Comprehensive Physiology Wiley Online Library

Comparative Physiology of the Kidney

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Morphological Relationships
2 Initial Process in Urine Formation
2.1 Filtration of Fluid by Glomeruli
2.2 Regulation of Number of Filtering Nephrons and of SNGFR
2.3 Secretion of Fluid by Tubules
3 Transport of Inorganic Ions By Tubules
3.1 Sodium and Chloride
3.2 Potassium
3.3 Calcium
3.4 Phosphate
3.5 Magnesium and Sulfate
4 Transport of Fluid by Tubules
4.1 Fluid Absorption
4.2 Fluid Secretion
5 Transport of Organic Substances by Tubules
5.1 Glucose
5.2 Amino Acids
5.3 Urea
5.4 Organic Acids and Anions (Other Than Amino Acids, Urate, and Lactate)
5.5 Urate
5.6 Lactate
5.7 Organic Cations
6 Diluting and Concentrating Processes
6.1 Range of Urine Osmolality
6.2 Process and Sites of Dilution
6.3 Regulation of Changes in Urine Osmolality
7 Integrative Summary of Some Renal Functions
7.1 Fishes
7.2 Amphibians
7.3 Reptiles
7.4 Birds
Figure 1. Figure 1.

Representations of fish (elasmobranch, Squalus acanthias; glomerular teleost, Anguilla rostrata; aglomerular teleost, Lophius piscatorius), amphibian (Necturus maculosus), reptilian (Thamnophis sirtalis), avian (Callus gallus domesticus), and mammalian (Mus flavicolis) nephrons drawn to single scale.

From Dantzler 80
Figure 2. Figure 2.

Representations of nephrons from major classes of nonmammalian vertebrates showing major nephron segments. No attempt was made to draw nephrons to exact scale, although some attempt was made to indicate relative sizes for fish and bird nephrons. Breaks in nephrons indicate that lengths of those segments may be much greater relative to other segments than actually shown. Except for those nephrons in which a loop structure was parallel to collecting ducts (lamprey and avian mammalian‐type), no attempt was made to show shape of nephron segments.

From Dantzler 80
Figure 3. Figure 3.

Three‐dimensional drawing of section of avian kidney (Gambel's quail, Callipepla gambelli) showing types of nephrons present, their relative positions in kidney, and their relationships to other renal structures.

From Braun and Dantzler 39
Figure 4. Figure 4.

Model for net tubular absorption of glucose based on studies in amphibians, reptiles, and fish. Solid circles with solid arrows indicate either primary or secondary active transport against electrochemical gradient. Broken circles with broken arrows indicate mediated transport down electrochemical gradient. Question marks indicate tentative suggestions. Lines with bar at end indicte inhibition. Apparent permeabilities of luminal membrane in lumen‐to‐cell () and cell‐to‐lumen () directions and of peritubular membrane in bath‐to‐cell () direction are shown for various conditions for snake renal tubules.

From Dantzler 82
Figure 5. Figure 5.

Model for amino acid (AA) entry across luminal membrane based on studies on amphibians and fish. Symbols have same meaning as Fig. 4 legend. Absence of positive charge on sodium indicates electroneutral entry step.

From Dantzler 82
Figure 6. Figure 6.

Model for net taurine secretion based on studies with teleosts 163,165,325. Broken arrows always indicate movement down electrochemical gradient. Other symbols have same meaning as Fig. 4 legend.

From Dantzler 82
Figure 7. Figure 7.

Model for net tubular secretion of urea based on studies on amphibians. Symbols have same meaning as Fig. 4 legend. DNP, dinitrophenol; PAH, p‐aminohippurate.

From Dantzler 82
Figure 8. Figure 8.

Model for net tubular secretion of organic anions. (Org A) based on studies on fish, amphibians, reptiles, and birds. Aindicates anion of unspecified nature. Arrows from K+, Na+, and Ca2+ indicates sites of effects of these inorganic cations. Broken arrow with question mark leading from transport step at luminal membrane to transport step at peritubular membrane indicates possible feedback coupling between transport steps. Other symbols have same meaning as Fig. 4 legend.

From Dantzler 82
Figure 9. Figure 9.

Model for net tubular secretion of urate based on studies with reptiles and birds. Apparent permeabilities for luminal (PL) and peritubular (PP) membranes for control conditions in snake tubules are shown. Other symbols have same meaning as Fig. 4 legend.

From Dantzler 82
Figure 10. Figure 10.

Models for net tubular transport of tetraethylammonium (TEA+) and N′‐methylnicotinamide (NMN+) based on studies with snake and fish proximal renal tubules. Symbols have same meaning as Fig. 4 legend. Maximum unidirectional transepithelial fluxes (, ) are given and illustrated by the lengths of arrows for TEA+ and NMN+ at top and bottom of snake model, respectively.

From Dantzler 83


Figure 1.

Representations of fish (elasmobranch, Squalus acanthias; glomerular teleost, Anguilla rostrata; aglomerular teleost, Lophius piscatorius), amphibian (Necturus maculosus), reptilian (Thamnophis sirtalis), avian (Callus gallus domesticus), and mammalian (Mus flavicolis) nephrons drawn to single scale.

From Dantzler 80


Figure 2.

Representations of nephrons from major classes of nonmammalian vertebrates showing major nephron segments. No attempt was made to draw nephrons to exact scale, although some attempt was made to indicate relative sizes for fish and bird nephrons. Breaks in nephrons indicate that lengths of those segments may be much greater relative to other segments than actually shown. Except for those nephrons in which a loop structure was parallel to collecting ducts (lamprey and avian mammalian‐type), no attempt was made to show shape of nephron segments.

From Dantzler 80


Figure 3.

Three‐dimensional drawing of section of avian kidney (Gambel's quail, Callipepla gambelli) showing types of nephrons present, their relative positions in kidney, and their relationships to other renal structures.

From Braun and Dantzler 39


Figure 4.

Model for net tubular absorption of glucose based on studies in amphibians, reptiles, and fish. Solid circles with solid arrows indicate either primary or secondary active transport against electrochemical gradient. Broken circles with broken arrows indicate mediated transport down electrochemical gradient. Question marks indicate tentative suggestions. Lines with bar at end indicte inhibition. Apparent permeabilities of luminal membrane in lumen‐to‐cell () and cell‐to‐lumen () directions and of peritubular membrane in bath‐to‐cell () direction are shown for various conditions for snake renal tubules.

From Dantzler 82


Figure 5.

Model for amino acid (AA) entry across luminal membrane based on studies on amphibians and fish. Symbols have same meaning as Fig. 4 legend. Absence of positive charge on sodium indicates electroneutral entry step.

From Dantzler 82


Figure 6.

Model for net taurine secretion based on studies with teleosts 163,165,325. Broken arrows always indicate movement down electrochemical gradient. Other symbols have same meaning as Fig. 4 legend.

From Dantzler 82


Figure 7.

Model for net tubular secretion of urea based on studies on amphibians. Symbols have same meaning as Fig. 4 legend. DNP, dinitrophenol; PAH, p‐aminohippurate.

From Dantzler 82


Figure 8.

Model for net tubular secretion of organic anions. (Org A) based on studies on fish, amphibians, reptiles, and birds. Aindicates anion of unspecified nature. Arrows from K+, Na+, and Ca2+ indicates sites of effects of these inorganic cations. Broken arrow with question mark leading from transport step at luminal membrane to transport step at peritubular membrane indicates possible feedback coupling between transport steps. Other symbols have same meaning as Fig. 4 legend.

From Dantzler 82


Figure 9.

Model for net tubular secretion of urate based on studies with reptiles and birds. Apparent permeabilities for luminal (PL) and peritubular (PP) membranes for control conditions in snake tubules are shown. Other symbols have same meaning as Fig. 4 legend.

From Dantzler 82


Figure 10.

Models for net tubular transport of tetraethylammonium (TEA+) and N′‐methylnicotinamide (NMN+) based on studies with snake and fish proximal renal tubules. Symbols have same meaning as Fig. 4 legend. Maximum unidirectional transepithelial fluxes (, ) are given and illustrated by the lengths of arrows for TEA+ and NMN+ at top and bottom of snake model, respectively.

From Dantzler 83
References
 1. Agus, Z. A., and S. Goldfarb. Renal regulation of calcium balance. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, vol. 2, chapt. 56, p. 1323–1335.
 2. Alt, J. M., H. Stolte, G. M. Eisenbach, and F. Walvig. Renal electrolyte and fluid excretion in the Atlantic hagfish Myxine glutinosa. J. Exp. Biol. 91: 323–330, 1980.
 3. Ames, E., K. Steven, and E. Skadhauge. Effects of arginine vasotocin on renal excretion of Na+, K+, Cl−, and urea in the hydrated chicken. Am. J. Physiol. 221: 1223–1228, 1971.
 4. Anderson, B. G., and R. D. Loewen. Renal morphology of freshwater trout. Am. J. Anat. 143: 93–114, 1975.
 5. Austic, R. E., and R. K. Cole. impaired renal clearance of uric acid in chickens having hyperuricemia and articular gout. Am. J. Physiol. 223: 525–530, 1972.
 6. Babikir, M. M., and J. C. Rankin. Neurohypophysial hormonal control of kidney function in the European eel (Anguilla anguilla L.) adapted to sea‐water or fresh water. J. Endocrinol. 76: 347–358, 1978.
 7. Barfuss, D. W., and W. H. Dantzler. Glucose transport in isolated perfused proximal tubules of snake kidney. Am. J. Physiol. 231: 1716–1728, 1976.
 8. Benyajati, S., and W. H. Dantzler. Plasma levels and renal handling of endogenous amino acids in snakes: a comparative study. J. Exp. Zool. 238: 17–28, 1986.
 9. Benyajati, S., and W. H. Dantzler. Renal secretion of amino acids in ophidian reptiles. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 19): R712–R720, 1986.
 10. Benyajati, S., and W. H. Dantzler. Characterization of brush border membrane vesicles isolated from reptilian kidney, abstracted. Proc. XXX Int. Congr. Physiol. Sci. XVI: 539, 1986.
 11. Benyajati, S., and W. H. Dantzler. Enzymatic and transport characteristics of isolated snake renal brush‐border membranes. Am. J. Physiol. 255 (Regulatory Integrative Comp. Physiol. 24): R52–R60, 1988.
 12. Benyajati, S., S. D. Yokota, and W. H. Dantzler. Renal function in sea snakes. II. Sodium, potassium, and magnesium excretion. Am. J. Physiol. 249 (Regulatory Integrative Comp. Physiol. 18): R237–R245, 1985.
 13. Berglund, F., and R. P. Forster. Renal tubular transport of inorganic divalent ions by the aglomerular marine teleost, Lophius americanus. J. Gen. Physiol. 41: 429–440, 1958.
 14. Beyenbach, K. W. Direct demonstration of fluid secretion by glomerular renal tubules in a marine teleost. Nature 299: 54–56, 1982.
 15. Beyenbach, K. W. Water permeable and impermeable barriers of snake distal tubules. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F290–F299, 1984.
 16. Beyenbach, K. W. Comparative physiology of the proximal tubule. Renal Physiol. 8: 222–236, 1985.
 17. Beyenbach, K. W. Secretory NaCl and volume flow in renal tubules. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 19): R753–R763, 1986.
 18. Beyenbach, K. W., and W. H. Dantzler. Generation of transepithelial potentials by isolated perfused reptilian distal tubules. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F238–F246, 1978.
 19. Beyenbach, K. W., and E. Fromter. Electrophysiological evidence for Cl secretion in shark renal proximal tubules. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F282–F295, 1985.
 20. Beyenbach, K. W., B. M. Koeppen, W. H. Dantzler, and S. I. Helman. Luminal Na concentration and the electrical properties of the snake distal tubule. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F412–F419, 1980.
 21. Beyenbach, K. W., D. H. Petzel, and W. H. Cliff. Renal proximal tubule of flounder. I. Physiological properties. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 19): R608–R615, 1986.
 22. Bieter, R. M. The action of diuretics injected into one kidney of the aglomerular toadfish. J. Pharmacol. Exp. Ther. 53: 347–349, 1935.
 23. Bordley, J., III, and A. N. Richards. Quantitative studies of the composition of glomerular urine. VIII. The concentration of uric acid in glomerular urine of snakes and frogs, determined by an ultramicroadaptation of Folin's method. J. Biol. Chem. 101: 193–221, 1933.
 24. Bott, P. A. Micropuncture study of renal excretion of water, K, Na, and Cl in Necturus. Am. J. Physiol. 203: 662–666, 1962.
 25. Boulpaep, E. L. Permeability changes of the proximal tubule of Necturus during saline loading. Am. J. Physiol. 222: 517–531, 1972.
 26. Boulpaep, E. L. Electrical phenomena in the nephron. Kidney Int. 9: 88–102, 1976.
 27. Bourdeau, J. E., and M. B. Burg. Effect of PTH on calcium transport across the cortical thick ascending limb of Henle's loop. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F121–F126, 1980.
 28. Boylan, J. W. A model for passive urea reabsorption in the elasmobranch kidney. Comp. Biochem. Physiol. 42: 27–30, 1972.
 29. Bradley, E. L., W. N. Holmes, and A. Wright. The effects of neurohypophysectomy on the pattern of renal excretion in the duck (Anas platyrhynchos). J. Endocrinol. 51: 57–65, 1971.
 30. Bradshaw, S. D. Osmoregulation and pituitary‐adrenal function in desert reptiles. Gen. Comp. Endocrinol. 25: 230–248, 1975.
 31. Bradshaw, S. D., and G. E. Rice. The effects of pituitary and adrenal hormones on renal and post‐renal reabsorption of water and electrolytes in the lizard Varanus gouldii (Gray). Gen. Comp. Endocrinol. 44: 82–93, 1981.
 32. Bradshaw, S. D., V. H. Shoemaker, and K. A. Nagy. The role of adrenalcorticosteroids in the regulation of kidney function in the desert lizard Dipsosauras dorsalis. Comp. Biochem. Physiol. 43: 621–635, 1972.
 33. Brand, P. H., and R. S. Stansbury. Lactate absorption in Thamnophis proximal tubule: transport versus metabolism. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F218–F228, 1980.
 34. Brand, P. H., and R. Stansbury. Peritubular uptake of lactate by Thamnophis proximal tubule. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F296–F304, 1980.
 35. Brand, P. H. and R. S. Stansbury. Lactate transport by Thamnophis proximal tubule: sodium dependence. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F388–F394, 1981.
 36. Braun, E. J. Intrarenal blood flow distribution in the desert quail following salt loading. Am. J. Physiol. 231: 1111–1118, 1976.
 37. Braun, E. J. Renal response of the starling (Sturnus vulgaris) to an intravenous salt load. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F270–F278, 1978.
 38. Braun, E. J. Glomerular filtration in birds—its control. Federation Proc. 41: 2377–2381, 1982.
 39. Braun, E. J., and W. H. Dantzler. Function of mammalian‐type and reptilian‐type nephrons in kidney of desert quail. Am. J. Physiol. 222: 617–629, 1972.
 40. Braun, E. J., and W. H. Dantzler. Effects of ADH on single‐nephron glomerular filtration rates in the avian kidney. Am. J. Physiol. 226: 1–8, 1974.
 41. Braun, E. J., and W. H. Dantzler. Effects of water load on renal glomerular and tubular function in desert quail. Am. J. Physiol. 229: 222–228, 1975.
 42. Braun, E. J., and R. F. Wideman. Contribution of the renal portal system (RPS) to the variability in urine composition and renal function in birds, abstracted. Federation Proc. 38: 902, 1979.
 43. Braysher, M. L. The excretion of hyperosmotic urine and other aspects of the electrolyte balance of the lizard Amphibolurus maculosus. Comp. Biochem. Physiol. A Comp. Physiol. 54: 341–345, 1976.
 44. Brenner, B. M., J. L. Troy, and T. M. Daugherty. The dynamics of glomerular ultrafiltration in the rat. J. Clin. Invest. 50: 1776–1780, 1971.
 45. Brenner, B. M., J. L. Troy, T. M. Daugherty, W. M. Deen, and C. R. Robertson. Dynamics of glomerular ultrafiltration in the rat. II. Plasma‐flow dependence of GFR. Am. J. Physiol. 223: 1184–1190, 1972.
 46. Brewer, K. J., and D. M. Ensor. Hormonal control of osmoregulation in the chelonia. 1. The effects of prolactin and interrenal steroids in freshwater chelonians. Gen. Comp. Endocrinol. 42: 304–309, 1980.
 47. Brown, J. A., B. A. Jackson, J. A. Oliver, and I. W. Henderson. Single nephron filtration rates (SNGFR) in the trout, Salmo gairdneri. Pflugers Arch. 377: 101–108, 1978.
 48. Brown, J. A., J. A. Oliver, I. W. Henderson, and B. A. Jackson. Angiotensin and single nephron glomerular function in the trout Salmo gairdneri. Am. J. Physiol. 239 (Regulatory Integrative Comp. Physiol. 8): R509–R514, 1980.
 49. Brown, J. A., S. M. Taylor, and C. J. Gray. Glomerular ultrastructure of the trout, Salmo gairdneri. Cell Tissue Res. 230: 205–218, 1983.
 50. Bulger, R. D., and B. F. Trump. Ca2+ and K+ ion effects on ultrastructure of isolated flounder kidney tubules. J. Ultrastruct. Mol. Struct. Res. 28: 301–319, 1969.
 51. Burg, M. D., and P. F. Weller. Iodopyracet transport by isolated perfused flounder proximal renal tubules. Am. J. Physiol. 217: 1053–1056, 1969.
 52. Butler, D. G. Antidiuretic effect of arginine vasotocin in the western painted turble (Chrysemys picta belli). Gen. Comp. Endocrinol. 18: 121–125, 1972.
 53. Cacini, W., and A. J. Quebbemann. The metabolism and active excretion of hypoxanthine by the renal tubules in the chicken. J. Pharmacol. Exp. Ther. 207: 574–583, 1978.
 54. Chan, D. K. O., J. C. Rankin, and I. Chester Jones. Influences of the adrenal cortex and the corpuscles of Stannius on osmoregulation in the European eel (Anguilla anguilla L.) adapted to fresh water. Gen. Comp. Endocrinol. Suppl. 342–353, 1969.
 55. Chester Jones, I., D. K. O. Chan, and J. C. Rankin. Renal function in the European eeel (Anguilla anguilla L.): changes in blood pressure and renal function of the freshwater eel transferred to sea‐water. J. Endocrinol. 43: 9–19, 1969.
 56. Churchill, P. C., R. L. Malvin, M. C. Churchill, and F. D. McDonald. Renal function in Lophius americanus: effects of angiotensin II. Am. J. Physiol. 236 (Regulatory Integrative Comp. Physiol. 5): R297–R301, 1979.
 57. Clark, N. B., E. J. Braun, and R. F. Wideman, Jr. Parathyroid hormone and renal excretion of phosphate and calcium in normal starlings. Am. J. Physiol. 231: 1152–1158, 1976.
 58. Clark, N. B., and W. H. Dantzler. Renal tubular transport of calcium and phosphate in snakes: role of parathyroid hormone. Am. J. Physiol. 223: 1455–1464, 1972.
 59. Clark, N. B., and W. H. Dantzler. Renal tubular transport of calcium and phosphate in snakes: role of calcitonin. Gen. Comp. Endocrinol. 26: 321–326, 1975.
 60. Clark, N. B., and L. L. S. Mok. Renal excretion in gull chicks: effect of parathyroid hormone and calcium loading. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 19): R41–R50, 1986.
 61. Clark, N. B., and Y. Sasayama. The role of parathyrooid hormone on renal excretion of calcium and phosphate in the Japanese quail. Gen. Comp. Endocrinol. 45: 234–241, 1981.
 62. Clark, N. B., and R. F. Wideman, Jr. Renal excretion of phosphate and calcium in parathyroidectomized starlings. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F138–F144, 1977.
 63. Cliff, W. H., D. B. Sawyer, and K. W. Beyenbach. Renal proximal tubule of flounder. II. Transepithelial Mg secretion. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 19): R616–R624, 1986.
 64. Cohen, B., G. Giebisch, L. L. Hansen, U. Teuscher, and M. Wiederholt. Relationship between peritubular membrane potential and net fluid reabsorption in the distal renal tubule of Amphiuma. J. Physiol (Lord.) 348: 115–134, 1984.
 65. Coulson, R. A., and T. Hernandez. Biochemistry of the Alligator. Baton Rouge: Louisiana State Univ., 1964.
 66. Dantzler, W. H. Renal response of chickens to infusion of hyperosmotic sodium chloride solution. Am. J. Physiol. 210: 640–644, 1966.
 67. Dantzler, W. H. Glomerular and tubular effects of arginine vasotocin in water snakes (Natrix sipedon). Am. J. Physiol. 212: 83–91, 1967.
 68. Dantzler, W. H. Effect of metabolic alkalosis and acidosis on tubular urate secretion in water snakes. Am. J. Physiol. 215: 747–751, 1968
 69. Dantzler, W. H. Effects of K, Na, and ouabain on urate and PAH uptake by snake and chicken kidney slices. Am. J. Physiol. 217: 1510–1519, 1969.
 70. Dantzler, W. H. Characteristics of urate transport by isolated perfused snake proximal renal tubules. Am. J. Physiol. 224: 445–453, 1973.
 71. Dantzler, W. H. PAH transport by snake proximal renal tubules: differences from urate transport. Am. J. Physiol. 226: 634–641, 1974.
 72. Dantzler, W. H. K+ effects on PAH transport and mem‐brane permeabilities in isolated snake renal tubules. Am. J. Physiol. 227: 1361–1370, 1974.
 73. Dantzler, W. H. Comparison of uric acid and PAH transport by isolated, perfused snake renal tubules. In: Amino Acid Transport and Uric Acid Trasnport, edited by S. Silbernagl, F. Lang, and R. Greger. Stuttgart, Germany, Thieme, 1976, p. 169–180.
 74. Dantzler, W. H. Renal function (with speical emphaiss on nitrogen excretion). In: Biology of the Reptilia. Physiology A, edited by C. G. Gans and W. R. Dawson. London: Academic, 1976, vol. 5, p. 447–503.
 75. Dantzler, W. H. Urate excretion in nonmammalian vertebrates. In: Handbook of Experimental Pharmacology. Uric Acid, edited by W. N. Kelley and I. M. Weiner. Berlin: Springer‐Verlag, 1978, vol. 51, p. 185–210.
 76. Dantzler, W. H. Renal mechanisms for osmoregulation in reptiles and birds. In: Animals and Environmental Fitness, edited by R. Gilles. Oxford, UK: Pergamon, 1980, p. 91–110.
 77. Dantzler, W. H. Comparative physiology of the renal transport of organic solutes. In: Renal Transport of Organic Substances, edited by R. Greger, F. Lang, and S. Silbernagl. Berlin: Springer‐Verlag, 1981, 290–308.
 78. Dantzler, W. H. Renal adaptations of desert vertebrates. Bioscience 32: 108–113, 1982.
 79. Dantzler, W. H. Studies on nonmammalian nephrons. Kidney Int. 22: 560–570, 1982.
 80. Dantzler, W. H. Comparative aspects of renal function. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, vol. 1, chapt. 17, p. 333–364.
 81. Dantzler, W. H. Comparative renal physiology: a historical perspective. In: Renal Physiology: People and Ideas, edited by C. W. Gottschalk, R. W. Berliner, and G. Giebisch. Bethesda, MD: Am. Physiol. Soc., 1987, chapt. 14, p. 437–481.
 82. Dantzler, W. H. Comparative Physiology of the Vertebrate Kidney. Berlin: Springer‐Verlag, 1988.
 83.b. Dantzler, W. H. organic acid (or anion) and organic base (or cation) transport by renal tubules of nonmammalian vertebrates. J. Exp. Zool. 249: 247–257, 1989.
 84. Dantzler, W. H., and S. K. Bentley. Low Na+ effects on PAH transport and permeabilities in isolated snake renal tubules. Am. J. Physiol. 230: 256–262, 1976.
 85. Dantzler, W. H., and S. K. Bentley. Fluid absorption with and without sodium in isolated perfused snake proximal tubules. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F68–F78, 1978.
 86. Dantzler, W. H., and S. K. Bentley. Lack of effect of potassium on fluid absorption in isolated, perfused snake proximal renal tubules. Renal Physiol. 1: 268–274, 1978.
 87. Dantzler, W. H., and S. K. Bentley. Effects of inhibitors in lumen on PAH and urate transport by isolated renal tubules. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F379–F386, 1979.
 88. Dantzler, W. H., and S. K. Bentley. Bath and lumen effects of SITS on PAH transport by isolated perfused renal tubules. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F16–F25, 1980.
 89. Dantzler, W. H., and S. K. Bentley. Effects of chloride substitutes on PAH transport by isolated perfused renal tubules. Am. J. Physiol. 241 (Renal Fluid Electrolytee Physiol. 10): F632–F644, 1981.
 90. Dantzler, W. H., and S. K. Bentley. Effects of sulfhydral reagent, p‐chloromercuribenzoate, on p‐aminohippurate transport by isolated, perfused snake renal tubules. Renal Physiol. 6: 209–217, 1983.
 91. Dantzler, W. H., and E. J. Braun. Comparative nephron function in reptiles, birds, and mammals. Am. J. Physiol. 239 (Regulatory Integrative Comp. Physiol. 8): R197–R213, 1980.
 92. Dantzler, W. H., and O. H. Brokl. Effects of low [Ca2+] and La3+ on PAH transport by isolated perfused renal tubules. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F175–F187, 1984.
 93. Dantzler, W. H., and O. H. Brokl. Verapamil and quinidine effects on PAH transport by isolated perfused renal tubules. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F188–F200, 1984.
 94. Dantzler, W. H., and O. H. Brokl. Lack of effect of low [Ca2+], La3+, and pyrazinoate on urate transport by isolated, perfused snake renal tubules. Pflugers Arch. 401: 262–265, 1984.
 95. Dantzler, W. H., and O. H. Brokl. N1‐methylnicotinamide transport by isolated perfused snake proximal renal tubules. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F407–F418, 1986.
 96. Dantzler, W. H., and O. H. Brokl. NMN transport by snake renal tubules: choline effects, countertransport, H+‐NMN exchange. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F656–F663, 1987.
 97. Dantzler, W. H., and O. H. Brokl. TEA transport by snake renal tubules: choline effects, countertransport, H+‐TEA exchange. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F167–F176, 1988.
 98. Dantzler, W. H., O. H. Brokl, R. B. Nagle, D. J. Welling, and L. W. Welling. Morphological changes with Na+‐free fluid absorption in isolated perfused snake tubules. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F150–F155, 1986.
 99. Dantzler, W. H., and B. Schmidt‐Nielsen. Excretion in fresh‐water turtle (Pseudemys scripta) and desert tortoise (Gopherus agassizii). Am J. Physiol. 210: 198–210, 1966.
 100. Davis, L. E., and B. Schmidt‐Nielsen. Ultrastructure of the crocodile kidney (Crocodylus acutus) with special reference to electrolyte and fluid transport. J. Morphol. 121: 255–276, 1967.
 101. Davis, L. E., B. Schmidt‐Nielsen, and H. Stolte. Anatomy and ultrastructure of the excretory system of the lizard, Sceloporus cyanogenys. J. Morphol. 149: 279–326, 1976.
 102. Deen, W. M., J. L. Troy, C. R. Robertson, and B. M. Brenner. Dynamics of glomerular ultrafiltration in the rat. IV. Determination of the ultrafiltration coefficient. J. Clin. Invest. 52: 1500–1508, 1973.
 103. Delaney, R., and L. C. Stoner. Miniature Ag‐AgCl electrode for voltage clamping of the Ambystoma collecting duct. J. Membr. Biol. 64: 45–53, 1981.
 104. Dilley, J. R., A. Corradi, and W. J. Arendshorst. Glomerular ultrafiltration dynamics during increased renal venous pressure. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F650–F658, 1983.
 105. Dunson, W. A., R. K. Packer, and M. K. Dunson. Sea snakes: an unusual salt gland under the tongue. Science 173: 437–441, 1971.
 106. Elger, M., and H. Hentschel. The glomerulus of a stenohaline fresh‐water teleost, Carassius auratus gibelio, adapted to saline water. Cell Tissue Res. 220: 73–85, 1981.
 107. Elger, B., and H. Hentschel. Effect of adrenergic blockade with bretylium and phentolamine on glomerular filtration rate in the rainbow trout, Salmo gairdneri Rich., adapting to saline water. Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol. 75: 253–258, 1983.
 108. Elger, M., R. Kaune, and H. Hentschel. Glomerular intermittency in a freshwater teleost, Carassius auratus gibelio, after transfer to salt water. J. Comp. Physiol. B Biochem. Sept. Environ. Physiol. 154: 225–231, 1984.
 109. Elizondo, R. S., and S. J. Le Brie. Adrenal‐renal function in water snakes Natrix cyclopion. Am. J. Physiol. 217: 419–425, 1969.
 110. Emery, N., T. L. Poulson, and W. B. Kinter. Production of concentrated urine by avian kidneys. Am. J. Physiol. 223: 180–187, 1972.
 111. Eveloff, J., R. Kinne, and W. B. Kinter. p‐Aminohippuric acid transport into brush border vesicles isolated from flounder kidney. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F291–F298, 1979.
 112. Fange, R., and J. Krog. Inability of the kidney of the hagfish to secrete phenol red. Nature 199: 713, 1963.
 113. Fleming, W. R., and J. G. Stanley. Effects of rapid changes in salinity on the renal function of a euryhaline teleost. Am. J. Physiol. 209: 1025–1030, 1965.
 114. Follett, B. K., and H. Heller. The neurohypophysial hormones of bony fishes and cyclostomes. J. Physiol. (Lond.) 172: 74–91, 1964.
 115. Follett, B. K., and H. Heller. The neurohypophysial hormones of lungfishes and cyclostomes. J. Physiol. (Lond.) 172: 92–106, 1964.
 116. Forster, R. P. The nature of the glucose reabsorptive process in the frog renal tubule. Evidence for intermittency of glomerular function in the intact animal. J. Cell. Comp. Physiol. 20: 55–69, 1942.
 117. Forster, R. P. A comparative study of renal function in marine teleosts. J. Cell. Comp. Physiol. 42: 487–510, 1953.
 118. Forster, R. P. Active tubular transport of urea and its role in environmental physiology. In: Urea and the Kidney, edited by B. Schmidt‐Nielsen and D. W. S. Kerr. Amsterdam: Excerpta Med., 1970, p. 229–237.
 119. Forster, J., P. S. Steels, and E. L. Boulpaep. Organic substrate effects on and heterogeneity of Necturus proximal tubule function. Kidney Int. 17: 479–490, 1980.
 120. Foster, R. C. Renal hydromineral balance in starry flounder, Platichthys stellatus. Comp. Biochem. Physiol. A Comp. Physiol. 55: 135–140, 1975.
 121. Freedlender, A. E., and T. L. Goodfriend. Angiotensin receptors and sodium transport in renal tubules, abstracted. Fed. Proc. 36: 481, 1977.
 122. Fujimoto, M., K. Kotera, and Y. Matsumura. The direct measurement of K, Cl, Na, and H ions in bullfrog tubule cells. In: Current Topics in Membranes and Transport. Cellular Mechanisms of Renal Tubular Ion Transport, edited by E. L. Boulpaep. New York: Academic, 1980, vol. 13, p. 49–61.
 123. Gallardo, R., P. K. T. Pang, and W. H. Sawyer. Neural influences on bullfrog renal functions. Proc. Soc. Exp. Biol. Med. 165: 233–240, 1980.
 124. Galli‐Gallardo, S. M., and P. K. T. Pang. Renal and vascular actions of angiotensins in amphibian abstracted. Physiologist 21 (4): 41, 1978.
 125. Garland, H. O., I. W. Henderson, and J. A. Brown. Micropuncture study of the renal responses of the urodele amphibian Necturus maculosus to injections of arginine vasotocin and an anti‐aldosterone compound. J. Exp. Biol. 63: 249–264, 1975.
 126. Giebisch, G. Measurements of pH, chloride and inulin concentrations in proximal tubule fluid of Necturus. Am. J. Physiol. 185: 171–174, 1956.
 127. Giebisch, G. Measurement of electrical potential difference on single nephrons of the perfused Necturus kidney. J. Gen. Physiol. 44: 659–768, 1961.
 128. Giebisch, G. Some reflections on the mechanism of renal tubular potassium transport. Yale J. Biol. Med. 48: 315–336, 1975.
 129. Giebisch, G., and E. Windhager. Renal tubular transport of sodium, chloride, and potassium. Am. J. Med. 36: 643–669, 1964.
 130. Gona, O. Uptake of 125I‐labelled prolactin by bullfrog kidney tubules: an autoradiographic study. J. Endocrinol. 93: 133–138, 1982.
 131. Grafflin, A. L., and E. H. Bagley. Glomerular activity in the frog's kidney. Bull. Johns Hopkins Hosp. 91: 306–317, 1952.
 132. Gray, C. J., and J. A. Brown. Renal and cardiovascular effects of angiotensin II in the rainbow trout, Salmo gairdneri. Gen. Comp. Endocrinol. 59: 375–381, 1985.
 133. Greger, R. Ion transport mechanisms in thick ascending limb of Henle's loop of mammalian nephron. Physiol Rev. 65: 760–797, 1985.
 134. Greger, R., and E. Schlatter. Properties of the basolateral membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney. A model for secondary active chloride transport. Pflugers Arch. 396: 325–334, 1983.
 135. Guggino, W. B., E. L. Boulpaep, and G. Giebisch. Electrical properties of chloride transport across the Necturus proximal tubule. J. Membr. Biol. 65: 185–196, 1982.
 136. Guggino, W. B., R. London, E. L. Boulpaep, and G. Giebisch. Chloride transport across the basolateral cell membrane of the Necturus proximal tubule: dependence on bicarbonate and sodium. J. Membr. Biol. 71: 227–240, 1983.
 137. Guggino, W. B., E. E. Windhager, E. L. Boulpaep, and G. Giebisch. Cellular and paracellular resistances of the Necturus proximal tubule. J. Membr. Biol. 67: 143–154, 1982.
 138. Gupta, A., and J. L. Renfro. Control of phosphate transport in flounder renal proximal tubule primary cultures. Am. J. Physiol. 256 (Regulatory Integrative Comp. Physiol. 25): R850–R857, 1989.
 139. Hawk, C. T., and W. H. Dantzler. Tetraethylammonium transport by isolated perfused snake renal tubules. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F476–F487, 1984.
 140. Hayman, J. M., Jr. Estimations of afferent arteriole and glomerular capillary pressures in the frog kidney. Am. J. Physiol. 79: 389–409, 1927.
 141. Heller, H., and B. T. Pickering. Neurohypophysial hormones of non‐mammalian vertebrates. J. Physiol. (Lond.) 155: 98–114, 1961.
 142. Henderson, I. W., and N. A. M. Wales. Renal diuresis and antidiuresis after injections of arginine vasotocin in the freshwater eel (Anguilla anguilla L.) J. Endocrinol. 61: 487–500, 1974.
 143. Hernandez, T., and R. A. Coulson. Amino acid excretion in the alligator. Comp. Biochem. Physiol. 23: 775–784, 1967.
 144. Hickman, C. P., Jr. Studies on renal function in freshwater teleost fish. Trans. R. Soc. Can. 3 (4: III): 213–236, 1965.
 145. Hickman, C. P., Jr. Glomerular filtration and urine flow in the euryhaline southern flounder, Paralichthys lethostigma, in seawater. Can. J. Zool. 46: 427–437, 1968.
 146. Hickman, C. P., Jr., and B. F. Trump. The kidney. In: Fish Physiology. Excretion, Ionic Regulation, and Metabolism, edited by W. S. Hoar and D. J. Randall. New York: Academic, 1969, vol. 1, p. 91–239.
 147. Hinton, D. E., L. C. Stoner, M. Burg, and B. F. Trump. Heterogeneity in the distal nephron of the salamander (Ambystoma tigrinum): a correlated structure function study of isolated tubule segments. Anat. Rec. 204: 21–32, 1982.
 148. Holmes, W. N. Regulation of electrolyte balance in marine birds with special reference to the role of the pituitary‐adrenal axis in the duck (Anas platyrhynchos). Federation Proc. 31: 1587–1598, 1972.
 149. Holmes, W. N., G. L. Fletcher, and D. J. Stewart. The patterns of renal electrolyte excretion in the duck (Anas platyrhynchos) maintained on freshwater and on hypertonic saline. J. Exp. Biol. 48: 487–508, 1968.
 150. Holmes, W. N., and J. G. Phillips. The adrenal cortex of birds. In: General, Comparative and Clinical Endocrinology of the Adrenal Cortex, edited by I. Chester Jones and I. Henderson. London: Academic, 1976, vol. I, p. 293–420.
 151. Hoshi, T., and H. Hayashi. Role of sodium ions in phenol red transport by renal tubules of the goldfish. Jpn. J. Physiol. 20: 683–696, 1970.
 152. Hoshi, T., G. Kuramochi, and K. Yoshitomi. Lumen‐positive chloride transport potential in the early distal tubule of Triturus kidney: its absolute dependence on the presence of Na+ and K+ in the luminal fluid. Jpn. J. Physiol. 33: 855–861, 1983.
 153. Hoshi, T., K. Sudo, and Y. Suzuki. Characteristics of changes in the intracellular potential associated with transport of neutral, diabasic, and acidic amino acids in Triturus proximal tubule. Biochim. Biophys. Acta 448: 492–504, 1976.
 154. Hoshi, T., Y. Suzuki, and K. Itoi. Differences in functional properties between the early and the late segments of the distal tubule of amphibian (Triturus) kidney. Jpn. J. Nephrol. 23: 889–896, 1981.
 155. Irish, J. M. III Selected Characteristics of Transport in Isolated Perfused Renal Proximal Tubules of the Bullfrog (Rana catesbeiana). Tucson: Univ. of Arizona, 1975. Dissertation.
 156. Irish, J. M., III, and W. H. Dantzler. PAH transport and fluid absorption by isolated perfused frog proximal renal tubules. Am. J. Physiol. 230: 1509–1516, 1976.
 157. Jard, S., and F. Morel. Actions of vasotocin and some of its analogues on salt and water excretion by the frog. Am. J. Physiol. 204: 222–226, 1963.
 158. Kaissling, B., and W. Kriz. Structural analysis of the rabbit kidney. Adv. Anat. Embryol. Cell Biol. 56: 1–123, 1979.
 159. Kaune, R., and H. Hentschel. Stimulation of renal phosphate secretion in the stenohaline freshwater teleost Carassius auratus gibelio Black. Comp. Biochem. Physiol. A Comp. Physiol. 87A: 359–362, 1987.
 160. Khuri, R. N., W. J. Flanigan, D. J. Oken, and A. K. Solomon. Influences of electrolytes on glucose absorption in Necturus kidney proximal tubules. Federation Proc. 25: 899–902, 1966.
 161. Kikutta, Y., H. Hayashi, and Y. Saito. Effects of changes in sodium electrochemical potential gradient on p‐aminohippurate transport in newt kidney. Biochem. Biophys. Acta 556: 354–365, 1979.
 162. Kikuta, Y., and T. Hoshi. Role of sodium ions in p‐aminohippurate transport by newt kidney. Biochem Biophys. Acta 553: 404–416, 1979.
 163. King, P. A., K. W. Beyenbach, and L. Goldstein. Taurine transport by isolated flounder renal tubules. J. Exp. Zool. 223: 103–114, 1982.
 164. King, P. A., and L. Goldstein. Renal excretion of nitrogenous compounds in vertebrates. Renal Physiol. 8: 261–278, 1985.
 165. King, P. A., R. Kinne, and L. Goldstein. Taurine transport by brush border membrane vesicles isolated from the flounder kidney. J. Comp. Physiol. B. Biochem. Syst. Environ. Physiol. 155: 185–193, 1985.
 166. Kleinzeller, A., and E. M. McAvoy. Sugar transport across peritubular face of renal cells of the flounder. J. Gen. Physiol. 62: 169–184, 1973.
 167. Knox, F. G., E. G. Schneider, L. R. Willis, J. H. Strandhoy, and C. E. Ott. Site and control of phosphate reabsorption by the kidney. Kidney Int. 3: 346–353, 1973.
 168. Komadina, S., and S. Solomon. Comparison of renal function of bull and water snakes (Pituophis melanoleucus and Natrix sipedon). Comp. Biochem. Physiol. 32: 333–343, 1970.
 169. Lahlou, B. Mise en évidence d'un “recrutement glomérulaire” dans le rein des Téléostéens d'après la méthode du Tm glucose. C. R. Acad. Sci. Paris 262: 1356–1358, 1966.
 170. Lahlou, B., and A. Giordan. Le côntrole hormonal des échanges et de la balance de l'eau chez le téléostéen d'eau douce Carassius auratus, intact et hypophysectomisé. Gen. Comp. Endocrinol. 14: 491–509, 1970.
 171. Lahlou, B., I. W. Henderson, and W. H. Sawyer. Renal adaptations by Opsanus tau, a euryhaline aglomerular teleost, to dilute media. Am. J. Physiol. 216: 1266–1272, 1969.
 172. Lahlou, B., and W. H. Sawyer. Electrolyte balance in hypophysectomized goldfish, Carassius auratus L. Gen. Comp. Endocrinol. 12: 370–377, 1969.
 173. Lam, T. J., and J. F. Leatherland. Effect of prolactin on the glomerulus of the three spined stickleback Gasterosteus aculeatus L. form trachurus, after transfer from sea water to fresh water, during the late autumn and early winter. Can. J. Zool. 47: 245–250, 1969.
 174. Laverty, G., and N. B. Clark. Renal clearance of phosphate and calcium in fresh‐water turtle: effects of parathyroid hormone. J. Comp. Physiol. 141: 463–469, 1981.
 175. Laverty, G., and W. H. Dantzler. Micropuncture of superficial nephrons in avian (Sturnus vulgaris) kidney. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F561–F569, 1982.
 176. Laverty, G., and W. H. Dantzler. Effects of parathyroid hormone (PTH) on phosphate transport in superficial, reptilian‐type nephrons of the European starling abstracted. Federation Proc. 42: 478, 1983.
 177. Laverty, G., and W. H. Dantzler. Micropuncture study of urate transport by superficial nephrons in avian (Sturnus vulgaris) kidney. Pflugers Arch. 397: 232–236, 1983.
 178. Le Brie, S. J., and R. S. Elizondo. Saline loading and aldosterone in water snakes Natrix cyclopion. Am. J. Physiol. 217: 426–430, 1969.
 179. Lee, S.‐H., and J. B. Pritchard. Proton‐coupled L‐lysine uptake by renal brush border membrane vesicles from mullet (Magil cephalus). J. Membr. Biol. 75: 171–178, 1983.
 180. Lee, S.‐H., and J. B. Pritchard. Role of the electrochemical gradient for Na+ in D‐glucose transport by mullet kidney. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F278–F288, 1983.
 181. Levinsky, N. G., and D. G. Davidson. Renal action of parathyroid extract in the chicken. Am. J. Physiol. 191: 530–536, 1957.
 182. Logan, A. G., and R. J. Moriarty, R. Morris, and J. C. Rankin. The anatomy and blood system of the kidney in the river lamprey, Lampetra fluviatilis. Anat. Embryol. (Berl.) 158: 245–252, 1980.
 183. Logan, A. G., R. J. Moriarty, and J. C. Rankin. A micropuncture study of kidney function in the river lamprey, Lampetra fluviatilis, adapted to fresh water. J. Exp. Biol. 85: 137–147, 1980.
 184. Logan, A. G., R. Morris, and J. C. Rankin. A micropuncture study of kidney function in the river lamprey Lampetra fluviatilis adapted to sea water. J. Exp. Biol. 88: 239–247, 1980.
 185. Long, W. S. Renal handling of urea in Rana catesbeiana. Am. J. Physiol. 224: 482–490, 1973.
 186. Long, S., and G. Giebisch. Comparative physiology of renal tubular transport mechanisms. Yale J. Biol. Med. 52: 525–544, 1979.
 187. Love, J. K., and N. Lifson. Transtubular movements of urea in the doubly perfused bullfrog kidney. Am. J. Physiol. 193: 662–668, 1958.
 188. MacKay, W. C., and D. D. Beatty. The effect of temperature on renal function in the white sucker fish, Catostomus commersonii. Comp. Biochem. Physiol. 26: 235–245, 1968.
 189. Malvin, R. L., E. J. Cafruny, and H. Kutchai. Renal transport of glucose by aglomerular fish Lophius americanus. J. Cell. Comp. Physiol. 65: 381–384, 1965.
 190. Marshall, E. K., Jr., and A. L. Grafflin. The structure and function of the kidney of Lophius piscatorius. Bull. Johns Hopkins Hosp. 43: 205–230, 1982.
 191. Maunsbach, A. B., and E. L. Boulpaep. Quantitative ultrastructure and functional correlates in proximal tubule of Ambystoma and Necturus. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F710–F724, 1984.
 192. McBean, R. L., and L. Goldstein. Renal function during osmotic stress in the aquatic toad Xenopus laevis. Am. J. Physiol. 219: 1115–1123, 1970.
 193. McVicar, A. J., and J. C. Rankin. Dynamics of glomerular filtration in the river lamprey, Lampetra fluviatilis L. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F132–F138, 1985.
 194. Miller, D. S., and P. D. Holohan. Organic cation secretion in flounder renal tissue. Am. J. Physiol. 253 (Regulatory Integrative Comp. Physiol. 22): R861–R867, 1987.
 195. Mizgala, C. L., and G. A. Quamme. Renal handling of phosphate. Physiol. Rev. 65: 431–466, 1985.
 196. Mok, L. The effect of parathyroid extract on the renal handling of ions in parathyroidectomized chickens, abstracted. Am. Zool. 18 (3): 602, 1978.
 197. Morel, F. Sites of hormone action in the mammalian nephron. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F159–F164, 1981.
 198. Moriarty, R. J., A. G. Logan, and J. C. Rankin. Measurement of single nephron filtration rate in the kidney of the river lamprey, Lampetra fluviatilis L. J. Exp. Biol. 77: 57–69, 1978.
 199. Morild, I., R. Mowinckel, A. Bohle, and J. A. Christensen. The juxtaglomerular apparatus in the avian kidney. Cell Tissue Res. 240: 209–214, 1985.
 200. Mudge, G. H., W. O. Berndt, and H. Valtin. Tubular transport of urea, glucose, phosphate, uric acid, sulfate, and thiosulfate. In: Handbook of Physiology. Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington, DC: Am Physiol. Soc, 1973, sect. 8, chapt. 19, p. 587–652.
 201. Mukherjee, S. K., and W. H. Dantzler. Effects of SITS on urate transport by isolated, perfused snake renal tubules. Pflugers Arch. 403: 35–40, 1985.
 202. Munsick, R. A. Neurohypophysial hormones of chickens and turkeys. Endocrinology 75: 104–113, 1964.
 203. Munsick, R. A. Chromatographic and pharmacologic characterization of the neurohypophysial hormones of an amphibian and a reptile. Endocrinology 78: 591–599, 1966.
 204. Navar, L. G., P. D. Bell, R. W. White, R. L. Watts, and R. H. Williams. Evaluation of the single nephron glomerular filtration coefficient in the dog. Kidney Int. 12: 137–149, 1977.
 205. Nicholson, J. K. The microanatomy of the distal tubules, collecting tubules and collecting ducts of the starling kidney. J. Anat. 134: 11–23, 1982.
 206. Nishimura, H. Comparative endocrinology of renin and angiotensin. In: The Renin‐Angiotensin System, edited by J. A. Johnson and R. R. Anderson. New York: Plenum, 1980, p. 29–77.
 207. Nishimura, H. Endocrine control of renal handling of solutes and water in vertebrates. Renal Physiol. 8: 279–300, 1985.
 208. Nishimura, H., and M. Imai. Control of renal function in freshwater and marine teleosts. Federation Proc. 41: 2355–2360, 1982.
 209. Nishimura, H., M. Imai, and M. Ogawa. Sodium chlorid and water transport in the renal distal tubule of the rainbow trout. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F247–F254, 1983.
 210. Nishimura, H., M. Imai, and M. Ogawa. Transepithelial voltage in the reptilian‐ and mammalian‐type nephrons from Japanese quail, abstracted. Federation Proc. 42: 304, 1983.
 211. Nishimura, H., T. Miwa, and J. R. Bailey. Renal handling of sodium chloride and its control in birds. J. Exp. Zool. 232: 697–705, 1984.
 212. Nishimura, H., and W. H. Sawyer. Vasopressor, diuretic, and natriuretic responses to angiotensin by the American eel, Anguilla rostrata. Gen. Comp. Endocrinol. 29: 337–348, 1976.
 213. Nissenson, R. A., K. O. Nyiredy, and C. D. Arnoud. Guanyl nucleotide potentiation of parathyroid hormone‐stimulated adenyl cyclase in chicken renal plasma membranes: a receptor independent effect. Endocrinology 108: 1949–1953.
 214. Oberleithner, H., R. Greger, S. Neuman, F. Lang, G. Giebisch, and P. Deetjen. Omission of luminal potassium reduces cellular chloride in early distal tubule of amphibian kidney. Pflugers Arch. 398: 18–22, 1983.
 215. Oberleithner, H., W. Guggino, and G. Giebisch. Mechanism of distal tubular chloride transport in Amphiuma kidney. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F331–F339, 1982.
 216. Oberleithner, H., W. Guggino, and G. Giebisch. The effect of furosemide on luminal sodium, chloride and potassium transport in the early distal tubule of Amphiuma kidney. Effects of potassium adaptation. Pflugers Arch. 396: 27–33, 1983.
 217. Oberleithner, H., W. Guggino, and G. Giebish. Potassium transport in the early distal tubule of Amphiuma kidney. Effects of potassium adaptation. Pflugers Arch. 396: 185–191, 1983.
 218. Oberleithner, H., F. Lang, R. Greger, W. Wang, and G. Giebisch. Effect of luminal potassium on cellular sodium activity in the early distal tubule of Amphiuma kidney. Pflugers Arch. 396: 34–40, 1983.
 219. Oberleithner, H., F. Lang, W. Wang, G. Messner, and P. Deetjen. Evidence for an amiloride sensitive Na+ pathway in the amphibian diluting segment induced by K+ adaptation. Pflugers Arch. 399: 166–172, 1983.
 220. O'dell, R. M., and B. Schmidt‐Nielsen. Retention of urea by frog and mammalian kidney slices in vitro. J. Cell. Comp. Physiol. 57: 211–219, 1961.
 221. Oken, D. E., and A. K. Solomon. Single proximal tubules of Necturus kidney. VI. Nature of potassium transport. Am. J. Physiol. 204: 377–380, 1963.
 222. Oken, D. E., and M. Weise. Micropuncture studies of the transport of individual amino acids by the Necturus proximal tubule. Kidney Int. 13: 445–451, 1978.
 223. Peck, W. D., and D. B. McMillan. Ultrastructure of the renal corpuscle of the garter snake Thamnophis sirtalis. Am. J. Anat. 155: 83–101, 1979.
 224. Persson, B.‐E. Hydrostatic pressures in vascular and tubular structures of the Amphiuma kidney. Acta Univ. Ups. 308 (1): 1–13, 1978.
 225. Persson, B.‐E. Driving forces for glomerular ultrafiltration in Amphiuma means. Acta Univ. Ups. 308 (II): 1–14, 1978.
 226. Persson, B.‐E. Dynamics of glomerular ultrafiltration in Amphiuma means. Pflugers Arch. 391: 135–140, 1981.
 227. Persson, B.‐E., and A. E. G. Persson. The existence of a tubulo‐glomerular feedback mechanism in the Amphiuma nephron. Acta Univ. Ups. 308 (III): 1–12, 1978.
 228. Persson, B.‐E., and A. E. G. Persson. Modulation of glomerular filtration rate via tubulo‐glomerular feedback and plasma protein concentration. Acta Univ. Ups. 308 (IV): 1–16, 1978.
 229. Poulson, T. L., and G. A. Bartholomew. Salt balance in the savannah sparrow. Physiol. Zool. 35: 109–119, 1962.
 230. Prange, H. D., and L. Greenwald. Concentrations of urine and salt gland secretions in dehydrated and normally hydrated sea turtles, abstracted. Federation Proc. 38: 970, 1979.
 231. Rall, D. P., and J. W. Burger. Some aspects of hepatic and renal excretion in Myxine. Am. J. Physiol. 212: 354–356, 1967.
 232. Randle, H. W., and W. H. Dantzler. Effectsof K+ and Na+ on urate transport by isolated perfused snake renal tubules. Am. J. Physiol. 225: 1206–1214, 1973.
 233. Ranges, H. A., H. Chasis, W. Goldring, and H. W. Smith. The functional measurement of the number of active glomeruli and tubules in kidneys of normal and hypertensive subjects. Am. J. Physiol. 126: P603, 1939.
 234. Rankin, J. C., A. G. Logan, and R. J. Moriarty. Changes in kidney function in the river lamprey, Lampetra fluviatilis, in response to changes in external salinity. In: Epithelial Transport in the Lower Vertebrates, edited by B. Lahlou. Cambridge, UK: Cambridge Univ. Press, 1980, p. 171–184.
 235. Renfro, J. L. Calcium transport across peritubular surface of the marine teleost renal tubule. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F522–F531, 1978.
 236. Renfro, J. L. Relationship between renal fluid and Mg secretion in a glomerular teleost. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F92–F98, 1980.
 237. Renfro, J. L., and N. B. Clark. Parathyroid hormone effect on chicken renal brush border membrane phosphate transport. Am. J. Physiol. 247 (Regulatory Integrative Comp. Physiol. 16): R302–R307, 1984.
 238. Renfro, J. L., N. B. Clark, R. E. Metts, and M. A. Lynch. Sulfate transport by chick renal tubule brush‐border and basolateral membranes. Am. J. Physiol. 252 (Regulatory Integrative Comp. Physiol. 21): R85–R93, 1987.
 239. Renfro, J. L., and K. G. Dickman. Sulfate transport across the peritubular surface of the marine teleost renal tubule. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F143–F148, 1980.
 240. Renfro, J. L., K. G. Dickman, and P. S. Miller. Effect of Na+ and ATP on peritubular Ca transport by the marine teleost renal tubule. Am. J. Physiol. 243 (Regulatory Integrative Comp. Physiol. 12): R34–R41, 1982.
 241. Renfro, J. L., and J. B. Pritchard. H+‐dependent sulfate secretion in the marine teleost renal tubule. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F150–F159, 1982.
 242. Renfro, J. L., and J. B. Pritchard. Sulfate transport by flounder renal tubule brush border: presence of anion exchange. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F488–F498, 1983.
 243. Renkin, E. M., and J. P. Gilmore. Glomerular filtration. In: Handbook of Physiology. Renal Physiology, edited by Orloff and R. W. Berliner. Washington, D. C.: Am. Physiol. Soc., 1973, Sect. 8, chapt. 9, p. 185–248.
 244. Rennick, B. R. Renal tubular transport of organic cations. In: Renal Transport of Organic Substances, edited by R. Greger, F. Lang, and S. Silbernagl. Berlin: Springer‐Verlag, 1981, p. 178–188.
 245. Rennick, B. R. Renal tubule transport of organic cations. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F83–F89, 1981.
 246. Rice, G. E. Plasma arginine vasotocin concentrations in the lizard Varanus gouldii (Gray) following water loading, salt loading, and dehydration. Gen. Comp. Endocrinol. 47: 1–6, 1982.
 247. Rice, G. E., S. D. Bracshaw, and F. J. Prendergast. The effects of bilateral adrenalectomy on renal function in the lizard Varanus gouldii (Gray). Gen. Comp. Endocrinol. 47: 182–189, 1982.
 248. Richards, A. N., and C. F. Schmidt. A description of the glomerular circulation in the frog's kidney and observations concerning the action of adrenalin and various other substances upon it. Am. J. Physiol. 71: 179–208, 1924.
 249. Riegel, J. A. Factors affecting glomerular function in the Pacific hagfish Eptatretus stouti (Lockington). J. Exp. Biol. 73: 261–277, 1978.
 250. Roberts, J. R., and W. H. Dantzler. Glomerular filtration rate in conscious unrestrained starlings under dehydration. Am. J. Physiol. 256 (Regulatory Integrative Comp. Physiol. 25): R836–R839, 1989.
 251. Roberts, J. S., and B. Schmidt‐Nielsen. Renal ultrastructure and excretion of salt and water by three terrestrial lizards. Am. J. Physiol. 211: 476–486, 1966.
 252. Robinson, R. R., and R. M. Portwood. Mechanism of magnesium excretion by the chicken. Am. J. Physiol. 202: 309–312, 1962.
 253. Roch‐Ramel, F. and G. Peters. Renal transport of urea. In: Renal Transport of Organic Substances, edited by R. Greger, F. Lang, and S. Silbernagl. Berlin: Springer‐Verlag, 1981, p. 134–153.
 254. Sackin, H., and E. L. Boulpaep. Models for coupling of salt and water transport: proximal tubular reabsorption in Necturus kidney. J. Gen. Physiol. 66: 671–733, 1975.
 255. Sackin, H., and E. L. Boulpaep. Isolated perfused salamander proximal tubule: methods, electrophysiology, and transport. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F39–F52, 1981.
 256. Sackin, H., and E. L. Boulpaep. Isolated perfused salamander proximal tubule. II. Monovalent ion replacement and rheogenic transport. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F540–F555, 1981.
 257. Sackin, H., H. Morgunov, and E. L. Boulpaep. Intracellular microelectrode measurements in the diluting segment of the amphibian nephron, abstracted. Federation Proc. 40: 394, 1981.
 258. Sandor, T., A. G. Fazekas, and B. H. Robinson. The biosynthesis of corticosteroids throughout the vertebrates. In: General, Comparative and Clinical Endocrinology of the Adrenal Cortex, edited by I. Chester Jones and I. Henderson. London: Academic, 1976, vol. I, p. 25–142.
 259. Sawyer, D. B., and K. W. Beyenbach. Mechanism of fluid secretion in isolated shark renal proximal tubules. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F884–F890, 1985.
 260. Sawyer, W. H. Effect of posterior pituitary extracts on urine formation and glomerular circulation in the frog. Am. J. Physiol. 164: 457–464, 1951.
 261. Sawyer, W. H. Vasopressor, diuretic, and natriuretic responses by lungfish to arginine vasotocin. Am. J. Physiol. 218: 1789–1794, 1970.
 262. Sawyer, W. H. Neurohypophysial hormones and water and sodium excretion in the African lungfish. Gen. Comp. Endocrinol. 3: 345–349, 1972.
 263. Sawyer, W. H., R. A. Munsick, and H. B. van Dyke. Pharmacological evidence for the presence of arginine vasotocin and oxytocin in neurohypophysical extracts from coldblooded vertebrates. Nature 184: 1464, 1959.
 264. Sawyer, W. H., R. A. Munsick, and H. B. van Dyke. Evidence for the presence of arginine vasotocin (8‐arginine oxytocin) and oxytocin in neurohypophysial extracts from amphibians and reptiles. Gen. Comp. Endocrinol. 1: 30–36, 1961.
 265. Schafer, J. A. Mechanisms coupling the absorption of solutes and water in the proximal nephron. Kidney Int. 25: 708–716, 1984.
 266. Schali, C., L. Schild, J. Overney, and F. Roch‐Ramel. Secretion of tetraethylammonium by proximal tubules of rabbit kidneys. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F238–F246, 1983.
 267. Schmidt‐Nielsen, B. Renal transport of urea in elasmobranchs. In: Transport Mechanisms in Epithelia, edited by H. H. Ussing and N. A. Thorn. Copenhagen: Munksgaard, 1972, p. 608–621. (Alfred Benzon Symp. V.)
 268. Schmidt‐Nielsen, B., and L. E. Davis. Fluid transport and tubular intercellular spaces in reptilian kidneys. Science 159: 1105–1108, 1968.
 269. Schmidt‐Nielsen, B., and R. P. Forster. The effect of dehydration and low temperature on renal function in the bullfrog. J. Cell. Comp. Physiol. 44: 233–246, 1954.
 270. Schmidt‐Nielsen, B., and J. L. Renfro. Kidney function of the American eel Anguilla rostrata. Am. J. Physiol. 228: 420–431, 1975.
 271. Schmidt‐Nielsen, B., and D. Schmidt. Renal function of Sphenodon punctatum. Comp. Biochem. Physiol. 44: 121–129, 1973.
 272. Schmidt‐Nielsen, B., and C. R. Shrauger. Handling of urea and related compounds by the renal tubules of the frog. Am. J. Physiol. 205: 483–488, 1963.
 273. Schmidt‐Nielsen, B., and E. Skadhauge. Function of the excretory system of the crocodile (Crocodylus acutus). Am. J. Physiol. 212: 973–980, 1967.
 274. Schnermann, J., and J. Briggs. Function of the juxtaglomerular apparatus: local control of glomerular hemodynamics. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, vol. 1, chapt. 28, p. 669–697.
 275. Schröck, H., R. P. Forster, and L. Goldstein. Renal handling of taurine in marine fishes. Am. J. Physiol. 242 (Regulatory Integrative Comp. Physiol. 11): R64–R69, 1982.
 276. Sharratt, B. M., I. Chester Jones, and D. Bellamy. Water and electrolyte composition of the body and renal function of the eel (Anguilla anguilla L.) Comp. Biochem. Physiol. 11: 9–18, 1964.
 277. Shideman, J. R., M. J. Zmuda, and A. J. Quebbemann. The actue effects of furosemide, ethacrynic acid and chlorothiazide on the renal tubular handling of uric acid in the chicken. J. Pharmacol. Exp. Ther. 216: 441–446, 1981.
 278. Shoemaker, V. H. Renal function in the mourning dove. Am. Zool. 7: 736, 1967.
 279. Skadhauge, E. Effects of unilateral infusion of arginine vasotocin into the portal circulation of the avian kidney. Acta Endocrinol. 47: 321–330, 1964.
 280. Skadhauge, E. Renal and cloacal salt and water transport in the fowl (Gallus domesticus). Danish Med. Bull. 20 (Suppl. I): 1–82, 1973.
 281. Skadhauge, E., and B. Schmidt‐Nielsen. Renal function in domestic fowl. Am. J. Physiol. 212: 793–798, 1967.
 282. Skadhauge, E., and B. Schmidt‐Nielsen. Renal medullary electrolyte and urea gradient in chickens and turkeys. Am. J. Physiol. 212: 1313–1318, 1967.
 283. Smith, P. M., J. B. Pritchard, and D. S. Miller. Membrane potential drives organic cation transport into teleost renal proximal tubules. Am. J. Physiol. 255 (Regulatory Integrative Comp. Physiol. 24): R492–R499, 1988.
 284. Sokabe, H. Phylogeny of the renal effects of angiotensin. Kidney Int. 6: 263–271, 1974.
 285. Sokabe, H., and M. Ogawa. Comparative studies of the juxtaglomerular apparatus. Int. Rev. Cytol. 37: 271–327, 1974.
 286. Sperber, I. Excretion. In: Biology and Physiology of Birds, edited by A. J. Marshall. New York: Academic, 1960, p. 469–492.
 287. Spring, K., and G. Giebisch. Kinetics of sodium transport in Necturus proximal tubule. J. Gen. Physiol. 70: 307–328, 1977.
 288. Spring, K. R., and G. Kimura. Chloride reabsorption by renal proximal tubules of Necturus. J. Membr. Biol. 38: 233–254, 1978.
 289. Stallone, J. N., and E. J. Braun. Contributions of glomerular and tubular mechanisms to antidiuresis in conscious domestic fowl. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F842–F850, 1985.
 290. Stallone, J. N., and H. Nishimura. Angiotensin II (AII)‐induced natriuresis in anesthetized domestic fowl, abstracted. Federation Proc. 44: 1364, 1985.
 291. Stanley, J. G., and W. R. Fleming. Excretion of hypertonic urine by a teleost. Science 144: 63–664, 1964.
 292. Stanton, B., D. Biemesderfer, D. Stetson, M. Kashgarian, and G. Giebisch. Cellular ultrastructure of Amphiuma distal nephron: effects of exposure to potassium. Am. J. Physiol. 247 (Cell Physiol. 16): C204–C216, 1984.
 293. Stanton, B., W. Guggino, and G. Giebisch. Electrophysiology of isolated and perfused distal tubules of Amphiuma, abstracted. Kidney Int. 21: 289, 1982.
 294. Stewart, D. J., W. N. Holmes, and G. Fletcher. The renal excretion of nitrogenous compounds by the duck (Anas platyrhynchos) maintained on freshwater and on hypertonic saline. J. Exp. Biol. 50: 527–539, 1969.
 295. Stolte, H., R. G. Galaske, G. M. Eisenbach, C. Lechene, B. Schmidt‐Nielsen, and J. W. Boylan. Renal tubule ion transport and collecting duct function in the elasmobranch little skate, Raja erinacea. J. Exp. Zool. 199: 403–410, 1977.
 296. Stolte, H., and B. Schmidt‐Nielsen. Comparative aspects of fluid and electrolyte regulation by the cyclostome, elasmobranch, and lizard kideny. In: Osmotic and Volume Regulation, edited by C. B. Jorgensen and E. Skadhauge. Copenhagen: Munksgaard, 1978, p. 209–222. (Alfred Benzon Symp. XI).
 297. Stolte, H., B. Schmidt‐Nielsen, and L. Davis. Single nephron function in the kidney of the lizard, Sceloporus cyanogenys. Zool. Jb. Physiol. 81: S219–244, 1977.
 298. Stoner, L. C. Isolated, perfused amphibian renal tubules: the diluting segment. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F438–F444, 1977.
 299. Stoner, L. C. The movement of solutes and water across the vertebrate distal nephron. Renal Physiol. 8: 237–248, 1985.
 300. Sullivan, L. P., D. J. Welling, D. G. Deeds, and J. N. Simone. Kinetic analysis of potassium transport in bullfrog kidney. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F464–F480, 1977.
 301. Sullivan, W. J. Electrical potential differences across distal renal tubules of Amphiuma. Am. J. Physiol. 214: 1096–1103, 1968.
 302. Sykes, A. H. Formation and composition of the urine. In: Physiology and Biochemistry of the Domestic Fowl, edited by D. J. Bell and B. M. Freeman. London: Academic, 1971, p. 233–278.
 303. Tanner, G. A. Micropuncture study of PAH and Diodrast transport in Necturus kidney. Am. J. Physiol. 212: 1341–1346, 1967.
 304. Tanner, G. A., P. K. Carmines, and W. B. Kinter. Excretion of phenol red by the Necturus kidney. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F442–F447, 1979.
 305. Tanner, G. A., and W. B. Kinter. Reabsorption and secretion of p‐aminohippurate and Diodrast in Necturus kidney. Am. J. Physiol. 210: 221–231, 1966.
 306. Taplin, L. E., and G. C. Grigg. Salt glands in the tongue of the estuarine crocodile, Crocodylus porosus. Science 212: 1045–1047, 1981.
 307. Trinh‐Trang‐Tan, M.‐M., M. Diaz, J.‐P. Grunfeld, and L. Bankir. ADH‐dependent nephron heterogeneity in rats with hereditary hypothalamic diabetes insipidus. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F372–F380, 1981.
 308. Uchiyama, M., T. Murakami, and P. K. T. Pang. Renal and vascular responses of the bullfrog, Rana Catesbeiana, and the toad, Bufo bufo japonicus, to mesotocin, abstracted. Proc. 10th Int. Symp. Comp. Endocrinol., 1985.
 309. Vogel, G., and W. Kroger. Die Bedentung des Transportes, der Konzentration und der Darbietungsrichtung von Na+ fur den tubularen Glucose‐und PAH‐Transport. Pflugers Arch. 288: 342–358, 1966.
 310. Vogel, G., and M. Kurten. Untersuchungen zur Na+ ‐Abhängigkeit der renal‐tubulären Harnstoff‐Sekretion bei Rana ridibunda. Pflugers Arch. 295: 42–55, 1967.
 311. Vogel, G., F. Lauterbach, and W. Kroger. Die Bedeutung des Natriums fur die renalen Transporte von Glucose und Para‐Aminohippusaure. Pflugers Arch. 283: 151–159, 1965.
 312. Vogel, G., and I. Stoeckert. Die Bedeutung des Anions fur den renal tubularen Transport von Na+ und die Transporte von Glucose und PAH. Pflugers Arch. 292: 309–315, 1966.
 313. Walker, A. M. and C. L. Hudson. The reabsorption of glucose from the renal tubule in amphibia and the action of phlorizin upon it. Am. J. Physiol. 118: 130–141, 1937.
 314. Walker, A. M., C. L. Hudson, T. Findley, Jr., and A. N. Richards. The total molecular concentration and the chloride concentration of fluid from different segments of the renal tubule of amphibia. Am. J. Physiol. 118: 121–129, 1937.
 315. Wearn, J. T., and A. N. Richards. Observations on the composition of glomerular urine, with particular reference to the problem of reabsorption in the renal tubules. Am. J. Physiol. 71: 209–227, 1924.
 316. Weiner, I. M. Transport of weak acids and bases. In: Handbook of Physiology. Renal Phisology, edited by J. Orloff and R. W. Berliner. Washington DC: Am. Physiol. Soc., 1973, sect. 8, chapt. 17, p. 521–554.
 317. White, B. A., and C. S. Nicoll. Prolactin receptors in Rana catesbeiana during development and metamorphosis. Science 204: 851–853, 1979.
 318. White, H. L. Observations on the nature of glomerular activity. Am. J. Physiol. 90: 689–704, 1929.
 319. Wideman, R. F., Jr. and E. J. Braun. Stimulation of avian renal phosphate secretion by parathyroid hormone. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F263–F272, 1981.
 320. Wideman, R. F., Jr., E. J. Braun, and G. L. Anderson. Microanatomy of the domestic fowl renal cortex. J. Morphol. 168: 249–267, 1981.
 321. Wideman, R. F., Jr., N. B. Clark, and E. J. Braun. Effects of phosphate loading and parathyroid hormone on starling renal phosphate excretion. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F233–F243, 1980.
 322. Wiederholt, M., W. J. Sullivan, and G. Giebisch. Potassium and sodium transport across single distal tubules of Amphiuma. J. Gen. Physiol. 57: 495–525, 1971.
 323. Wilkinson, H. L., L. P. Sullivan, D. J. Welling, and L. W. Welling. Localization of tissue potassium pools in the amphibian kidney. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F801–F812, 1983.
 324. Windhager, E. E., G. Whittembury, D. E. Oken, H. J. Schatzman, and A. K. Solomon. Single proximal tubules of Necturus kidney. III. Dependence of H2O movement on NaCl ion concentration. Am. J. Physiol. 197: 313–318, 1959.
 325. Wolff, N. A., D. F. Perlman, and L. Goldstein. Ionic requirements of peritubular taurine transport in Fundulus kidney. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 19): R984–R990, 1986.
 326. Wright, F. S., and J. P. Briggs. Feedback control of glomerular blood flow, pressure, and filtration rate. Physiol. Rev. 59: 958–1006, 1979.
 327. Wright, F. S., and G. Giebisch. Regulation of potassium excretion. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, vol. 2, chapt. 51, p. 1223–1249.
 328. Wright, S. H. Transport of N1‐methylnicotinamide across brush border membrane vesicles from rabbit kidney. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F903–F911, 1985.
 329. Yokota, S. D., S. Benyajati, and W. H. Dantzler. Com‐parative aspects of glomerular filtration in vertebrates. Renal Physiol. 8: 193–221, 1985.
 330. Yokota, S. D., S. Benyajati, and W. H. Dantzler. Renal function in sea snakes. I. Glomerular filtration rate and water handling. Am. J. Physiol. 249 (Regulatory Integrative Comp. Physiol. 18): R228–R236, 1985.
 331. Yokota, S. D., and W. H. Dantzler. Measurement of blood flow to individual glomeruli in the ophidian kidney. Am. J. Physiol. 258 (Regulatory Integrative Comp. Physiol. 27) (in press), 1990.
 332. Zmuda, M. J., and A. J. Quebbemann. Localization of renal tubular uric acid transport defect in gouty chickens. Am. J. Physiol. 229: 820–825, 1975.
 333. Zucker, A., and H. Nishimura. Renal responses to vasoactive hormones in the aglomerular toad fish, Opsanus tau. Gen. Comp. Endocrinol. 43: 1–9, 1981.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

William H. Dantzler. Comparative Physiology of the Kidney. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 415-474. First published in print 1992. doi: 10.1002/cphy.cp080111