69, 1986.
 21. Bello‐Reuss, E. Effect of catecholamines on fluid reabsorption by the isolated proximal convoluted tubule. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F347–F352, 1980.
 22. Bello‐Reuss, E. Electrical properties of the basolateral membrane of the straight portion of the rabbit proximal renal tubule. J. Physiol. 326: 49–63, 1982.
 23. Bello‐Reuss, E., Y. Higashi, and Y. Kaneda. Dopamine decreases fluid reabsorption in straight portions of rabbit proximal tubule. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F634–F640, 1982.
 24. Berry, C. A. Electrical effects of acidification in the rabbit proximal convoluted tubule. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F459–F470, 1981.
 25. Berry, C. A. Lack of effect of peritubular protein on passive NaCl transport in the rabbit proximal tubule. J. Clin. Invest. 71: 268–281, 1983.
 26. Berry, C. A. Characteristics of water diffusion in the rabbit proximal convoluted tubule. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F729–F738, 1985.
 27. Berry, C. A., and M. G. Cogan. Influence of peritubular protein on solute absorption in the rabbit proximal tubule: a specific effect on NaCl transport. J. Clin. Invest. 68: 506–516, 1981.
 28. Berry, C. A., and F. C. Rector, Jr.. Relative sodium‐to‐chloride permeability in the proximal convoluted tubule. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F592–F604, 1978.
 29. Berry, C. A., D. G. Warnock, and F. C. Rector, Jr.. Ion selectivity and proximal salt reabsorption. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F234–F245, 1978.
 30. Beyenbach, K. W. Direct demonstration of fluid secretion by glomerular renal tubules in a marine teleost. Nature 299: 54–56, 1982.
 31. Beyenbach, K. W. Water‐permeable and impermeable barriers of snake distal tubules. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F290–F299, 1984.
 32. Beyenbach, K. W., and W. H. Dantzler. Generation of transepithelial potentials by isolated perfused reptilian distal tubules. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F238–F246, 1978.
 33. Beyenbach, K. W., and E. Frömter. Electrophysiological evidence for Cl secretion in shark renal proximal tubules. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F282–F295, 1985.
 34. Beyenbach, K. W., B. M. Koeppen; W. H. Dantzler, and S. I. Helman. Luminal Na concentration and the electrical properties of the snake distal tubule. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F412–F419, 1980.
 35. Beyenbach, K. W., D. H. Petzel, and W. H. Cliff. Renal proximal tubule of flounder. I. Physiological properties. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 19): R608–R615, 1986.
 36. Biagi, B. A. Effects of the anion transport inhibitor, SITS, on the proximal straight tubule of the rabbit perfused in vitro. J. Membr. Biol. 88: 25–31, 1985.
 37. Biagi, B. A., and G. Giebisch. Temperature dependence of transepithelial potential in isolated perfused rabbit proximal tubules. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F302–F310, 1979.
 38. Biagi, B., T. Kubota, M. Sohtell, and G. Giebisch. Intracellular potentials in rabbit proximal tubules perfused in vitro. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F200–F210, 1981.
 39. Biagi, B. A., and M. Sohtell. Electrophysiology of basolateral bicarbonate transport in the rabbit proximal tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F267–F272, 1986.
 40. Biagi, B. A., and M. Sohtell. pH sensitivity of the basolateral membrane of the rabbit proximal tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F261–F266, 1986.
 41. Biagi, B., M. Sohtell, and G. Giebisch. Intracellular potassium activity in the rabbit proximal straight tubule. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F677–F686, 1981.
 42. Boron, W. F., and E. L. Boulpaep. Intracellular pH regulation in the renal proximal tubule of the salamander: basolateral HCO3‐transport. J. Gen. Physiol. 81: 53–94, 1983.
 43. Boron, W. F., and E. L. Boulpaep. Intracellular pH regulation in the renal proximal tubule of the salamander: Na‐H exchange. J. Gen. Physiol. 81: 29–52, 1983.
 44. Boudry, J. F., L. C. Stoner, and M. B. Burg. Effect of acid lumen pH on potassium transport in renal cortical collecting tubules. Am. J. Physiol. 230: 239–244, 1976.
 45. Bourdeau, J. E., and M. B. Burg. Voltage dependence of calcium transport in the thick ascending limb of Henle's loop. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F357–F364, 1979.
 46. Bourdeau, J. E., and M. B. Burg. Effect of PTH on calcium transport across the cortical thick ascending limb of Henle's loop. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F121–F126, 1980.
 47. Bourdeau, J. E., S. L. Buss, and G. G. Vurek. Inhibition of calcium absorption in the cortical thick ascending limb of Henle's loop by furosemide. J. Pharmacol. Exp. Ther. 221: 815–819, 1982.
 48. Bourdeau, J. E., and F. A. Carone. Contraluminal serum albumin uptake in isolated perfused renal tubules. Am. J. Physiol. 224: 399–404, 1973.
 49. Bourdeau, J. E., F. A. Carone, and C. E. Ganote. Serum albumin uptake in isolated perfused renal tubules. J. Cell Biol. 54: 382–398, 1972.
 50. Bourdeau, J. E., E. R. Y. Chen, and F. A. Carone. Insulin uptake in the renal proximal tubule. Am. J. Physiol. 225: 1399–1404, 1973.
 51. Bourdeau, J. E., and R. J. Hellstrom‐Stein. Voltage‐dependent calcium movement across the cortical collecting duct. Am. J. Physiol. 141 (Renal Fluid Electrolyte Physiol. 11): F285–F292, 1982.
 52. Brand, P. H., and R. S. Stansbury. Lactate absorption in Thamnophis proximal tubule: transport versus metabolism Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F218–F228, 1980.
 53. Brand, P. H., and R. Stansbury. Peritubular uptake of lactate by Thamnophis proximal tubule. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F296–F304, 1980.
 54. Brand, P. H., and R. S. Stansbury. Lactate transport by Thamnophis proximal tubule: sodium dependence. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F388–F394, 1981.
 55. Brazy, P. C., R. S. Balaban, S. R. Gullans, L. J. Mandfl, and V. W. Dennis. Inhibition of renal metabolism: relative effects of arsenate on sodium, phosphate, and glucose transport by the rabbit proximal tubule. J. Clin. Invest. 66: 1211–1221, 1980.
 56. Brazy, P. C., and V. W. Dennis. Characteristics of glucosephlorizin interactions in isolated proximal tubules. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F279–F286, 1978.
 57. Brazy, P. C., and V. W. Dennis. Sulfate transport in rabbit proximal convoluted tubules: presence of anion exchange. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F300–F307, 1981.
 58. Brazy, P. C., S. R. Gullans, L. J. Mandel, and V. W. Dennis. Metabolic requirement for inorganic phosphate by the rabbit proximal tubule: evidence for a crabtree effect. J. Clin. Invest. 70: 53–62, 1982.
 59. Brazy, P. C., L. J. Mandel, S. R. Gullans, and S. P. Soltoff. Interactions between phosphate and oxidative metabolism in proximal renal tubules. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F575–F581, 1984.
 60. Brazy, P. C., J. W. McKeown, R. H. Harris, and V. W. Dennis. Comparative effects of dietary phosphate, unilateral nephrectomy, and parathyroid hormone on phosphate transport by the rabbit proximal tubule. Kidney Int. 17: 788–800, 1980.
 61. Burg, M., J. Grantham, M. Abramow, and J. Orloff. Preparation and study of fragments of single rabbit nephrons. Am. J. Physiol. 210: 1293–1298, 1966.
 62. Burg, M., and N. Green. Effect of ethacrynic acid on the thick ascending limb of Henle's loop. Kidney Int. 4: 301–308, 1973.
 63. Burg, M., and N. Green. Effect of mersalyl on the thick ascending limb of Henle's loop. Kidney Int. 4: 245–251, 1973.
 64. Burg, M. B., and N. Green. Function of the thick ascending limb of Henle's loop. Am. J. Physiol. 224: 659–668, 1973.
 65. Burg, M. B., and N. Green. Role of monovalent ions in the reabsorption of fluid by isolated perfused proximal renal tubules of the rabbit. Kidney Int. 10: 221–228, 1976.
 66. Burg, M., and N. Green. Bicarbonate transport by isolated perfused rabbit proximal convoluted tubules. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F307–F314, 1977.
 67. Burg, M. B., L. Isaacson, J. Grantham, and J. Orloff. Electrical properties of isolated perfused rabbit renal tubules. Am. J. Physiol. 215: 788–794, 1968.
 68. Burg, M. B., and J. Orloff. Control of fluid absorption in the renal proximal tubule. J. Clin. Invest. 47: 2016–2024, 1968.
 69. Burg, M. B., and J. Orloff. Electrical potential difference across proximal convoluted tubules. Am. J. Physiol. 219: 1714–1716, 1970.
 70. Burg, M., C. Patlak, N. Green, and D. Villey. Organic solutes in fluid absorption by renal proximal convoluted tubules. Am. J. Physiol. 231: 627–637, 1976.
 71. Burg, M., L. Stoner, J. Cardinal, and N. Green. Furosemide effect on isolated perfused tubules. Am. J. Physiol. 225: 119–124, 1973.
 72. Burg, M. B., and P. F. Weller. Iodopyracet transport by isolated perfused flounder proximal renal tubules. Am. J. Physiol. 217: 1053–1056, 1969.
 73. Campbell, H. T., E. Bello‐Reuss, and S. Klahr. Hydraulic water permeability and transepithelial voltage in the isolated perfused rabbit cortical collecting tubule following acute unilateral ureteral obstruction. J. Clin. Invest. 75: 219–225, 1985.
 74. Cardinal, J., and D. Duchesneau. Effect of potassium on proximal tubular function. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F381–F385, 1978.
 75. Cardinal, J., J.‐Y. Lapointe, and R. Laprade. Luminal and peritubular ionic substitutions and intracellular potential of the rabbit proximal convoluted tubule. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F352–F364, 1984.
 76. Cardinal, J., M. D. Lutz, M. B. Burg, and J. Orloff. Lack of relationship of potential difference to fluid absorption in the proximal renal tubule. Kidney Int. 7: 94–102, 1975.
 77. Carpi‐Medina, P., E. Gonzalez, and G. Whittembury. Cell osmotic water permeability of isolated rabbit proximal convoluted tubules. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F554–F563, 1983.
 78. Carpi‐Medina, P., B. Lindermann, E. Gonzalez, and G. Whittembury. The continuous measurement of tubular volume changes in response to step changes in contraluminal osmolality. Pflugers Arch. 400: 343–348, 1984.
 79. Chaillet, J. R., and W. F. Boron. Intracellular calibration of a pH‐sensitive dye in isolated perfused salamander proximal tubules. J. Gen. Physiol. 86: 765–794, 1985.
 80. Chaillet, J. R., A. G. Lopes, and W. F. Boron. Basolateral Na‐H exchange in the rabbit cortical collecting tubule. J. Gen. Physiol. 86: 795–812, 1985.
 81. Chonko, A. M. Urate secretion in isolated rabbit renal tubules. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F545–F551, 1980.
 82. Cliff, W. H., D. B. Sawyer, and K. W. Beyenbach. Renal proximal tubule of flounder. II. Transepithelial Mg secretion. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 19): R616–R624, 1986.
 83. Corman, B. Streaming potentials and diffusion potentials across rabbit proximal convoluted tubule. Pflugers Arch. 403: 156–163, 1985.
 84. Corman, B., S. Carriere, C. LeGrimellec, and J. Cardinal. Proximal tubular response to variations in extracellular sodium concentration. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F256–F260, 1980.
 85. Culpepper, R. M., and T. E. Andreoli. Interactions among prostaglandin E2, antidiuretic hormone, and cyclic adenosine monophosphate in modulating Cl− absorption in single mouse medullary thick ascending limbs of Henle. J. Clin. Invest. 71: 1588–1601, 1983.
 86. Culpepper, R. M., and T. E. Andreoli. PGE2, forskolin, and cholera toxin interactions in modulating NaCl transport in mouse mTALH. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F784–F792, 1984.
 87. Dantzler, W. H. Characteristics of urate transport by isolated perfused snake proximal renal tubules. Am. J. Physiol. 224: 445–453, 1973.
 88. Dantzler, W. H. K+ effects on PAH transport and membrane permeabilities in isolated snake renal tubules. Am. J. Physiol. 227: 1361–1370, 1974.
 89. Dantzler, W. H. PAH transport by snake proximal renal tubules: differences from urate transport. Am. J. Physiol. 226: 634–641, 1974.
 90. Dantzler, W. H., and S. K. Bentley. High effects of PAH transport and permeabilities in isolated snake renal tubules. Am. J. Physiol. 229: 191–199, 1975.
 91. Dantzler, W. H., and S. K. Bentley. Low Na+ effects on PAH transport and permeabilities in isolated snake renal tubules. Am. J. Physiol. 230: 256–262, 1976.
 92. Dantzler, W. H., and S. K. Bentley. Fluid absorption with and without sodium in isolated perfused snake proximal tubules. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 1): F68–F79, 1978.
 93. Dantzler, W. H., and S. K. Bentley. Effects of inhibitors in lumen on PAH and urate transport by isolated renal tubules. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F379–F386, 1979.
 94. Dantzler, W. H., and S. K. Bentley. Bath and lumen effects of SITS on PAH transport by isolated perfused renal tubules. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F16–F25, 1980.
 95. Dantzler, W. H., and S. K. Bentley. Effects of chloride substitutes on PAH transport by isolated perfused renal tubules. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F632–F644, 1981.
 96. Dantzler, W. H., and S. K. Bentley. Effects of sulfhydryl reagent, p‐chloromercuribenzoate, on p‐aminohippurate transport by isolated, perfused snake renal tubules. Renal Physiol. 6: 209–217, 1983.
 97. Dantzler, W. H., and O. H. Brokl. Effects of low [Ca2+] and La3+ on PAH transport by isolated perfused renal tubules. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F175–F187, 1984.
 98. Dantzler, W. H., and O. H. Brokl. Lack of effect of low (Ca2+), La3+ and pyrazinoate on urate transport by isolated, perfused snake renal tubules. Pflugers Arch. 401: 262–265, 1984.
 99. Dantzler, W. H., and O. H. Brokl. Verapamil and quinidine effects of PAH transport by isolated perfused renal tubules. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F188–F200, 1984.
 100. Dantzler, W. H., and O. H. Brokl. N‐methylnicotinamide transport by isolated perfused snake proximal renal tubules. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F407–F418, 1986.
 101. Dantzler, W. H., O. H. Brokl, R. B. Nagle, D.J. Welling, and L. W. Welling. Morphological changes with Na+ ‐free fluid absorption in isolated perfused snake tubules. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F150–F155, 1986.
 102. Delaney, R., and L. C. Stoner. Miniature Ag‐AgCl electrode for voltage clamping of the Ambystoma collecting duct. Membr. Biol. 64: 45–53, 1982.
 103. Dellasega, M., and J. J. Grantham. Regulation of renal tubule cell volume in hypotonic media. Am. J. Physiol. 224: 1288–1294, 1973.
 104. Dennis, V. W. Influence of bicarbonate on parathyroid hormone‐induced changes in fluid absorption by the proximal tubule. Kidney Int. 10: 373–380, 1976.
 105. Dennis, V. W., E. Bello‐Reuss, and R. R. Robinson. Response of phosphate transport to parathyroid hormone in segments of rabbit nephron. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F29–F38, 1977.
 106. Dennis, V. W., and P. C. Brazy. Sodium, phosphate, glucose, bicarbonate, and alanine interactions in the isolated proximal convoluted tubule of the rabbit kidney. J. Clin. Invest. 62: 387–397, 1978.
 107. Dennis, V. W., P. B. Woodhall, and R. R. Robinson. Characteristics of phosphate transport in isolated proximal tubule. Am. J. Physiol. 231: 979–985, 1976.
 108. Dillingham, M. A., and R. J. Anderson. Purinergic regulation of basal and arginine vasopressin‐stimulated hydraulic conductivity in rabbit cortical collecting tubule. J. Membr. Biol. 88: 277–281, 1985.
 109. Dominguez, J. H., T. O. Pitts, T. Brown, D. B. Puschett, F. Schuler, T. C. Chen, and J. B. Puschett. Prostaglandin E2 and parathyroid hormone: comparisons of their actions on the rabbit proximal tubule. Kidney Int. 26: 404–410, 1984.
 110. Douglas, R. J., and L. C. Isaacson. Peritubular pH and transtubular potentials in isolated perfused cortical collecting ducts of rabbit kidney. J. Physiol. 221: 645–655, 1972.
 111. Dubois, R., A. Verniory, and M. A. Ambramow. Computation of the osmotic water permeability of perfused tubule segments. Kidney Int. 10: 478–479, 1976.
 112. Dworzack, D. L., and J. J. Grantham. Preparation of renal papillary collecting duct cells for study in vitro. Kidney Int. 8: 191–194, 1975.
 113. Edwards, R. M. Segmental effects of norepinephrine and angiotensin II on isolated renal microvessels. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F526–F534, 1983.
 114. Edwards, R. M. Effects of prostaglandins on vasoconstrictor action in isolated renal arterioles. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F779–F784, 1985.
 115. Edwards, R. M. Response of isolated renal arterioles to acetylcholine, dopamine, and bradykinin. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F183–F189, 1985.
 116. Edwards, R. M., and J. J. Grantham. Effect of vanadate on fluid absorption and PAH secretion in isolated proximal tubules. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F367–F375, 1983.
 117. Edwards, R. M., and J. J. Grantham. Inhibition of vasopressin action by vandate in the cortical collecting tubule. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F772–F777, 1983.
 118. Evan, A. P., I. I. V. H. Gattone, and G. J. Schwartz. Development of solute transport in rabbit proximal tubule. II. Morphologic segmentation. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F391–F407, 1983.
 119. Fine, L. G., J. J. Bourgoignie, K. H. Hwang, and N. S. Bricker. On the influence of the natriuretic factor from patients with chronic uremia on the bioelectric properties and sodium transport of the isolated mammalian collecting tubule. J. Clin. Invest. 58: 590–597, 1976.
 120. Fine, L. G., D. Schlondorff, W. Trizna, R. M. Gilbert, and N. S. Bricker. Functional profile of the isolated uremic nephron: impaired water permeability and adenylate cyclase responsiveness of the cortical collecting tubule to vasopressin. J. Clin. Invest. 61: 1519–1527, 1978.
 121. Fine, L. G., and W. Trizna. Influence of prostaglandins on sodium transport of isolated medullary nephron segments. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F383–F390, 1977.
 122. Fine, L. G., W. Trizna, J. J. Bourgoignie, and N. S. Bricker. Functional profile of the isolated uremic nephron: role of compensatory hypertrophy in the control of fluid reabsorption by the proximal straight tubule. J. Clin. Invest. 61: 1508–1518, 1978.
 123. Fine, L. G., N. Yanagawa, R. G. Schultze, M. Tuck, and W. Trizna. Functional profile of the isolated uremic nephron: potassium adaptation in the rabbit cortical collecting tubule. J. Clin. Invest. 64: 1033–1043, 1979.
 124. Fried, T. A., R. N. McCoy, R. W. Osgood, and J. H. Stein. Effect of albumin on glomerular ultrafiltration coefficient in isolated perfused dog glomerulus. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F901–F906, 1986.
 125. Fried, T. A., R. N. McCoy, R. W. Osgood, and J. H. Stein. Effect of atriopeptin II on determinants of glomerular filtration rate in the in vitro perfused dog glomerulus. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F1119–F1122, 1986.
 126. Friedman, P. A., and T. E. Andreoli. CO2‐stimulated NaCl absorption in the mouse renal cortical thick ascending limb of Henle: evidence for synchronous Na+/H+ and Cl−/HCO3−) exchange in apical plasma membranes. J. Gen. Physiol. 80; 683–711, 1982.
 127. Friedman, P. A., J. F. Figueiredo, T. Maack, and E. E. Windhager. Sodium‐calcium interactions in the renal proximal convoluted tubule of the rabbit. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F558–F568, 1981.
 128. Frindt, G., and M. B. Burg. Effect of vasopressin on sodium transport in renal cortical collecting tubules. Kidney Int. 1: 224–231, 1972.
 129. Frindt, G., E. E. Windhager, and A. Taylor. Hydroosmotic response of collecting tubules to ADH or cAMP at reduced peritubular sodium. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F503–F513, 1982.
 130. Gagnon, J., D. Ouimet, H. Nguyen, R. Laprade, C. LeGrimellec, S. Carriere, and J. Cardinal. Cell volume regulation in the proximal convoluted tubule. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F408–F415, 1982.
 131. Ganote, C. E., J. J. Grantham, H. L. Moses, M. B. Burg, and J. Orloff. Ultrastructural studies of vasopressin effect on isolated perfused renal collecting tubules of the rabbit. J. Cell. Biol. 36: 355–367, 1968.
 132. Garcia‐Austt, J., D. W. Good, M. B. Burg, and M. A. Knepper. Deoxycorticosterone‐stimulated bicarbonate secretion in rabbit cortical collecting ducts: effects of luminal chloride removal and in vivo acid loading. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F205–F212, 1985.
 133. Garvin, J. L., M. B. Burg, and M. A. Knepper. Ammonium replaces potassium in supporting sodium transport by the Na‐K‐ATPase of renal proximal straight tubules. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F785–F788, 1985.
 134. Gattone, V. H., F. C. Luft, and A. P. Evan. Renal afferent and efferent arterioles of the rabbit. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F219–F228, 1984.
 135. Geibel, J., H. Volkl, and F. Lang. A microelectrode for continuous recording of volume fluxes in isolated perfused tubule segments. Pflugers Arch. 400: 388–392, 1984.
 136. Gogelein, H., and R. Greger. Na+ selective channels in the apical membrane of rabbit late proximal tubules (pars recta). Pflugers Arch. 406: 198–203, 1985.
 137. Goldfarb, S. Effects of calcium on ADH action in the cortical collecting tubule perfused in vitro. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F481–F486, 1982.
 138. Gonzalez, E., P. Carpi‐Medina, H. Linares, and G. Whittembury. Osmotic water permeability of the apical membrane of proximal straight tubular (PST) cells. Pflugers Arch. 402: 337–339, 1984.
 139. Gonzalez, E., P. Carpi‐Medina, and G. Whittembury. Cell osmotic water permeability of isolated rabbit proximal straight tubules. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F321–F330, 1982.
 140. Good, D. W. Sodium‐dependent bicarbonate absorption by cortical thick ascending limb of rat kidney. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F821–F829, 1985.
 141. Good, D. W., and M. B. Burg. Ammonia production by individual sagments of the rat nephron. J. Clin. Invest. 73: 602–610, 1984.
 142. Good, D. W., M. A. Knepper, and M. B. Burg. Ammonia and bicarbonate transport by thick ascending limb of rat kidney. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F35–F44, 1984.
 143. Grantham, J. J. Vasopressin: effect on deformability of urinary surface of collecting duct cells. Science 168: 1093–1095, 1970.
 144. Grantham, J. J. Mode of water transport in mammalian renal collecting tubules. Federation Proc. 30: 14–21, 1971.
 145. Grantham, J. J., and M. B. Burg. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am. J. Physiol. 211: 255–259, 1966.
 146. Grantham, J. J., M. B. Burg, and J. Orloff. The nature of transtubular Na and K transport in isolated rabbit renal collecting tubules. J. Clin. Invest. 49: 1815–1826, 1970.
 147. Grantham, J. J., C. E. Ganote; M. B. Burg, and J. Orloff. Paths of transtubular water flow in isolated renal collecting tubules. J. Cell. Biol. 41: 562–576, 1969.
 148. Grantham, J. J., R. L. Irwin, P. B. Qualizza, D. R. Tucker, and F. L. Whittier. Fluid secretion in isolated proximal straight renal tubules. J. Clin. Invest. 52: 2441–2450, 1973.
 149. Grantham, J. J., C. M. Lowe, M. Dellasega, and B. R. Cole. Effect of hypotonic medium on K and Na content of proximal renal tubules. Am. J. Physiol. 232: F42–F49, 1977.
 150. Grantham, J. J., and J. Orloff. Effect of prostaglandin E1 on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3', 5'‐monophosphate, and theophylline. J. Clin. Invest. 47: 1154–1161, 1968.
 151. Grantham, J. J., P. B. Qualizza, and R. L. Irwin. Net fluid secretion in proximal straight renal tubules in vitro: role of PAH. Am. J. Physiol. 226: 191–197, 1974.
 152. Grantham, J. J., P. B. Qualizza, and L. M. Welling. Influence of serum protein on net fluid absorption of isolated proximal tubule. Kidney Int. 2: 66–75, 1972.
 153. Greger, R. Cation selectivity of the isolated perfused cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 390: 30–37, 1981.
 154. Greger, R. Chloride reabsorption in the rabbit cortical thick ascending limb of the loop of Henle: a sodium dependent process. Pflugers Arch. 390: 38–43, 1981.
 155. Greger, R., and W. Hampel. A modified system for in vitro perfusion of isolated renal tubules. Pflugers Arch. 389: 175–176, 1981.
 156. Greger, R., H. Oberleithner, E. Schlatter, A. C. Cassola, and C. Weidtke. Chloride activity in cells of isolated perfused cortical thick ascending limbs of rabbit kidney. Pflugers Arch. 399: 29–34, 1983.
 157. Greger, R., and E. Schlatter. Presence of luminal K+, a prerequisite for active NaCl transport in the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 392: 92–94, 1981.
 158. Greger, R., and E. Schlatter. Properties of the lumen membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 396: 315–324, 1983.
 159. Greger, R., and E. Schlatter. Properties of the basolateral membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney: a model for secondary active chloride transport. Pflugers Arch. 396: 325–334, 1983.
 160. Greger, R., E. Schlatter, and F. Lang. Evidence for electroneutral sodium chloride cotransport in the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 396: 308–314, 1983.
 161. Gross, J. B., M. Imai, and J. P. Kokko. A functional comparison of the cortical collecting tubule and the distal convoluted tubule. J. Clin. Invest. 55: 1284–1294, 1975.
 162. Gross, J. B., and J. P. Kokko. Effects of aldosterone and potassium‐sparing diuretics on electrical potential differences across the distal nephron. J. Clin. Invest. 59: 82–89, 1977.
 163. Gullans, S. R., P. C. Brazy, V. W. Dennis, and L. J. Mandel. Interactions between gluconeogenesis and sodium transport in rabbit proximal tubule. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F859–F869, 1984.
 164. Gullans, S. R., P. C. Brazy, L. J. Mandel, and V. W. Dennis. Stimulation of phosphate transport in the proximal tubule by metabolic substrates. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F582–F587, 1984.
 165. Gullans, S. R., P. C. Brazy, S. P. Soltoff, V. W. Dennis, and L. J. Mandel. Metabolic inhibitors: effects on metabolism and transport in the proximal tubule. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F133–F140, 1982.
 166. Hall, D. A., L. D. Barnes, and T. P. Dousa. Cyclic AMP in action of antidiuretic hormone: effects of exogenous cyclic AMP and its new analogue. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F368–F376, 1977.
 167. Hall, D. A., and J. J. Grantham. Temperature effect on ADH response of isolated perfused rabbit collecting tubules. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F595–F601, 1980.
 168. Hall, D. A., and D. M. Varney. Effect of vasopressin on electrical potential difference and chloride transport in mouse medullary thick ascending limb of Henle's loop. J. Clin. Invest. 66: 792–802, 1980.
 169. Hamburger, R. J., N. L. Lawson, and V. W. Dennis. Effects of cyclic adenosine nucleotides on fluid absorption by different segments of proximal tubule. Am. J. Physiol. 227: 396–401, 1974.
 170. Hamburger, R. J., N. L. Lawson, and J. H. Schwartz. Response to parathyroid hormone in defined segments of proximal tubule. Am. J. Physiol. 230: 286–290, 1976.
 171. Hamm, L. L., C. Gillespie, and S. Klahr. NH4Cl inhibition of transport in the rabbit cortical collecting tubule. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F631–F637, 1985.
 172. Hamm, L. L., J. P. Kokko, and H. R. Jacobson. Effect of luminal pH and HCO3 on phosphate reabsorption in the rabbit proximal convoluted tubule. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F25–F34, 1984.
 173. Hamm, L. L., L. R. Pucacco, J. P. Kokko, and H. R. Jacobson. Hydrogen ion permeability of the rabbit proximal convoluted tubule. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F3–F1 1, 1984.
 174. Hamm, L. L., D. Trigg, D. Martin, C. Gillespie, and J. Buerkert. Transport of ammonia in the rabbit cortical collecting tubule. J. Clin. Invest. 75: 478–485, 1984.
 175. Hanley, M. J. Isolated nephron segments in a rabbit model of ischemic acute renal failure. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F17–F23, 1980.
 176. Hanley, M. J., and K. Davidson. Isolated nephron segments from rabbit models of obstructive nephropathy, J. Clin. Invest. 69: 165–174, 1982.
 177. Hanley, M. J. and J. P. Kokko. Study of chloride transport across the rabbit cortical collecting tubule. J. Clin. Invest. 62: 39–44, 1978.
 178. Hanley, M. J., J. P. Kokko, J. B. Gross, and H. R. Jacobson. Electrophysiologic study of the cortical collecting tubule of the rabbit. Kidney Int. 17: 74–81, 1980.
 179. Hawk, C. T., and W. H. Dantzler. Tetraethylammonium transport by isolated perfused snake renal tubules. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F476–F487, 1984.
 180. Hays, S., J. P. Kokko, and H. R. Jacobson. Hormonal regulation of proton secretion in rabbit medullary collecting duct. J. Clin. Invest. 78: 1279–1286, 1986.
 181. Hebert, S. C. Hypertonic cell volume regulation in mouse thick limbs. I. ADH dependency and nephron heterogeneity. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): C907–C919, 1986.
 182. Hebert, S. C. Hypertonic cell volume regulation in mouse thick limbs. II. Na+‐H+ and Cl−‐HCO3 exchange in basolateral membranes. Am. J. Physiol. 250 (Cell Physiol. 19): C920–C931, 1986.
 183. Hebert, S. C., and T. E. Andreoli. Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle. II. Determinants of the ADH‐mediated increases in transepithelial voltage and in net Cl− absorption. J. Membr. Biol. 80: 221–233, 1984.
 184. Hebert, S. C., R. M. Culpepper, and T. E. Andreoli. NaCl transport in mouse medullary thick ascending limbs. I. Functional nephron heterogeneity and ADH‐stimulated NaCl cotransport. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F412–F431, 1981.
 185. Hebert, S. C., R. M. Culpepper, and T. E. Andreoli. NaCl transport in mouse medullary thick ascending limbs. II. ADH enhancement of transcellular NaCl cotransport, origin of transepithelial voltage. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F432–F442, 1981.
 186. Hebert, S. C., R. M. Culpepper, and T. E. Andreoli. NaCl transport in mouse medullary thick ascending limbs. III. Modulation of the ADH effect by peritubular osmolality. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F443–F451, 1981.
 187. Hebert, S. C., P. A. Friedman, and T. E. Andreoli. Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle. I. ADH increases transcellular conductance pathways. J. Membr. Biol. 80: 201–219, 1984.
 188. Helman, S. I., J. J. Grantham, and M. B. Burg. Effect of vasopressin on electrical resistance of renal cortical collecting tubules. Am. J. Physiol. 220: 1825–1832, 1971.
 189. Hjelle, J. T., S. Oparil, and D. R. Peterson. Subcellular sites of insulin hydrolysis in renal proximal tubules. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F409–F416, 1984.
 190. Holmberg, C., J. P. Kokko, and H. R. Jacobson. Determination of chloride and bicarbonate permeabilities in proximal convoluted tubules. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F386–F394, 1981.
 191. Holt, W. F., and C. Lechene. ADH‐PGE2 interactions in cortical collecting tubule. I. Depression of sodium transport. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F452–F460, 1981.
 192. Holt, W. F., and C. Lechene. ADH‐PGE2 interactions in cortical collecting tubule. II. Inhibition of Ca and P reabsorption. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F461–F467, 1981.
 193. Horster, M. Loop of Henle functional differentiation in vitro perfusion of the isolated thick ascending segment. Pflugers Arch. 378: 15–24, 1978.
 194. Horster, M., M. Burg, D. Potts, and J. Orloff. Fluid absorption by proximal tubules in the absence of a colloid osmotic gradient. Kidney Int. 4: 6–11, 1973.
 195. Horster, M., and L. Larsson. Mechanisms of fluid absorption during proximal tubule development. Kidney Int. 10: 348–363, 1976.
 196. Horster, M. F., and H. Zink. Functional differentiation of the medullary collecting tubule: influence of vasopressin. Kidney Int. 22: 360–365, 1982.
 197. Humbert, F., M. Abramow, A. Perrelet, and L. Orci. Feasibility of freeze‐fracturing single isolated renal tubules. Kidney Int. 12: 66–71, 1977.
 198. Hunter, M., A. G. Lopes, E. L. Boulpaep, and G. H. Giebisch. Single channel recordings of calcium‐activated potassium channels in the apical membrane of rabbit cortical collecting tubules. Proc. Natl. Acad. Sci. USA 81: 4237–4239, 1984.
 199. Iino, Y., and M. B. Burg. Effect of parathyroid hormone on bicarbonate absorption by proximal tubules in vitro. Am. J. Physiol. 136 (Renal Fluid Electrolyte Physiol. 5): F387–F391, 1979.
 200. Iino, Y., and M. Imai. Effects of prostaglandins on Na transport in isolated collecting tubules. Pflugers Arch. 373: 125–132, 1978.
 201. Iino, Y., J. L. Troy, and B. M. Brenner. Effects of catecholamines on electrolyte transport in cortical collecting tubule. J. Membr. Biol. 61: 67–73, 1981.
 202. Imai, M. Effects of bumetanide and furosemide on the thick ascending limb of Henle's loop of rabbits and rats perfused in vitro. Eur. J. Pharmacol. 41: 409–416, 1977.
 203. Imai, M. Function of the thin ascending limb of Henle of rats and hamsters perfused in vitro. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F201–F209, 1977.
 204. Imai, M. Calcium transport across the rabbit thick ascending limb of Henle's loop perfused in vitro. Pflugers Arch. 374: 255–263, 1978.
 205. Imai, M. The connecting tubule: a functional subdivision of the rabbit distal nephron segments. Kidney Int. 15: 346–356, 1979.
 206. Imai, M. Effects of parathyroid hormone and N6,O2‐dibutyryl cyclic AMP on Ca2+ transport across the rabbit distal nephron segments perfused in vitro. Pflugers Arch. 390: 145–151, 1981.
 207. Imai, M. Functional heterogeneity of the descending limbs of Henle's loop. II. Interspecies differences among rabbits, rats and hamsters. Pflugers Arch. 402: 393–401, 1984.
 208. Imai, M., M. Hayashi, and M. Araki. Functional heterogeneity of the descending limbs of Henle's loop. I. Internephron heterogeneity in the hamster kidney. Pflugers Arch. 402: 385–392, 1984.
 209. Imai, M., and J. P. Kokko. Effect of peritubular protein concentration on reabsorption of sodium and water in isolated perfused proximal tubules. J. Clin. Invest. 51: 314–325, 1972.
 210. Imai, M., and J. P. Kokko. Sodium chloride, urea and water transport in the thin ascending limb of Henle. J. Clin. Invest. 53: 393–402, 1974.
 211. Imai, M., and J. P. Kokko. Transtubular oncotic pressure gradients and net fluid transport in isolated proximal tubules. Kidney Int. 6: 138–145, 1974.
 212. Imai, M., and J. P. Kokko. Mechanism of sodium and chloride transport in the thin ascending limb of Henle. J. Clin. Invest. 58: 1054–1060, 1976.
 213. Imai, M., and E. Kusano. Effects of arginine vasopressin on the thin ascending limb of Henle's loop of hamsters. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F167–F172, 1982.
 214. Imai, M., and R. Nakamura. Function of distal convoluted and connecting tubules studied by isolated nephron fragments. Kidney Int. 22: 465–472, 1982.
 215. Imai, M., D. W. Seldin, and J. P. Kokko. Effect of perfusion rate on the fluxes of water, sodium, chloride and urea across the proximal convoluted tubule. Kidney Int. 11: 18–27, 1977.
 216. Irish, J. M., III.. Secretion of prostaglandin E2 by rabbit proximal tubules. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F268–F273, 1979.
 217. Irish, J. M., III, and W. H. Dantzler. PAH transport and fluid absorption by isolated perfused frog proximal renal tubules. Am. J. Physiol. 230: 1509–1516, 1976.
 218. Jacobson, H. R. Altered permeability in the proximal tubule response to cyclic AMP. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F71–F79, 1979.
 219. Jacobson, H. R. Characteristics of volume reabsorption in rabbit superficial and juxtamedullary proximal convoluted tubules. J. Clin. Invest. 63: 410–418, 1979.
 220. Jacobson, H. R. Effects of CO2 and acetazolamide on bicarbonate and fluid transport in rabbit proximal tubules. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F54–F62, 1981.
 221. Jacobson, H. R., J. B. Gross, S. Kawamura, J. D. Waters, and J. P. Kokko. Electrophysiological study of isolated perfused human collecting ducts: ion dependency of the transepithelial potential difference. J. Clin. Invest. 58: 1233–1239, 1976.
 222. Jacobson, H. R., and J. P. Kokko. Intrinsic differences in various segments of the proximal convoluted tubule. J. Clin. Invest. 57: 818–825, 1976.
 223. Jacobson, H. R., J. P. Kokko, D. W. Seldin, and C. Holmberg. Lack of solvent drag of NaCl and NaHCO3 in rabbit proximal tubules. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F342–F348, 1982.
 224. Kaissling, B., and W. Kriz. Structural analysis of the rabbit kidney. Adv. Anat. Embryol. Cell Biol. 56: 1–124, 1979.
 225. Kaneda, Y., and E. Bello‐Reuss. Effect of dopamine on phosphate reabsorption in isolated perfused rabbit proximal tubules. Miner. Electrolyte Metab. 9: 147–150, 1983.
 226. Kaufman, J. S., and R. J. Hamburger. Potassium transport in the isolated proximal convoluted tubule. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F409–F417, 1983.
 227. Kaufman, J. S., and R. J. Hamburger. Passive potassium transport in the proximal convoluted tubule. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F228–F232, 1985.
 228. Kawamura, S., M. Imai, D. W. Seldin, and J. P. Kokko. Characteristics of salt and water transport in superficial and juxtamedullary straight segments of proximal tubules. J. Clin. Invest. 55: 1269–1277, 1975.
 229. Kawamura, S., and J. P. Kokko. Urea secretion by the straight segment of the proximal tubule. J. Clin. Invest. 58: 604–612, 1976.
 230. Kimmel, P. L., and S. Goldfarb. Effects of isoproterenol on potassium secretion by the cortical collecting tubule. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F804–F810, 1984.
 231. Kirk, K. L., P. D. Bell, D. W. Barfuss, and M. Ribadeneira. Direct visualization of the isolated and perfused macula densa. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F890–F894, 1985.
 232. Kirk, K. L., D. R. DiBona, and J. A. Schafer. Morphologic response of the rabbit cortical collecting tubule to peritubular hypotonicity: quantitative examination with differential interference contrast microscopy. J. Membr. Biol. 79: 53–64, 1984.
 233. Kirk, K. L., J. A. Schafer, and D. R. DiBona. Quantitative analysis of the structural events associated with antidiuretic hormone‐induced volume reabsorption in the rabbit cortical collecting tubule. J. Membr. Biol. 79: 65–74, 1984.
 234. Kirschenbaum, M. A., A. G. Lowe, W. Trizna, and L. G. Fine. Regulation of vasopressin action by prostaglandins: evidence for prostaglandin synthesis in the rabbit cortical collecting tubule. J. Clin. Invest. 70: 1193–1204, 1982.
 235. Knepper, M. A. Urea transport in isolated thick ascending limbs and collecting ducts from rats. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F634–F639, 1983.
 236. Knepper, M. A. Urea transport in nephron segments from medullary rays of rabbits. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F622–F627, 1983.
 237. Knepper, M. A., and M. B. Burg. Increased fluid absorption and cell volume in isolated rabbit proximal straight tubules after in vivo DOCA administration. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F502–F508, 1981.
 238. Knepper, M. A., D. W. Good, and M. B. Burg. Mechanism of ammonia secretion by cortical collecting ducts of rabbits. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F729–F738, 1984.
 239. Knepper, M. A., D. W. Good, and M. B. Burg. Ammonia and bicarbonate transport by rat cortical collecting ducts perfused in vitro. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F870–F877, 1985.
 240. Koeppen, B. M. Conductive properties of the rabbit outer medullary collecting duct: inner stripe. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F500–F506, 1985.
 241. Koeppen, B. M. Conductive properties of the rabbit outer medullary collecting duct; outer stripe. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F70–F76, 1986.
 242. Koeppen, B. M., K. W. Beyenbach, W. H. Dantzler, and S. I. Helman. Electrical characteristics of snake distal tubules: studies of I‐V relationships. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F402–F411, 1980.
 243. Koeppen, B. M., K. W. Beyenbach, and S. I. Helman. Single‐channel currents in renal tubules. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F380–F384, 1984.
 244. Koeppen, B. M., B. A. Biagi, and G. H. Giebisch. Intracellular microelectrode characterization of the rabbit cortical collecting duct. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F35–F47, 1983.
 245. Koeppen, B. M., and S. I. Helman. Acidification of luminal fluid by the rabbit cortical collecting tubule perfused in vitro. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F521–F531, 1982.
 246. Kokko, J. P. Sodium chloride and water transport in the descending limb of Henle. J. Clin. Invest. 49: 1838–1846, 1970.
 247. Kokko, J. P. Urea transport in the proximal tubule and the descending limb of Henle. J. Clin. Invest. 51: 1999–2008, 1972.
 248. Kokko, J. P. Proximal tubule potential difference: dependence on glucose, HCO3 and amino acids. J. Clin. Invest. 52: 1362–1367, 1973.
 249. Kokko, J. P., M. B. Burg, and J. Orloff. Characteristics of NaCl and water transport in the renal proximal tubule. J. Clin. Invest. 50: 69–76, 1971.
 250. Kokko, J. P., and F. C. Rector, Jr.. Flow dependence of transtubular potential difference in isolated perfused segments of rabbit proximal convoluted tubule. J. Clin. Invest. 50: 2745–2750, 1971.
 251. Kondo, Y., M. Imai, K. Kangawa, and H. Matsuo. Lack of direct action of alpha‐human atrial natriuretic polypeptide on the in vitro perfused segments of Henle's loop isolated from rabbit kidney. Pflugers Arch. 406: 273–278, 1985.
 252. Krothapalli, R. K., W. B. Duffy, H. O. Senekjian, and W. N. Suki. Modulation of the hydro‐osmotic effect of vasopressin on the rabbit cortical collecting tubule by adrenergic agents. J. Clin. Invest. 72: 287–294, 1983.
 253. Krothapalli, R. K., and W. N. Suki. Functional characterization of the alpha adrenergic receptor modulating the hydroosmotic effect of vasopressin on the rabbit cortical collecting tubule. J. Clin. Invest. 73; 740–749, 1984.
 254. Kurtz, I., R. Star, R. S. Balaban, J. L. Garvin, and M. A. Knepper. Spontaneous luminal disequilibrium pH in S3 proximal tubules: role in ammonia and bicarbonate transport. J. Clin. Invest. 78; 989–996, 1986.
 255. Lang, R. P., N. Yanagawa, E. P. Nord, L. Sakhrani, S.‐H. Lee, and L. G. Fine. Nucleotide inhibition of phosphate transport in the renal proximal tubule. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14); F263–F271, 1983.
 256. Lapointe, J.‐Y., R. Laprade, and J. Cardinal. Transepithelial and cell membrane electrical resistances of the rabbit proximal convoluted tubule. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16); F637–F649, 1984.
 257. Lapointe, J. Y., R. Laprade, and J. Cardinal. Characterization of the apical membrane ionic permeability of the rabbit proximal convoluted tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F339–F347, 1986.
 258. Laprade, R., and J. Cardinal. Liquid junctions and isolated proximal tubule transepithelial potentials. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F304–F319, 1983.
 259. Larsson, L., and M. Horster. Ultrastructure and net fluid transport in isolated perfused developing proximal tubules. J. Ultrastruct. Res. 54: 276–285, 1976.
 260. Laski, M. E., and N. A. Kurtzman. Characterization of acidification in the cortical and medullary collecting tubule of the rabbit. J. Clin. Invest. 72: 2050–2059, 1983.
 261. Laski, M. E., D. G. Warnock, and F. C. Rector, Jr.. Effects of chloride gradients on total CO2 flux in the rabbit cortical collecting tubule. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F112–F121, 1983.
 262. Linshaw, M. A. Effect of metabolic inhibitors on renal tubule cell volume. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8); F571–F577, 1980.
 263. Linshaw, M. A., C. A. Bauman, and L. W. Welling. Use of trypan blue for identifying early proximal convoluted tubules. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F214–F219, 1986.
 264. Linshaw, M. A., and J. J. Grantham. Effect of collagenase and ouabain on renal cell volume in hypotonic media. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F491–F498, 1980.
 265. Linshaw, M. A., and F. B. Stapleton. Effect of ouabain and colloid osmotic pressure on renal tubule cell volume. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F480–F491, 1978.
 266. Linshaw, M. A., F. B. Stapleton, F. E. Cuppage, and J. J. Grantham. Effect of basement membrane and colloid osmotic pressure on renal tubule cell volume. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F325–F332, 1977.
 267. Linshaw, M. A., and L. W. Welling. Basolateral membrane properties in proximal convoluted tubules of the newborn rabbit. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13); F172–F177, 1983.
 268. Linshaw, M. A., L. W. Welling, and C. A. Bauman. Basolateral membrane properties of juxtamedullary proximal tubule in newborn rabbit. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F208–F213, 1986.
 269. Lohr, J., and J. J. Grantham. Isovolumetric regulation of isolated S2 proximal tubules in anisotonic media. J. Clin. Invest. 78; 1165–1172, 1986.
 270. Lombard, W. E., J. P. Kokko, and H. R. Jacobson. Bicarbonate transport in cortical and outer medullary collecting tubules. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F289–F296, 1983.
 271. Lorenzen, M., C. O. Lee, and E. E. Windhager. Cytosolic CA2+ and Na+ activities in perfused proximal tubules of Necturus kidney. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16); F93–F102, 1984.
 272. Lorenzen, M., A. Taylor, and E. E. Windhager. pH effect on osmotic response of collecting tubules to vasopressin and. 8‐CPT‐cAMP. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F188–F197, 1983.
 273. Lutz, M. D., J. Cardinal, and M. B. Burg. Electrical resistance of renal proximal tubule perfused in vitro. Am. J. Physiol. 225: 729–734, 1973.
 274. McKeown, J. W., P. C. Brazy, and V. W. Dennis. Intrarenal heterogeneity for fluid, phosphate, and glucose absorption in the rabit. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F312–F318, 1979.
 275. McKinney, T. D. Heterogeneity of organic base secretion by proximal tubules. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F404–F407, 1982.
 276. McKinney, T. D. Further studies of organic base secretion by rabbit proximal tubules. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F282–F289, 1984.
 277. McKinney, T. D., and M. B. Burg. Bicarbonate and fluid absorption by renal proximal straight tubules. Kidney Int. 12: 1–8, 1977.
 278. McKinney, T. D., and M. B. Burg. Bicarbonate transport by rabbit cortical collecting tubules: effect of acid and alkali loads in vivo on transport in vitro. J. Clin. Invest. 60: 766–768, 1977.
 279. McKinney, T. D., and M. B. Burg. Bicarbonate absorption by rabbit cortical collecting tubules in vitro. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F141–F145, 1978.
 280. McKinney, T. D., and M. B. Burg. Bicarbonate secretion by rabbit cortical collecting tubules in vitro. J. Clin. Invest. 61: 1421–1427, 1978.
 281. McKinney, T. D., and P. Myers. Bicarbonate transport by proximal tubules: effect of parathyroid hormone and dibutyryl cyclic AMP. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F166–F174, 1980.
 282. McKinney, T. D., and P. Myers. PTH inhibition of bicarbonate transport by proximal convoluted tubules. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F127–F134, 1980.
 283. McKinney, T. D., and P. Myers. Effect of calcium and phosphate on bicarbonate and fluid transport by proximal tubules in vitro. Kidney Int. 21: 433–438, 1982.
 284. McKinney, T. D., P. Myers, and K. V. Speeg, Jr.. Cimetidine secretion by rabbit renal tubules in vitro. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F69–F76, 1981.
 285. McKinney, T. D., and K. V. Speeg, Jr.. Cimetidine and procainamide secretion by proximal tubules in vitro. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F672–F680, 1982.
 286. Miwa, T., and M. Imai. Flow‐dependent water permeability of the rabbit descending limb of Henle's loop. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F743–F754, 1983.
 287. Miwa, T., and H. Nishimura. Diluting segment in avian kidney. II. Water and chloride transport. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 19): R341–R347, 1986.
 288. Mukherjee, S. K., and W. H. Dantzler. Effects of SITS on urate transport by isolated perfused snake renal tubules. Pflugers Arch. 403: 35–40, 1985.
 289. Nadler, S. p., S. C. Hebert, and B. M. Brenner. PGE2, forskolin, and cholera toxin interactions in rabbit cortical collecting tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F127–F135, 1986.
 290. Natke, E. Jr., and L. C. Stoner. Na+ transport properties of the peritubular membrane of cortical collecting tubule. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F664–F671, 1982.
 291. Ng, R. C. K., D. Rouse, and W. N. Suki. Calcium transport in the rabbit superficial proximal convoluted tubule. J. Clin. Invest. 74: 834–842, 1984.
 292. Nielsen, J. T., and E. I. Christensen. Ultrastructure of isolated perfused proximal tubules from rabbit kidney: a comparison with proximal tubules fixed by perfusion in vivo. Lab. Invest. 49: 400–411, 1983.
 293. Nielsen, J. T., and E. I. Christensen. Basolateral endocytosis of protein in isolated perfused proximal tubules. Kidney Int. 27: 39–45, 1985.
 294. Nishimura, H., M. Imai, and M. Ogawa. Sodium chloride and water transport in the renal distal tubule of the rainbow trout. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F247–F254, 1983.
 295. Nishimura, H., M. Imai, and M. Ogawa. Diluting segment in avian kidney. I. Characterization of transepithelial voltages. Am. }. Physiol. 250 (Regulatory Integrative Comp. Physiol. 19): R333–R340, 1986.
 296. O'Neil, R. G. Voltage‐dependent interaction of barium and cesium with the potassium conductance of the cortical collecting duct apical cell membrane. J. Membr. Biol. 74: 165–173, 1983.
 297. O'Neil, R. G., and E. L. Boulpaep. Effect of amiloride on the apical cell membrane cation channels of a sodium‐absorbing, potassium‐secreting renal epithelium. J. Membr. Biol. 50: 365–387, 1979.
 298. O'Neil, R. G., and E. L. Boulpaep. Ionic conductive properties and electrophysiology of the rabbit cortical collecting tubule. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F81–F95, 1982.
 299. O'Neil, R. G., and W. P. Dubinsky. Micromethodology for measuring ATPase activity in renal tubules: mineralocorticoid influence. Am. J. Physiol. 247 (Comp. Physiol. 16): C314–C320, 1984.
 300. O'Neil, R. G., and R. A. Hayhurst. Functional differentiation of cell types of cortical collecting duct. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F449–F453, 1985.
 301. O'Neil, R. G., and R. A. Hayhurst. Sodium‐dependent modulation of the renal Na‐K‐ATPase: influence of mineralocorticoids on the cortical collecting duct. J. Membr. Biol. 85: 169–179, 1985.
 302. O'Neil, R. G., and S. I. Helman. Transport characteristics of renal collecting tubules: influences of DOCA and diet. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F544–F558, 1977.
 303. O'Neil, R. G., and S. C. Sansom. Characterization of apical cell membrane Na+ and K+ conductances of cortical collecting duct using microelectrode techniques. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F14–F24, 1984.
 304. O'Neil, R. G., and S. C. Sansom. Electrophysiological properties of cellular and paracellular conductive pathways of the rabbit cortical collecting duct. J. Membr. Biol. 82: 281–295, 1984.
 305. Oberleithner, H., W. Guggino, and G. Giebisch. Resistance properties of the diluting segment of Amphiuma kidney: influence of potassium adaptation. Membr. Biol. 88: 139–147, 1985.
 306. Osgood, R. W., M. Patton, M. J. Hanley, M. Venkatachalam, H. J. Reineck, and J. H. Stein. In vitro perfusion of the isolated dog glomerulus. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F349–F354, 1983.
 307. Park, C. H., and T. Maack. Albumin absorption and catabolism by isolated perfused proximal convoluted tubules of the rabbit. J. Clin. Invest. 73: 767–777, 1984.
 308. Peraino, R. A., and W. N. Suki. Phosphate transport by isolated rabbit cortical collecting tubule. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F358–F362, 1980.
 309. Peterson, D. R., S. Oparil, G. Flouret, and F. A. Carone. Handling of angiotensin II and oxytocin by renal tubular segments perfused in vitro. Am. J. Physiol. 132 (Renal Fluid Electrolyte Physiol. 1): F319–F324, 1977.
 310. Petty, K. J., J. P. Kokko, and D. Marver. Secondary effect of aldosterone on Na‐K‐ATPase activity in the rabbit cortical collecting tubule. J. Clin. Invest. 68: 1514–1521, 1981.
 311. Pirie, S. C., and D. J. Potts. The effect of peritubular protein upon fluid reabsorption in rabbit proximal convoluted tubules perfused in vitro. J. Physiol. 337: 429–440, 1983.
 312. Planelles, G., A. Kurkdjian, and T. Anagnostopoulos. Cell and luminal pH in the proximal tubule of Necturus kidney. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F932–F938, 1984.
 313. Porter, R. D., W. F. Cathcart‐Rake, S. H. Wan, F. C. Whittier, and J. J. Grantham. Secretory activity and aryl acid content of serum, urine, and cerebrospinal fluid in normal and uremic man. J. Lab. Clin. Med. 85: 723–733, 1975.
 314. Preisig, P. A., and C. A. Berry. Evidence for transcellular osmotic water flow in rat proximal tubules. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F124–F131, 1985.
 315. Quamme, G. A., and C. M. Smith. Magnesium transport in the proximal straight tubule of the rabbit. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F544–F550, 1984.
 316. Rajerison, R. M., M. Faure, and F. Morel. Effects of external potassium concentrations on the cell sodium and potassium contents of isolated rat kidney tubules. Pflugers Arch. 406: 291–295, 1986.
 317. Rajerison, R. M., M. Faure, and F. Morel. Effects of temperature, ouabain and diuretics on the cell sodium and potassium contents of isolated rat kidney tubules. Pflugers Arch. 406: 285–290, 1986.
 318. Randle, H. W., and W. H. Dantzler. Effects of K+ and Na+ on urate transport by isolated perfused snake renal tubules. Am. J. Physiol. 225: 1206–1214, 1973.
 319. Raymond, K. H., K. K. Davidson, and T. D. McKinney. In vivo and in vitro studies of urinary concentrating ability in potassium‐depleted rabbits. J. Clin. Invest. 76: 561–566, 1985.
 320. Rehwald, W., J. Geibel, E. Gstrein, and H. Oberleithner. A microelectrode for continuous monitoring of glucose concentration in isolated perfused tubule segments. Pflugers Arch. 400: 398–402, 1984.
 321. Reif, M. C., S. L. Troutman, and J. A. Schafer. Sustained response to vasopressin in isolated rat cortical collecting tubule. Kidney Int. 26: 725–732, 1984.
 322. Reif, M. C., S. C. Troutman, and J. A. Schafer. Sodium transport by rat cortical collecting tubule: effects of vasopressin and desoxycorticosterone. J. Clin. Invest. 77: 1291–1298, 1986.
 323. Renfro, J. L. Calcium transport across peritubular surface of the marine teleost renal tubule. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F522–F531, 1978.
 324. Renfro, J. L., and K. G. Dickman. Sulfate transport across the peritubular surface of the marine teleost renal tubule. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F143–FI48, 1980.
 325. Rocha, A. S., and J. P. Kokko. Membrane characteristics regulating potassium transport out of the isolated perused descending limb of Henle. Kidney Int. 4: 326–330, 1973.
 326. Rocha, A. S., and J. P. Kokko. Sodium chloride and water transport in the medullary thick ascending limb of Henle. J. Clin. Invest. 52: 612–623, 1973.
 327. Rocha, A. S., and J. P. Kokko. Permeability of medullary nephron segments to urea and water. Kidney Int. 6; 379–387, 1974.
 328. Rocha, A. S., J. B. Magaldi, and J. P. Kokko. Calcium and phosphate transport in isolated segments of rabbit Henle's loop. J. Clin. Invest. 59: 975–983, 1977.
 329. Rouse, D., R. C. K. Ng, and W. N. Suki. Calcium transport in the pars recta and thin descending limb of Henle of the rabbit, perfused in vitro, J. Clin. Invest. 65: 37–42, 1980.
 330. Sackin, H., and E. L. Boulpaep. Isolated perfused salamander proximal tubule: methods, electrophysiology, and transport. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F39–F52, 1981.
 331. Sackin, H., and E. L. Boulpaep. Isolated perfused salamander proximal tubule. II. Monovalent ion replacement and rheogcnic transport. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F540–F555, 1981.
 332. Sands, J. M., E. J. Ivy, and R. Beeuwkes. Transmembrane potential of renal papillary epithelial cells: effect of urea and DDAVP. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F762–F766, 1985.
 333. Sands, J. M., and M. A. Knepper. Urea permeability of mammalian inner medullary collecting duct system and papillary surface epithelium. J. Clin. Invest. 79: 138–147, 1987.
 334. Sands, J. M., M. A. Knepper, and K. R. Spring. Na‐K‐Cl‐Ca transport in apical membrane of rabbit renal papillary surface epithelium. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F475–F484, 1986.
 335. Sansom, S. C., and R. G. O'Neil. Mineralocorticoid regulation of apical cell membrane Na+ and K+ transport of the cortical collecting duct. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F858–F868, 1985.
 336. Sansom, S. C., E. J. Weinman, and R. G. O'Neil. Microelectrode assessment of chloride‐conductive properties of cortical collecting duct. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F291–F302, 1984.
 337. Sasaki, S., and C. A. Berry. Mechanism of bicarbonate exit across basolateral membrane of the rabbit proximal convoluted tubule. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F889–F896, 1984.
 338. Sasaki, S., C. A. Berry, and P. C. Rector, Jr.. Effect of luminal and peritubular HCO3− concentrations and PCO2 on HCO3− reabsorption in rabbit proximal convoluted tubules perfused in vitro. J. Clin. Invest. 70: 639–649, 1982.
 339. Sasaki, S., C. A. Berry, and F. C. Rector, Jr.. Effect of potassium concentration on bicarbonate reabsorption in the rabbit proximal convoluted tubule. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F122–F128, 1983.
 340. Sasaki, S., and M. Imai. Effects of vasopressin on water and NaCl transport across the in vitro perfused medullary thick ascending limb of Henle's loop of mouse, rat and rabbit kidneys. Pflugers Arch. 383: 215–221, 1980.
 341. Sasaki, S., T. Shiigai, and J. Takeuchi. Intracellular pH in the isolated perfused rabbit proximal straight tubule. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F417–F423, 1985.
 342. Savin, V. J. Ultrafiltration in single isolated human glomeruli. Kidney Int. 24: 748–753, 1983.
 343. Savin, V. J. In vitro effects of angiotensin II on glomerular Function. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F627–F634, 1986.
 344. Savin, V. J., C. Beason‐Griffin, and W. P. Richardson. Ultrafiltration coefficient of isolated glomeruli of rats aged 4 days to maturation. Kidney Int. 28: 926–931, 1985.
 345. Savin, V., L. Karniski, F. Cuppage, G. Hodges, and A. Chonko. Effect of gentamicin on isolated glomeruli and proximal tubules of the rabbit. Lab. Invest. 52: 93–102, 1985.
 346. Savin, V. J., H. B. Lindsley, R. B. Nagle, and R. Cachia. Ultrafiltration coefficient and glomerular capillary resistance in a model of immune complex glomerulonephritis. Kidney Int. 21: 28–35, 1982.
 347. Savin, V. J., and D. A. Terreros. Filtration in single isolated mammalian glomeruli. Kidney Int. 20: 188–197, 1981.
 348. Sawyer, D. B., and K. W. Beyenbach. Mechanism of fluid secretion in isolated shark renal proximal tubules. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F884–F890, 1985.
 349. Schafer, J. A. Mechanisms coupling the absorption of solutes and water. Kidney Int. 25: 708, 1984.
 350. Schafer, J. A., and T. E. Andreoli. Cellular constraints to diffusion. J. Clin. Invest. 51: 1264–1278, 1972.
 351. Schafer, J. A., and T. E. Andreoli. The effect of antidiuretic hormone on solute flows in mammalian collecting tubules. J. Clin. Invest. 51: 1279–1286, 1972.
 352. Schafer, J. A., and T. E. Andreoli. Anion transport processes in the mammalian superficial proximal straight tubule. J. Clin. Invest. 58: 500–513, 1976.
 353. Schafer, J. A., and D. W. Barfuss. Membrane mechanisms for transepithelial amino acid absorption and secretion. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F335–F346, 1980.
 354. Schafer, J., C. S. Patlak, and T. E. Andreoli. Osmosis in cortical collecting tubules: a theoretical and experimental analysis of the osmotic transient phenomenon. J. Gen. Physiol. 64: 201–227, 1974.
 355. Schafer, J. A., C. S. Patlak, and T. E. Andreoli. A component of fluid absorption linked to passive ion flows in the superficial pars recta. J. Gen. PhysioL 66: 445–471, 1975.
 356. Schafer, J. A., C. S. Patlak, and T. E. Andreoli. Fluid absorption and active and passive ion flows in the rabbit superficial pars recta. Am. J. Physiol. 223 (Renal Fluid Electrolyte Physiol. 2): F154–F167, 1977.
 357. Schafer, J. A., C. S. Patlak, S. L. Troutman, and T. E. Andreoli. Volume absorption in the pars recta. II. Hydraulic conductivity coefficient. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F340–F348, 1978.
 358. Schafer, J. A., S. L. Troutman, and T. E. Andreoli. Osmosis in cortical collecting tubules: ADH‐independent osmotic flow rectification. J. Gen. Physiol. 64: 228–240, 1974.
 359. Schafer, J. A., S. L. Troutman, and T. E. Andreoli. Volume reabsorption, transepithelial potential differences, and ionic permeability properties in mammalian superficial proximal straight tubules. J. Gen. Physiol. 64: 582–607, 1974.
 360. Schafer, J. A., S. L. Troutman, M. L. Watkins, and T. E. Andreoli. Volume absorption in the pars recta. I. “Simple” active Na+ transport. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F332–F339, 1978.
 361. Schafer, J. A., S. L. Troutman, M. L. Watkins, and T. E. Andreoli. Flow dependence of fluid transport in the isolated superficial pars recta: evidence that osmotic disequilibrium between external solutions drives isotonic fluid absorption. Kidney Int. 20: 588–597, 1981.
 362. Schafer, J. A., and M. L. Watkins. Transport of l‐cystine in isolated perfused proximal straight tubules. Pflugers Arch. 401: 143–151, 1984.
 363. Schali, C., and F. Roch‐Ramel. Accumulation of [14C] urate and [3H] PAH in isolated proximal tubular segments of the rabbit kidney. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F222–F227, 1980.
 364. Schali, C., and F. Roch‐Ramel. Uptake of [3H]PAH and [14C] urate into isolated proximal tubular segments of the pig kidney. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F591–F596, 1981.
 365. Schali, C., L. Schild, J. Overney, and F. Roch‐Ramel. Secretion of tetraethylammonium by proximal tubules of rabbit kidneys. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F238–F246, 1983.
 366. Schlatter, E., and R. Greger. cAMP increases the basolateral Cl− conductance in the isolated perfused medullary thick ascending limb of Henle's loop of the mouse. Pflugers Arch. 405: 367–376, 1985.
 367. Schlatter, E., R. Greger, and C. Weidtke. Effect of “high ceiling” diuretics on active salt transport in the cortical thick ascending limb of Henle's loop of rabbit kidney: correlation of chemical structure and inhibitory potency. Pflugers Arch. 396: 210–217, 1983.
 368. Schuster, V. L., J. P. Kokko, and H. R. Jacobson. Angiotensin II directly stimulates sodium transport in rabbit proximal convoluted tubules. J. Clin. Invest. 73: 507–515, 1984.
 369. Schuster, V. L., J. P. Kokko, and H. R. Jacobson. Interactions of lysyl‐bradykinin and antidiuretic hormone in the rabbit cortical collecting tubule. J. Clin. Invest. 73: 1659–1667, 1984.
 370. Schwartz, G. J. Na+‐dependent H+ efflux from proximal tubule: evidence for reversible NA+‐H+ exchange. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F380–F385, 1981.
 371. Schwartz, G. J. Absence of Cl−‐OH− or Cl−‐HCO3−exchange in the rabbit renal proximal tubule. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F462–F469, 1983.
 372. Schwartz, G. J., and M. B. Burg. Mineralocorticoid effects on cation transport by cortical collecting tubules in vitro. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F576–F585, 1978.
 373. Schwartz, G. J., and A. P. Evan. Development of solute transport in rabbit proximal tubule. I. HCO3− and glucose absorption. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F382–F390, 1983.
 374. Schwartz, G. J., A. M. Weinstein, R. E. Steele, J. L. Stephenson, and M. B. Burg. Carbon dioxide permeability of rabbit proximal convoluted tubules. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F231–F244, 1981.
 375. Schwartz, M. J., and J. P. Kokko. Urinary concentrating defect of adrenal insufficiency: permissive role of adrenal steroids on the hydroosmotic response across the rabbit cortical collecting tubule. J. Clin. Invest. 66: 234–242, 1980.
 376. Senekjian, H. O., T. F. Knight, and E. J. Weinman. Urate transport by the isolated perfused S2 segment of the rabbit. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F530–F535, 1981.
 377. Senekjian, H. O., and E. J. Weinman. Oxalate transport by proximal tubule of the rabbit kidney. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F271–F275, 1982.
 378. Shareghi, G. R., and Z. S. Agus. Magnesium transport in the cortical thick ascending limb of Henle's loop of the rabbit. J. Clin. Invest. 69: 759–769, 1982.
 379. Shareghi, G. R., and Z. S. Agus. Phosphate transport in the light segment of the rabbit cortical collecting tubule. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F379–F384, 1982.
 380. Shareghi, G. R., and L. C. Stoner. Calcium transport across segments of the rabbit distal nephron in vitro. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 3): F367–F375, 1978.
 381. Shimomura, A., A. M. Chonko, and J. J. Grantham. Basis for heterogeneity of para‐aminohippurate secretion in rabbit proximal tubules. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F430–F436, 1981.
 382. Shimomura, A., A. Chonko, R. Tanner, R. Edwards, and J. Grantham. Nature of urate transport in isolated rabbit proximal tubules. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F565–F578, 1981.
 383. Stapleton, F. B., and M. A. Linshaw. Regulation of cell volume in a human proximal straight tubule. Renal Physiol. 1: 334–337, 1978.
 384. Star, R. A., M. B. Burg, and M. A. Knepper. Bicarbonate secretion and chloride absorption by rabbit cortical collecting ducts: role of chloride/bicarbonate exchange. J. Clin. Invest. 74: 1123–1130, 1985.
 385. Stetler‐Stevenson, M. A., G. Flouret, and D. R. Peterson. Handling of luteinizing hormone‐releasing hormone by renal proximal tubular segments in vitro. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F117–F122, 1981.
 386. Stokes, J. B. Effect of prostaglandin E2 on chloride transport across the rabbit thick ascending limb of Henle: selective inhibition of the medullary portion. J. Clin. Invest. 64: 495–502, 1979.
 387. Stokes, J. B. Potassium secretion by cortical collecting tubule: relation to sodium absorption, luminal sodium concentration, and transepithelial voltage. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F395–F402, 1981.
 388. Stokes, J. B. Consequences of potassium recycling in the renal medulla: effects on ion transport by the medullary thick ascending limb of Henle's loop. J. Clin. Invest. 70: 219–229, 1982.
 389. Stokes, J. B. Na and K transport across the cortical and outer medullary collecting tubule of the rabbit: evidence for diffusion across the outer medullary portion. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F514–F520, 1982.
 390. Stokes, J. B. Cellular K+ permeation across the cortical collecting tubule: effects of Na+‐K+ pump inhibition and membrane depolarization. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F467–F475, 1984.
 391. Stokes, J. B. Pathways of K+ permeation across the rabbit cortical collecting tubule: effect of amiloride. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F457–F466, 1984.
 392. Stokes, J. B. Mineralocorticoid effect on K+ permeability of the rabbit cortical collecting tubule. Kidney Int. 28: 640–645, 1985.
 393. Stokes, J. B. Patterns of K+ permeability following inhibition of Na+ transport in rabbit cortical collecting tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F120–F126, 1986.
 394. Stokes, J. B., M. J. Ingram, A. D. Williams, and D. Ingram. Heterogeneity of the rabbit collecting tubule: localization of mineralocorticoid hormone action to the cortical portion. Kidney Int. 20: 340–347, 1981.
 395. Stokes, J. B., and J. P. Kokko. Inhibition of sodium transport by prostaglandin E2 across the isolated, perfused rabbit collecting tubule. J. Clin. Invest. 59: 1099–1104, 1977.
 396. Stokes, J. B., C. C. Tisher, and J. P. Kokko. Structural‐functional heterogeneity along the rabbit collecting tubule. Kidney Int. 14: 585–593, 1978.
 397. Stone, D. K., D. W. Seldin, J. P. Kokko, and H. R. Jacobson. Anion dependence of rabbit medullary collecting duct acidification. J. Clin. Invest. 71: 1505–1508, 1983.
 398. Stone, D. K., D. W. Seldin, J. P. Kokko, and H. R. Jacobson. Mineralocorticoid modulation of rabbit medullary collecting duct acidification: a sodium independent effect, J. Clin. Invest. 72: 77–83, 1983.
 399. Stoner, L. C. Isolated, perfused amphibian renal tubules: the diluting segment. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 1): F438–F444, 1977.
 400. Stoner, L. C., M. B. Burg, and J. Orloff. Ion transport in cortical collecting tubule: effect of amiloride. Am. J. Physiol. 227: 453–459, 1974.
 401. Stoner, L. C., and F. Roch‐Ramel. The effects of pressure on the water permeability of the descending limb of Henle's loops of rabbits. Pflugers Arch. 382: 7–15, 1979.
 402. Sudo, J. I., and F. Morel. Na+ and K+ cell concentrations in collagenase‐treated rat kidney tubules incubated at various temperatures. Am. J. Physiol. 246 (Cell Physiol. 15): C407–C414, 1984.
 403. Suki, W. N., and D. Rouse. Hormonal regulation of calcium transport in thick ascending limb renal tubules. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F171–F174, 1981.
 404. Suki, W. N., D. Rouse, R. C. K. Ng, and J. P. Kokko. Calcium transport in the thick ascending limb of Henle: heterogenetiy of function in the medullary and cortical segments. J. Clin. Invest. 66: 1004–1009, 1980.
 405. Tabei, K., and M. Imai. Permselectivity for cations over anions in the upper portion of descending limbs of Henle's loop of long‐loop nephron isolated from hamsters. Pflugers arch. 406: 279–284, 1986.
 406. Tago, K., V. L. Schuster, and J. B. Stokes. Stimulation of chloride transport by hco3‐co2 in rabbit cortical collecting tubule. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F49–F56, 1986.
 407. Tanner, R. J., A. M. Chonko, R. M. Edwards, and J. J. Grantham. Evidence for an inhibitor of renal urate and PAH secretion in rabbit blood. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F590–F598, 1983.
 408. Terreros, D. A., and J. J. Grantham. Marshall Barber and the origins of micropipette methods. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F293–F296, 1982.
 409. Terreros, D. A., M. Tarr, and J. J. Grantham. Transmembrane electrical potential differences in cells of isolated renal tubules. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F61–F68, 1981.
 410. Tisher, C. C., and J. P. Kokko. Relationship between peritubular oncotic pressure gradients and morphology in isolated proximal tubules. Kidney Int. 6: 146–156, 1974.
 411. Tomita, K., J. J. Pisano, and M. A. Knepper. Control of sodium and potassium transport in the cortical collecting duct of the rat. J. Clin. Invest. 76: 132–136, 1985.
 412. Torika, S., and K. Kurokawa. Effect of PGE2 on vasopressin‐dependent cell cAMP in isolated single nephron segments. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F58–F66, 1983.
 413. Trizna, W., N. Yanagawa, Y. Bar‐Khayim, B. Houston, and L. Fine. Functional profile of the isolated uremic nephron: evidence of proximal tubular “memory” in experimental renal disease. J. Clin. Invest. 68: 760–767, 1981.
 414. Tune, B. M., and M. B. Burg. Glucose transport by proximal renal tubules. Am. J. Physiol. 221: 580–585, 1971.
 415. Tune, B. M., M. B. Burg, and C. S. Patlak. Characteristics of p‐aminohippurate transport in proximal renal tubules. Am. J. Physiol. 217: 1057–1063, 1969.
 416. Volkl, H., J. Geibel, W. Rehwald, and F. Lang. A microelectrode for continuous monitoring of redox activity in isolated perfused tubule segments. Pflugers Arch. 400: 393–397, 1984.
 417. Warnock, D. G., and M. B. Burg. Urinary acidification: CO2 transport by the rabbit proximal straight tubule. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol.1): F20–F25, 1977.
 418. Warnock, D. G., C. S. Patlak, and M. B. Burg. Contribution of leaked load to solute transport by renal tubules. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F480–F484, 1978.
 419. Warnock, D. G., and V. J. Yee. Anion permeabilities of the isolated perfused rabbit proximal tubule. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F395–F405, 1982.
 420. Wasserstein, A. G., and Z. S. Agus. Potassium secretion in the rabbit proximal straight tubule. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F167–F174, 1983.
 421. Webb, D. E., R. M. Edwards, and J. J. Grantham. Dependence of proximal tubule p‐aminohippurate secretion on serum protein and metabolic substrates. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F619–F626, 1986.
 422. Weiner, R. N., R. Greger, E. Schlatter, F. Papavassiliou, and K. J. Ullrich. A cytotoxin of Pseudomonas aeruginosa acts directly on the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 394: 271–273, 1982.
 423. Welling, L. W., A. P. Evan, and D. J. Welling. Shape of cells and extracellular channels in rabbit cortical collecting ducts. Kidney Int. 20: 211–222, 1981.
 424. Welling, L. W., and J. J. Grantham. Physical properties of isolated perfused renal tubules and tubular basement membranes. J. Clin. Invest. 51: 1063–1075, 1972.
 425. Welling, P. A., M. A. Linshaw, and L. P. Sullivan. Effect of barium on cell volume regulation in rabbit proximal straight tubules. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F20–F27, 1985.
 426. Welling, L. W., and D. J. Welling. Pressure‐flow‐diameter relationships in isolated perfused thin limb of Henle. Am. J. Physiol. 229: 1–7, 1975.
 427. Welling, L. W., and D. J. Welling. Surface areas of brush border and lateral cell walls in the rabbit proximal nephron. Kidney Int. 8: 343–348, 1975.
 428. Welling, L. W., and D. J. Welling. Shape of epithelial cells and intercellular channels in the rabbit proximal nephron. Kidney Int. 9: 385–394, 1976.
 429. Welling, L. W., and D. J. Welling. Physical properties of isolated perfused basement membranes from rabbit loop of Henle. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F54–F58, 1978.
 430. Welling, L. W., D. J. Welling, and J. J. Hill. Shape of cells and intercellular channels in rabbit thick ascending limb of Henle. Kidney Int. 13: 144–151, 1978.
 431. Welling, L. W., D. J. Welling, and T. J. Ochs. Video measurement of basolateral membrane hydraulic conductivity in the proximal tubule. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F123–F129, 1983.
 432. Welling, L. W., D. J. Welling, and T. J. Ochs. video measurement of basolateral NaCl reflection on coefficient in proximal tubule. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 22): F290–F298, 1987.
 433. Wingo, C. S. Effect of ouabain on K secretion in cortical collecting tubules from adrenalectomized rabbits. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F588–F595, 1984.
 434. Wingo, C. S. Cortical collecting tubule potassium secretion: effect of amiloride, ouabain and luminal sodium concentration. Kidney Int. 17: 886–891, 1985.
 435. Wingo, C. S. Effect of acidosis on chloride transport in the cortical thick ascending limb of Henle perfused in vitro. J. Clin. Invest. 78: 1324–1330, 1986.
 436. Wingo, C. S., J. P. Kokko, and H. R. Jacobson. Effects of in vitro aldosterone on the rabbit cortical collecting tubule. Kidney Int. 28: 51–57, 1985.
 437. Wingo, C. S., D. W. Seldin, J. P. Kokko, and H. R. Jacobson. Dietary modulation of active potassium secretion in the cortical collecting tubule of adrenalectomized rabbits. J. Clin. Invest. 70: 579–586, 1982.
 438. Wittner, M., C. Weidtke, E. Schlatter, A. diStefano, and R. Greger. Substrate utilization in the isolated perfused cortical thick ascending limb of rabbit nephron. Pflugers Arch. 402: 52–62, 1984.
 439. Woodhall, P. B., C. C. Tisher, C. A. Simonton, and R. R. Robinson. Relationship between para‐aminohippurate secretion and cellular morphology in rabbit proximal tubules. J. Clin. Invest. 51: 1320–1329, 1978.
 440. Work, J., S. L. Troutman, and J. A. Schafer. Transport of potassium in the rabbit pars recta. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F226–F237, 1982.
 441. Yanagawa, N., G. T. Nagami, O. Jo, J. Uemasu, and K. Kurokawa. Dissociation of gluconeogenesis from fluid and phosphate reabsorption in isolated rabbit proximal tubules. Kidney Int. 25: 869–873, 1984.
 442. Yanagawa, N., G. T. Nagami, and K. Kurokawa. Cytosolic redox potential and phosphate transport in the proximal tubule of the rabbit. Miner. Electrolyte Metab. 11: 57–61, 1985.
 443. Yanagawa, N., R. A. Nissenson, B. Edwards, P. Yeung, W. Trizna, and L. G. Fine. Functional profile of the isolated uremic nephron: intrinsic adaptation of phosphate transport in the rabbit proximal tubule. Kidney Int. 23: 674–683, 1983.
 444. Yanagawa, N., W. Trizna, Y. Bar‐Khayim, and L. G. Fine. Effects of vasopressin on the isolated perfused human collecting tubule. Kidney Int. 19: 705–709, 1981.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Jared J. Grantham, Larry W. Welling, Richard M. Edwards. Evaluation of Function in Single Segments of Isolated Renal Blood Vessels, Nephrons, and Collecting Ducts. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 351-383. First published in print 1992. doi: 10.1002/cphy.cp080109