Comprehensive Physiology Wiley Online Library

Glomerular Filtration

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Glomerular Filtration of Water
1.1 Composition of the Glomerular Ultrafiltrate
1.2 Determinants of Glomerular Filtration of Water
1.3 Control of Glomerular Filtration by Hormones and Vasoactive Substances
1.4 Angiotensin II
1.5 Other Vasoconstrictor Substances
1.6 Vasodilator Substances
1.7 Other Hormones and Vasoactive Substances
1.8 Autoregulation of Glomerular Filtration Rate
1.9 Neural Regulation of Glomerular Filtration Rate
1.10 Theoretical Models of Glomerular Ultrafiltration
2 Glomerular Permselectivity
2.1 Experimental Approaches
2.2 Effects of Molecular Properties on Macromolecule Filtration
2.3 Theory of Glomerular Permselectivity
2.4 Glomerular Membrane Parameters
2.5 Determinants of Macromolecule Filtration
2.6 Estimation of Filtration Pressure from Sieving Data
2.7 Altered Glomerular Permselectivity
Figure 1. Figure 1.

Hydraulic and colloid osmotic pressure profiles along idealized glomerular capillaries in hydropenic and euvolemic rats. Values shown are mean values from studies listed in Tables 2 and 3. ΔP = PGC‐PT and ΔΠ = ΠGC‐ΠT, where PGC and PT are hydraulic pressures in glomerular capillary and Bowman's space, respectively, and ΠGC and ΠT are corresponding colloid osmotic pressures. Because ΠT is negligible, ΔΠ essentially equals ΠGC PUF is the ultrafiltration pressure at any point. Area between ΔP and ΔΠ curves represents net ultrafiltration pressure, (PUF). Curves A and B in left panel represent two of many possible ΔΠ profiles under conditions of filtration pressure equilibrium. Curve D, disequilibrium; line C, hypothetical linear ΔΠ profile; QA, glomerular plasma flow ra])G SNGFR, single nephron glomerular filtration rate.

Figure 2. Figure 2.

Relationship between glomerular capillary ultrafiltration coefficient(Kf) and body weight in rats. Each point represents mean values obtained from one study. Open squares and open circles indicate data obtained from Munich‐Wistar rats and include only those studies in which animals were at or near filtration pressure disequilibrium [euvolemic or plasma‐expanded male or male plus female rats from Tables 3 and 4, (squares) or hydropenic and euvolemic female rats at disequilibrium from Tables 2 and 3 (circles)]. Thus Kf values are unique rather than miminum estimates. Open triangle, study in hydropenic Holtzman rats at equilibrium and thus is minimum value 39. Solid line, representing open symbols, is given by equation y = 0.021(x) −0.47 (r = 0.67). Filled squares, values obtained in euvolemic Munich‐Wistar rats fasted for 12–24 h (Table 3). All other filled symbols were obtained in species without surface glomeruli and hence relied on stop‐flow pressure measurements to estimate (PGC). Included are data from Sprague‐Dawley rats (filled circles) spontaneous hypertensive rats (half‐filled circles), and Wistar‐Kyoto rats (filled triangles) from Table 8. Dashed line, denoting best fit to filled symbols, is given by equation y = 0.0074(x) + 0.25 (r = 0.80, P<0.01 vs. solid line).

Figure 3. Figure 3.

Relationships of single nephron glomerular filtration rate (SNGFR) and single nephron filtration fraction (SNFF) to isolated changes in glomerular plasma flow rate. Because SNGFR and SNFF can also be affected by changes in 〈ΔP〉, Kf, or ΠA, only studies in which 〈ΔP〉 = 35–40 mm Hg, minimum Kf ≥ 3 nl/min · mm Hg, and Π;A≅18–20 mm Hg are included. Included are studies from Tables 2–4 as well as studies under a variety of physiological conditions that fell within these limits 117,349,353,355,362,659,660,661,694. Solid lines denote model predictions based on mean values of 〈ΔP〉, Kf, and ΠA observed in these studies [〈ΔP〉 = 36.4 mm Hg, ΠA = 18.8 mm Hg, and Kf = 4.9 nl/(min · mm Hg)].

Figure 4. Figure 4.

Relationship between single nephron glomerular filtration rate (SNGFR) and glomerular plasma flow rate. Each point represents mean values obtained in one study. Open circles, Munich‐Wistar rats presented in Tables 2–4; closed triangles, Wistar‐Kyoto rats; open triangles, Holtzman tats; closed circles, spontaneous hypertensive rats presented in Table 8; open squares, Sprague‐Dawley rats (presented in Table 8 (and refs. 138,208,209,472); closed squares, dogs presented in Table 7; half‐closed circles, calculated values of SNGFR and glomerular plasma flow rate in humans based on dividing GFR and renal plasma flow by 1 million (the total number of nephrons) for a variety of studies (see Fig. 5).

Figure 5. Figure 5.

Relationship between whole‐kidney glomerular filtration rate (GFR) and renal plasma flow rate in dogs (values expressed per kidney) and humans [values shown for one kidney and expressed as ml/(min · 1.73 m2)]. Human data: closed circles, studies conducted following a low‐protein meal 608, on alternate‐day protein feeding 346, or following overnight fast (82, 112, 641. Administration of a protein meal (open circles or half‐closed circles) resulted in increased GFR and renal plasma flow in three studies 130,346,608. Lines connect values in same study. Closed squares, no information given regarding diets 167,626,793; open square, cardiac failure patients 166. Dog studies: open triangles, variations in GFR and renal plasma flow resulted primarily from variations in renal perfusion pressure, including either normal 99,156,316,338,384,479,551,556,568,567,570,738,771 or reduced 156,527,567,738 arterial pressures; closed triangles, values obtained following hyperoncotic plasma expansion 403; response to a saline load 338.

Figure 6. Figure 6.

Relationship of single nephron glomerular filtration rate (SNGFR) and single nephron filtration fraction (SNFF) to variations in the transcapillary hydraulic pressure gradient ((ΔP)). Each point denotes mean value from one study. To minimize variations in SNGFR and SNFF caused by differences in ΠA and Kf, all studies selected had ΠA values between 16 and 20 mm Hg and had normal values of Kf ≥ 3 nl/(min · mm Hg). Data are compared at two selected ranges of glomerular plasma flow rate (QA) (130–170 nl/min; mean, 147 ± 2 nl/min or 40–70 nl/min; mean, 60 ± 3 nl/min) in which a relatively wide range of 〈ΔP〉 values were obtained. Low QA data were from several studies 140,405,515,622,659. High QA data include all studies listed in Tables 3 and 4 that meet guidelines as well as other studies 349,355,356,362,515,659,660. Dashed lines, model predictions for low QA studies using mean values of (17 mm Hg) and QA (60 nl/min) obtained in these studies, together with mean (unique) value of Kf in high QA experiments, assuming that variations in QA per se do not alter Kf 231; solid lines, model predictions for high QA data from rats using mean values of ΠA (18 mm Hg), QA (147 nl/min), and Kf [5.4 nl/(min · mm Hg)] obtained in these studies.

Figure 7. Figure 7.

Effects of selective alterations in Kf on single nephron glomerular filtration rate (SNGFR) and single nephron filtration fraction (SNFF). Only studies in which a unique value of Kf was obtained (i.e., ΠE/〈ΔP〉 ≤ 0.95) are included. Data are shown for two ranges of QA: open circles, 90–125 nl/min (mean, QA = 100nl/min); and closed circles, 150–180 nl/min (mean, QA≅ 170 nl/min). For low QA studies, ΠA was limited to 16–20 mm Hg and 〈ΔP〉 from 36 to 42 mm Hg. High flow studies had similar ranges of ΠA (17–22 mm Hg) and 〈ΔP〉 (36–43 mm Hg). Model predictions shown by dashed lines are for low QA values (data from refs. 27,75,238,349,352,469,548,584,659,660,708,756); solid lines represent predictions for high QA values (data from refs. 77,231,236,353,355,358,585,586,758,805).

Figure 8. Figure 8.

Theoretical relationships between plasma oncotic pressure (ΠA) and both single nephron glomerular filtration rate (SNGFR) and single nephron filtration fraction (SNFF). Dashed line, model predictions for euvolemic Munich‐Wistar rats based on values of QA, 〈ΔP〉, and Kf of 151 nl/min, 35 mm Hg, and 5.6 nl/(min · mm Hg), respectively (Table 3); solid line, hydropenia in which QA and 〈ΔP〉 were 79 nl/min and 34 mm Hg (Table 2), respectively. Because only a minimum value of Kf can be determined in hydropenic rats (ΠE = 〈ΔP〉, Table 2), the unique value of 5.6 nl/min · mm Hg determined in euvolemic rats was used.

Figure 9. Figure 9.

Relationship between Kf and plasma protein concentration (CA). Closed circles, mean values (± S.E.M.) obtained by Baylis et al. 77 under a variety of conditions, with and without volume expansion, designed to alter CA; closed square, a study in which an isovolemic reduction in hematocrit produced filtration pressure disequilibrium without volume expansion 515; closed triangles, values obtained in rats with isoncotic plasma volume expansion in which QA was varied by altering renal perfusion pressure by aortic constriction or carotid occlusion 231.

Modified from Baylis et al. 77
Figure 10. Figure 10.

Hydraulic pressure profile in rat kidney. Open circles, values obtained in studies of euvolemic Munich‐Wistar rats (Table 3); closed circles, studies of hydropenic rats (Table 2); closed triangles, values obtained by Casellas and Navar 171 in Sprague‐Dawley rats in unique population of juxtamedullary nephrons at inside cortical surface apposed to pelvic lining and arcuate veins. Hydraulic pressures can be obtained in proximal (Early a.a.) and distal (Late a.a.) portions of afferent arteriole and in proximal (Early e.a.) and distal (Late e.a.) segments of efferent arteriole, and in peritubular capillaries (Pc), interlobular veins (I.V.), and renal vein (R.V.). For micropuncture experiments, systemic arterial pressure () averaged — 110 mm Hg, whereas in study of Casellas and Navar 171 arcuate artery (Arc. Art.) was perfused with whole blood at 96 mm Hg. , hydraulic pressure in glomerular capillaries.

Figure 11. Figure 11.

Pathways of renin synthesis and processing in mouse submaxillary gland. A: proposed sites of cleavage (upward arrows) and Mrs of each compound (far right column). B: synthesis, packaging into granules, and secretion of renin.

From Pratt et al. (497a
Figure 12. Figure 12.

Cellular control of renin release. Occupancy of adenylate cyclase (AC)‐linked receptors by agonists [norepinephrine (NE), histamine (H), and prostaglandins (PG)] results in stimulation of cAMP production and phosphorylation of intermediate protein kinase (PK) that stimulates (+) renin secretion. N, guanine nucleotide regulatory proteins specific for each agonist. Though not shown, angiotensin II (AΠ) and vasopressin (AVP) also act through N (or G) proteins to increase calcium influx as well as calcium release from intracellular storage sites. Membrane depolarization (Dep.) can also increase Ca2+ influx through voltage‐sensitive channels. Increased [Ca2+], leads to formation of the calcium‐calmodulin (Ca‐CM) complex that inhibits (−) renin release. Decreases in [Ca2+]i uncouples the Ca‐CM complex, thus de‐inhibiting renin release. RAΠ, Ravp, RH2, Rβ. and RPG; receptors for angiotensin II, arginine vasopressin, histamine (H2‐type), norepinephrine (β‐type), and prostaglandins, respectively.

From Ballermann et al. 54
Figure 13. Figure 13.

Effects of intravenous infusion of angiotensin II (200–600 ng/kg/min) determinants of glomerular ultrafiltration in Munich‐Wistar rat. Left, data obtained when renal perfusion pressure () was allowed to increase; right, results obtained when increase in was prevented. Data are means ± S.E. SNGFR, single nephron glomerular filtration rate.

From Myers et al. 514
Figure 14. Figure 14.

Role of angiotensin II in mediating altered renal function of congestive heart failure induced by myocardial infarction (M.I.). Control euvolemic sham‐operated rats were studied during two periods; before (open circles) and during (filled circles) infusion of angiotensin I‐converting enzyme inhibitor teprotide [SQ20881; 359,363]. SNGFR, single nephron glomerular filtration ra])G SNFF, single nephron filtration fracti])R , renal perfusion pressure.

Figure 15. Figure 15.

Mechanism of action of angiotensin II (AT II) in contraction of renal vasculature and glomerular mesangial cells. R, receptor; Gαβγ, guanine nucleotide‐binding regulatory protein with its three subunits, α, β, and γ; GTP, guanine trisphospha])G PLC, phospholipase C; PlP2, phosphatidylinositol‐4,5‐bisphospha])G IP3, inositol‐1,4,5‐trisphospha])G DAG, 1,2‐diacylglycerol; Ca2+, intracellular free calcium; PKC, protein kinase C; LC, lipocortin; PLA2, phospholipase A2; PL, membrane phospholipids; AA, arachidonic acid; PGE2, prostaglandin E2; cAMP, cyclic adenosine monophospha])G cAMP‐PK, cAMP‐dependent protein kinase; MLCK, myosin light chain kinase; P‐MLCK, phosphorylated MLCK; MLCK‐CAM, MLCK‐calcium‐calmodulin active complex; Pi, phospha])G *, activated form of enzyme. Parts A, B, and C in upper panel show sequence of events leading from occupancy of the receptor to activation of PLC. Lower panel shows sequence of events occurring in cells after PLC activation.

Figure 16. Figure 16.

Lipoxygenase pathway for biosynthesis of vasoactive leukotrienes and cyclooxygenase pathway for synthesis and degradation of prostaglandins, prostacyclin, and thromboxane A2 (TxA2).

Figure 17. Figure 17.

Effects of PGE2, PGI2, and dibutyryl (DB)‐cAMP on the determinants of glomerular filtration in rat. Data include effects on single nephron glomerular filtration rate (SNGFR), panel A; glomerular plasma flow rate (QA), panel B; mean glomerular capillary hydraulic pressure (), panel C; glomerular ultrafiltration coefficient (Kf), panel D; and sum of the pre‐ and postglomerular resistances (RTA), panel E. Euvolemic control animals were infused with cyclooxygenase inhibitors meclofenamate (Meclo.) or indomethacin (Indo.) or a cyclooxygenase inhibitor plus angiotensin II competitive antagonist saralasin. Effects of PGE2, PGI2, and DB‐cAMP were first examined during inhibition of endogenous prostaglandin production by Indo. or Meclo. and then with the added inhibition of endogenous angiotensin II by saralasin.

Data are from Schor et al. 660
Figure 18. Figure 18.

Effects of reduced mean arterial pressure on the measured determinants of glomerular ultrafiltration in hydropenic rats (A) and in mildly plasma‐expanded Munich‐Wistar rats before (B) and during (C) the administration of smooth muscle relaxant papaverine. Data (from ref. 228 and 622) are shown as means ± 1 S.E.

From Baylis and Brenner 74
Figure 19. Figure 19.

Filtrate‐to‐plasma concentration ratio (θ) as function of molecular size for dextran sulfate (DS), neutral dextran (D), and diethylaminoethyl dextran (DEAE). Symbols, mean values ± S.E. measured by Bohrer et al. 120,122 in normal hydropenic Munich‐Wistar rats; curves are theoretical calculations based on values of QA, 〈ΔP〉, and CA reported in those studies with Kf = 4.8 nl/(min · mm Hg), ro = 47 Å, and Cm= 165 mEq/liter.

From Deen et al. 230
Figure 20. Figure 20.

Schematic of macromolecular solute (represented as sphere of radius, rs) moving through membrane pore (of radius ro and length l). λ = rs/ro.

Figure 21. Figure 21.

Hindrance factors for convection (W) and diffusion (H) based on hydrodynamic theory for movement of uncharged spherical molecules in cylindrical pores.

From Deen et al. 219
Figure 22. Figure 22.

Filtrate‐to‐plasma concentration ratio (θ) as function of molecular charge (z) molecular radius (rs). Results are shown for two values of membrane fixed charge concentration (Cm). Other inputs were QA = 75 nl/min, 〈ΔP> = 35 mm Hg, CA = 5.7 g/dl, Kf = 4.8 nl/(min · mm Hg), and ro = 50 Å, all representative of the normal hydropenic Munich‐Wistar rat.

From Deen et al. 222
Figure 23. Figure 23.

Filtrate‐to‐plasma concentration ratio (θ) for serum albumin as function of membrane fixed charge concentration (Cm) and effective molecular charge (z). Other inputs were QA = 75 nl/min, 〈ΔP〉 = 35 mm Hg, CA = 5.7 g/dl, Kf = 4.8 nl/(min · mm Hg), and ro = 50 Å, all representative of the normal hydropenic Munich‐Wistar rat.

From Deen and Satvat 229
Figure 24. Figure 24.

Relationship between filtrate‐to‐plasma concentration ratio (θ), effective molecular charge (z), and glomerular plasma flow rate (QA). Calculations assumed Cm = 165 mEq/liter, rs = 30 Å, 〈ΔP〉 = 35 mm Hg, CA, = 5.7g/dl, Kf = 4.8 nl/‐(min · mm Hg), and ro = 50 Å, all representative of the normal hydropenic Munich‐Wistar rat.

From Deen and Satvat 229
Figure 25. Figure 25.

Relationship between filtrate‐to‐plasma concentration ratio (θ), effective molecular charge (z), and transmembrane hydraulic pressure difference 〈ΔP〉. Input quantities were Cm=165 mEq/liter, rs = 30Å, QA = 75 nl/min, CA = 5.7g/dl, Kf = 4.8 nl/min · mm Hg), and ro = 50Å.

From Deen and Satvat 229
Figure 26. Figure 26.

Relationship between filtrate‐to‐plasma concentration ratio (θ), effective molecular charge (z), and ultrafiltration coefficient(Kf). Effective pore radius is assumed to remain constant. Input quantities were Cm=165 mEq/liter, rs = 30 Å, QA = 75 nl/min, 〈ΔP〉 = 35 mm Hg, CA = 5.7g/dl, and ro = 50 A.

From Deen and Satvat 229


Figure 1.

Hydraulic and colloid osmotic pressure profiles along idealized glomerular capillaries in hydropenic and euvolemic rats. Values shown are mean values from studies listed in Tables 2 and 3. ΔP = PGC‐PT and ΔΠ = ΠGC‐ΠT, where PGC and PT are hydraulic pressures in glomerular capillary and Bowman's space, respectively, and ΠGC and ΠT are corresponding colloid osmotic pressures. Because ΠT is negligible, ΔΠ essentially equals ΠGC PUF is the ultrafiltration pressure at any point. Area between ΔP and ΔΠ curves represents net ultrafiltration pressure, (PUF). Curves A and B in left panel represent two of many possible ΔΠ profiles under conditions of filtration pressure equilibrium. Curve D, disequilibrium; line C, hypothetical linear ΔΠ profile; QA, glomerular plasma flow ra])G SNGFR, single nephron glomerular filtration rate.



Figure 2.

Relationship between glomerular capillary ultrafiltration coefficient(Kf) and body weight in rats. Each point represents mean values obtained from one study. Open squares and open circles indicate data obtained from Munich‐Wistar rats and include only those studies in which animals were at or near filtration pressure disequilibrium [euvolemic or plasma‐expanded male or male plus female rats from Tables 3 and 4, (squares) or hydropenic and euvolemic female rats at disequilibrium from Tables 2 and 3 (circles)]. Thus Kf values are unique rather than miminum estimates. Open triangle, study in hydropenic Holtzman rats at equilibrium and thus is minimum value 39. Solid line, representing open symbols, is given by equation y = 0.021(x) −0.47 (r = 0.67). Filled squares, values obtained in euvolemic Munich‐Wistar rats fasted for 12–24 h (Table 3). All other filled symbols were obtained in species without surface glomeruli and hence relied on stop‐flow pressure measurements to estimate (PGC). Included are data from Sprague‐Dawley rats (filled circles) spontaneous hypertensive rats (half‐filled circles), and Wistar‐Kyoto rats (filled triangles) from Table 8. Dashed line, denoting best fit to filled symbols, is given by equation y = 0.0074(x) + 0.25 (r = 0.80, P<0.01 vs. solid line).



Figure 3.

Relationships of single nephron glomerular filtration rate (SNGFR) and single nephron filtration fraction (SNFF) to isolated changes in glomerular plasma flow rate. Because SNGFR and SNFF can also be affected by changes in 〈ΔP〉, Kf, or ΠA, only studies in which 〈ΔP〉 = 35–40 mm Hg, minimum Kf ≥ 3 nl/min · mm Hg, and Π;A≅18–20 mm Hg are included. Included are studies from Tables 2–4 as well as studies under a variety of physiological conditions that fell within these limits 117,349,353,355,362,659,660,661,694. Solid lines denote model predictions based on mean values of 〈ΔP〉, Kf, and ΠA observed in these studies [〈ΔP〉 = 36.4 mm Hg, ΠA = 18.8 mm Hg, and Kf = 4.9 nl/(min · mm Hg)].



Figure 4.

Relationship between single nephron glomerular filtration rate (SNGFR) and glomerular plasma flow rate. Each point represents mean values obtained in one study. Open circles, Munich‐Wistar rats presented in Tables 2–4; closed triangles, Wistar‐Kyoto rats; open triangles, Holtzman tats; closed circles, spontaneous hypertensive rats presented in Table 8; open squares, Sprague‐Dawley rats (presented in Table 8 (and refs. 138,208,209,472); closed squares, dogs presented in Table 7; half‐closed circles, calculated values of SNGFR and glomerular plasma flow rate in humans based on dividing GFR and renal plasma flow by 1 million (the total number of nephrons) for a variety of studies (see Fig. 5).



Figure 5.

Relationship between whole‐kidney glomerular filtration rate (GFR) and renal plasma flow rate in dogs (values expressed per kidney) and humans [values shown for one kidney and expressed as ml/(min · 1.73 m2)]. Human data: closed circles, studies conducted following a low‐protein meal 608, on alternate‐day protein feeding 346, or following overnight fast (82, 112, 641. Administration of a protein meal (open circles or half‐closed circles) resulted in increased GFR and renal plasma flow in three studies 130,346,608. Lines connect values in same study. Closed squares, no information given regarding diets 167,626,793; open square, cardiac failure patients 166. Dog studies: open triangles, variations in GFR and renal plasma flow resulted primarily from variations in renal perfusion pressure, including either normal 99,156,316,338,384,479,551,556,568,567,570,738,771 or reduced 156,527,567,738 arterial pressures; closed triangles, values obtained following hyperoncotic plasma expansion 403; response to a saline load 338.



Figure 6.

Relationship of single nephron glomerular filtration rate (SNGFR) and single nephron filtration fraction (SNFF) to variations in the transcapillary hydraulic pressure gradient ((ΔP)). Each point denotes mean value from one study. To minimize variations in SNGFR and SNFF caused by differences in ΠA and Kf, all studies selected had ΠA values between 16 and 20 mm Hg and had normal values of Kf ≥ 3 nl/(min · mm Hg). Data are compared at two selected ranges of glomerular plasma flow rate (QA) (130–170 nl/min; mean, 147 ± 2 nl/min or 40–70 nl/min; mean, 60 ± 3 nl/min) in which a relatively wide range of 〈ΔP〉 values were obtained. Low QA data were from several studies 140,405,515,622,659. High QA data include all studies listed in Tables 3 and 4 that meet guidelines as well as other studies 349,355,356,362,515,659,660. Dashed lines, model predictions for low QA studies using mean values of (17 mm Hg) and QA (60 nl/min) obtained in these studies, together with mean (unique) value of Kf in high QA experiments, assuming that variations in QA per se do not alter Kf 231; solid lines, model predictions for high QA data from rats using mean values of ΠA (18 mm Hg), QA (147 nl/min), and Kf [5.4 nl/(min · mm Hg)] obtained in these studies.



Figure 7.

Effects of selective alterations in Kf on single nephron glomerular filtration rate (SNGFR) and single nephron filtration fraction (SNFF). Only studies in which a unique value of Kf was obtained (i.e., ΠE/〈ΔP〉 ≤ 0.95) are included. Data are shown for two ranges of QA: open circles, 90–125 nl/min (mean, QA = 100nl/min); and closed circles, 150–180 nl/min (mean, QA≅ 170 nl/min). For low QA studies, ΠA was limited to 16–20 mm Hg and 〈ΔP〉 from 36 to 42 mm Hg. High flow studies had similar ranges of ΠA (17–22 mm Hg) and 〈ΔP〉 (36–43 mm Hg). Model predictions shown by dashed lines are for low QA values (data from refs. 27,75,238,349,352,469,548,584,659,660,708,756); solid lines represent predictions for high QA values (data from refs. 77,231,236,353,355,358,585,586,758,805).



Figure 8.

Theoretical relationships between plasma oncotic pressure (ΠA) and both single nephron glomerular filtration rate (SNGFR) and single nephron filtration fraction (SNFF). Dashed line, model predictions for euvolemic Munich‐Wistar rats based on values of QA, 〈ΔP〉, and Kf of 151 nl/min, 35 mm Hg, and 5.6 nl/(min · mm Hg), respectively (Table 3); solid line, hydropenia in which QA and 〈ΔP〉 were 79 nl/min and 34 mm Hg (Table 2), respectively. Because only a minimum value of Kf can be determined in hydropenic rats (ΠE = 〈ΔP〉, Table 2), the unique value of 5.6 nl/min · mm Hg determined in euvolemic rats was used.



Figure 9.

Relationship between Kf and plasma protein concentration (CA). Closed circles, mean values (± S.E.M.) obtained by Baylis et al. 77 under a variety of conditions, with and without volume expansion, designed to alter CA; closed square, a study in which an isovolemic reduction in hematocrit produced filtration pressure disequilibrium without volume expansion 515; closed triangles, values obtained in rats with isoncotic plasma volume expansion in which QA was varied by altering renal perfusion pressure by aortic constriction or carotid occlusion 231.

Modified from Baylis et al. 77


Figure 10.

Hydraulic pressure profile in rat kidney. Open circles, values obtained in studies of euvolemic Munich‐Wistar rats (Table 3); closed circles, studies of hydropenic rats (Table 2); closed triangles, values obtained by Casellas and Navar 171 in Sprague‐Dawley rats in unique population of juxtamedullary nephrons at inside cortical surface apposed to pelvic lining and arcuate veins. Hydraulic pressures can be obtained in proximal (Early a.a.) and distal (Late a.a.) portions of afferent arteriole and in proximal (Early e.a.) and distal (Late e.a.) segments of efferent arteriole, and in peritubular capillaries (Pc), interlobular veins (I.V.), and renal vein (R.V.). For micropuncture experiments, systemic arterial pressure () averaged — 110 mm Hg, whereas in study of Casellas and Navar 171 arcuate artery (Arc. Art.) was perfused with whole blood at 96 mm Hg. , hydraulic pressure in glomerular capillaries.



Figure 11.

Pathways of renin synthesis and processing in mouse submaxillary gland. A: proposed sites of cleavage (upward arrows) and Mrs of each compound (far right column). B: synthesis, packaging into granules, and secretion of renin.

From Pratt et al. (497a


Figure 12.

Cellular control of renin release. Occupancy of adenylate cyclase (AC)‐linked receptors by agonists [norepinephrine (NE), histamine (H), and prostaglandins (PG)] results in stimulation of cAMP production and phosphorylation of intermediate protein kinase (PK) that stimulates (+) renin secretion. N, guanine nucleotide regulatory proteins specific for each agonist. Though not shown, angiotensin II (AΠ) and vasopressin (AVP) also act through N (or G) proteins to increase calcium influx as well as calcium release from intracellular storage sites. Membrane depolarization (Dep.) can also increase Ca2+ influx through voltage‐sensitive channels. Increased [Ca2+], leads to formation of the calcium‐calmodulin (Ca‐CM) complex that inhibits (−) renin release. Decreases in [Ca2+]i uncouples the Ca‐CM complex, thus de‐inhibiting renin release. RAΠ, Ravp, RH2, Rβ. and RPG; receptors for angiotensin II, arginine vasopressin, histamine (H2‐type), norepinephrine (β‐type), and prostaglandins, respectively.

From Ballermann et al. 54


Figure 13.

Effects of intravenous infusion of angiotensin II (200–600 ng/kg/min) determinants of glomerular ultrafiltration in Munich‐Wistar rat. Left, data obtained when renal perfusion pressure () was allowed to increase; right, results obtained when increase in was prevented. Data are means ± S.E. SNGFR, single nephron glomerular filtration rate.

From Myers et al. 514


Figure 14.

Role of angiotensin II in mediating altered renal function of congestive heart failure induced by myocardial infarction (M.I.). Control euvolemic sham‐operated rats were studied during two periods; before (open circles) and during (filled circles) infusion of angiotensin I‐converting enzyme inhibitor teprotide [SQ20881; 359,363]. SNGFR, single nephron glomerular filtration ra])G SNFF, single nephron filtration fracti])R , renal perfusion pressure.



Figure 15.

Mechanism of action of angiotensin II (AT II) in contraction of renal vasculature and glomerular mesangial cells. R, receptor; Gαβγ, guanine nucleotide‐binding regulatory protein with its three subunits, α, β, and γ; GTP, guanine trisphospha])G PLC, phospholipase C; PlP2, phosphatidylinositol‐4,5‐bisphospha])G IP3, inositol‐1,4,5‐trisphospha])G DAG, 1,2‐diacylglycerol; Ca2+, intracellular free calcium; PKC, protein kinase C; LC, lipocortin; PLA2, phospholipase A2; PL, membrane phospholipids; AA, arachidonic acid; PGE2, prostaglandin E2; cAMP, cyclic adenosine monophospha])G cAMP‐PK, cAMP‐dependent protein kinase; MLCK, myosin light chain kinase; P‐MLCK, phosphorylated MLCK; MLCK‐CAM, MLCK‐calcium‐calmodulin active complex; Pi, phospha])G *, activated form of enzyme. Parts A, B, and C in upper panel show sequence of events leading from occupancy of the receptor to activation of PLC. Lower panel shows sequence of events occurring in cells after PLC activation.



Figure 16.

Lipoxygenase pathway for biosynthesis of vasoactive leukotrienes and cyclooxygenase pathway for synthesis and degradation of prostaglandins, prostacyclin, and thromboxane A2 (TxA2).



Figure 17.

Effects of PGE2, PGI2, and dibutyryl (DB)‐cAMP on the determinants of glomerular filtration in rat. Data include effects on single nephron glomerular filtration rate (SNGFR), panel A; glomerular plasma flow rate (QA), panel B; mean glomerular capillary hydraulic pressure (), panel C; glomerular ultrafiltration coefficient (Kf), panel D; and sum of the pre‐ and postglomerular resistances (RTA), panel E. Euvolemic control animals were infused with cyclooxygenase inhibitors meclofenamate (Meclo.) or indomethacin (Indo.) or a cyclooxygenase inhibitor plus angiotensin II competitive antagonist saralasin. Effects of PGE2, PGI2, and DB‐cAMP were first examined during inhibition of endogenous prostaglandin production by Indo. or Meclo. and then with the added inhibition of endogenous angiotensin II by saralasin.

Data are from Schor et al. 660


Figure 18.

Effects of reduced mean arterial pressure on the measured determinants of glomerular ultrafiltration in hydropenic rats (A) and in mildly plasma‐expanded Munich‐Wistar rats before (B) and during (C) the administration of smooth muscle relaxant papaverine. Data (from ref. 228 and 622) are shown as means ± 1 S.E.

From Baylis and Brenner 74


Figure 19.

Filtrate‐to‐plasma concentration ratio (θ) as function of molecular size for dextran sulfate (DS), neutral dextran (D), and diethylaminoethyl dextran (DEAE). Symbols, mean values ± S.E. measured by Bohrer et al. 120,122 in normal hydropenic Munich‐Wistar rats; curves are theoretical calculations based on values of QA, 〈ΔP〉, and CA reported in those studies with Kf = 4.8 nl/(min · mm Hg), ro = 47 Å, and Cm= 165 mEq/liter.

From Deen et al. 230


Figure 20.

Schematic of macromolecular solute (represented as sphere of radius, rs) moving through membrane pore (of radius ro and length l). λ = rs/ro.



Figure 21.

Hindrance factors for convection (W) and diffusion (H) based on hydrodynamic theory for movement of uncharged spherical molecules in cylindrical pores.

From Deen et al. 219


Figure 22.

Filtrate‐to‐plasma concentration ratio (θ) as function of molecular charge (z) molecular radius (rs). Results are shown for two values of membrane fixed charge concentration (Cm). Other inputs were QA = 75 nl/min, 〈ΔP> = 35 mm Hg, CA = 5.7 g/dl, Kf = 4.8 nl/(min · mm Hg), and ro = 50 Å, all representative of the normal hydropenic Munich‐Wistar rat.

From Deen et al. 222


Figure 23.

Filtrate‐to‐plasma concentration ratio (θ) for serum albumin as function of membrane fixed charge concentration (Cm) and effective molecular charge (z). Other inputs were QA = 75 nl/min, 〈ΔP〉 = 35 mm Hg, CA = 5.7 g/dl, Kf = 4.8 nl/(min · mm Hg), and ro = 50 Å, all representative of the normal hydropenic Munich‐Wistar rat.

From Deen and Satvat 229


Figure 24.

Relationship between filtrate‐to‐plasma concentration ratio (θ), effective molecular charge (z), and glomerular plasma flow rate (QA). Calculations assumed Cm = 165 mEq/liter, rs = 30 Å, 〈ΔP〉 = 35 mm Hg, CA, = 5.7g/dl, Kf = 4.8 nl/‐(min · mm Hg), and ro = 50 Å, all representative of the normal hydropenic Munich‐Wistar rat.

From Deen and Satvat 229


Figure 25.

Relationship between filtrate‐to‐plasma concentration ratio (θ), effective molecular charge (z), and transmembrane hydraulic pressure difference 〈ΔP〉. Input quantities were Cm=165 mEq/liter, rs = 30Å, QA = 75 nl/min, CA = 5.7g/dl, Kf = 4.8 nl/min · mm Hg), and ro = 50Å.

From Deen and Satvat 229


Figure 26.

Relationship between filtrate‐to‐plasma concentration ratio (θ), effective molecular charge (z), and ultrafiltration coefficient(Kf). Effective pore radius is assumed to remain constant. Input quantities were Cm=165 mEq/liter, rs = 30 Å, QA = 75 nl/min, 〈ΔP〉 = 35 mm Hg, CA = 5.7g/dl, and ro = 50 A.

From Deen and Satvat 229
References
 1. Abboud, H. E., and T. P. Dousa. Action of adenosine on cyclic 3′5′‐nucleotides in glomeruli. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F633–F638, 1983.
 2. Abrass, C. K., G. J. Raugi, L. S. Gabourel, and D. H. Lovett. Insulin and insulin‐like growth factor I binding to cultured rat glomerular mesangial cells. Endocrinology 23: 2432–2439, 1988.
 3. Adelstein, R. S. and E. Eisenberg. Regulation and kinetics of the actinomysin‐ATP interaction. Annu. Rev. Biochem. 49: 921–956, 1980.
 4. Aeikens, B., A. Eenboom, and A. Bohle. Untersuchungen zur Struktur des Glomerulum. Virchows Arch. A: Pathol. Anat. 381: 283–293, 1979.
 5. Aguilera, G., A. Schirar, A. Baukal, and K. J. Catt. Angiotensin II receptors. Properties and regulation in adrenal glomerulosa cells. Circ. Res. 46 (Suppl. I): I‐118–I‐127, 1980.
 6. Aiken, J. W. and J. R. Vane. Intrarenal prostaglandin release attenuates the renal vasoconstrictor activity of angiotensin. J. Pharmacol. Exp. Ther. 184: 678–687, 1973.
 7. Alexander, R. W., T. A. Brock, M. A. Gimbrone, Jr., and S. E. Rittenhouse. Angiotensin increases inositol triphosphate and calcium in vascular smooth muscle. Hypertension 7: 447–451, 1985.
 8. Alfino, P. A., J. Neugarten, R. G. Schacht, L. D. Dworkin, and D. S. Baldwin. Glomerular size‐selective barrier dysfunction in nephrotoxic serum nephritis. Kidney Int. 34: 151–155, 1988.
 9. Allison, D. J., H. Tanigawa, and T. A. Assaykeen. The effects of cyclic nucleotides on plasma renin activity and renal function in dogs. In Assaykeen, T. A. (ed.): Adv. Exp. Med. Biol. Control of Renin Secretion. New York: Plenum, p. 33, 1972.
 10. Anderson, J. L. Configurational effect on the reflection coefficient for rigid solutes in capillary pores. J. Theor. Biol. 90: 405–426, 1981.
 11. Anderson, J. L., and J. A. Quinn. Restricted transport in small pores. A model for steric exclusion and hindered particle motion. Biophys. J. 14: 130–150, 1974.
 12. Anderson, W. P., D. Alcorn, A. I. Gilchrist, J. M. Whiting, and G. B. Ryan. Glomerular actions of ANG II during reduction of renal artery pressure: a morphometric analysis. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F1021–F1026, 1989.
 13. Andreucci, V. E. About the glomerulus. Kidney Int. 2: 349–351, 1972.
 14. Andreucci, V. E., J. Herrera‐Acosta, F. C. Rector, Jr., and D. W. Seldin. Effective glomerular filtration pressure and single nephron filtration rate during hydropenia, elevated ureteral pressure, and acute volume expansion with isotonic saline. J. Clin. Invest. 50: 2230–2234, 1971.
 15. Andrews, P. M. and A. K. Coffey. Cytoplasmic contractile elements in glomerular cells. Federation Proc. 42: 3046–3052, 1983.
 16. Aoi, W., M. B. Wade, D. R. Rosner, and M. H. Weinberger. Renin release by rat kidney slices in vitro: effects of cations and catecholamines. Am. J. Physiol. 227: 630–634, 1974.
 17. Appel, R. G., J. Wang, M. S. Simonson, and M. J. Dunn. A mechanism by which atrial natriuretic factor mediates its glomerular action. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F1036–F1042, 1986.
 18. Ardaillou, N., J. Hagege, M‐P. Nivez, R. Ardaillou, and D. Schlondorff. Vasoconstrictor‐evoked prostaglandin synthesis in cultured human mesangial cells. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F240–F246, 1985.
 19. Ardaillou, N., M.‐P. Nivez, and R. Ardaillou. Stimulation of guanylate cyclase by atrial natriuretic factor in isolated human glomeruli. FEBS Lett. 189: 8–12, 1985.
 20. Ardaillou, N., M.‐P. Nivez, M. Schambelan, and R. Ardaillou. Response of adenylate cyclase to parathyroid hormone and prostaglandin by human isolated glomeruli. J. Clin. Endocrinol. Metab. 57: 1207–1215, 1983.
 21. Ardaillou, N., M.‐P. Nivez, G. Striker, and R. Ardaillou. Prostaglandin synthesis by human glomerular cells in culture. Prostaglandins 26: 773–784, 1983.
 22. Ardaillou, R., J. Sraer, D. Chansel, N. Ardaillou, and J. D. Sraer. The effects of angiotensin II on isolated glomeruli and cultured glomerular cells. Kidney Int. 31 (Suppl. 20): S74–S80, 1987.
 23. Arend, L. J., A Haramati, C. I. Thompson, and W. S. Spielman. Adenosine‐induced decrease in renin release: dissociation from hemodynamic effects. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F447–F452, 1984.
 24. Arendshorst, W. J., and W. H. Bierwaltes. Renal and nephron hemodynamics in spontaneously hypertensive rats. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F246–F251, 1979.
 25. Arendshorst, W. J., W. F. Finn, and C. W. Gottschalk. Autoregulation of blood flow in the rat kidney. Am. J. Physiol. 228: 127–133, 1975.
 26. Arendshorst, W. J., W. F. Finn, and C. W. Gottschalk. Pathogenesis of acute renal failure following temporary renal ischemia in the rat. Circ. Res. 37: 558–568, 1975.
 27. Arendshorst, W. J., and C. W. Gottschalk. Glomerular ultrafiltration dynamics: euvolemic and plasma volume‐expanded rats. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F171–F186, 1980.
 28. Arendshorst, W. J., and C. W. Gottschalk. Glomerular ultrafiltration dynamics: historical perspective. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F163–F174, 1985.
 29. Arnqvist, H. J., B. J. Ballermann, and G. L. King. Receptors and effects of insulin and IgF‐1 in rat glomerular messangial cells. Am. J. Physiol. 254 (Cell Physiol. 23): C411–C416, 1988.
 30. Aron, D. C., J. L. Rosenzweig, and H. E. Abboud. Synthesis and binding of insulin‐like growth factor I by human glomerular mesangial cells. J. Clin. Endocrinol. Metab. 68: 585–591, 1989.
 31. Arturson, G., T. Groth, and G. Grotte. Human glomerular membrane porosity and filtration pressure: dextran clearance data analyzed by theoretical models. Clin. Sci. 40: 137–158, 1971.
 32. Assel, E., K.‐H. Neumann, H.‐J. Schurek, C. Sonnenburg, and H. Stolte. Glomerular albumin leakage and morphology after neutralization of polyanions. I. Albumin clearance and sieving coefficient in the isolated perfused rat kidney. Renal Physiol. 7: 357–364, 1984.
 33. Atlas, S. A., J. H. Laragh, J. E. Sealey, and T. E. Hesson. An inactive, prorenin‐like substance in human kidney and plasma. Clin. Sci. 59: 29S–33S, 1980.
 34. Atlas, S. A., J. E. Sealey, J. H. Laragh, and C. Moon. Plasma renin and prorenin in essential hypertension during sodium depletion, beta‐blockade, and reduced arterial pressure. Lancet 2: 785–789, 1977.
 35. Aukland, K. Effect of adrenaline, noradrenaline, angiotensin and renal nerve stimulation on intrarenal distribution of blood flow in dogs. Acta. Physiol. Scand. 72: 498–509, 1968.
 36. Aukland, K., K. H. Tonder, and G. Naess. Capillary pressure in deep and superficial glomeruli of the rat kidney. Acta Physiol. Scand. 101: 418–427, 1977.
 37. Ausiello, D. A., J. I. Kreisberg, C. Roy, and M. J. Karnovsky. Contraction of cultured rat glomerular cells of apparent mesangial origin after stimulation with angiotensin II and arginine vasopressin. J. Clin. Invest. 65: 754–760, 1980.
 38. Avasthi, P. S., and A. P. Evan. Glomerular permeability in aminonucleoside‐induced nephrosis in rats: a proposed role of endothelial cells. J. Lab. Clin. Med. 93: 266–276, 1979.
 39. Azar, S., M. A. Johnson, B. Hertel, and L. Tobian. Single nephron pressures, flows, and resistances in hypertensive kidneys with nephrosclerosis. Kidney Int. 12: 28–40, 1977.
 40. Azar, S., M. A. Johnson, J. Scheinman, L. Bruno, and L. Tobian. Regulation of glomerular capillary pressure and filtration rate in young Kyoto hypertensive rats. Clin. Sci. 56: 203–209, 1979.
 41. Badr, K. F., C. Baylis, J. M. Pfeffer, M. A. Pfeffer, R. J. Soberman, R. A. Lewis, K. F. Austin, E. J. Corey, and B. M. Brenner. Renal and systemic hemodynamic responses to intravenous infusion of leukotriene C4 in the rat. Circ. Res. 54: 492–499, 1984.
 42. Badr, K. F., B. M. Brenner, and I. Ichikawa. Effects of leukotriene D4 on glomerular dynamics in the tat. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F239–F243, 1987.
 43. Badr, K. F., D. K. DeBoer, K. Takahashi, R. C. Harris, A. Fogo, and H. R. Jacobson. Glomerular responses to platelet‐activating factor in the rat: role of thromboxane A2. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F35–F43, 1989.
 44. Badr, K. F., V. E. Kelly, H. A. Rennke, and B. M. Brenner. Roles of thromboxane A2 and leukotrienes in endotoxin‐induced acute renal failure. Kidney Int. 30: 474–480, 1986.
 45. Baer, P. G., and L. M. Cagen. Platelet activating factor vasoconstriction of dog kidney: inhibition by alprazolam. Hypertension (Dallas) 9: 253–260, 1987.
 46. Baer, P. G., and J. C. McGiff. Comparison of effects of prostaglandin E2 and I2 on rat renal vascular resistance. Eur. J. Pharmacol. 54: 359–363, 1979.
 47. Baer, P. G., and L. G. Navar. Renal vasodilation and uncoupling of blood flow and filtration rate autoregulation. Kidney Int. 4: 12–21, 1973.
 48. Baer, P. G., L. G. Navar, and A. C. Guyton. Renal autoregulation, filtration rate, and electrolyte excretion during vasodilation. Am. J. Physiol. 219: 619–625, 1970.
 49. Bailie, M. D., F. C. Rector, Jr., and D. W. Seldin. Angiotensin II in arterial and venous plasma and renal lymph in the dog. J. Clin. Invest. 50: 119–126, 1971.
 50. Baldamus, C. A., R. Galaske, G. M. Eisenbach, H. P. Krause, and H. Stolte. Glomerular protein filtration in normal and nephritic rats. Contrib. Nephrol. 1: 37–49, 1975.
 51. Balla, T., A. J. Baukal, G. Guillemette, and K. J. Catt. Multiple pathways of inositol polyphosphate metabolism in angiotensin‐stimulated adrenal glomerulosa cells. J. Biol. Chem. 263: 4083–4091, 1988.
 52. Ballermann, B. J., K. D. Bloch, J. G. Seidman, and B. M. Brenner. Atrial natriuretic peptide transcription, secretion and glomerular receptor activity during mineralocorticoid escape in the rat. J. Clin. Invest. 78: 840–843, 1986.
 53. Ballermann, B. J., R. L. Hoover, M. J. Karnovsky, and B. M. Brenner. Physiologic regulation of atrial natriuretic peptide receptors in rat renal glomeruli. J. Clin. Invest. 76: 2049–2056, 1985.
 54. Ballermann, B. J., D. J. Levenson, and B. M. Brenner. Renin, angiotensin, prostaglandins, and leukotrienes. In: The Kidney, edited by B. M. Brenner and F. Rector, Jr. Philadelphia: W. B. Saunders, 1986, p. 288.
 55. Ballermann, B. J., R. A. Lewis, E. J. Corey, K. F. Austen, and B. M. Brenner. Identification and characterization of leukotriene C4 receptors in isolated tat renal glomeruli. Circ. Res. 56: 324–330, 1985.
 56. Ballermann, B. J., K. L. Skorecki, and B. M. Brenner. Reduced glomerular angiotensin II receptor density in early untreated diabetes mellitus in the rat. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F110–F116, 1984.
 57. Ballou, L. R., L. M. DeWitt, and W. Y. Cheung. Substrate‐specific forms of human platelet phospholipase A2. J. Biol. Chem. 261: 3107–3111, 1986.
 58. Banks, R. O. Effects of endothelin on renal function in dogs and rats. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F775–F780, 1990.
 59. Banks, R. O., J. D. Fondacaro, M. M. Schwaiger, and E. D. Jacobson. Renal histamine H1 and H2 receptors: characterization and functional significance. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F570–F575, 1978.
 60. Barajas, L. The innervation of the juxtaglomerular apparatus. An electron microscopic study of the innervation of the glomerular arterioles. Lab. Invest. 13: 916–929, 1964.
 61. Barajas, L. The ultrastructure of the juxtaglomerular apparatus as disclosed by three‐dimensional reconstructing from serial sections: the anatomical relationship between the tubular and vascular components. J. Ultrastruct. Res. 33: 16–147, 1970.
 62. Barajas, L., and J. Müller. The innervation of the juxtaglomerular apparatus and surrounding tubules: a quanitative analysis by serial section electron microscopy. J. Ultrastruct. Res. 43: 107–132, 1973.
 63. Barajas, L., and K. Powers. Monoaminergic innervation of the rat kidney: quantitative study. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F503–F511, 1990.
 64. Barajas, L., and P. Wang. Demonstration of acetycholinesterase in the adrenergic nerves of the renal glomerular arteriole. J. Ultrastruct. Res. 53: 244–253, 1975.
 65. Barnett, R., P. Goldwasser, L. A. Scharschmidt, and D. Schlondorff. Effects of leukotrienes on isolated rat glomeruli and cultured mesangial cells. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F838–F844, 1986.
 66. Barnett, R., P. C. Singhal, L. A. Scharschmidt, and D. Schlondorff. Dopamine attenuates the contractile response to angiotensin II in isolated rat glomeruli and cultured mesangial cells. Circ. Res. 59: 529–533, 1986.
 67. Baud, L., M.‐P. Nivez, D. Chansel, and R. Ardaillou. Stimulation by oxygen radicals of prostaglandin production by rat renal glomeruli. Kidney Int. 20: 332–339, 1981.
 68. Baud, L., J. Sraer, J. Perez, M.‐P. Nivez, and R. Ardaillou. Leukotriene C4 binds to human glomerular epithelial cells and promotes their proliferation in vitro. J. Clin Invest. 76: 374–377, 1985.
 69. Baumbach, L., and O. Skott. Renin release from different parts of rat afferent arterioles in vitro. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F12–F16, 1986.
 70. Baylis, C. Effect of early pregnancy on glomerular filtration rate and plasma volume in the rat. Renal Physiol. 2: 333–339, 1979/80.
 71. Baylis, C. The mechanism of the increase in glomerular filtration rate in the twelve‐day pregnant rat. J. Physiol. (Lond.) 305: 405–414, 1980.
 72. Baylis, C., and B. M. Brenner. Mechanism of the glucocorticoid‐induced increase in glomerular filtration rate. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F166–F170, 1978.
 73. Baylis, C, and B. M. Brenner. Modulation by prostaglandin synthesis inhibitors of the action of exogenous angiotensin II on glomerular ultrafiltration in the rat. Circ. Res. 43: 889–898, 1978.
 74. Baylis, C., and B. M. Brenner. The physiologic determinants. of glomerular ultrafiltration. Rev. Physiol. Biochem. Pharmacol. 80: 1–46, 1978.
 75. Baylis, C., W. M. Deen, B. D. Myers, and B. M. Brenner. Effects of some vasodilator drugs on transcapillary fluid exchange in renal cortex. Am. J. Physiol. 230: 1148–1158, 1976.
 76. Baylis, C., and P. Harton. Endothelial derived relaxing factor (EDRF) controls normal renal function in the conscious rat. XIth International Congress of Nephrology, Tokyo. (Abstract), p. 296A, 1990.
 77. Baylis, C, I. Ichikawa, W. T. Willis, C. B. Wilson, and B. M. Brenner. Dynamics of glomerular ultrafiltration. IX. Effects of plasma protein concentration. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F58–F71, 1977.
 78. Baylis, C., and H. G. Rennke. Renal hemodynamics and glomerular morphology in repetitively pregnant aging rats. Kidney Int. 28: 140–145, 1985.
 79. Baylis, C., H. R. Rennke, and B. M. Brenner. Mechanisms of the defect in glomerular ultrafiltration associated with gentamicin administration. Kidney Int. 12: 344–354, 1977.
 80. Bean, C. P., The physics of porous membranes—neutral pores. In: Membranes, Volume 1: Macroscopic Systems and Models, edited by G. Eisenman. New York: Marcel Dekker, 1972, p. 1–54.
 81. Beasley, D., and R. L. Malvin. Atrial extracts increase glomerular filtration rate in vivo. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F24–F30, 1985.
 82. Beaufils, M., J. Sraer, C. Lepreux, and R. Ardaillou. Angiotensin II binding to renal glomeruli from sodium‐loaded and sodium‐depleted rats. Am. J. Physiol. 230: 1187–1193, 1976.
 83. Becker, C. G. Demonstration of actomyosin in mesangial cells of the renal glomerulus. Am. J. Physiol. 66: 97–110, 1972.
 84. Bell, C., W. J. Lang, and F. Laska. Dopamine‐containing vasomotor nerves in the dog kidney. Neurochemistry 31: 77–83, 1978.
 85. Bell, P. D. Cyclic AMP‐calcium interaction in the transmission of tubuloglomerular feedback signals. Kidney Int. 28: 728–732, 1985.
 86. Bell, P.D., M. Franco, and L. G. Navar. Calcium as mediator of tubuloglomerular feedback. Annu. Rev. Physiol. 49: 275–293, 1987.
 87. Bell, P. D., A. Krause, and M. Franco. Macula densa cystosolic calcium concentration during changes in luminal fluid osmolality, abstracted. Kidney Int. 33: 150, 1988.
 88. Bell, P. D., C. B. McLean, and L. G. Navar. Dissociation of tubuloglomerular feedback responses from distal tubular chloride concentration in the rat. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F111–F119, 1981.
 89. Bell, P. D., and L. G. Navar. Macula densa feedback control of glomerular filtration: role of cytostolic calcium. Min. Electrolyte Metab. 8: 61–77, 1982.
 90. Bell, P. D., and L. G. Navar. Cytosolic calcium in the mediation of macula densa tubuloglomerular feedback responses. Science 215: 670–673, 1982.
 91. Bell, P. D., L. G. Navar, D. W. Ploth, and C. B. McLean. Tubuloglomerular feedback responses during perfusion with nonelectrolyte solutions in the rat. Kidney Int. 18: 460–471, 1980.
 92. Bell, P. D., and M. Reddington. Intracellular calcium in the transmission of tubuloglomerular feedback signals. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F295–F302, 1983.
 93. Bell, P. D., C. Thomas, R. H. Williams, and L. G. Navar. Filtration rate and stop‐flow pressure feedback responses to nephron perfusion in the dog. Am. J. Physiol. 234: (Renal Fluid Electrolyte Physiol. 3): F154–F165, 1978.
 94. Bell, P. D., M. Reddington, D. Ploth, and L. G. Navar. Tubuloglomerular feedback‐mediated decreases in glomerular pressure in Munich‐Wistar rats. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F877–F880, 1984.
 95. Bell, R. L., D. A. Kennerly, N. Stanford, and P. W. Majerus. Diglycenide lipase: a pathway for arachidonate release from human platelets. Proc. Natl. Acad. Sci. USA 76: 3238–3241, 1979.
 96. Belluci, A., and B. M. Wilkes. Mechanism of sodium regulation of glomerular angiotensin receptors in the rat. J. Clin. Invest. 74: 1593–1600, 1984.
 97. Bennett, C. M., R. J. Glassock, R. L. S. Chang, W. M. Deen, C. R. Robertson, and B. M. Brenner. Permselectivity of the glomerular capillary wall. Studies of experimental glomerulonephritis in the rat using dextran sulfate. J. Clin. Invest. 57: 1287–1294, 1976.
 98. Bergström, J., M. Ahlberg, and A. Alvestrand. Influence of protein intake on renal hemodynamics and plasma hormone concentrations in normal subjects. Acta. Med. Scand. 217: 189–196, 1985.
 99. Berl, T., J. A. Harbottle, and R. W. Schrier. Effect of alpha‐ and beta‐adrenergic stimulation on renal water excretion in man. Kidney Int. 6: 247–253, 1974.
 100. Berridge, M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem. J. 220: 345–360, 1984.
 101. Berridge, M. J., and R. F. Irvine. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321, 1984.
 102. Bertolatus, J. A., M. Abuyousef, and L. G. Hunsicker. Glomerular sieving of high molecular weight proteins in proteinuric rats. Kidney Int. 31: 1257–1266, 1987.
 103. Bertolatus, J. A., and L. G. Hunsicker. Glomerular sieving of anionic and neutral bovine albumins in proteinuric rats. Kidney Int. 28: 467–476, 1985.
 104. Bianchi, C., J. Gutkowska, G. Thibault, R. Garcia, J. Genest, and M. Contin. Distinct localization of atrial natriuretic factor and angiotensin II binding sites in the glomerulus. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F594–F602, 1986.
 105. Billah, M. M., E. G. Lapetina, and P. Cuatrecasas. Phospholipase A2 and phospholipase C activities of platelets. J. Biol. Chem. 255: 10227–10231, 1980.
 106. Billah, M. M., E. G. Lapetina, and P. Cuatrecasas. Phospholipase A2 activity specific for phosphatidic acid. J. Biol. Chem. 256: 5399–5403, 1981.
 107. Birnbaumer, L., J. Codina, R. Mattera, A. Yatanz, N. Scherer, M. J. Toro, and A. M. Brown. Signal transduction by G proteins. Kidney Int. 32 (Suppl. 23): S14–S37, 1987.
 108. Blaine, E. H., J. O. Davis, and R. L. Prewitt. Evidence for a renal vascular receptor in control of renin secretion. Am. J. Physiol. 220: 1593–1597, 1971.
 109. Blaine, E. H., J. O. Davis, and R. T. Witty. Renin release after hemorrhage and after suprarenal aortic constriction in dogs without sodium delivery to the macula densa. Circ. Res. 27: 1081–1089, 1970.
 110. Blantz, R. C. Effect of mannitol on glomerular ultrafiltration in the hydropenic rat. J. Clin. Invest. 54 (5): 1135–1143, 1974.
 111. Blantz, R. C. The mechanism of acute renal failure after uranylnitrate. J. Clin. Invest. 55: 621–635, 1975.
 112. Blantz, R. C., A. H. Israelit, F. C. Rector, Jr., and D. W. Seldin. Relation of distal tubular NaCl delivery and glomerular hydrostatic pressure. Kidney Int. 2: 22–32, 1973.
 113. Blantz, R. C., and K. S. Konnen. Relation of distal tubular delivery and reabsorptive rate to nephron filtration. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F315–F324, 1977.
 114. Blantz, R. C., K. S. Konnen, and B. J. Tucker. Angiotensin II effects upon the glomerular microcirculation and ultrafiltration coefficient of the rat. J. Clin. Invest. 57: 419–434, 1976.
 115. Blantz, R. C., F. C. Rector, Jr., and D. W. Seldin. Effect of hyperoncotic albumin expansion upon glomerular ultrafiltration in the rat. Kidney Int. 6: 209–221, 1974.
 116. Blantz, R. C, and B. J. Tucker. Measurements of glomerular dynamics. In: Methods in Pharmacology, Renal Pharmacology, edited by M. Martinez Maldonado. New York: Plenum, 1978, vol. IV, p. 141–163.
 117. Blantz, R. C, B. J. Tucker, L. C. Gushwa, O. W. Peterson, and C. B. Wilson. Glomerular immune injury in the rat: the influence of Angiotensin II and α‐adrenergic inhibitors. Kidney Int. 20: 452–461, 1981.
 118. Blantz, R. C, B. J. Tucker, and C. B. Wilson. The acute effects of antiglomerular basement membrane antibody upon glomerular filtration in the rat. J. Clin. Invest. 61: 910–921, 1978.
 119. Bliss, D. J., and D. B. Brewer. Increased albumin and normal dextran clearances in protein‐overload proteinuria in the rat. Clin. Sci. 69: 321–326, 1986.
 120. Bohrer, M. P., C. Baylis, H. D. Humes, R. J. Glassock, C. R. Robertson, and B. M. Brenner. Permselectivity of the glomerular capillary wall: facilitated filtration of circulating polycations. J. Clin. Invest. 61: 72–78, 1978.
 121. Bohrer, M. P., C. Baylis, C. R. Robertson, and B. M. Brenner. Mechanisms of the puromycin‐induced defects in the transglomerular passage of water and macromolecules. J. Clin. Invest. 60: 152–161, 1977.
 122. Bohrer, M. P., W. M. Deen, C. R. Robertson, and B. M. Brenner. Mechanism of angiotensin II‐induced proteinuria in the rat. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F13–F21, 1977.
 123. Bohrer, M. P., W. M. Deen, C. R. Robertson, J. L. Troy, and B. M. Brenner. Influence of molecular configuration on the passage of macromolecules across the glomerular capillary wall. J. Gen. Physiol. 74: 583–593, 1979.
 124. Bohrer, M. P., G. D. Patterson, and P. J. Carroll. Hindered diffusion of dextran and Ficoll in microporous membranes. Macromolecules 17: 1170–1173, 1984.
 125. Boknam, L., A‐C. Ericson, B. Aberg, and H. R. Ulfendahl. Flow resistance of the interlobular artery in the rat kidney. Acta Physiol. Scand. 111: 159–163, 1981.
 126. Bonventre, J. V., K. L. Skorecki, J. I. Kreisberg and J. Y. Cheung. Vasopressin increases cytosolic free calcium concentration in glomerular mesangial cells. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F94–F102, 1986.
 127. Bonventre, J. V., P. C. Weber, and J. H. Gronich. PAF and PGDF increase cytosolic [Ca2+] and phospholipase activity in mesangial cells. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F87–F89. 1988.
 128. Bordley, J., III, J. P. Hendrix, and A. N. Richards. Quantitative studies of the composition of glomerular urine. J. Biol Chem. 101: 255–267, 1933.
 129. Bordley, J., and A. N. Richards. Quantitative studies of the composition of glomerular urine. J. Biol. Chem. 101: 193–221, 1933.
 130. Bosch, J. P., S. Lew, S. Glabman, and A. Lauer. Renal hemodynamic changes in humans: response to protein loading in normal and diseased kidneys. Am. J. Med. 81: 809–815, 1986.
 131. Bott, P. A. Quantitative studies of the composition of glomerular urine. J. Biol. Chem. 147: 653–661, 1943.
 132. Bowman, W. On the structure and use of the malpighian bodies of the kidney with observation on the circulation through that gland. Phil. Trans. R. Soc. Lond. [Biol.] 132: 57–80, 1842.
 133. Boyce, N. W., and S. R. Holdsworth. Glomerular permselectivity in the isolated perfused rat kidney. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F780–F784, 1985.
 134. Braun, J. J., D. L. Davies, A. F. Lever, R. A. Parker, and J. I. S. Robertson. The assay of renin in single glomeruli in the normal rabbit and the appearance of the juxtaglomerular apparatus. J. Physiol. (Lond.) 176: 418–428, 1965.
 135. Bray, J., and G. B. Robinson. Influence of charge on filtration across renal basement membrane films in vitro. Kidney Int. 25: 527–533, 1984.
 136. Brenner, B. M., K. H. Falchuk, R. I. Keimowitz, and R. W. Berliner. The relationship between peritubular capillary protein concentration and fluid reabsorption by the renal proximal tubule. J. Clin. Invest. 48: 1519–1531, 1969.
 137. Brenner, B. M., N. Schor, and I. Ichikawa. Role of angiotensin II in the physiologic regulation of glomerular filtration. Am. J. Cardiol. 49: 1430–1433, 1982.
 138. Brenner, B. M., and J. L. Troy. Postglomerular vascular protein concentration: evidence for a causal role in governing fluid reabsorption and glomerulotubular balance by the renal proximal tubule. J. Clin. Invest. 50: 336–349, 1971.
 139. Brenner, B. M., J. L. Troy, and T. M. Daugharty. The dynamics of glomerular ultrafiltration in the rat. J. Clin. Invest. 50: 1776–1780, 1971.
 140. Brenner, B. M., J. L. Troy, T. M. Daugharty, W. M. Deen, and C. R. Robertson. Dynamics of glomerular ultrafiltration in the rat. II. Plasma‐flow dependence of GFR. Am. J. Physiol. 223: 1184–1190, 1972.
 141. Brenner, B. M., I. F. Ueki, and T. M. Daugharty. On estimating colloid osmotic pressure in pre‐ and postglomerular plasma in the rat. Kidney. Int. 2: 51–53, 1972.
 142. Brenner, H., and L. J. Gaydos. The constrained Brownian movement of spherical particles in cylindrical pores of comparable radius: models of the diffusive and convective transport of solute molecules in membranes and porous media. J. Colloid Interface Sci. 58: 312–356, 1977.
 143. Bridges, C. R., H. G. Rennke, W. M. Deen, J. L. Troy, and B. M. Brenner. Reversible hexamethrine‐induced alterations in glomerular structure and permeability. J. Am. Soc. Nephrol. 1: 1095–1108, 1991.
 144. Bridges, C. R., B. D. Myers, B. M. Brenner, and W. M. Deen. Glomerular charge alterations in human minimal change nephropathy. Kidney Int. 22: 677–684, 1982.
 145. Briggs, J. P., and J. Schnermann. Macula densa control of renin secretion and glomerular vascular tone: evidence for common cellular mechanisms. Renal Physiol. 9: 193–203, 1986.
 146. Brink, H. M., W. M. Moons, and J. F. G. Slegers. Glomerular filtration in the isolated perfused kidney. I. Sieving of macromolecules. Pflugers Arch. 397: 42–47, 1983.
 147. Brock, T. A., L. J. Lewis, and J. B. Smith. Angiotensin increases Na+ entry and Na+/K+ pump activity in cultures of smooth muscle from rat aorta. Proc. Natl. Acad. Sci. USA 79: 1438–1442, 1982.
 148. Brouhard, B. H., L. F. LaGrone, G. E. Richards, and L. B. Travia. Somatostatin limits rise in glomerular filtration rate after a protein meal. J. Pediatr. 110: 729–734, 1987.
 149. Brown, E., and E. M. Landis. Effect of local cooling on fluid movements, effective osmotic pressure and capillary permeability in the frog's mesentery. Am. J. Physiol. 149: 302–315, 1947.
 150. Bruneval, P., N. Hinglais, F. Alhenc‐Gelas, V. Tricottet, P. Corval, J. Menard, J. P. Camilleri, and J. Bariety. Angiotensin I converting enzyme in human intestine and kidney. Histochemistry 85: 73–80, 1986.
 151. Buga, G. M., A. Chaudhuri, and L. J. Ignarro. Formation and properties of endothelium‐derived relaxing factor (EDRF) from perfused pulmonary artery and vein are indistinguishable from one another or from nitric oxide (NO). FASEB J. 2: A314, 1988.
 152. Bührle, C., E. Hackenthal, U. Helmchen, K. Lackner, R. Nobiling, M. Steinhausen, and R. Taugner. The hydronephrotic kidney of the mouse as a tool for intravital microscopy and in vitro electrophysiological studies of renin‐containing cells. Lab. Invest. 54: 462–472, 1986.
 153. Bührle, C. P., R. Nobiling, and R. Taugner. Intracellular recordings from renin‐positive cells of the afferent glomerular arteriole. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 15): F272–F281, 1985.
 154. Bungay, P. M. and H. Brenner. The motion of a closely fitting sphere in a fluid‐filled tube. Int. J. Multiphase Flow 1: 25–56, 1973.
 155. Burghardt, W., H. Schweisfurth, and H. Dahlheim. Juxtaglomerular angiotensin II formation. Kidney Int. 22: (Suppl. 12): S49–S54, 1982.
 156. Burke, T. J., and K. L. Duchin. Glomerular filtration during furosemide diuresis in the dog. Kidney Int. 16: 672–680, 1979.
 157. Burnett, J. C., J. P. Granger, and T. J. Opgenorth. Effects of synthetic atrial natriuretic factor on renal function in the rat. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F863–F866, 1984.
 158. Cairns, H. S., M. E. Rogerson, J. Westwick, and G. H. Neild. Endothelium‐dependent vasodilators act preferentially to maintain the glomerular filtration rate. XIth International Congress of Nephrology, Tokyo, (Abstract), p. 277A, July, 1990.
 159. Caldicott, W. J. H., K. J. Taub, S. S. Margulies, and N. K. Hollenberg. Angiotensin receptors in glomeruli differ from those in renal arterioles. Kidney Int. 19: 687–693, 1981.
 160. Camargo, M. J. F., H. D. Kleinert, S. A. Atlas, J. E. Sealey, J. H. Laragh, and T. Maack. Ca‐dependent hemodynamic and natriuretic effects of atrial extract in isolated rat kidney. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F447–F456, 1984.
 161. Campbell, W. B., and E. K. Jackson. Saralasin‐induced renin release: its blockade by prostaglandin synthesis inhibitors in the conscious rat. Hypertension 1: 637–642, 1979.
 162. Capponi, A. M., and M. B. Valloton. Renin release by rat kidney slices incubated in vitro: role of sodium and of α‐ and β‐adrenergic receptors, and effect of vincristin. Circ. Res. 39: 200–207, 1976.
 163. Carey, R. M., E. D. Vaughn, Jr., M. J. Peach, and C. R. Ayers. Activity of (des‐aspartyl)‐angiotensin II and angiotensin II in man: differences in blood pressure and adrenocortical responses during normal and low sodium intake. J. Clin. Invest. 61: 20–31, 1978.
 164. Carmines, P. K., E. W. Inscho, and R. C. Gensure. Arterial pressure effects on preglomerular microvasculature of juxtamedullary nephrons. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F94–F102, 1990.
 165. Carmines, P. K., T. K. Morrison, and L. G. Navar. Angiotensin II effects on microvascular diameters of in vitro blood‐perfused juxtamedullary nephrons. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F610–F618, 1986.
 166. Carrie, B. J., M. Hilberman, J. S. Schroeder, and B. D. Myers. Albuminuria and the permselective properties of the glomerulus in cardiac failure. Kidney Int. 17: 507–514, 1980.
 167. Carrie, B. J., and B. D. Myers. Proteinuria and functional characteristics of the glomerular barrier in diabetic nephropathy. Kidney Int. 17: 669–676, 1980.
 168. Carrie, B. J., W. R. Salyer, and B. D. Myers. Minimal change nephropathy: an electrochemical disorder of the glomerular membrane. Am. J. Med. 70: 262–268, 1981.
 169. Casassa, E. F. Equilibrium distribution of flexible polymer chains between a macroscopic solution phase and small voids. J. Polymer Sci., Part B, 5: 773–778, 1967.
 170. Casellas, D., P. K. Carmines, and L. G Navar. Microvascular reactivity of in vitro blood perfused juxtamedullary nephrons from rats. Kidney Int. 28: 752–759, 1985.
 171. Casellas, D., and L. G. Navar. In vitro perfusion of juxtamedullary nephrons in rats. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F349–F358, 1984.
 172. Castellino, P., R. Levin, J. Shohat, and R. A. DeFronzo. Effect of specific amino acid groups on renal hemodynamics in humans. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F992–F997, 1990.
 173. Celio, M. R. Angiotensin II immunoreactivity coexisting with renin in the human juxtaglomerular epithelial cells. Kidney Int. 22: S30–S32, 1982.
 174. Chagnac, A., B. A. Kiberd, M. C. Farinas, S. Strober, R. K. Sibley, R. Hoppe and B. D. Myers. Outcome of the acute glomerular injury in proliferative lupus nephritis. J. Clin. Invest. 84: 922–930, 1989.
 175. Chan, A. Y. M., M‐L. L. Cheng, L. C. Keil, and B. D. Myers. Functional response of healthy and diseased glomeruli to a large, protein‐rich meal. J. Clin. Invest. 81: 245–254, 1988.
 176. Celio, M. R., and T. Inagami. Angiotensin II immunoreactivity coexists with renin in the juxtaglomerular granular cells of the kidney. Proc. Natl. Acad. Sci. USA 78: 3897–3900, 1981.
 177. Chang, R. L. S. A model to study the dynamics of glomerular ultrafiltration and glomerular capillary permselectivity characteristics. Microvasc. Res. 16: 141–150, 1978.
 178. Chang, R. L. S. A model of capillary solute and fluid exchange. Chem. Eng. Commun. 4: 189–206, 1980.
 179. Chang, R. L. S., W. M. Deen, C. R. Robertson, C. M. Bennett, R. J. Glassock, and B. M. Brenner. Permselectivity of the glomerular capillary wall: studies of experimental glomerulonephritis in the rat. J. Clin. Invest. 57: 1272–1286, 1976.
 180. Chang, R. L. S., W. M. Deen, C. R. Robertson, and B. M. Brenner. Permselectivity of the glomerular capillary wall. III. Restricted transport of polyanions. Kidney Int. 8: 212–218, 1975c.
 181. Chang, R. L. S., C. R. Robertson, W. M. Deen, and B. M. Brenner. Permselectivity of the glomerular capillary wall to macromolecules. I. Theoretical considerations. Biophys. J. 15: 861–886, 1975a.
 182. Chang, R. L. S., I. F. Ueki, J. L. Troy, W. M. Deen, C. R. Robertson, and B. M. Brenner. Permselectivity of the glomerular capillary wall to macromolecules. II. Experimental studies in rats using neutral dextran. Biophys. J. 15: 887–906, 1975.
 183. Chansel, D., N. Ardaillou, M.‐P. Nivez, and R. Ardaillou. Angiotensin II receptors in human isolated renal glomeruli. J. Clin. Endocrinol. Metab. 55: 961–966, 1982.
 184. Charest, R., V. Prpic, J. H. Exton, and P. F. Blackmore. Stimulation of inositol trisphosphate formation in hepatocytes by vasopressin, adrenaline, and angiotensin II and its relationship to changes in cytosolic free Ca2+. Biochem J. 227: 79–90, 1985.
 185. Chaudhuri, G., G. M. Buga, M. E. Gold, and L. J. Ignarro. Properties of endothelium‐derived relaxing factor (EDRF) released from human umbilical vein (HUV) are indistinguishable from those of nitric oxide (NO). FASEB J. 2: A314, 1988.
 186. Churchill, P. C. Second messengers in renin secretion. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F175–F184, 1985.
 187. Churchill, P. C., and A. Bidani. Renal effects of selective adenosine receptor agonists in anesthetized rats. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F299–F303, 1987.
 188. Churchill, P. C., M. C. Churchill, and F. D. McDonald. Renin sectetion and distal tubule Na+ in rats. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F611–F616, 1978.
 189. Cockroft, S., and B. D. Gomperts. Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase. Nature 314: 534–536, 1985.
 190. Cogan, M. G., D. A. Maddox, M. S. Lucci, and F. C. Rector, Jr.. Control of proximal bicarbonate reabsorption in normal and acidotic rats. J. Clin. Invest. 64: 1168–1180, 1979.
 191. Conger, J. D., S. A. Falk, and S. J. Guggenheim. Glomerular dynamics and morphologic changes in the generalized Schwartzman reaction in postpartum rats. J. Clin. Invest. 67: 1334–1346, 1981.
 192. Conti, F. G., S. J. Elliot, L. J. Striker, and G. E. Striker. Binding of insulin‐like growth factor by glomerular endothelial and epithelial cells: further evidence for IgF‐1 action in the renal glomerulus. Biochem. Biophys. Res. Commun. 163: 952–958, 1989.
 193. Conti, F. G., L. J. Striker, M. A. Lesniak, K. MacKay, J. Roth, and G. E. Striker. Studies on binding and mitogenic effect of insulin and insulin‐like growth factor I in glomerular mesangial cells. Endocrinology 122: 2788–2795, 1988.
 194. Cook, W., D. B. Gordon, and W. S. Peart. The location of renin in the rabbit kidney. J. Physiol. (Lond.) 135: 46P–47P, 1957.
 195. Cook, W. F. The detection of renin in juxtaglomerular cells. J. Physiol. (Lond.) 194: 73P–74P, 1968.
 196. Cook, W. F., Cellular localization of renin. In: Kidney Hormones, edited by J. W. Fisher. London: Academic, 1971, p. 117–128.
 197. Cook, W. F., and G. W. Pickering. The localization of renin in the kidney. Biochem. Pharmacol. 9: 165–171, 1962.
 198. Corvol, P., J. P. Panthier, S. Foote, and F. Rongeon. Structure of the mouse submaxillary gland renin precursor and a model for renin processing. Hypertension 5 (Suppl. I): I‐3–I‐9, 1983.
 199. Cotter, T. G., and G. B. Robinson. Effects of concentration‐polarization on the filtration of proteins through filters constructed from isolated renal basement membrane. Clin. Sci. Mol. Med. 55: 113–119, 1978.
 200. Currie, M. G., D. M. Geller, B. R. Cole, N. R. Siegel, K. F. Fok, S. P. Adams, S. R. Eubanks, G. R. Galluppi, and P. Needleman. Purification and sequence analysis of bioactive atrial peptides (atriopeptins). Science 222: 67–69, 1984.
 201. Curry, F. E., and C. C. Michel. A fiber matrix model of capillary permeability. Microvasc. Res. 20: 96–99, 1980.
 202. Dahlen, S.‐E., J. Björk, P. Hedqvist, K.‐E. Arfors, S. Hammarström, J.‐Å. Lindgren, and B. Sammuelson. Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary vesicles: in vivo effects with relevance to the acute inflammatory response. Proc. Natl. Acad. Sci. USA 78: 3887–3891, 1981.
 203. Dal Canton, A., G. Conte, C. Esposito, G. Fuiano, R. Guasco, D. Russo, M. Sabbatini, F. Uccello, and V. E. Andreucci. Effects of pregnancy on glomerular dynamics: micropuncture study in the rat. Kidney Int. 22: 608–612, 1982.
 204. Dal Canton, A., R. Starziale, A. Corradi, V. E. Andreucci, and L. Migone. Effects of acute ureteral obstruction on glomerular hemodynamics in rat kidney. Kidney Int. 12: 403–411, 1977.
 205. Data, J. L., J. G. Gerber, G. Crump, W. J. Frohlich, J. W. Hollifield, and A. S. Nies. The prostaglandin system: a role in canine baroreceptor control of renin release. Circ. Res. 42: 454–458, 1978.
 206. Daly, J. W. Adenosine receptors: targets for future drugs. J. Med. Chem. 25: 197–207, 1982.
 207. Daugharty, T. M., I. F. Ueki, P. F. Mercer, and B. M. Brenner. Dynamics of glomerular ultrafiltration in the rat. V. Response to ischemic injury. J. Clin. Invest. 53: 105–116, 1974.
 208. Daugharty, T. M., I. F. Ueki, D. P. Nicholas, and B. M. Brenner. Comparative renal effects of isoncotic and colloid‐free volume expansion in the rat. Am. J. Physiol. 222: 225–235, 1972.
 209. Daugharty, T. M., I. F. Ueki, D. P. Nicholas, and B. M. Brenner. Renal response to chronic intravenous salt loading in the rat. J. Clin. Invest. 52: 21–31, 1973.
 210. Davidson, M. G., and W. M. Deen. Hydrodynamic theory for the hindered transport of flexible macromolecules in porous membranes. J. Membr. Sci. 35: 167–192, 1988.
 211. Davidson, M. G., and W. M. Deen. Hindered diffusion of water‐soluble macromolecules in membranes. Macromolecules 21: 3474–3481, 1988.
 212. Davidson, M. G., U. W. Suter, and W. M. Deen. Equilibrium partitioning of flexible macromolecules between bulk solution and cylindtical pores. Macromolecules 20: 1141–1146, 1987.
 213. Davis, J. O. What signals the kidney to release renin? Circ. Res. 28: 301–306, 1971.
 214. Davis, J. O., and D. S. Howell. Comparative effect of ACTH, cortisone, and DOCA on renal function, electrolyte excretion and water exchange in normal dogs. Endocrinology 52: 245–255, 1953.
 215. DeBermudez, L., and J. P. Hayslett. Effect of methylpred‐nisolone on renal function and the zonal distribution of blood flow in the rat. Circ. Res. 31: 44–52, 1972.
 216. DeBoer, D. K., K. Takahashi, H. R. Jacobson, and K. F. Badr. Gomerular microcirculatory responses to platelet activating factor (PAF) in the rat, abstracted. Kidney Int. 33: 260, 1988.
 217. DeBold, A. J., H. B. Borenstein, A. T. Veress, and H. Sonnenberg. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extracts in rats. Life Sci. 28: 89–94, 1981.
 218. Deen, W. M. Hindered transport of large molecules in liquid‐filled pores. AIChE J. 33: 1409–1425, 1987.
 219. Deen, W. M., M. P. Bohrer, and B. M. Brenner. Macromolecule transport across glomerular capillaries: application of pore theory. Kidney Int. 16: 353–365, 1979.
 220. Deen, W. M., M. P. Bohrer, and N. P. Epstein. Effects of molecular size and configuration on diffusion in microporous membranes. AIChE J. 27: 952–959, 1981.
 221. Deen, W. M., and C. R. Bridges. Addenda and correction. Molecular charge of horseradish peroxidase. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F750, 1982.
 222. Deen, W. M., C. R. Bridges, and B. M. Brenner. Biophysical basis of glomerular permselectivity. J. Membr. Biol. 71: 1–10, 1983.
 223. Deen, W. M., C. R. Bridges, B. M. Brenner, and B. D. Myers. Heteroporous model of glomerular size‐selectivity: application to normal and nephrotic humans. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F374–F389, 1985.
 224. Deen, W. M., D. A. Maddox, C. R. Robertson, and B. M. Brenner. Dynamics of glomerular ultrafiltration in the rat. VII. Response to reduced renal mass. Am. J. Physiol. 227: 556–562, 1974.
 225. Deen, W. M., C. R. Robertson, and B. M. Brenner. A model of glomerular ultrafiltration in the rat. Am. J. Physiol. 223: 1178–1183, 1972.
 226. Deen, W. M., C. R. Robertson, and B. M. Brenner. Transcapillary fluid exchange in the renal cortex. Circ. Res. 33: 1–8, 1973.
 227. Deen, W. M., C. R. Robertson, and B. M. Brenner. Concentration polarization in an ultrafiltering capillary. Biophys. J. 14: 412–431, 1974.
 228. Deen, W. M., C. R. Robertson, and B. M. Brenner. Glomerular ultrafiltration. Federation Proc. 33: 14–20, 1974.
 229. Deen, W. M., and B. Satvat. Determinants of the glomerular filtration of proteins. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F162–F170, 1981.
 230. Deen, W. M., B. Satvat, and J. M. Jamieson. Theoretical model for glomerular filtration of charged solutes. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F126–F139, 1980.
 231. Deen, W. M., J. L. Troy, C. R. Robertson, and B. M. Brenner. Dynamics of glomerular ultrafiltration in the rat. IV. Determination of the ultrafiltration coefficient. J. Clin. Invest. 52: 1500–1508, 1973.
 232. DeMey, J. G., and P. M. Vanhoutte. Heterogeneous behavior of the canine arterial and venous wall. Circ. Res. 51: 439–447, 1982.
 233. Derk, F. H. M., G. J. Wenting, A. J. Man In't Veld, R. P. Verhoeven, and M. A. D. H. Schalekamp. Control of enzymatically inactive renin in man under various pathological conditions: implications for the interpretation of renin measurements in peripheral and renal venous plasma. Clin. Sci. Mol. Med. 54: 520–528, 1978.
 234. DeRouffignac, C., J. P. Bonvalet, and J. Menard. Renin content in superfical and deep glomeruli of normal and salt‐loaded rats. Am. J. Physiol. 226: 150–154, 1974.
 235. Desaulles, E., C. Forler, J. Velly, and J. Schwartz. Effect of catecholamines on renin release in vitro. Biomedicine 23: 433–439, 1975.
 236. Deth, R. and C. Van Breemen. Relative contributions of Ca2+ reflux and cellular Ca2+ release during drug induced activation of the rabbit aorta. Pflugers Arch. 348: 13–22, 1974.
 237. DiBona, G. R., and L. L. Rios. Mechanism of exaggerated diuresis in spontaneously hypertensive rats. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F409–F416, 1978.
 238. Dilley, J. R., A. Corradi, and W. J. Arendshorst. Glomerular ultrafiltration dynamics during increased renal venous pressure. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F650–F658, 1983.
 239. Dilley, J. R., C. T. Stier, Jr., and W. J. Arendshorst. Abnormalities in glomerular function in rats developing spontaneous hypertension. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F12–F20, 1984.
 240. Dinerstein, R. J., J. Vannice, R. C. Henderson, L. J. Roth, L. I. Goldberg, and P. C. Hoffman. Histofluorescence techniques provide evidence for dopamine‐containing neuronal elements in canine kidney. Science 205: 497–499, 1979.
 241. Douglas, J. G. Corticosteroids decrease glomerular angiotensin receptors. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F453–F457, 1987.
 242. Douglas, J. G. Subpressor infusions of angiotensin II alter glomerular binding, prostaglandin E2, and cyclic AMP production. Hypertension 9 (Suppl. III): III‐49–III‐56, 1987.
 243. Dousa, T. P., L. D. Barnes, S.‐H. Ong, and A. L. Steiner. Immunohistochemical localization of 3′:5′‐cyclic AMP and 3′:5′‐cyclic GMP in rat renal cortex: effect of parathyroid hormone. Proc. Natl. Acad. Sci. USA 74: 3569–3573, 1977.
 244. DuBois, R., P. Decoodt, J. P. Gassee, A. Verniory, and P. P. Lambert. Determination of glomerular intracapillary and transcapillary pressure gradients from sieving data. I. A mathematical model. Pflugers Arch. 356: 299–316, 1975.
 245. DuBois, R., J. P. Gassee, P. Decoodt, E. Stoupel, A. Verniory, and P. P. Lambert. The role of membrane parameters and of filtration pressure in the determination of the shape of the polyvinylpyrrolidone sieving curve. Contrib. Nephrol. 1: 9–20, 1975b.
 246. DuBois, R., and E. Stoupel. Permeability of artifical membranes to a pluridisperse solution of 125I‐polyvinylpyrrolidone. Biophys. J. 16: 1427–1445, 1976.
 247. Dunn, B. R., I. Ichikawa, J. M. Pfeffer, J. L. Troy, and B. M. Brenner. Renal and systemic hemodynamic effects of synthetic atrial natriuretic peptide in the anesthetized rat. Circ. Res. 59: 237–246, 1986.
 248. Dussale, J. C., J. Sraer, L. Baud, J. Perez, and R. Ardaillou. PGE2 synthesis and intracellular Ca2+ are stimulated by bradykinin in cultured smooth muscle cells of renal cortical arterioles, abstracted. Kidney Int. 33: 261, 1988.
 249. Dworkin, L. D., and H. D. Feiner. Glomerular injury in uninephrectomized spontaneously hypertensive rats: a consequence of glomerular capillary hypertension. J. Clin. Invest. 77: 797–809, 1986.
 250. Dzau, V. J., and J. Kreisberg. Cultured glomerular mesangial cells contain renin: influence of calcium and isoproterenol. J. Cardiovasc. Pharmacol. 8 (Suppl 10): S6–S10, 1986.
 251. Edwards, R. M. Segmental effects of norepinephrine and angiotensin II on isolated renal microvessels. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F526–F534, 1983.
 252. Edwards, R. M. Response of isolated renal arterioles to acetylcholine, dopamine, and bradykinin. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F183–F189, 1985.
 253. Edwards, R. M. Effects of prostaglandins on vasoconstrictor action in isolated renal arterioles. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F779–F784, 1985.
 254. Edwards, R. M., and W. Trizna. Characterization of α‐adrenoceptors on isolated rabbit renal arterioles. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F178–F183, 1988.
 255. Edwards, R. M., W. Trizna, and L. B. Kinter. Renal microvascular effects of vasopressin and vasopressin antagonists. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F274–F278, 1989.
 256. Edwards, R. M., W. Trizna, and E. H. Ohlstein. Renal microvascular effects of endothelin. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F217–F221, 1990.
 257. Edwards, R. M., and E. F. Weidley. Lack of effect of atriopeptin II on rabbit glomerular arterioles in vitro. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F317–F321, 1987.
 258. Eisenbach, A. M., J. B. Van Liew, and J. W. Boylan. Effect of angiotensin on the filtration of protein in the rat kidney: a micropuncture study. Kidney Int. 8: 80–87, 1975.
 259. Eisenbach, G. M., M. Weise, and H. Stolte. Amino acid reabsorption in the rat nephron. Pflugers Arch. 357: 63–76, 1975.
 260. Espiner, E. A., A. R. Christlieb, E. A. Amsterdam, P. I. Jagger, S. J. Dobrinsky, D. P. Lauler, and R. P. Hickler. The pattern of plasma renin activity and aldosterone secretion in normal and hypertensive subjects before and after saline infusions. Am. J. Cardiol. 27: 585–594, 1971.
 261. Exton, J. H. Calcium signalling in cells—molecular mechanisms. Kidney Int. 32 (Suppl. 23): S68–S76, 1987.
 262. Faarup, P. Renin location in the different parts of the juxtaglomerular apparatus in the cat kidney. Acta Pathol. Microbiol. Scand. 71: 509–521, 1967.
 263. Faarup, P. Renin location in the different parts of the juxtaglomerular apparatus in the cat kidney. Acta. Pathol. Microbiol. Scand. 72: 109–117, 1968.
 264. Farman, M., A. Vandewalle, and J. P. Bonvalet. Autoradiographic study of aldosterone and dexamethasone binding in isolated glomeruli of rabbit kidney. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F235–F242, 1982.
 265. Feld, L. G., J. B. Van Liew, R. G. Galaske, and J. W. Boylan. Selectivity of renal injury and proteinuria in the spontaneously hypertensive rat. Kidney Int. 12: 332–343, 1977.
 266. Felder, R. A., M. Blecher, G. M. Eisner, and P. A. Jose. Cortical tubular and glomerular dopamine receptors in the rat kidney. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F557–F568, 1985.
 267. Filep, J., B. Rigter, and J. Frolich. Vascular and renal effects of leukotriene C4 in conscious rat. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F739–F744, 1985.
 268. Flory, P. J. Principles of Polymer Chemistry. Ithaca, New York: Cornell University Press, 1961, pp. 576–577.
 269. Foidart, J., J. Sraer, F. Delarue, P. Mahieu, and R. Ardaillou. Evidence for mesangial glomerular receptors for angiotensin II linked to mesangial contractability. Febs. Lett. 121: 333–339, 1980.
 270. Folkert, V. W., and D. Schlondorff. Prostaglandin synthesis in isolated glomeruli. Prostaglandins 17: 79–86, 1979.
 271. Folkert, V. W., M. Yunis, and D. Schlondorff. Prostaglandin synthesis linked to phosphatidyl‐inositol turnover in isolated rat glomeruli. Biochim. Biophys. Acta 794: 206–217, 1984.
 272. Forster, R. P., and J. P. Maes. Effect of experimental neurogenic hypertension on renal blood flow and glomerular filtration rate in intact denervated kidneys of unanesthetized rabbits with adrenal glands demedullated. Am. J. Physiol. 150: 534–540, 1947.
 273. Förstermann, U., U. Alheid, J. C. Frölich, and A. Mülsch. Mechanisms of action of lipoxygenase and cytochrome P‐450‐mono‐oxygenase inhibitors in blocking endothelium‐dependent vasodilation. Br. J. Pharmacol. 93: 569–578, 1988.
 274. Franco‐Saenz, R., S. Suzuki, S. Y. Tan, and P. J. Mulrow. Prostaglandin stimulation of renin release: independence of β‐adrenergic receptor activity and possible mechanism of action. Endocrinology 106: 1400–1404, 1980.
 275. Fray, J. C. S. Mechanism by which renin secretion from perfused rat kidneys is stimulated by isoprenaline and inhibited by high perfusion pressure. J. Physiol. (Lond.) 308: 1–13, 1980.
 276. Fray, J. C. S., and D. J. Lush. Stretch hypothesis for renin secretion: the role of calcium. J. Hypertens. 2 (Suppl. 1): 19–23), 1984.
 277. Freeman, R. H., J. O. Davis, and T. E. Lohmeier. Des‐1‐ASP‐angiotensin II. Possible intrarenal role in homeostasis in the dog. Circ. Res. 37: 30–34, 1975.
 278. Freeman, R. H., J. O. Davis, and R. Villarreal. Role of renal prostaglandins in the control of renin release. Circ. Res. 54: 1–9, 1984.
 279. Freeman, R. H., J. O. Davis, J. J. Vitale, and J. A. Johnson. Intrarenal role of angiotensin II. Circ. Res. 32: 692–698, 1973.
 280. Freeman, R. H., and H. H. Rostorfer. Hepatic changes in renin substrate biosynthesis and alkaline phosphatase activity in the rat. Am. J. Physiol. 223: 364–370, 1972.
 281. Fried, T. A., R. N. McCoy, R. W. Osgood, and J. H. Stein. Effect of albumin on glomerular ultrafiltration coefficient in isolated perfused dog glomerulus. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F901–F906, 1986.
 282. Fried, T. A., R. N. McCoy, R. W. Osgood, and J. H. Stein. Effect of atriopeptin II on determinants of glomerular filtration rate in the in vitro perfused dog glomerulus. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F1119–F1122, 1986.
 283. Friedlander, G., D. Chansel, A. Sraer, M. Bens, and R. Ardaillou. PGE2 binding sites and PG‐stimulated cyclic AMP accumulation in rat isolated glomeruli and glomerular cultured cells. Mol. Cell Endocrinol. 30: 201–214, 1983.
 284. Friedman, S., H. W. Jones, III, H. V. Golbetz, J. A. Lee, H. L. Little, and B. D. Meyers. Mechanisms of proteinuria in diabetic nephropathy. II. A study of the size‐selective glomerular filtration barrier. Diabetes 32 (Suppl. 2): 40–46, 1983.
 285. Friedman, S., S. Strober, E. H. Field, E. Silverman, and B. D. Myers. Glomerular capillary wall function in human lupus nephritis. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F580–F591, 1984.
 286. Frohnert, P. P., B. Höhmann, R. Zwiebel, and K. Baumann. Free flow micropuncture studies of glucose transport in the rat nephron. Pflugers Arch. 315: 66–85, 1970.
 287. Fuseya, K. Oranda‐Iwa, Osaka, Kobundo, 1805.
 288. Galaske, R. G., C. A. Baldamus, and H. Stolte. Plasma protein handling in the rat kidney: micropuncture experiments in the acute heterologous phase of anti‐GBM nephritis. Pflugers Arch. 375: 269–277, 1978.
 289. Galaske, R. G., J. B. Van Liew, and L. G. Feld. Filtration and reabsorption of endogenous low‐molecular weight protein in the rat kidney. Kidney Int. 16: 394–403, 1979.
 290. Ganong, W. F., J. P. Porter, T. D. Balenson, and S. J. Said. Peptides and neurotransmitters that affect renin secretion. J. Hypertens. 2 (Suppl. 1): 75–82, 1982.
 291. Gassee, J. P. Effects of acetylcholine on glomerular sieving of macromolecules. Pflugers Arch. 342: 239–254, 1973.
 292. Gassee, J. P., P. Decoodt, A. Verniory and P. P. Lambert. Autoregulation of effective glomerular filtration pressure. Am. J. Physiol. 226: 616–623, 1974.
 293. Gassee, J. P., R. Dubois, M. Staroukine, and P. P. Lambert. Determination of glomerular intracapillary and transcapillary pressure gradients from sieving data. 3. The effects of angiotensin II. Pflugers Arch. 367: 15–24, 1976.
 294. Gehrig, J. J., R. L. Jamison, C. Baylis, J. L. Troy, B. M. Brenner, and R. L. Jamison. Effect of intermittent feeding on renal hemodynamics in conscious rats. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F566–F572, 1986.
 295. Gekko, K., Solution properties of dextran and its ionic derivatives. In: Solution Properties of Polysaccharides, edited by D. Brant. Washington, DC: American Chemical Society, 1981, p. 415–438.
 296. Gertz, K. H., B. Brandis, G. Braun‐Schubert, and J. W. Boylan. The effect of saline infusion and hemorrhage on glomerular filtration pressure and single nephron filtration rate. Pflugers Arch. 310: 193–205, 1969.
 297. Gertz, K. H., J. A. Mangos, G. Braun, and H. D. Pagel. Pressure in the glomerular capillaries of the rat kidney and its relation to arterial blood pressure. Pflugers Arch. 288: 369–374, 1966.
 298. Giddings, J. C., E. Kucera, C. P. Russell, and M. N. Myers. Statistical theory for the equilibrium partitioning of rigid molecules in inert porous networks: exclusion chromatography. J. Phys. Chem. 72: 4397–4408. 1968.
 299. Gillespie, M. N., J. O. Owasoyo, I.‐F. McMurtry, and R. F. O'Brien. Sustained coronary vasoconstriction provoked by a peptidergic substance released from endothelial cells in culture. J. Pharmacol. Exp. Ther. 236: 339–343, 1986.
 300. Gillies, M., and T. Morgan. Renin content of individual juxtaglomerular apparatuses and the effect of diet, changes in nephron flow rate, and in vitro acidification on the renin content. Pflugers Arch. 375: 105–110, 1978.
 301. Golbetz, H., V. Black, O. Shemesh, and B. D. Myers. Mechanism of the antiproteinuric effect of indomethacin in nephrotic humans. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F44–F51, 1989.
 302. Goldblatt, H., J. Lynch, R. F. Hanzal, and W. W. Summerville. Studies on experimental hypertension. I. The production of persistent elevation of systolic blood pressure by means of renal ischemia. J. Exp. Med. 59: 347–379, 1934.
 303. Goldsmith, D.I., R. A. Jodorkovsky, J. Sherwinter, S. R. Kleeman, and A. Spitzer. Glomerular capillary permeability in developing canines. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F528–F531, 1986.
 304. Goormaghtigh, N. Les segments neuro‐myo‐arteriels juxtaglomerulaires du rein. Arch. Biol. 43: 575–591, 1932.
 305. Goormaghtigh, N. L'appareil neuro‐myo‐arterial juxtaglomerulaire du rein: Ses reactions em pathologie et ses rapports avec le tube uninifere. Compt. Renal Soc. Biol. 124: 293–296, 1937.
 306. Goormaghtigh, N. Existence of an endocrine gland in the media of the renal arterioles. Proc. Soc. Exp. Biol. Med. 42: 688–689, 1939.
 307. Goormaghtigh, N. Facts in favour of an endocrine function of the renal arterioles. J. Pathol. Bacteriol. 57: 392–393, 1945.
 308. Gottschalk, C. W., and M. Mylle. Micropuncture study of pressures in proximal tubules and their relation to ureteral and renal venous pressures. Am. J. Physiol. 185: 430–439, 1956.
 309. Gunther, S., R. W. Alexander, W. J. Atkinson, and M. A. Gimbrone, Jr.. Functional angiotensin II receptors in cultured vascular smooth muscle cells. J. Cell Biol. 92: 289–298, 1982.
 310. Gunther, S., M. A. Gimbrone, Jr., and R. W. Alexander. Regulation by angiotensin II of its receptors in resistance blood vessels. Nature 287: 230–232, 1980.
 311. Haberman, W. L., and R. M. Sayre. Motion of rigid and fluid spheres in stationary and moving liquids inside cylindrical tubes. David Taylor Model Basin Report No. 1143. Washington, DC: U.S. Navy 1958.
 312. Hackenthal, E., R. Metz, C. P. Bührle, and R. Taugner. Intrarenal and intracellular distribution of renin and angiotensin. Kidney Int. 31 (Suppl. 20): S4–S17, 1987.
 313. Hackenthal, E., U. Schwertschlag, and R. Taugner. Cellular mechanisms of renin release. Clin. Exp. Hypertens. Theory Pract. A5 (7, 8): 975–993, 1983.
 314. Haley, D. P., M. Sarrafian, R. E. Bulger, D. C. Dobyan, and G. Eknoyan. Structural and functional correlates of effects of antiogensin‐induced changes in rat glomerulus. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F111–F119, 1987.
 315. Hall, B. V. A slit pore theory of capillary filtration based on electron micrographic data on the filtration pathway through the cellular layers of mammalian glomerular capillary walls. Trans. Am. Microsc. Soc. 96: 413–437, 1977.
 316. Hall, J. E., and J. P. Granger. Renal hemodynamics and arterial pressure during chronic intrarenal adenosine infusion in conscious dogs. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 18): F32–F39, 1986.
 317. Hanahan, D. J. Platelet activating factor: a biologically active phosphoglyceride. Annu. Rev. Biochem. 55: 483–509, 1986.
 318. Handa, R. K., J. W. Strandhoy, and V. M. Buckalew, Jr.. Platelet‐activating factor is a renal vasodilator in the anesthetized rat. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F1504–F1509, 1990.
 319. Harder, D. R. Pressure‐induced myogenic activation of cat cerebral arteries is dependent on intact endothelium. Circ. Res. 60: 102–107, 1987.
 320. Harder, D. R., R. Gilbert, and J. H. Lombard. Vascular muscle cell depolarization and activation in renal arteries on elevation of transmural pressure. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F778–F781, 1987.
 321. Hardwicke, J., J. S. Cameron, J. F. Harrison, B. Hulme, and J. F. Soothill. Proteinuria, studied by clearances of individual macromolecules. In Proteins in Normal and Pathological Urine, edited by Y. Manuel, J. P. Revillard, and H. Betuel. Baltimore: University Park Press, 1970. p. 111–152.
 322. Hardwicke, J., B. Hulme, J. H. Jones, and C. R. Ricketts. Measurement of glomerular permeability to polydisperse radioactively‐labelled macromolecules in normal rabbits. Clin. Sci. 34: 505–514, 1968.
 323. Harris, C. A., P. G. Baer, E. Chirito, and J. H. Dirks. Composition of mammalian glomerular filtrate. Am. J. Physiol. 227: 972–976, 1974.
 324. Harris, R. C., R. L. Hoover, H. R. Jacobson, and K. F. Badr. Evidence for glomerular actions of epidermal growth factor in the rat. J. Clin. Invest. 82: 1028–1039, 1988.
 325. Hartroft, P. M., L. E. Sutherland, and W. Stanley Hartroft. Juxtaglomerular cells as the source of renin: further studies with the fluorescent antibody technique and the effect of passive transfer of antirenin. Can. Med. Assoc. J. 90: 163–167, 1964.
 326. Hassid, A., N. Pidikiti, and D. Gamero. Effects of vasoactive peptides on cytosolic calcium in cultured mesangial cells. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F1018–F1028, 1986.
 327. Hayman, J. M., Jr. Malpighi's. ”Concerning the Structure of the Kidneys.“ Ann. Med. Hist. 7: 242–263, 1925.
 328. Healy, D. P., and D. D. Fanestil. Localization of atrial natriuretic peptide binding sites within the rat kidney. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F573–F578, 1986.
 329. Heller, J., and V. Horácek. Kidney function during decreased perfusion pressure due to aortic clamping and hemorrhagic hypotension: a single nephron study in dog kidney. Renal Physiol. 7: 90–101, 1984.
 330. Helwig, J. J., R. Schleiffer, C. Judes, and A. Gairard. Distribution of parathyroid hormone‐sensitive adenylate cyclase in isolated rabbit renal cortex, microvessels and glomeruli. Life Sci. 35: 2649–2657, 1984.
 331. Hemric, M. E., and J. M. Chalovich. Effect of caldesmon on the ATPase activity and the binding of smooth and skeletal myosin subfragments to actin. J. Biol. Chem. 263: 1878–1885, 1988.
 332. Henry, J. P., O. H. Gauer, and J. L. Reeves. Evidence of the atrial location of receptors influencing urine flow. Circ. Res. 4: 85–90, 1956.
 333. Henry, J. P., O. H. Gauer, and H. O. Sieker. The effect of moderate changes in blood volume on left and right atrial pressures. Circ. Res. 4: 91–94, 1956.
 334. Hermansson, K., M. Larson, O. Källskog, and M. Wolgast. Influence of renal nerve activity on arteriolar resistance, ultrafiltration dynamics, and fluid reabsorption. Pflugers Arch. 389: 85–90, 1981.
 335. Heyerass, K. J., and K. Aukland. Interlobular arterial resistance: influence of renal arterial pressure and angiotensin II. Kidney Int. 31: 1291–1298, 1987.
 336. Hickey, K. A., G. Rubanyi, R. J. Paul, and R. F. Highsmith. Characterization of a coronary vasoconstrictor produced by cultured endothelial cells. Am. J. Physiol. 248 (Cell Physiol. 17): C550–C556, 1985.
 337. Hider, R. C., J. C. Lloyd, and P. Wheeler. The application of 125I‐labeled copolymers of vinylpyrrolidone and acrylic acid for permeability measurements of biological membranes. J. Colloid Interface Sci. 65: 1–7, 1978.
 338. Higgins, J. T., Jr.. Role of extracellular volume in diuretic response to saline loading. Am. J. Physiol. 220: 1367–1372, 1971.
 339. Hirata, F. The regulation of lipomodulin, a phospholipase inhibitory protein, in rabbit neutrophils by phosphorylation. J. Biol. Chem. 256: 7730–7733, 1981.
 340. Hirata, F., E. Schiffman, K. Venkatasubramanian, D. Soloman, and J. A. Axelrod. Phospholipase A2 inhibitory protein in rabbit neutrophils induced by glucocorticoids. Proc. Natl. Acad. Sci. USA 77: 2533–2536, 1980.
 341. Hirschberg, R. R., R. D. Zipser, L. A. Slomowitz, and J. D. Kopple. Glucagon and prostaglandins are mediators of amino acid‐induced rise in renal hemodynamics. Kidney Int. 33: 1147–1155, 1988.
 342. Holdaas, H., O. Langaard, I. Eide, and F. Kiil. Conditions for enhancement of renin release by isoproterenol, dopamine and glucagon. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F267–F273, 1982.
 343. Hollenberg, N. K., W. R. Chenitz, D. F. Adams, and G. H. Williams. Reciprocal influence of salt intake on adrenal glomerular and renal vascular responses to angiotensin II in normal man. J. Clin. Invest. 54: 34–42, 1974.
 344. Hom, G. J., R. F. Highsmith, and D. C. Pang. Vascular effects of endothelium‐derived constricting factor (EDCF). FASEB J. 2: A971, 1988.
 345. Horky, K., J. M. Rojo‐Ortega, J. Rodriguez, R. Boucher, and J. Genest. Renin substrate, and angiotensin I converting enzyme in the lymph of rats. Am. J. Physiol. 220: 307–311, 1971.
 346. Hostetter, T. H. Human renal response to a meat meal. Am. J. Physiol. 250: (Renal Fluid Electrolyte Physiol. 19): F613–F618, 1986.
 347. Hostetter, T. H., J. L. Olson, H. G. Rennke, M. A. Venkatachalam, and B. M. Brenner. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F85–F93, 1981.
 348. Huang, C.‐L., J. Lewicki, L. K. Johnson, and M. G. Cogan. Renal mechanism of action of atrial natriuretic factor. J. Clin. Invest. 75: 769–773, 1985.
 349. Humes, H. D., I. Ichikawa, J. L. Troy, and B. M. Brenner. Evidence for a parathyroid hormone‐dependent influence of calcium on the glomerular ultrafiltration coefficient. J. Clin. Invest. 61: 32–40, 1978.
 350. Huss, R. E., D. J. Marsh, and R. E. Kalaba. Two models of glomerular filtration rate and renal blood flow in the rat. Ann. Biomed. Eng. 3: 72–99, 1975.
 351. Ichikawa, I. Direct analysis of the effector mechanism of the tubuloglomerular feedback system. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F447–F455, 1982.
 352. Ichikawa, I., and B. M. Brenner. Of unglazed pottery and glomerular sieving. Kidney Int. 10: 264–267, 1976.
 353. Ichikawa, I., and B. M. Brenner. Evidence for glomerular action of ADH and dibutyryl cyclic AMP in the rat. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F102–F117, 1977.
 354. Ichikawa, I., and B. M. Brenner. Local intrarenal vasoconstrictor‐vasodilation interactions in mild partial ureteral obstruction. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F131–F140, 1979.
 355. Ichikawa, I., and B. M. Brenner. Mechanisms of action of histamine and histamine antagonists on the glomerular microcirculation in the rat. Circ. Res. 45: 737–745, 1979.
 356. Ichikawa, I., and B. M. Brenner. Importance of efferent arteriolar vascular tone in regulation of proximal tubule fluid reabsorption and glomerulotubular balance in the rat. J. Clin Invest. 65: 1192–1201, 1980.
 357. Ichikawa, I., R. A. Ferrone, K. L. Duchin, M. Manning, V. J. Dzau, and B. M. Brenner. Relative contribution of vasopressin and angiotensin II to the altered renal microcirculatory dynamics in two‐kidney Goldblatt hypertension. Circ. Res. 53: 592–602, 1983.
 358. Ichikawa, I., H. D. Humes, T. J. Dousa, and B. M. Brenner. Influence of parathyroid hormone on glomerular ultrafiltration in the rat. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F393–F401, 1978.
 359. Ichikawa, I., V. Kon, M. A. Pfeffer, J. M. Pfeffer, and B. M. Brenner. Role of angiotensin II in the altered renal function of heart failure. Kidney Int. 31 (Suppl. 20): S213–S215, 1987.
 360. Ichikawa, I., D. A. Maddox, and B. M. Brenner. Maturational development of glomerular ultrafiltration in the rat. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F465–F471, 1979.
 361. Ichikawa, I., D. A. Maddox, M. G. Cogan, and B. M. Brenner. Dynamics of glomerular ultrafiltration in euvolemic Munich‐Wistar rats. Renal Physiol. 1: 121–131, 1978.
 362. Ichikawa, I., J. F. Miehle, and B. M. Brenner. Reversal of renal control actions of angiotensin II by verapamil and manganese. Kidney Int. 16: 137–147, 1979.
 363. Ichikawa, I., J. M. Pfeffer, T. H. Hostetter, and B. M. Brenner. Role of angiotensin II in the altered renal function of congestive heart failure. Circ. Res. 55: 669–675, 1984.
 364. Ichikawa, I., M. L. Purkerson, S. Klahr, J. L. Troy, M. Martinez‐Maldonado, and B. M. Brenner. Mechanism of reduced glomerular filtration rate in chronic malnutrition. J. Clin. Invest. 65 (5): 982–988, 1980.
 365. Ichikawa, I., M. L. Purkerson, J. Yates, and S. Klahr. Dietary protein intake conditions the degree of renal vasoconstriction in acute renal failure caused by ureteral obstruction. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F54–F61, 1985.
 366. Ichikawa, I., H. G. Rennke, J. R. Hoyer, K. F. Badr, N. Schor, J. L. Troy, C. P. Lechene, and B. M. Brenner. Role of intrarenal mechanisms in the unpaired salt excretion of experimental nephrotic syndrome. J. Clin. Invest. 71: 91–103, 1983.
 367. Igarashi, S., M. Nagase, T. Oda, and N. Honda. Molecular sieving by glomerular basement membrane isolated from normal and nephrotic rabbits. Clin. Chim. Acta 68: 255–258, 1976.
 368. Ignarro, L. J., R. E. Byrns, G. M. Buga, K. S. Wood, and G. Chaudhuri. Pharmacological evidence that endothelium‐derived relaxing factor is nitric oxide: use of pyrogallol and superoxide dismutase to study endothelium‐dependent and nitric oxide‐elicited smooth muscle relaxation. J. Pharmacol. Exp. Ther. 244: 181–189, 1988.
 369. Imai, T., H. Miyazaki, S. Hirose, H. Hori, T. Hayashi, R. Kageyama, H. Ohkubo, S. Nakanishi, and K. Mauakami. Cloning and sequence analysis of cDNA for human renin precursor. Proc. Natl. Acad. Sci. USA 80: 7405–7409, 1983.
 370. Irvine, R. F., and R. M. Moor. Micro‐injection of inositol 1,3,4,5‐tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem. J. 240: 917–920, 1986.
 371. Isaacson, L. C. An iterative algebraic simulation of renal glomerular dynamics. Int. J. Biomed. Comput. 15: 371–380, 1984.
 372. Itoh, S., K. Abe, N. Nushiro, K. Omata, M. Yasujima, and K. Yoshinaga. Effect of renin release in isolated arterioles. Kidney Int. 32: 493–497, 1987.
 373. Itoh, Y., M. Yanagisawa, S. Ohkubo, C. Kimura, T. Kosaka, A. Inoue, N. Ishida, Y. Mitsui, H. Onda, M. Fujino, and T. Masaki. Cloning and sequence analysis of cDNA encoding the precursor of a human endothelium‐derived vasoconstrictor peptide, endothelin: identity of human and porcine endothelin. FEBS Lett. 231: 440–444, 1988.
 374. James, S. K., and R. C. Hall. The nature of renin released in the dog following haemorrhage and furosemide. Pflugers Arch. 374: 323–328, 1974.
 375. Jard, S., C. Lombard, J. Marie, and G. DeVilliers. Vasopressin receptors from cultured mesangial cells resemble V1a type. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F41–F49, 1987.
 376. Jensen, P. K., K. Steven, H. Blaehr, J. S. Christiansen, and H.‐H. Parving. Effects of indomethacin on glomerular hemodynamics in experimental diabetes. Kidney Int. 29: 490–495, 1986.
 377. Johnson, P.C., The myogenic response. In: Handbook of Physiology. Sect. 2, The Cardiovascular System. Vol. II, Chapter 15, pp. 409–442. Vascular Smooth Muscle, edited by D. F. Bohr, A. P. Somylo, and H. V. Sparks, Jr. Bethesda, MD: Am. Physiol. Soc. 1980.
 378. Johnson, V., and T. Maack. Renal extraction, filtration, absorption, and catabolism of growth hormone. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F185–F196, 1977.
 379. Jorgensen, K. E, and J. V. Moller. Use of flexible polymers as probes of glomerular pore size. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F103–F111, 1979.
 380. Källskog, O., L. O. Lindbom, H. R. Ulfendahl, and M. Wolgast. Kinetics of the glomerular ultrafiltration in the rat kidney: A theoretical study. Acta Physiol. Scand. 95: 191–200, 1975.
 381. Källskog, O., L. O. Lindbom, H. R. Ulfendahl, and M. Wolgast. Kinetics of the glomerular ultrafiltration in the rat kidney: An experimental study. Acta Physiol. Scand. 95: 293–300, 1975.
 382. Källskog, O., L. O. Lindbom, H. R. Ulfendahl, and M. Wolgast. Hydrostatic pressures within the vascular structures of the rat kidney. Pflugers Arch. 363: 205–210, 1976.
 383. Källskog, O., and M. Wolgast. Validity of the stop‐flow method for estimating glomerular capillary pressure. Acta Physiol. Scand. 117: 145–147, 1983.
 384. Kastner, P. R., J. E. Hall, and A. C. Guyton. Control of glomerular filtration rate: role of intrarenally formed angiotensin II. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F897–F906, 1984.
 385. Katoh, T., H. Chang, S. Uchida, T. Okuda, and K. Kurokawa. Direct effects of endothelin in the rat kidney. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F397–F402, 1990.
 386. Katusic, Z., J. T. Shepherd, and P. M. Vanhoutte. Endothelium‐dependent contraction to stretch in canine basilar arteries. Am. J. Physiol. 252 (Heart Circ. Physiol. 21): H671–H673, 1987.
 387. Katusic, Z. S., and P. M. Vanhoutte. Pharmacological analysis of relaxations to bradykinin and NO in the canine basilar artery. FASEB J. 2: A315, 1988.
 388. Kau, S. T., and T. Maack. Transport and catabolism of parathyroid hormone in isolated rat kidney. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F445–F454, 1977.
 389. Kauser, K., W. J. Stekiel, G. Rubanyi, and D. R. Harder. Mechanism of action of EDRF on pressurized arteries: effect on K+ conductance. Circ. Res. 65: 199–204, 1989. Possible hyperpolarizing action of EDRF on arterial muscle. FASEB J. 2: A315, 1988.
 390. Keck, W., R. Joppich, W. D. V. Restorff, U. Finsterer, P. Prucksunand, H. Brechtelsbauer, and K. Kramer. Sodium excretion in conscious and anesthetized dogs after large saline infusions. Pflugers Arch. 341: 51–62, 1973.
 391. Kedem, O., and A. Katchalsky. Thermodynamic analysis of the permeability of biological membranes to non‐electrolytes. Biochim. Biophys. Acta 27: 229–246, 1958.
 392. Keh, H. J. Diffusion of rigid Brownian spheres through pores of finite length. Physicochem. Hydrodyn. 7: 281–295, 1986.
 393. Kester, M., J. Wang, A. Orehek, P. Mené, and M. J. Dunn. Evidence for multiple signaling pathways for platelet activating factor in cultured rat mesangial cells, abstracted. Kidney Int. 33: 161, 1988.
 394. King, A. J., S. Anderson, and B. M. Brenner. Effects of Nω‐monomethyl‐L‐arginine (L‐NMMA) on the renal hemodynamic response to amino acid (AA) infusion. XIth International Congress of Nephrology, Tokyo. (Abstract). p. 298A, 1990.
 395. King, A. J., B. M. Brenner, and S. Anderson. Endothelin: a potent renal and systemic vasoconstrictor peptide. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F1051–F1058, 1989.
 396. Kirkman, H., and R. G. Stowell. Renal filtration surface in the albino rat. Anat. Rec. 82: 373–389, 1942.
 397. Kisch, B. Electron microscopy of the atrium of the heart. I. Guinea pig. Exp. Med. Surg. 14: 99–112, 1956.
 398. Kislyakov, Y. Y., and Y. Y. Bagrov. Simulation of the process of glomerular filtration. Biofizika 18: 897–901, 1973.
 399. Kitamura, E., R. Kikkawa, Y. Fujiwara, T. Imai, and Y. Shigeta. Effect of angiotensin II infusion on glomerular angiotensin receptor in rats. Biochim. Biophys. Acta 885: 309–316, 1986.
 400. Knauss, T., and H. E. Abboud. Effect of serotonin on prostaglandin synthesis in rat cultured mesangial cells. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F844–F850, 1986.
 401. Knochel, J. P., and H. R. Jacobson. Renal handling of phosphorus, clinical hypophosphatemia, and phosphorous deficiency. In: The Kidney, edited by B. M. Brenner and F. C. Rector, Jr. Philadelphia: W. B. Saunders, 1986, p. 551–618.
 402. Knox, F. G., C. Ott, J.‐L. Cuche, J. Gasser, and J. Haas. Autoregulation of single nephron filtration rate in the presence and the absence of flow to the macula densa. Circ. Res. 34: 836–842, 1974.
 403. Knox, F. G., L. R. Willis, J. W. Strandhoy, E. G. Schneider, L. G. Navar, and C. E. Ott. Role of peritubular Starling forces in proximal reabsorption following albumin infusion. Am. J. Physiol. 223: 741–749, 1972.
 404. Komori, K., and P. M. Vanhoutte. Effects of nitric oxide on electrical and mechanical properties of smooth muscle cells of canine mesenteric and rabbit saphenous arteries. FASEB J. 2: A517, 1988.
 405. Kon, V., M. L. Hughes, and I. Ichikawa. Blood flow dependence of postglomerular fluid transport and glomerulotubular balance. J. Clin. Invest. 72: 1716–1728, 1983.
 406. Kon, V., M. L. Hughes, and I. Ichikawa. Physiologic basis for the maintenance of glomerulotubular balance in young growing rats. Kidney Int. 25: 391–396, 1984.
 407. Kon, V., and I. Ichikawa. Effector loci for renal nerve control of cortical microcirculation. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F545–F553, 1983.
 408. Kon, V., M. Sugiura, T. Inagami, B. R. Harvie, I. Ichikawa, and R. L. Hoover. Role of endothelin in cyclosporine‐induced glomerular dysfunction. Kidney Int. 37: 1487–1491, 1990.
 409. Kon, V., A. Yared, and I. Ichikawa. Role of sympathetic nerves in mediating hypoperfusion of renal cortical microcirculation in experimental congestive heart failure and acute extracellular volume depletion. J. Clin. Invest. 76: 1913–1920, 1985.
 410. Kon, V., T. Yoshioka, A. Fogo, and I. Ichikawa. Glomerular actions of endothelin in vivo. J. Clin. Invest. 83: 1762–1767, 1989.
 411. Kopp, U. C., and G. F. DiBona. Interaction between neural and nonneural mechanisms controlling renin secretion rate. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F620–F626, 1984.
 412. Koseki, C., Y. Hayashi, S. Torikai, M. Furuya, N. Ohnuma, and M. Imai. Localization of binding sites for α‐rat atrial natriuretic polypeptide in rat kidney. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F210–216, 1986.
 413. Kotake, C., P. C. Hoffman, L. I. Goldberg, and J. G. Cannon. Comparison of the effects of dopamine and beta‐adrenergic agonists on adenylate cyclase of renal glomeruli and striatum. Mol. Pharmacol. 20: 429–434, 1981.
 414. Kreisberg, J. I., M. J. Karnovsky, and L. Levine. Prostaglandin production by homogenous cultures of rat glomerular epithelial and mesangial cells. Kidney Int. 22: 355–359, 1982.
 415. Kreisberg, J. I., M. A. Venkatachalam, and P. Y. Patel. Cyclic AMP‐associated shape change in mesangial cells and its reversal by prostaglandin E2. Kidney Int. 25: 874–879, 1984.
 416. Kreisberg, J. I., M. A. Venkatachalam, R. A. Radnik, and P. Y. Patel. Role of myosin light‐chain phosphorylation and microtubules in stress fiber morphology in cultured mesengial cells. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F227–F235, 1985.
 417. Kremer, S., W. Breuer, and K. Skorecki. Effect of chloride channel activation on calcium signalling in glomerular mesangial cells, abstracted. Kidney Int. 33: 162, 1988.
 418. Kriz, W. A perarterial pathway for intrarenal distribution of renin. Kidney Int. 31 (Suppl. 20): S51–S56, 1987.
 419. Kugler, P. Histochemistry of angiotensinase A in the glomerulus and the juxtaglomerular apparatus. Kidney Int. 22: 544–548, 1982.
 420. Kugler, P., and T. H. Schiebler. Quantitative histochemistry of the angiotensinase A (APA) in the renal glomeruli of rats after stimulation of the renin‐angiotensin system. Cytometry 5: 392–395, 1984.
 421. Kurokawa, K., F. J. Silverblatt, K. L. Klein, M. S. Wong, and R. Lerner. Binding of 125I‐Insulin to the isolated glomeruli of rat kidney. J. Clin. Invest. 64: 1357–1364, 1979.
 422. Kurtz, A., W. Jelkmann, J. Pfeilschifter, and C. Bauer. Role of prostaglandins in hypoxia‐stimulated erythropoeitin production. Am. J. Physiol. 249 (Cell Physiol. 18): C3–C8, 1985.
 423. Kurtz, A., H.‐J. Schurek, W. Jelkmann, R. Muff, H.‐P. Lipp, U. Heckmann, K.‐U. Eckardt, H. Scholz, J. A. Fischer, and C. Bauer. Renal mesangium is a target for calcitonin gene‐related peptide. Kidney Int. 36: 222–227, 1989.
 424. Lambert, P. P., B. Aeikens, A. Bohle, F. Hanus, S. Pegoff, and M. Van Damme. A network model of glomerular function. Microvasc. Res. 23: 99–128, 1982.
 425. Lambert, P. P., P. Bergmann, and R. Beauwens (eds.)., The Pathogenicity of Cationic Proteins. New York: Raven, 1983.
 426. Lambert, P. P., M. Doriaux, J. Sennesael, R. Vanholder, and M. Lammens‐Verslijpe. Pathogenicity of cationized albumin in the dog: renal and extrarenal effects. Clin. Sci. 67: 19–33, 1984.
 427. Lambert, P. P., R. DuBois, P. Decoodt, J. P. Gassee, and A. Verniory. Determination of glomerular intracapillary and transcapillary pressure gradients from sieving data. II. A physiological study in the normal dog. Pflugers Arch. 359: 1–22, 1975.
 428. Lambert, P. P., J. P. Gassee, A. Verniory, and P. Ficheroulle. Measurement of the glomerular filtration pressure from sieving data for macromolecules. Pflugers Arch. 329: 34–58, 1971.
 429. Lambert, P. P., J. P. Gassee, A. Verniory, P. Ficheroulle, and E. DuPont. The measurement of glomerular filtration pressure from sieving data for macromolecules. Adv. Nephrol. 1: 113–124, 1971.
 430. Lambert, P. P., A. Verniory, J. P. Gassee, and P. Ficheroulle. Sieving equations and effective glomerular filtration pressure. Kidney Int. 1: 131–146, 1972.
 431. Landis, E. M. The capillary pressure in frog mesentery as determined by micro‐injection methods. Am. J. Physiol. 75: 548–570, 1925.
 432. Landis, E. M. Microinjection studies of capillary permeability. II. The relationship between capillary pressure and the rate at which fluid passes through the walls of single capillaries. Am. J. Physiol. 82: 217–238, 1927.
 433. Landis, E. M. and J. R. Pappenheimer. Exchange of substances through the capillary walls. In: Handbook of Physiology. Circulation, edited by W. F. Hamilton, Washington, DC: Am. Physiol. Soc, 1963, sect. 2, vol. II, p. 961–1034.
 434. Landwehr, D. M., J. S. Carvalho, and D. E. Oken. Micropuncture studies of the filtration and absorption of albumin by nephrotic rats. Kidney Int. 11: 9–17, 1977.
 435. Lang, R. E., H. Tholken, D. Ganten, F. C. Luft, H. Ruskoaho, and T. Unger. Atrial natriuretic factor—a circulating hormone stimulated by volume loading. Nature 314: 264–266, 1985.
 436. Larson, M., K. Hermansson, and M. Wolgast. Hydraulic permeability of the glomerular capillary membranes in the rat kidney. Acta Physiol. Scand. 117: 251–261, 1983.
 437. Lash, J. A., J. R. Sellers, and D. R. Hathaway. The effects of caldesmon on smooth muscle heavy actomeromyosin ATPase activity and binding of heavy meromyosin to actin. J. Biol. Chem. 261: 16155–16160, 1986.
 438. Leber, P. D., and D. J. Marsh. Micropuncture study of concentration and fate of albumin in the rat nephron. Am. J. Physiol. 219: 358–363, 1970.
 439. Lee, J. S., L. H. Smaje, and B. W. Zweifach. Fluid movement in occluded single capillaries of rabbit omentum. Circ. Res. 28: 358–370, 1971.
 440. Lee, K. E., and R. A. Summerill. Glomerular filtration rate following administration of individual amino acids in dogs. J. Exp. Physiol. 67: 459–465, 1982.
 441. LeGrimellec, C. Micropuncture study along the proximal convoluted tubule. Pflugers Arch. 354: 133–150, 1975.
 442. LeGrimellec, C., P. Poujeol, and C. deRouffignac. 3H‐inulin and electrolyte concentrations in Bowman's capsule in rat kidney. Pflugers Arch. 354: 117–131, 1975.
 443. Lever, A. F. and W. S. Peart. Renin and angiotensin‐like activity in renal lymph. J. Physiol. (Lond.) 160: 548–563, 1962.
 444. Levi, M., M. A. Ellis, and T. Berl. Control of renal hemodynamics and glomerular filtration rate in chronic hypercalcemia. J. Clin. Invest. 71: 1624–1632, 1983.
 445. Levine, M. M., M. A. Kirschenbaum, A. Chaudhari, M. W. Wong, and N. S. Bricker. Effect of protein on glomerular filtration rate and prostanoid synthesis in normal and uremic rats. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F635–F641, 1986.
 446. Levy, M. Further observations on the renal response of the glomerular filtration rate to glucagon: comparison with secretin. Can. J. Physiol. Pharmacol. 53: 81–85, 1975.
 447. Levy, M. The effect of glucagon on glomerular filtration rate in dogs during reduction of renal blood flow. Can. J. Physiol. Pharmacol. 53: 660–668, 1975.
 448. Levy, M., and N. L. Starr. The mechanism of glucagon‐induced natriuresis in dogs. Kidney Int. 2: 76–84, 1972.
 449. Lewy, J. E., and A. Pesce. Micropuncture study of albumin transfer in aminonucleoside nephrosis in the rat. Pediatr. Res. 7: 553–559, 1973.
 450. Lin, C. S., H. Iwao, S. Puttkammer, and A. M. Michelakis. Prostaglandins and renin release in vitro. Am. J. Physiol. 240 (Endocrinol. Metab. 3): E609–E614, 1981.
 451. Lindop, G. B. M. Morphological aspects of renin synthesis, processing, storage, and secretion. Kidney Int. 31 (Suppl. 20): S18–S24, 1987.
 452. Liu, F.‐Y., M. G. Cogan, and F. C. Rector, Jr.. Axial heterogeneity in the rat proximal convoluted tubule. II. Osmolality and osmotic water permeability. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F822–F826, 1984.
 453. Ljungqvist, A., and J. Wagermark. The adrenergic innervation of intrarenal glomerular and extraglomerular circulatory rats. Nephron 7: 218–229, 1970.
 454. Lockette, W. E., R. C. Webb, and D. F. Bohr. Prostaglandins and potassium relaxation in vascular smooth muscle of the rat. Circ. Res. 46: 714–720, 1980.
 455. Loeb, A. L., N. J. Izzo, Jr., R. M. Johnson, J. C. Garrison, and M. J. Peach. Endothelium‐derived relaxing factor release associated with increased endothelial cell inositol trisphosphate and intracellular calcium. Am. J. Cardiol. 62: 36G–40G, 1988.
 456. Loeffler, J. R., J. R. Stockigt, and W. F. Ganong. Effect of alpha and beta adrenergic blocking agents on the increase in renin secretion produced by the stimulation of renal nerves. Neuroendocrinology 10: 129–138, 1972.
 457. Londos, C., D. M. F. Cooper, and J. Wolff. Subclasses of external adenosine receptors. Proc. Natl. Acad. Sci. USA 77: 2551–2554, 1980.
 458. Loon, N., O. Shemesh, E. Morelli, and B. D. Myers. Effect of angiotensin II infusion on the human glomerular filtration barrier. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F608–F614, 1989.
 459. Lorenz, J. N., H. Weihprecht, J. Schnermann, O. Skøtt, and J. P. Briggs. Characterization of the macula densa stimulus for renin secretion. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F186–F193, 1990.
 460. Loutzenhiser, R., M. Epstein, K. Hayashi, and C. Horton. Direct visualization of effects of endothelin on the renal microvasculature. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F61–F68, 1990.
 461. Loutzenhiser, R., K. Hayashi, and M. Epstein. Acetylcholine (ACH)‐induced vasodilation of afferent (AA) and efferent (EA) arterioles is mediated by disparate endothelium‐derived relaxing factors (EDRFs). XIth International Congress of Nephrology, Tokyo. (Abstract), p. 299A, 1990.
 462. Ludwig, C. F. W. Beitrage zur Lehre von Mechanismus der Harnsecretion. Marburg: N. G. Elwert, 1843.
 463. Luke, R. L. Glomerular permselection: shape and flow. J. Theor. Biol. 106: 141–156, 1984.
 464. Lüscher, T. F., Z. Yang, M. Tschudi, L. von Segesser, P. Stulz, C. Boulanger, R. Siebenmann, M. Turina, and F. R. Bühler. Interaction between endothelin‐1 and endothelium‐derived relaxing factor in human arteries and veins. Circ. Res. 66: 1088–1094, 1990.
 465. Maack, T. Handling of proteins by the normal kidney. Am J. Med. 56: 71–77, 1974.
 466. Maack, T., M. J. F. Camargo, H. D. Kleinert, J. H. Laragh, and S. A. Atlas. Atrial natriuretic factor: structure and functional properties. Kidney Int. 27: 607–615, 1985.
 467. Maack, T., V. Johnson, S. T. Kau, J. Figueiredo, and D. Sigulem. Renal filtration, transport and metabolism of low‐molecular‐weight proteins: a review. Kidney Int. 16: 251–270, 1979.
 468. Maddox, D. A., L. J. Atherton, W. M. Deen, and F. J. Gennari. Proximal HCO3− reabsorption and the PCO2 in the rat. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F73–F81, 1984.
 469. Maddox, D. A., C. M. Bennett, W. M. Deen, R. J. Glassock, D. Knutson, and B. M. Brenner. Control of proximal tubule fluid reabsorption in experimental glomerulonephritis. J. Clin. Invest. 55: 1315–1325, 1975.
 470. Maddox, D. A., C. M. Bennett, W. M. Deen, R. J. Glassock, D. Knutson, T. M. Daugharty, and B. M. Brenner. Determinants of glomerular filtration in experimental glomerulonephritis in the rat. J. Clin. Invest 55 (2): 305–318, 1975.
 471. Maddox, D. A., W. M. Deen and B. M. Brenner. Dynamics of glomerular ultrafiltration. VI. Studies in the primate. Kidney Int. 5: 271–278, 1974.
 472. Maddox, D. A., and F. J. Gennari. Proximal tubular bicarbonate reabsorption and PCO2 in chronic metabolic alkalosis in the rat. J. Clin. Invest. 72: 1385–1395, 1983.
 473. Maddox, D. A., D. C. Price, and F. C. Rector, Jr.. Effect of surgery on plasma volume and salt and water excretion in rats. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F600–F606, 1977.
 474. Maddox, D. A., J. L. Troy, and B. M. Brenner. Autoregulation of filtration rate in the absence of macula densa‐glomerular feedback. Am. J. Physiol. 227: 123–131, 1974.
 475. Mahieu, P. R., J. B. Foidart, C. H. DuBois, C. A. Dechenne, and J. Deheneffe. Tissue culture of normal rat glomeruli: contractile activity of the cultured mesangial cells. Invest. Cell Pathol. 3: 121–128, 1980.
 476. Malpighi, M. De Viscerum. Structura Excercitatio Anatomica, Bologna, 1666.
 477. Marchand, G. R. Direct measurement of glomerular capillary pressure in dogs. Proc. Soc. Exp. Biol. Med. 167: 428–433, 1981.
 478. Marchand, G. R. Effect of parathyroid hormone on the determinants of glomerular filtration in dogs. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F482–F486, 1985.
 479. Marchand, G. R. Effect of secretin on glomerular dynamics in the dog. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F256–F260, 1986.
 480. Marchand, G. R., C. E. Ott, F. C. Lang, R. F. Greger, and F. G. Knox. Effects of secretin on renal blood flow, interstitial pressure and sodium excretion. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F147–F151, 1977.
 481. Marsden, P. A., T. A. Brock, and B. J. Ballermann. Glomerular endothelial cells respond to calcium‐mobilizing agonists with release of EDRF. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F1295–F1303, 1990.
 482. Marshall, E. A., and E. A. Trowbridge. A mathematical model of the ultrafiltration process in a single glomerular capillary. J. Theor. Biol. 48: 389–412, 1974.
 483. Marston, S. B., and W. Lehman. Caldesmon is a Ca2+‐regulatory component of native smooth‐muscle thin filaments. Biochem. J. 231: 517–522, 1985.
 484. Martin, E. R., P. A. Marsden, B. M. Brenner, and B. J. Ballermann. Identification and characterization of endothelin binding sites in rat renal papillary and glomerular membranes. Biochem. Biophys. Res. Commun. 162: 130–137, 1989.
 485. Matsumura, Y., Y. Ozawa, H. Suzuki, and T. Saruta. Synergistic action of angiotensin II on norepinephrine‐induced prostaglandin release from rat glomeruli. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F811–F816, 1986.
 486. Matsunaga, H., T. Okuda, H. Chang, and K. Kurokawa. Analysis of single channel activities of cultured rat mesangial cells: the presence of nonselective cation channels and Ca+‐activated K+ channels, abstracted. Kidney Int. 33: 164, 1988.
 487. Mauger, J. P., J. Poggioli, F. Guesdon, and M. Claret. Noradrenaline, vasopressin, and angiotensin increase Ca2+ influx by opening a common pool of Ca2+ channels in isolated rat liver cells. Biochem. J. 221: 121–127, 1984.
 488. McGiff, J. C., K. Crowshaw, N. A. Terragno, and A. J. Lonigro. Release of a prostaglandin‐like substance into renal venous blood in response to angiotensin II. Circ. Res. 26, 27 (Suppl. I.): 121–130, 1970.
 489. McGiff, J. C., N. A. Terragno, K. U. Malik, and A. J. Lonigro. Release of a prostaglandin‐like substance into renal venous blood in response to angiotensin II. Circ. Res. 31: 36–43, 1972.
 490. McPherson, G. A., and R. J. Summers. Evidence from binding studies for α‐adrenoceptors directly associated with glomeruli from rat kidney. Eur. J. Pharmacol. 90: 333–341, 1983.
 491. Meezon, E., and P. Freychet. Rat renal glomeruli and tubules have specific insulin receptors of differing affinity. Mol. Pharmacol. 16: 1095–1100, 1979.
 492. Mejia, G., L. Challoner‐Hue, and T. H. Steele. Calcium in neural control of renal circulation. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F739–F745, 1984.
 493. Mené, P., G. R. Dubyak, A. Scarpa, and M. J. Dunn. Stimulation of cytosolic free calcium and inositol phosphates by prostaglandins in cultured rat mesangial cells. Biochem. Biophys. Res. Commun. 142: 579–586, 1987.
 494. Mené, P., and M. J. Dunn. Contractile effects of TxA2 and endoperoxide analogues on cultured rat glomerular mesangial cells. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F1029–F1035, 1986.
 495. Michels, L. D., M. Davidman, and W. F. Keane. The effects of chronic mesangial immune injury on glomerular function. J. Lab. Clin. Med. 96: 396–407, 1980.
 496. Michels, L. D., M. Davidman, and W. F. Keane. Determinants of glomerular filtration and plasma flow in experimental diabetic rats. J. Lab. Clin. Med. 98: 869–885, 1981.
 497. Michels, L. D., M. Davidman, and W. F. Keane. Glomerular permeability to neutral and anionic dextrans in experimental diabetes. Kidney Int. 21: 699–705, 1982.
 498. Mickelakis, A. M., J. Caudle, and G. W. Liddle. In vitro stimulation of renin production by epinephrine, norepinephrine, and cyclic AMP. Proc. Soc. Exp. Biol. Med. 130: 748–753, 1969.
 499. Millar, J. A., B. J. Leckie, P. F. Semple, J. J. Morton, S. Sankodi, and J. I. S. Robertson. Active and inactive renin in human plasma. Circ. Res. 43 (Suppl. I): I‐120–I‐127, 1978.
 500. Miller, V. M., and P. M. Vanhoutte. Is nitric oxide the only endothelium‐derived relaxing factor in canine femoral veins? Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H1910–H1916, 1989.
 501. Misano, K. S., J.‐J. Chang, and T. Inagami. Amino acid sequence of mouse submaxillary gland renin. Proc. Natl. Acad. Sci. USA 79: 4858–4862, 1982.
 502. Mogensen, C. E. Kidney function and glomerular permeability to macromolecules in early juvenile diabetes. Scand. J. Clin. Lab. Invest. 28: 79–90, 1971.
 503. Mogensen, C. E., and K. Solling. Studies on renal tubular protein reabsorption: partial and near complete inhibition by certain amino acids. Scand. J. Clin. Lab. Invest. 37: 477–486, 1977.
 504. Moore, T. J., and G. H. Williams. Angiotensin II receptors on human platelets. Circ. Res. 51: 314–320, 1981.
 505. Moncada, S., R. M. J. Palmer, and E. A. Higgs. The discovery of nitric oxide as the endogenous vasodilator. Hypertension (Dallas) 12: 365–372, 1988.
 506. Morelli, E., N. Loon, T. Meyer, W. Peters, and B. D. Myers. Effects of converting enzyme inhibition on barrier function in diabetic glomerulopathy. Diabetes 39: 76–82, 1990.
 507. Morgan, T., and J. M. Davis. Renin secretion at the individual nephron level. Pflugers Arch. 359: 23–31, 1975.
 508. Morris, A. P., D. V. Gallacher, R. F. Irvine, and O. H. Petersen. Synergism of inositol trisphosphate and tetrakis‐phosphate in activating Ca2+‐dependent K+ channels. Nature 330: 653–655, 1987.
 509. Morris, B. J., and C. I. Johnston. Renin substrate in granules from rat kidney cortex. Biochem. J. 154: 625–637, 1976.
 510. Morris, B. J., I. A. Reid, and W. F. Ganong. Inhibition by ∝‐adrenoceptor agonists of renin release in vitro. Eur. J. Pharmacol. 59: 37–45, 1979.
 511. Muller, J., and L. Barajas. Electron microscopic and histochemical evidence for tubular innervation in the renal cortex of the monkey. J. Ultrastruct. Res. 41: 533–549, 1972.
 512. Munger, K., and C. Baylis. Sex differences in renal hemodynamics in rats. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F223–F231, 1988.
 513. Myers, B. D. What is cyclosporine nephrotoxicity? Transplant Proc. 21: 1430–1432, 1989.
 514. Myers, B. D., W. M. Deen, and B. M. Brenner. Effects of norepinephrine and angiotensin II on the determinants of glomerular ultrafiltration and proximal tubule fluid reabsorption in the rat. Circ. Res. 37: 101–110, 1975.
 515. Myers, B. D., W. M. Deen, C. R. Robertson, and B. M. Brenner. Dynamics of glomerular ultrafiltration in the rat. VIII. Effects of hematocrit. Circ. Res. 36: 425–435, 1975.
 516. Myers, B. D., M. Hilberman, B. J. Carrie, R. J. Spencer, E. B. Stinson, and C. R. Robertson. Dynamics of glomerular ultrafiltration following open‐heart surgery. Kidney Int. 20: 366–374, 1981.
 517. Myers, B. D., D. C. Miller, J. T. Mehigan, C. Olcott IV., H. Golbetz, C. R. Robertson, G. Derby, R. Spencer, and S. Friedman. Nature of the renal injury following total renal ischemia in man. J. Clin. Invest. 73: 329–341, 1984.
 518. Myers, B. D., T. B. Okarma, S. Friedman, C. Bridges, J. Ross, S. Asseff, and W. M. Deen. Mechanisms of proteinuria in human glomerulonephritis. J. Clin. Invest. 70: 732–746, 1982.
 519. Myers, B. D., C. Peterson, C. Molina, S. J. Tomlanovich, L. D. Newton, R. Nitkin, H. Sandler, and F. Murad. Role of cardiac atria in the human renal response to changing plasma volume. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F562–F573, 1988.
 520. Myers, B. D., J. A. Winetz, F. Chui, and A. S. Michaels. Mechanisms of proteinuria in diabetic nephropathy: a study of glomerular barrier function. Kidney Int. 21: 96–105, 1982.
 521. Nabika, T., P. A. Velletri, W. Lovenberg, and M. A. Beaven. Increase in cytosolic calcium and phosphoinositide metabolism induced by angiotensin II and (Arg) vasopressin in vascular smooth muscle. J. Biol. Chem. 260: 4661–4670, 1985.
 522. Nakamura, Y., and B. D. Myers. Charge selectivity of proteinuria in diabetic glomerulopathy. Diabetes 37: 1202–1211, 1988.
 523. Nath, K. A., D. H. Chmielewski, and T. H. Hostetter. Regulatory role of prostanoids in glomerular microcirculation of remnant nephrons. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F829–F837, 1987.
 524. Navar, L. G., P. D. Bell, R. W. White, R. L. Watts, and R. H. Williams. Evaluation of the single nephron glomerular filtration coefficient in the dog. Kidney Int. 12: 137–149, 1977.
 525. Navar, L. G., T. J. Burke, R. R. Robinson, and J. R. Clapp. Distal tubular feedback in the autoregulation of single nephron glomerular filtration rate. J. Clin. Invest. 53: 516–525, 1974.
 526. Navar, L. G., D. Jirakulsomchok, P. D. Bell, C. E. Thomas, and W. Huang. Influence of converting enzyme inhibition on renal hemodynamics and glomerular dynamics in sodium‐restricted dogs. Hypertension 4: 58–68, 1982.
 527. Navar, L. G., R. A. LaGrange, P. D. Bell, C. E. Thomas, and D. W. Ploth. Glomerular and renal hemodynamics during converting enzyme inhibition (SQ 20,881) in the dog. Hypertension 1: 371–377, 1979.
 528. Navar, P. D., and L. G. Navar. Relationship between colloid osmotic pressure and plasma protein concentration in the dog. Am. J. Physiol. 233 (Heart Circ. Physiol. 2): H295–H298, 1977.
 529. Needleman, P., J. R. Douglas, Jr., B. Jakschik, P. B. Stoecklein, and E. M. Johnson, Jr.. Release of renal prostaglandin by catecholamines: relationship to renal endocrine function. J. Pharmacol. Exp. Ther. 188: 453–460, 1974.
 530. Neugarten, J., P. Alfino, C. Langs, R. G. Schacht, and D. S. Baldwin. Nephrotoxic serum nephritis with hypertension: perfusion pressure and permselectivity. Kidney Int. 33: 53–57, 1988.
 531. Neugarten, J., A. Kozin, and K. Cook. Effect of indo‐methacin on glomerular permselectivity and hemodynamics in nephrotoxic serum nephritis. Kidney Int. 36: 51–56, 1989.
 532. Ngai, P. K., and M. P. Walsh. Properties of caldesmon isolated from chicken gizzard. Biochem. J. 230: 695–707, 1985.
 533. Nishizuka, Y. The role of protein kinase C in cell surface signal transduction and tumor production. Nature 308: 693–698, 1984.
 534. Nobiling, R., C. P. Buhrle, E. Hackenthal, U. Helmchen, M. Steinhausen, A. Whalley, and R. Taugner. Ultrastructure, renin status, contractile and electrophysiological properties of the afferent glomerular arteriole in the rat hydronephrotic kidney. Virchows Arch. [A] 410: 31–42, 1986.
 535. O'Brien, I. P., and H. E. Williamson. The natriuretic action of histamine. Eur. J. Pharmacol. 16: 385–390, 1971.
 536. O'Brien, R. F., R. J. Robbins, and I. F. McMurtry. Endothelial cells in culture produce a vasoconstrictor substance. J. Cell. Physiol. 132: 263–270, 1987.
 537. Ochi, S., Y. Fujiwara, Y. Orita, Y. Tanaka, S. H. Shin, T. Takama, A. Wada, N. Ueda, and T. Kamada. Phosphoinositide turnover enhanced by angiotensin II in isolated rat glomeruli. Biochim. Biophys. Acta 927: 100–105, 1987.
 538. O'Connor, W. J., and R. A. Summerill. The effect of a meal of meat on glomerular filtration rate in dogs at normal urine flows. J. Physiol. (Lond.) 256: 81–91, 1976.
 539. Ogston, A. G. The spaces in a uniform random suspension of fibers. Trans. Faraday Soc. 54: 1754–1757, 1958.
 540. Ogston, A. G., B. N. Preston, and J. D. Wells. On the transport of compact particles through solutions of chain polymers. Proc. R. Soc. Lond. [Biol.] A333: 297–309, 1973.
 541. Okamura, T., and T. Inagami. Release of active and inactive renin from hog renal cortical slices in vitro. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F765–F771, 1984.
 542. Oken, D. E. An analysis of glomerular dynamics in rat, dog and man. Kidney Int. 22: 136–145, 1982.
 543. Oken, D. E. Theoretical analysis of pathogenetic mechanisms in experimental acute renal failure. Kidney Int. 24: 16–26, 1983.
 544. Oken, D. E., S. C. Cotes, and C. W. Mende. Micropuncture study of the tubular transport of albumin in rats with aminonucleoside nephrosis. Kidney Int. 1: 3–11, 1972.
 545. Oken, D. E., and W. Flamenbaum. Micropuncture studies of proximal tubule albumin concentration in normal and nephrotic rats. J. Clin. Invest. 50: 1498–1505, 1971.
 546. Oken, D. E., B. B. Kirschbaum, and D. M. Landwehr. Micropuncture studies of the mechanisms of normal and pathologic albuminuria. Contrib. Nephrol. 24: 1–7, 1981.
 547. Oken, D. E., S. R. Thomas, and D. C. Mikulecky. A network thermodynamic model of glomerular dynamics: application in the rat. Kidney Int. 19: 359–373, 1981.
 548. Oken, D. E., A. I. Wolfert, L. A. Laveri, and S. C. Choi. Effects of intra‐animal nephron heterogeneity on studies of glomerular dynamics. Kidney Int. 27: 871–878, 1985.
 549. Okuda, T., N. Yamashita, and K. Kurokawa. Angiotensin II and vasopressin stimulate calcium‐activated chloride conductance in rat mesangial cells. J. Clin. Invest. 78: 1443–1448, 1986.
 550. Oliver, J. A., R. R. Sciacca, and P. J. Cannon. Effect of inhibition of angiotensin II with captopril on renal overflow of norepinephrine. Hypertension. 4: 257–263, 1982.
 551. Oliver, J. A., R. R. Sciacca, J. Pinto, and P. J. Cannon. Participation of the prostaglandins in the control of renal blood flow during acute reduction of cardiac output in the dog. J. Clin. Invest. 67: 229–237, 1981.
 552. Olivetti, G., F. Giacomelli, and J. Wiener. Morphometry of superficial glomeruli in acute hypertension in the rat. Kidney Int. 27: 31–38, 1985.
 553. Olson, J. L., T. H. Hostetter, H. G. Rennke, B. M. Brenner, and M. A. Venkatachalam. Altered glomerular permselectivity and progressive sclerosis following extreme ablation of renal mass. Kidney Int. 22: 112–126, 1982.
 554. Olson, J. S., H. G. Rennke, and M. A. Venkatachalam. Alterations in the charge and size selectivity barrier of the glomerular filter in aminonucleoside nephrosis in rats. Lab. Invest. 44: 271–279, 1981.
 555. Oosawa, F. Polyelectrolytes. New York: Marcel Dekker, 1971.
 556. Opgennorth, T. J., J. P. Granger, A. Chakravarthy, F. G. Knox, and J. C. Romero. Effect of intrarenal angiotensin II infusion on the renal escape from mineralocorticoid. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F813–F818, 1985.
 557. Opgennorth, T. J., and J. E. Zehr. Role of calcium in the interaction of alpha and beta adrenoceptor‐mediated renin release in isolated, constant pressure perfused rabbit kidneys. J. Pharmacol. Exp. Ther. 227: 144–149, 1983.
 558. Orita, Y., Y. Fujiwara, S. Ochi, Y. Tanaka, and T. Kamada. Calcium activated, phospholipid‐dependent protein kinase in cultured rat mesangial cells. FEBS/Lett. 192: 155–158, 1985.
 559. Ortola, F. V., B. J. Ballerman, S. Anderson, R. E. Mendez, and B. M. Brenner. Elevated plasma atrial natriuretic peptide levels in diabetic rats: potential mediator of hyperfiltration. J. Clin. Invest. 80: 670–674, 1987.
 560. Osborn, J. L., G. F. DiBona, and M. D. Thames. Beta‐1 receptor mediation of renin secretion elicited by low frequency renal nerve stimulation. J. Pharmacol. Exp. Ther. 216: 265–269, 1981.
 561. Osborn, J. L., G. F. DiBona, and M. D. Thames. Role of renal α‐adrenoceptors mediating renin secretion. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F620–F626, 1982.
 562. Osborn, J. L., U. C. Kopp, M. D. Thomas, and G. F. DiBona. Interaction among renal nerves, prostaglandins, and renal arterial pressure in the regulatory of renin release. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F706–F713, 1984.
 563. Osborn, J. L., M. D. Thames, and G. F. DiBona. Role of macula densa in renal nerve modulation of renin secretion. Am. J. Physiol. 242 (Regulatory Integrative Comp. Physiol. 11): R367–R371, 1982.
 564. Osborn, J. L., M. D. Thames, and G. F. DiBona. Renal nerves moderate renin secretion during autoregulation. Proc. Soc. Exp. Biol. Med. 169: 432–437, 1982.
 565. Osborn, M. J., B. Droz, P. Meyer, and F. Morel. Angiotensin II: renal localization in glomerular mesangial cells by autoradiography. Kidney Int. 8: 245–254, 1975.
 566. Osgood, R. W., M. Patton, M. J. Hanley, M. Venkatachalam, H. J. Reineck, and J. H. Stein. In vitro perfusion of the isolated dog glomerulus. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F349–F354, 1983.
 567. Osswald, H., J. A. Haas, G. R. Marchand, and F. G. Knox. Glomerular dynamics in dogs at reduced renal artery pressure. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F25–F29, 1979.
 568. Osswald, H., W. S. Spielman, and F. G. Knox. Mechanism of adenosine‐mediated decreases in glomerular filtration rate in dogs. Circ. Res. 43: 465–469, 1978.
 569. Osswald, H., H. J. Schmitz, and R. Kemper. Renal action of adenosine: effect on renin secretion in the rat. Nauyn‐Schmiedeberg's Arch. Pharmacol. 303: 95–99, 1978.
 570. Ott, C. E., G. R. Marchand, J. A. Diaz‐Buxo, and F. G. Knox. Determinants of glomerular filtration rate in the dog. Am. J. Physiol. 231: 235–239, 1976.
 571. Paine, P. L., and P. Scherr. Drag coefficient for the movement of rigid spheres through liquid‐filled cylindrical pores. Biophys. J. 15: 1087–1091, 1975.
 572. Palmer, R. M. J., A. G. Ferrige, and S. Moncada. Nitric oxide release accounts for the biological activity of endothelium‐derived relaxing factor. Nature 327: 524–526, 1987.
 573. Palmer, R. M. J., D. D. Rees, D. S. Ashton, and S. Moncada. L‐arginine is the physiological precursor for the formation of nitric oxide in endothelium‐dependent relaxation. Biochem. Biophys. Res. Commun. 153: 1251–1256, 1988.
 574. Palmore, W. P. Glucagon and alanine induced increases of the canine renal glomerular filtration rate. Q. J. Exp. Physiol. 68: 319–327, 1983.
 575. Papenfuss, H. D., and J. F. Gross. The interaction between transmural fluid exchange and blood viscosity in narrow blood vessels. Biorheology 14: 217–228, 1977.
 576. Papenfuss, H. D., and J. F. Gross. Analytic study of the influence of capillary pressure drop and permeability on glomerular ultrafiltration. Microvasc. Res. 16: 59–72, 1978.
 577. Pappenheimer, J. R. Passage of molecules through capillary walls. Physiol. Rev. 33: 387–423, 1953.
 578. Pappenheimer, J. R., E. M. Renkin, and L. M. Borrero. Filtration, diffusion and molecular sieving through peripheral capillary membranes: a contribution to the pore theory of capillary permeability. Am. J. Physiol. 167: 13–46, 1951.
 579. Park, C. S., D. S. Han, and J. C. S. Fray. Calcium in the control of renin secretion: Ca2+ influx as an inhibitory signal. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F70–F74, 1981.
 580. Park, C. S., T. W. Honeyman, E. S. Chung, J. S. Lee, D. H. Sigman, and J. C. S. Fray. Involvement of calmodulin in mediating inhibitory action of intracellular Ca2+ on renin secretion. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F1055–F1062, 1986.
 581. Park, C. S., and R. L. Malvin. Calcium in the control of renin release. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F22–F25, 1978.
 582. Patek, R., and N. Beck. Prostacyclin (PGI2) and angiotensin II (Ang‐II) interaction in cyclic AMP (cAMP) in the isolated dog glomerulus, abstracted. Clin. Res. 27: 426a, 1979.
 583. Pelayo, J. C. Renal adrenergic effector mechanisms: glomerular sites for prostaglandin interaction. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F184–F190, 1988.
 584. Pelayo, J. C, and R. C. Blantz. Analysis of renal denervation in the hydropenic rat: interactions with angiotensin II. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F87–F95, 1984.
 585. Pelayo, J. C, M. G. Ziegler, and R. C. Blantz. Angiotensin II in adrenergic‐induced alterations in glomerular hemodynamics. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F799–F807, 1984.
 586. Pelayo, J. C, M. G. Ziegler, P. A. Jose, and R. C. Blantz. Renal denervation in the rat: analysis of glomerular and tubular function. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F70–F77, 1983.
 587. Pennell, J. P., N. Yanagawa, K. H. Hwang, M. M. Millard, and J. J. Bourgoignie. Glomerular selective permeability to macromolecular neutral dextrans in experimental diabetes. Diabetologia 20: 223–227, 1981.
 588. Pessina, A. C., B. Hulme, and W. S. Peart. Renin induced proteinuria and the effects of adrenalectomy. II. Morphology in relation to function. Proc. R. Soc. Lond [Biol] 180: 61–71, 1972.
 589. Peterson, C, B. Madsen, A. Perlman, A. Y. M. Chan, and B. D. Myers. Atrial natriuretic peptide and the renal response to hypervolemia in nephrotic humans. Kidney Int. 34: 825–831, 1988.
 590. Petrulis, A. S., M. Aikawa, and M. J. Dunn. Prostaglandin and thromboxane synthesis by rat glomerular epithelial cells. Kidney Int. 20: 469–474, 1981.
 591. Pettersson, A., S.‐E. Ricksten, A. C. Towle, J. Hedner, and T. Hedner. Effect of blood volume expansion and sympathetic denervation on plasma levels of atrial natriuretic factor (ANF) in the rat. Acta Physiol. Scand. 124: 309–311, 1985.
 592. Pfeilschifter, J. Tumour promotor 12–0‐tetradecanoyl‐phorbol 13‐acetate inhibits angiotensin II induced inositol phosphate production and cytosolic Ca2+ rise in rat renal mesangial cells. FEBS Lett. 203: 262–266, 1986.
 593. Pfeilschifter, J., and C. Bauer. Pertussis toxin abolishes angiotensin II‐induced phosphoinositide hydrolysis and prostaglandin synthesis in rat renal mesangial cells. Biochem. J. 236: 289–294, 1986.
 594. Pfeilschifter, J., A. Kurtz, and C. Bauer. Activation of phospholipase C and prostaglandin synthesis by [arginine] vasopressin in cultures. Biochem. J. 223: 855–859, 1984.
 595. Pfeilschifter, J., A. Kurtz, and C. Bauer. Role of phospholipase C and protein kinase C in vasoconstrictor‐induced prostaglandin synthesis in cultured renal mesangial cells. Biochem. J. 234: 125–130, 1986.
 596. Phillips, R. J., W. M. Deen, and J. F. Brady. Hindered transport of spherical macromolecules in fibrous membranes and gels. AIChE J. 35: 1761–1769, 1989.
 597. Pinnick, R. V., and V. J. Savin. Filtration by superficial and deep glomeruli of normovolemic and volume‐depleted rats. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F86–F91, 1986.
 598. Pitcock, J. A., P. M. Hartroft, and L. N. Newmark. Increased renal pressor activity (renin) in sodium deficient rats and correlation with juxtaglomerular cell granulation. Proc. Soc. Exp. Biol. Med. 100: 868–869, 1959.
 599. Pitts, R. F. The effects of infusing glycine and varying the dietary protein intake on renal hemodynamics in the dog. Am. J. Physiol. 142: 355–365, 1944.
 600. Pitts, R. F., and W. D. Lotspeich. Bicarbonate and the renal regulation of acid base balance. Am. J. Physiol. 147: 138–154, 1946.
 601. Podjarny, E., J. Shapira, M. Rathaus, N. Kariv, and J. Bernheim. Effect of angiotensin II on prostanoid synthesis in isolated rat glomeruli. Clin. Sci. 70: 527–530, 1986.
 602. Pratt, R. E., J. A. Flynn, P. M. Hobart, M. Paul, and V. J. Dzau. Different secretory pathways of renin from mouse cells transfected with the human renin gene. J. Biol. Chem. 263: 3137–3141, 1988.
 603. Pratt, R. E., A. J. Ouellette, and V. J. Dzau. Biosynthesis of renin: multiplicity of active and intermediate forms. Proc. Natl. Acad. Sci. USA 80: 6809–6813, 1983.
 604. Premen, A. J. Potential mechanisms mediating postprandial renal hyperemia and hyperfiltration. FASEB J. 2: 131–137, 1988.
 605. Premen, A. J., J. E. Hall, and M. J. Smith, Jr.. Postprandial regulation of renal hemodynamics: role of pancreatic glucagon. Am. J. Physiol. 248: (Renal Fluid Electrolyte Physiol. 17): F656–F662, 1985.
 606. Printz, M. P., J. M. Printz, and T. J. Gregory. Identification of angiotensin in animal brain homogenates. Circ. Res. 43 (Suppl. I): I‐21–I‐27, 1978.
 607. Proud, D., S. Nakamura, F. A. Carone, P. L. Herring, M. Kawumura, T. Inagami, and J. L. Pisano. Kallikrein‐kinin and renin‐angiotensin systems in rat renal lymph. Kidney Int. 25: 880–885, 1984.
 608. Pullman, T. N., A. S. Alving, R. J. Dern, and M. Landowne. The influence of dietary protein intake on specific renal function in normal man. J. Lab. Clin. Med. 44: 320–332, 1954.
 609. Radke, K. J., L. R. Willis, G. W. Zimmermann, N. H. Weinberger, and E. W. Selkurt. Effects of histamine‐receptor antagonists on histamine‐stimulated renin secretion. Eur. J. Pharmacol. 123: 421–426, 1986.
 610. Reinhardt, H. W., G. Kaczmarczyk, K. Fahrenhorst, I. Blendinger, M. Gotzka, U. Kuhl, and J. Riedel. Postprandial changes of renal blood flow. Pflugers Arch. 354: 287–297, 1975.
 611. Remuzzi, A., C. Battaglia, L. Rossi, C. Zoja, and G. Remuzzi. Glomerular size selectivity in nephrotic rats exposed to diets with different protein content. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F318–F327, 1987.
 612. Remuzzi, A., and W. M. Deen. Theoretical effects of a distribution of capillary dimensions on glomerular ultrafiltration. Microvasc. Res. 32: 131–144, 1986.
 613. Remuzzi, A., and W. M. Deen. Theoretical effects of network structure on glomerular filtration of macromolecules. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F152–F158, 1989.
 614. Remuzzi, A., S. Puntorieri, C. Battaglia, T. Bertani, and G. Remuzzi. Angiotensin converting enzyme inhibition ame‐liorates glomerular filtration of macromolecules and water and lessens glomerular injury in the rat. J. Clin. Invest. 85: 541–549, 1990.
 615. Renkin, E. M. Filtration, diffusion, and molecular sieving through porous cellulose membranes. J. Gen. Physiol. 38: 225–243, 1954.
 616. Renkin, E. M., and J. P. Gilmore. Glomerular filtration. In: Handbook of Physiology. Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington, DC: Am. Physiol. Soc, 1973, Sect. 8, Chapter 9, 185–248.
 617. Rennke, H. G., Y. Patel, and M. A. Venkatachalam. Glomerular filtration of proteins: clearance of anionic, neutral, and cationic horseradish peroxidase in the rat. Kidney Int. 13: 324–328, 1978.
 618. Rennke, H. G., and M. A. Venkatachalam. Glomerular permeability to macromolecules. Effect of molecular configuration on the fractional clearance of uncharged dextran and neutral horseradish peroxidase in the rat. J. Clin. Invest. 63: 713–717, 1979.
 619. Ridge, S., R. V. Patak, and V. J. Savin. Decreased ultrafiltration coefficient of glomeruli isolated from volume‐depleted rats. J. Lab. Clin. Med. 103: 363–372, 1984.
 620. Riggs, D. S. Control Theory and Physiological Feedback Mechanisms. Baltimore: Williams and Wilkins, 1970.
 621. Robertson, C. R., and W. M. Deen. Mass transfer in the renal microcirculation. In: Advances in Biomedical Engineering, edited by D. O. Cooney. New York: Marcel Dekker, 1980, pt. 1, p. 143–218.
 622. Robertson, C. R., W. M. Deen, J. L. Troy, and B. M. Brenner. Dynamics of glomerular ultrafiltration in the rat. III. Hemodynamics and autoregulation. Am. J. Physiol. 223: 1191–1200, 1972.
 623. Robinson, G. B., and R. J. Brown. A method for assessing the molecular sieving properties of renal basement membranes in vitro. FEBS Lett. 78: 189–193, 1977.
 624. Robinson, G. B., and T. G. Cotter. Studies on the filtration properties of isolated renal basement membrane. Biochim. Biophys. Acta 551: 85–94, 1979.
 625. Robinson, G. B., and F. S. Ligler. The effects of protein extraction on the structure and filtration properties of renal basement membranes. Eur. J. Biochem. 111: 485–490, 1980.
 626. Robson, A. M., J. Giangiacomo, R. A. Kienstra, S. T. Naqvi, and J. R. Ingelfinger. Normal glomerular permeability and its modification by minimal change nephrotic syndrome. J. Clin. Invest. 54: 1190–1199, 1974.
 627. Rosenblum, W. I., and G. H. Nelson. Endothelium‐dependent constriction demonstrated in vivo in mouse cerebral arterioles. Circ. Res. 63: 837–843, 1988.
 628. Rosivall, L., and L. G. Navar. Effects on renal hemodynamics of intra‐arterial infusions of angiotensin I and II. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F181–F197, 1983.
 629. Rumf, K. W., B. Schachterle, S. Schmidt, K. Becker, and F. Scheler. Different responses of active and inactive plasma renin to various stimuli. Clin. Sci. Mol. Med. 55: 155s–157s, 1978.
 630. Ruyter, J. H. C. Über einen merkwürdigen abschmitt der vasa afferentia in der mäuseniere. Z. Zellforsch. Mikrosk. Anat. 2: 242–248, 1925.
 631. Ryan, G. B., D. Alcorn, J. P. Coghlan, P. A. Hill, and R. Jacobs. Ultrastructural morphology of granule release from juxtaglomerular myoepithelioid and peripolar cells. Kidney Int. 22 (Suppl. 12): S3–S8, 1982.
 632. Satoh, S., and B. G. Zimmerman. Influence of the renin‐angiotensin system on the effect of prostaglandin synthesis inhibitors in the renal vasculature. Circ. Res. 36, 37 (Suppl. I): 89–I96, 1975.
 633. Savin, V. J. Ultrafiltration in single isolated human glomeruli. Kidney Int. 24: 748–753, 1983.
 634. Savin, V. J. In vitro effects of angiotensin II on glomerular function. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F627–F634, 1986.
 635. Savin, V. J., H. B. Lindsley, R. B. Nagle and R. Cachia. Ultrafiltration coefficient and glomerular capillary resistance in a model of immune complex glomerulonephritis. Kidney Int. 21: 28–35, 1982.
 636. Savin, V. J., R. V. Patak, G. Marr, A. S. Hermreck, S. M. Ridge, and K. Lake. Glomerular ultrafiltration coefficient after ischemic renal injury in dogs. Circ. Res. 53: 439–447, 1983.
 637. Savin, V. J., and D. A. Terreros. Filtration in single isolated mammalian glomeruli. Kidney Int. 20: 188–197, 1981.
 638. Scatchard, G., I. H. Scheinberg, and S. H. Armstrong, Jr.. Physical chemistry of protein solutions. IV. The combination of human serum albumin with chloride ion. J. Am. Chem. Soc. 72: 535–540, 1950.
 639. Schambelan, M., and S. Blake. Increased prostaglandin production by glomeruli isolated from rats with streptozotocin‐induced diabetes mellitus. J. Clin. Invest. 75: 404–412, 1985.
 640. Scharschmidt, L. A., J. G. Douglas, and M. J. Dunn. Angiotensin II and eicosanoids in the control of glomerular size in the rat and human. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F348–F356, 1986.
 641. Scharschmidt, L. A., and M. J. Dunn. Prostaglandin synthesis by rat glomerular mesangial cells in culture. J. Clin. Invest. 71: 1756–1764, 1983.
 642. Scharschmidt, L. A., E. Lianos and M. J. Dunn. Arachidonate metabolites and the control of glomerular function. Federation Proc. 42: 3058–3063, 1983.
 643. Scherf, H., A. S. Nies, U. Schwertschlag, M. Hughes, and J. G. Gerber. Hemodynamic effects of platelet activating factor in the dog kidney in vivo. Hypertension (Dallas) 8: 737–741, 1986.
 644. Schiller, A., G. Reb, and R. Taugner. Excretion and intrarenal distribution of low‐molecular polyvinylpyrrolidone and inulin in rats. Arzneimittelforschung 28: 2064–2070, 1978.
 645. Schlondorff, D. The glomerular mesangial cell: an expanding role for a specialized pericyte. FASEB J. 1: 272–281, 1987.
 646. Schlondorff, D., H. S. Aynedjian, J. A. Satriano, and N. Bank. In vitro demonstration of glomerular PGE2 responses to physiological manipulators and experimental agents. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F717–723, 1987.
 647. Schlondorff, D., S. DeCandido, and J. A. Satriano. Angiotensin II stimulates phospholipases, C and A2 in cultured rat mesangial cells. Am. J. Physiol. 253 (Cell Physiol. 22): C113–C120, 1987.
 648. Schlondorff, D., P. Goldwasser, R. Neuwirth, J. A. Satriano, and K. L. Clay. Production of platelet activating factor in glomerulus and cultured glomerular mesangial cells. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F1123–F1127, 1986.
 649. Schlondorff, D., and R. Neuwirth. Platelet‐activating factor and the kidney. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F1–F11, 1986.
 650. Schlondorff, D., J. Perez, and J. A. Satriano. Differential stimulation of PGE2 synthesis in mesangial cells by angiotensin and A23187. Am. J. Physiol. 248 (Cell Physiol. 17): C119–C126, 1985.
 651. Schlondorff, D., S. Roczniak, J. A. Satriano, and V. W. Folkert. Prostaglandin synthesis by isolated rat glomeruli: effect of angiotensin II. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 8): F486–F495, 1980.
 652. Schlondorff, D., J. A. Satriano, and S. DeCandido. Different concentrations of pertussis toxin have opposite effects on agonist‐induced PGE2 formation in mesengial cells. Biochem. Biophys. Res. Commun. 141: 39–45, 1986.
 653. Schlondorff, D., J. A. Satriano, J. Hagege, J. Perez, and L. Baud. Effect of platelet‐activating factor and serum‐treated zymosan on prostaglandin E2 synthesis, arachidonic acid release, and contraction of cultured rat mesangial cells. J. Clin. Invest. 73: 1227–1231, 1984.
 654. Schlondorff, D., P. Yoo, and B. E. Alpert. Stimulation of adenylate cyclase in isolated rat glomeruli by prostaglandins. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F458–F464, 1978.
 655. Schnermann, J., J. P. Briggs, and P. C. Weber. Tubuloglomerular feedback, prostaglandins, and angiotensin in the autoregulation of glomerular filtration rate. Kidney Int. 25: 53–64, 1984.
 656. Schnermann, J., A. E. G. Persson, and B. Agerup. Tubuloglomerular feedback: nonlinear relation between glomerular hydrostatic pressure and loop of Henle perfusion rate. J. Clin. Invest. 52: 862–869, 1973.
 657. Schnermann, J., D. W. Ploth, and M. Hermle. Activation of tubuloglomerular feedback by chloride transport. Pflugers Arch. 362: 229–240, 1976.
 658. Schnermann, J., F. S. Wright, J. M. Davis, W. V. Stackelberg, and G. Grill. Regulation of superficial nephron filtration rate by tubulo‐glomerular feedback. Pflugers Arch. 318: 147–175, 1970.
 659. Schor, N., I. Ichikawa, and B. M. Brenner. Glomerular adaptation to chronic dietary salt restriction or excess. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F428–F436, 1980.
 660. Schor, N., I. Ichikawa, and B. M. Brenner. Mechanisms of action of various hormones and vasoactive substances on glomerular ultrafiltration in the rat. Kidney Int. 20: 442–451, 1981.
 661. Schor, N., I. Ichikawa, H. G. Rennke, J. L. Troy, and B. M. Brenner. Pathophysiology of altered glomerular function in aminoglycoside‐treated rats. Kidney Int. 19: 288–296, 1981.
 662. Schryver, S., E. Sanders, W. H. Beierwaltes, and J. C. Romero. Cortical distribution of prostaglandin and renin in isolated dog glomeruli. Kidney Int. 25: 512–518, 1984.
 663. Schwartzman, M., E. Liberman, and A. Raz. Bradykinin and angiotensin II activation of arachidonic acid deacylation and prostaglandin E2 function in rabbit kidney. J. Biol. Chem. 256: 2329–2333, 1981.
 664. Schwertschlag, U., and E. Hackenthal. Histamine stimulates renin release from the isolated perfused rat kidney. Naunyn Schmiedebergs Arch. Pharmacol. 319: 239–242, 1982.
 665. Sedor, J. R., and H. E. Abboud. Actions and metabolism of histamine in glomeruli and tubules of the human kidney. Kidney Int. 26: 144–152, 1984.
 666. Sedor, J. R., and H. E. Abboud. Histamine modulates contraction and cyclic nucleotides in cultured rat mesangial cells: differential effects mediated by H1 and H2 receptors. J. Clin. Invest. 75: 1679–1689, 1985.
 667. Selkurt, E. E. Influence of histamine on electrolyte and water handling of the canine kidney. Proc. Soc. Exp. Biol. Med. 155: 605–610, 1977.
 668. Selkurt, E. E., P. W. Hall, and M. P. Spencer. Influence of graded arterial decrement on renal clearance of creatinine, p‐aminohippurate and sodium. Am. J. Physiol. 159: 369–378, 1949.
 669. Seri, I., and A. Aperia. Contribution of dopamine2 receptors to dopamine‐induced increase in glomerular filtration rate. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F196–F201, 1988.
 670. Seymour, A. A., J. O. Davis, R. H. Freeman, J. M. De‐Forrest, B. R. Rowe, and G. M. Williams. Renin release from filtering and nonfiltering kidneys stimulated by PGI2 and PGD2. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F285–F290, 1979.
 671. Shah, S. V. Effect of enzymatically generated reactive oxygen metabolites on the cyclic nucleotide content of isolated rat glomeruli. J. Clin. Invest. 74: 393–401, 1984.
 672. Shah, S. V., T. E. Northrup, Y. S. F. Hui, and T. P. Dousa. Action of serotonin (5‐hydroxytryptamine) on cyclic nucleotides in glomeruli of rat renal cortex. Kidney Int. 15: 463–472, 1979.
 673. Shannon, J. A., N. Jolliffe, and H. W. Smith. The excretion of urine in the dog. IV. The effect of maintenance diet, feeding, etc., upon the quantity of glomerular filtrate. Am. J. Physiol. 101: 625–638, 1932.
 674. Shea, S. M. Glomerular hemodynamics and vascular structure. Microvasc. Res. 18: 129–143, 1979.
 675. Shea, S. M. The relation between structure and function in the glomerular capillary bed. Acta Endocrinol. [Suppl.] (Copenh.) 242: 47–50, 1981.
 676. Shea, S. M., and A. B. Morrison. A stereological study of the glomerular filter in the rat: Morphometry of the slit diaphragm and basement membrane. J. Cell Biol. 67: 436–443, 1975.
 677. Shea, S. M., and J. Raskova. Glomerular hemodynamics and vascular structure in uremia: a network analysis of glomerular path lengths and maximal blood transit times computed for a microvascular model reconstructed from subserial ultrathin sections. Microvasc. Res. 28: 37–50, 1984.
 678. Shemesh, O., W. M. Deen, B. M. Brenner, E. McNeely, and B. D. Myers. Effect of colloid volume expansion on glomerular barrier size‐selectivity in human subjects. Kidney Int. 29: 916–923, 1986.
 679. Shemesh, O., J. C. Ross, W. M. Deen, G. W. Grant, and B. D. Myers. Nature of the glomerular capillary injury in human membranous glomerulopathy. J. Clin. Invest. 77: 868–877, 1986.
 680. Shin, S.‐H., Y. Fujiwara, A. Wada, T. Takama, Y. Orita, T. Kamada, and K. Tagawa. Angiotensin II‐induced increase in inositol 1,4,5‐trisphosphate in cultured rat mesangial cells: evidence by refined high performance liquid chromatography. Biochem. Biophys. Res. Commun. 142: 70–77, 1987.
 681. Shipley, R. E., and R. S. Study. Changes in renal blood flow, extraction of inulin, glomerular filtration rate, tissue pressure, and urine flow with acute alterations of renal arterial blood pressure. Am. J. Physiol. 167: 676–688, 1951.
 682. Schultz, P. J., A. E. Schorer, and L. Raij. Effects of endothelium‐derived relaxing factor and nitric oxide on rat mesangial cells. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F162–F167, 1990.
 683. Shultz, P. J., J. R. Sedor, and H. E. Abboud. Dopaminergic stimulation of cAMP accumulation in cultured rat mesangial cells. Am. J. Physiol. 235 (Heart Circ. Physiol. 4): H358–H364, 1978.
 684. Simonson, M. S., and M. J. Dunn. Leukotriene C4 and D4 contract rat glomerular mesangial cells. Kidney Int. 30: 524–531, 1986.
 685. Simonson, M., and M. J. Dunn. Endothelin‐1 stimulates contraction of rat glomerular mesangial cells and potentiates β‐adrenergic meditated cyclic adenosine monophosphate accumulation. J. Clin. Invest. 85: 790–797, 1990.
 686. Simonson, M. S., S. Wann, P. Mené, G. R. Dubyak, M. Kester, Y. Nakazato, J. R. Sedor, and M. J. Dunn. Endothelin stimulates phospholipase C, Na+/H+ exchange, C‐fos expression, and mitogenesis in rat mesangial cells. J. Clin. Invest 87: 708–712, 1989.
 687. Skorecki, K. L., B. J. Ballermann, H. G. Rennke, and B. M. Brenner. Angiotensin II receptor regulation in isolated renal glomeruli. Federation Proc. 42: 3064–3070, 1983.
 688. Smaje, L., B. W. Zweifach, and M. Intaglietta. Micro‐pressures and capillary filtration coefficients in single vessels of the cremaster muscle of the rat. Microvasc. Res. 2: 96–110, 1970.
 689. Smith, H. W., H. Chasis, W. Goldring, and H. A. Ranges. Glomerular dynamics in the normal human kidney. J. Clin. Invest. 19: 751–764, 1940.
 690. Smith, J. B. Angiotensin‐receptor signalling in cultured vascular smooth muscle cells. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F759–F769, 1986.
 691. Smith, J. B., and T. A. Brock. Analysis of angiotensin‐stimulated sodium transport in cultured smooth muscle cells from rat aorta. J. Cell Physiol. 114: 284–290, 1983.
 692. Smith, J. B., L. Smith, E. R. Brown, D. Barnes, M. A. Sabir, J. S. Davis, and R. V. Farese. Angiotensin II rapidly increases phosphatidate‐phosphoinositide synthesis and phosphoinositide hydrolysis and mobilizes intracellular calcium in cultured arterial muscle cells. Proc. Natl. Acad. Sci. USA 81: 7812–7816, 1984.
 693. Smith, J. M., D. R. Mouw, and A. J. Vander. Effect of parathyroid hormone on plasma renin activity and sodium excretion. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F311–F319, 1979.
 694. Smith, W. L., and T. G. Bell. Immunohistochemical localization of the prostaglandin‐forming cyclooxygenase in renal cortex. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F451–F457, 1978.
 695. Smith, S., S. Anderson, B. J. Ballerman, and B. M. Brenner. Role of atrial natriuretic peptide in adaptation of sodium excretion with reduced renal mass. J. Clin. Invest. 77: 1395–1398, 1986.
 696. Sobue, K., K. Takahashi, and I. Wakabayashi. Caldesmon regulates the tropomyosin‐enhanced actin‐myosin interaction in gizzard smooth muscle. Biochem. Biophys. Res. Commun. 132: 645–651, 1985.
 697. Somylo, A. P. Excitation‐contraction coupling and the ultra‐structure of smooth muscle. Circ. Res. 57: 497–507, 1985.
 698. Spiegel, A. M. Signal transduction by guanine nucleotide binding proteins. Mol. Cell Endocrinol. 49: 1–16, 1987.
 699. Spiegler, K. S., and O. Kedem. Thermodynamics of hyper‐filtration (reverse osmosis): criteria for efficient membranes. Desalination 1: 311–326, 1966.
 700. Spielman, W. S., and H. Osswald. Characterization of the postocclusive response of renal blood flow in the cat. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F286–F290, 1978.
 701. Spielman, W. S., and C. I. Thompson. A proposed role for adenosine in the regulation of renal hemodynamics and renin release. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F423–F435, 1982.
 702. Sraer, J., N. Ardaillou, J.‐D. Sraer, and R. Ardaillou. In vitro prostaglandin synthesis by human glomeruli and papillae. Prostaglandins 23: 855–864, 1982.
 703. Sraer, J., R. Ardaillou, M. Loreau, and J. D. Sraer. Evidence for parathyroid hormone sensitive adenylate cyclase in rat glomeruli. Mol. Cell Endocrinol. 1: 285–294, 1974.
 704. Sraer, J. D., J. Sraer, R. Ardaillou, and O. Mimouine. Evidence for renal glomerular receptors for angiotensin II. Kidney Int. 6: 241–246, 1974.
 705. Stacy, D. L., J. W. Scott, and J. P. Granger. Control of renal function during intrarenal infusion of endothelin. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F1232–F1236, 1990.
 706. Stahl, R. A. K., M. Paravicini, and P. Schollmeyer. Angiotensin II stimulation of prostaglandin E2 and 6‐keto‐F1α formation by isolated human glomeruli. Kidney Int. 26: 30–34, 1984.
 707. Stein, J. H., R. C. Congbalay, D. L. Karsh, R. W. Osgood, and T. F. Ferris. The effect of bradykinin on proximal tubular sodium reabsorption in the dog: evidence for functional nephron heterogeneity. J. Clin. Invest. 1709–1721, 1972.
 708. Steiner, R. W., B. J. Tucker, and R. C. Blantz. Glomerular hemodynamics in rats with chronic sodium depletion. J. Clin. Invest. 64: 503–512, 1979.
 709. Steinhausen, M., H. Kücherer, N. Parekh, S. Weis, D. L. Wiegman, and K‐R. Wilhelm. Angiotensin II control of the renal microcirculation: effect of blockade by saralasin. Kidney Int. 30: 56–61, 1986.
 710. Steinhausen, M., H. Snoei, N. Parekh, R. Baker, and P. C. Johnson. Hydronephrosis: a new method to visualize vas afferens, efferens and glomerular network. Kidney Int. 23: 794–806, 1983.
 711. Steinhausen, M., R. B. Sterzel, J. T. Fleming, R. Kühn, and S. Weis. Acute and chronic effects of angiotensin II on the vessels of the split hydronephrotic kidney. Kidney Int. 31 (Suppl. 20): S64–S73, 1987.
 712. Steinhausen, M., S. Weis, J. Fleming, R. Dussel, and N. Parekh. Responses of in vivo renal microvessels to dopamine. Kidney Int. 30: 361–370, 1986.
 713. Steven, K., and S. Strobaek. Renal corpuscular hydrodynamics: digital computer simulation. Pflugers Arch. 348: 317–331, 1974.
 714. Stork, J. E., T. Y. Shen, and M. J. Dunn. Stimulation of prostaglandin E2 and thromboxane B2 production in cultured rat mesangial cells by platelet activating factor: inhibition by a specific receptor antagonist (abstract). Kidney Int. 27: 267, 1985.
 715. Stolte, H., H.‐J. Schurek, and J. M. Alt. Glomerular albumin filtration: a comparison of micropuncture studies in the isolated perfused kidney with in‐vivo experimental conditions. Kidney Int. 16: 377–384, 1979.
 716. Striker, G. E., C. Soderland, D. F. Bowen‐Pope, A. M. Gown, G. Schmer, A. Johnson, D. Luchtel, R. Ross, and L. J. Striker. Isolation, characterization, and propagation in vitro of human glomerular endothelial cells. J. Exp. Med. 160: 323–328, 1984.
 717. Sugita, K. Oranda‐Iji‐Mondo. Osaka, Tobushorin, 1795.
 718. Susic, H., and K. U. Malik. Alteration by arachidonic acid of the effect of vasoconstrictor stimuli in the canine kidney. J. Pharmacol. Exp. Ther. 219: 377–382, 1981.
 719. Sutton, R. A. L., and J. H. Dirks. Calcium and magnesium: renal handling and disorders of metabolism. In: The Kidney, edited by B. M. Brenner and F. C. Rector Jr. Philadelphia: W. B. Saunders, 1986, p. 551–618.
 720. Sweatt, J. D., I. A. Blair, E. J. Cragoe, and L. E. Limbird. Inhibitors of Na+/H+ exchange block epinephrine and ADP‐induced stimulation of human platelet phospholipase C by blockade of arachidonic acid release at a prior step. J. Biol. Chem. 261: 8660–8666, 1986.
 721. Sweatt, J. D., T. M. Connolly, E. J. Cragoe, and L. E. Limbird. Evidence that Na+/H+ exchange regulates receptor‐mediated phospholipase A2 activation in human platelets. J. Biol. Chem. 261: 8667–8673, 1986.
 722. Takahashi, S., K. Murakami, and Y. Miyake. Activation of prorenin by kidney cathesin B isozymes. J. Biochem. 91: 419–422, 1982.
 723. Takeda, K., H. Meyer‐Lehnert, J. K. Kim, and R. W. Schrier. Effect of angiotensin II on Ca2+ kinetics and contraction in cultured rat glomerular mesangial cells. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F254–F266, 1988.
 724. Takuwa, Y., Y. Kasuya, N. Takuwa, M. Yudo, M. Yanagisawa, K. Goto, T. Masaki, and K. Yamashita. Endothelin receptor is coupled to phospholipase C via a pertussis toxin‐insensitive guanine nucleotide‐binding regulatory protein in vascular smooth muscle cells. J. Clin. Invest. 85: 653–658, 1990.
 725. Tanford, C. Physical Chemistry of Macromolecules. New York, Wiley, 1961.
 726. Tanford, C, S. A. Swanson, and W. S. Shore. Hydrogen ion equilibria of bovine serum albumin. J. Am. Chem. Soc. 77: 6414–6421, 1955.
 727. Tank, G. W., and R. C. Herrin. Effect of protein and amino acids upon renal function in the dog. Am. J. Physiol. 178: 165–167, 1954.
 728. Taugner, C. H., K. Paulsen, E. Hackenthal, and R. Taugner. Immunocytochemical localization of renin in mouse kidney. Histochemistry 62: 19–27, 1979.
 729. Taugner, R., C. P. Bührle, R. Nobiling, and H. Kirschke. Coexistence of renin and cathepsin B in epithelioid cell secretory granules. Histochemistry 83: 103–108, 1985.
 730. Taugner, R., and G. Ganten. The localization of converting enzyme in kidney vessels of the rat. Histochemistry 75: 191–201, 1982.
 731. Taugner, R., E. Hackenthal, T. Inagami, R. Nobiling, and K. Paulsen. Vascular and tubular renin in the kidneys of mice. Histochemistry 75: 473–484, 1982.
 732. Taugner, R., E. Hackenthal, R. Nobiling, M. Harlacher, and G. Reb. The distribution of renin in the different segments of the renal arterial tree. Histochemistry 73: 75–88, 1981.
 733. Taugner, R., E. Hackenthal, E. Rix, R. Nobiling, and K. Paulsen. Immunocytochemistry of the renin‐angiotensin system: renin, angiotensinogen, angiotensin I, angiotensin II, and converting enzyme in the kidneys of mice, rats and tree shrews. Kidney Int. S33–S43, 1982.
 734. Taugner, R., M. Marin‐Grez, R. Keilbach, E. Hackenthal, and R. Nobiling. Immunoreactive renin and angiotensin II in the afferent glomerular arterioles of rats with hypertension due to unilateral renal artery constriction. Histochemistry 76: 61–69, 1982.
 735. Taugner, R., S. Yokota, C. P. Bührle, and E. Hackenthal. Cathepsin D coexists with renin in the secretory granules of juxtaglomerular epithelioid cells. Histochemistry 84: 19–22, 1986.
 736. Thomas, C. E., P. D. Bell, and L. G. Navar. Glomerular filtration dynamics in the dog during elevated plasma colloid osmotic pressure. Kidney Int. 15: 502–512, 1979.
 737. Thomas, C. E., P. D. Bell, and L. G. Navar. Influence of bradykinin and papaverine on renal and glomerular hemodynamics in dogs. Renal Physiol. 5: 197–205, 1982.
 738. Thomas, C. E., C. E. Ott, P. D. Bell, F. A. Knox, and L. G. Navar. Glomerular filtration dynamics during renal vasodilation with acetylcholine in the dog. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F606–F611, 1983.
 739. Thurau, K. Renal hemodynamics. Am. J. Med. 36: 698–719, 1964.
 740. Thurau, K., H. Dahlheim, and P. Granger. On the local formation of angiotensin at the site of the juxtaglomerular apparatus. In: Proc. Int. Congr. Nephrol. 4th. 1970, vol. 2, p. 24–30.
 741. Thurau, K. W. C., H. Dahlheim, A. Grüner, J. Mason, and P. Granger. Activation of renin in the single juxtaglomerular apparatus for sodium chloride in the tubular fluid at the macula densa. Circ. Res. 30, 31 (Suppl. II): II182–II186, 1972.
 742. Thurau, K., A. Grüner, J. Mason, and H. Dahlheim. Tubular signal for the renin activity in the juxtaglomerular apparatus. Kidney Int. 22: S55–s62, 1982.
 743. Thurau, K., J. Schnermann, W. Nagel, M. Horster, and M. Wahl. Composution of tubular fluid in the macula densa segment as a factor regulating the function of the juxtaglomerular apparatus. Circ. Res. 20, 21 (Suppl. II: II79–II89, 1967.
 744. Tigerstedt, R., and P. G. Bergman. Niere und kreislauf. Skand. Arch. Physiol. 8: 223–271, 1898.
 745. Tiggler, R. G. W. L., B. Hulme, and P. G. A. B. Wijdeveld. Effect of indomethacin on glomerular permeability in the nephrotic syndrome. Kidney Int. 16: 312–321, 1979.
 746. Tobian, L., J. Thompson, R. Twedt, and J. Janecek. The granulation of juxtaglomerular cells in renal hypertension, deoxycorticosterone and postdeoxycorticosterone hypertension, adrenal regeneration hypertension, and adrenal insufficiency. J. Clin. Invest. 37: 660–671, 1958.
 747. Tobian, L., J. Janecek, and A. Tamboulian. Correlation between granulation of juxtaglomerular cells and extractable renin in rats with experimental hypertension. Proc. Soc. Exp. Biol. Med. 100: 94–96, 1959.
 748. Tobian, L., A. Tomboulian, and J. Janacek. The effect of high perfusion pressures on the granulation of juxtaglomerular cells in an isolated kidney. J. Clin. Invest. 38: 605–610, 1959.
 749. Tolins, J. P., R. M. J. Palmer, S. Moncada, and L. Raij. Role of endothelium‐derived relaxing factor in regulation of renal hemodynamic responses. Am. J. Physiol. 258 (Heart Circ. Physiol. 27): H655–H662, 1990.
 750. Tomlanovich, S., W. M. Deen, H. W. Jones III, H. C. Schwartz, and B. D. Myers. Functional nature of glomerular injury in progressive diabetic glomerulopathy. Diabetes 36: 556–565, 1987.
 751. Torres, V. E., T. E. Northrup, R. M. Edwards, S. Shah, and T. P. Dousa. Modulation of cyclic nucleotides in isolated rat glomeruli. J. Clin. Invest. 62: 1334–1343, 1978.
 752. Torreti, J. Sympathetic control of renin release. Annu. Rev. Pharmacol. Toxicol. 22: 167–192, 1982.
 753. Troyer, D. A., J. I. Kreisberg, D. W. Schwertz, and M. A. Venkatachalam. Effects of vasopressin on phosphoinositides and prostaglandin production in cultured mesangial cells. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F139–F147, 1985.
 754. Tucker, B. J., and R. C. Blantz. Factors determining superficial nephron filtration in the mature, growing rat. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F97–F104, 1977.
 755. Tucker, B. J., and R. C. Blantz. Effects of glomerular filtration dynamics on the glomerular permeability coefficient. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F245–F254, 1981.
 756. Tucker, B. J., and R. C. Blantz. Mechanisms of altered glomerular hemodynamics during chronic sodium depletion. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F11–F18, 1983.
 757. Tucker, B. J., and R. C. Blantz. Effect of furosemide administration on glomerular and tubular dynamics in the rat. Kidney Int. 26: 112–121, 1984.
 758. Tucker, B. J., C. A. Mundy, A. R. Maciejewski, M. P. Printz, M. G. Ziegler, J. C. Pelayo, and R. C. Blantz. Changes in glomerular hemodynamic response to angiotensin II after subacute renal denervation in rats. J. Clin. Invest. 78: 680–688, 1986.
 759. Ueda, J., H. Nakanishi, M. Miyazaki, and Y. Abe. Effects of glucagon on the renal hemodynamics of dogs. Eur. J. Pharmacol. 41: 209–212, 1977.
 760. Ueda, J., H. Nakanishi, M. Miyazaki, and Y. Abe. Effects of glucagon on the renal hemodynamics in the dog. Jpn. Circ. J. 41: 991–998, 1977.
 761. Umemura, S., D. D. Smyth, and W. A. Pettinger. α2‐Adrenoceptor stimulation and cellular cAMP levels in micro‐dissected rat glomeruli. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F103–F108, 1986.
 762. Van Damme, M., and M. Prevost. Transport of charged macromolecules across a biological charged membrane. Comput. Prog. Biomed. 19: 107–117, 1985.
 763. Vanholder, R. C., P. P. Lambert, and N. H. Lameire. PVP‐sieving curves as an estimate of glomerular hemodynamics in HgCl2 acute renal failure in the dog. Circ. Res. 61: 311–317, 1987.
 764. Van Liew, J. B., W. Buentig, H. Stolte, and J. W. Boylan. Protein excretion: micropuncture study of rat capsular and proximal tubule fluid. Am. J. Physiol. 219: 299–305, 1970.
 765. Vander, A. J., and R. Miller. Control of renin secretion in the anesthetized dog. Am. J. Physiol. 207: 537–546, 1964.
 766. Vandogen, R. Inhibition of renin secretion in the isolated tat kidney by antidiuretic hormone. Clin. Sci. Mol. Med. 49: 73–76, 1975.
 767. Vanrenterghem, Y., R. Vanholder, M. Lammens‐Verslijpe, and P. P. Lambert. Sieving studies in urea‐induced nephropathy in the dog. Clin. Sci. 58: 65–75, 1980.
 768. Verniory, A., R. DuBois, P. Decoodt, J. P. Gassee, and P. P. Lambert. Measurement of the permeability of biological membranes: application to the glomerular wall. J. Gen. Physiol. 62: 1489–1507, 1973.
 769. Vidal‐Ragout, M., J. C. Romero, and P. M. Vanhoutte. Endothelium‐derived relaxing factor inhibits renin release. Eur. J. Pharmacol. 149: 401–402, 1988.
 770. Von Baeyer, H., J. B. Van Liew, J. Klassen, and J. W. Boylan. Filtration of protein in the anti‐glomerular basement membrane nephritic rat: a micropuncture study. Kidney Int. 10: 425–437, 1976.
 771. Vora, J. P., D. R. Owens, R. Ryder, J. Atiea, S. Luzio, and T. M. Hayes. Effect of somatostatin on renal function. Br. Med. J. [Clin. Res.] 292: 1701–1702, 1986.
 772. Walker, A. M. Comparisons of total molecular concentration of glomerular urine and blood plasma from the frog and Necturus. J. Biol. Chem. 87: 499–522, 1930.
 773. Walker, A. M. Quantitative studies of the composition of glomerular urine. J. Biol. Chem. 101: 239–254, 1933.
 774. Walker, A. M., P. A. Bott, J. Oliver, and M. C. MacDowell. The collection and analysis of fluid from single nephrons of the mammalian kidney. Am. J. Physiol. 134: 580–595, 1941.
 775. Walker, A. M., and C. L. Hudson. The role of the tubule in the excretion of urea by the amphibian kidney. Am. J. Physiol. 118: 153–166, 1937.
 776. Walker, A. M., and C. L. Hudson. The role of the tubule in the excretion of inorganic phosphates by the amphibian kidney. Am. J. Physiol. 118: 167–173, 1937.
 777. Walker, A. M., and J. Oliver. Methods for the collection of fluid from single glomeruli and tubules of the mammalian kidney. Am. J. Physiol. 134: 562–579, 1941.
 778. Walker, A. M., and J. A. Reisinger. Quantitative studies of the composition of glomerular urine. J. Biol. Chem. 101: 223–237, 1933.
 779. Warner, T. D., J. A. Mitchell, G. de Nucci, and J. R. Vane. Endothelin‐1 and Endothelin‐3 release EDRF from isolated perfused arterial vessels of the rat and rabbit. J. Cardiovasc. Pharmacol. 13 (Suppl. 5): S85–S88, 1989.
 780. Wearn, J. T., and A. N. Richards. Observations on the composition of glomerular urine, with particular reference to the problem of reabsorption in the renal tubule. Am. J. Physiol. 71: 209–227, 1924.
 781. Wearn, J. T., and A. N. Richards. The concentration of chlorides in the glomerular urine of frogs. J. Biol. Chem. 66: 247–273, 1925.
 782. Weening, J. J., and H. G. Rennke. Glomerular permeability and polyanion in Adriamycin nephosis in the rat. Kidney Int. 24: 152–159, 1983.
 783. Weening, J. J., and A. Van Der Wal. Effect of decreased perfusion pressure on glomerular permeability in the rat. Lab. Invest. 57: 144–149, 1987.
 784. Weihprecht, H., J. N. Lorenz, J. Schnermann, O. Skøtt, and J. P. Briggs. Effect of adenosine1‐receptor blockade on renin release from rabbit isolated perfused juxtaglomerular apparatus. J. Clin. Invest. 85: 1622–1628, 1990.
 785. Westfall, B. B., T. Findley, and A. N. Richards. Quantitative studies of the composition of glomerular urine. J. Biol. Chem. 107: 661–672, 1934.
 786. Whiteside, C. I., and C. J. Lumsden. Transglomerular cationic macromolecular flux is mediated by a convection‐binding mechanism. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F882–F893, 1987.
 787. Whiteside, C, and M. Silverman. Determination of glomerular permselectivity to neutral dextrans in the dog. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F485–F495, 1983.
 788. Whiteside, C, and M. Silverman. Glomerular and postglomerular permselectivity to anionic dextrans in the dog. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F965–F974, 1984.
 789. Whiteside, C, and M. Silverman. Postglomerular capillary solute flux restricted by shape and charge in the dog. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F500–F512, 1987.
 790. Wiederhielm, C. A., J. W. Woodbury, S. Kirk, and R. F. Rushmer. Pulsatile pressure in the microcirculation of frog's mesentery. Am. J. Physiol. 207: 173–176, 1964.
 791. Wilkes, B. M. Reduced glomerular angiotensin II receptor density in diabetes mellitus in the rat: time course and mechanism. Endocrinology 120: 1291–1298, 1987.
 792. Wilson, S. K. The effects of angiotensin II and norepinephrine on afferent arterioles in the rat. Kidney Int. 30: 895–905, 1986.
 793. Winetz, J. A., H. V. Golbetz, R. J. Spencer, J. A. Lee, and B. D. Myers. Glomerular function in advanced human diabetic nephropathy. Kidney Int. 21: 750–756, 1982.
 794. Winetz, J. A., C. R. Robertson, H. V. Golbetz, B. J. Carrie, W. R. Salyer, and B. D. Myers. The nature of the glomerular injury in minimal change and focal sclerosing glomerulopathies. Am. J. Kidney Dis. 1: 91–98, 1981.
 795. Winton, F. R. The glomerular pressure in the isolated mammalian kidney. J. Physiol. 72: 361–375, 1931.
 796. Wirz, H. Druckmessurz in capillaren und tubuli der niere druch mikropunktion. Helv. Physiol. Acta 13: 42–49, 1955.
 797. Wolgast, M. and G. Öjteg. Electrophysiology of renal capillary membranes: gel concept applied and Starling model challenged. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F364–F373, 1988.
 798. Wong, P. Y.‐K., and W. Y. Cheung. Calmodulin stimulates human platelet phospholipase A2. Biochem. Biophys. Res Commun. 90: 473–480, 1979.
 799. Wright, F. S., and J. Schnermann. Interference with feedback control of glomerular filtration rate by furosemide, triflocin, and cyanide. J. Clin. Invest. 53: 1695–1708, 1974.
 800. Yagil, Y., B. D. Myers, and R. L. Jamison. Course and pathogenesis of postischemic acute renal failure in the rat. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F257–F264, 1988.
 801. Yamada, E. The fine structures of the renal glomerulus of the mouse. J. Biophys. Biochem. Cytol. 1: 551–566, 1955.
 802. Yamamoto, K., T. Okahara, Y. Abe, J. Ueda, T. Kishimoto, and S. Morimoto. Effects of cyclic AMP and dibutyryl cyclic AMP on renin release in vivo and in vitro. Jpn. Circ. J. 37: 1271–1276, 1973.
 803. Yanagisawa, M., A. Inoue, T. Ishikawa, Y. Kasuya, S. Kimura, S.‐I. Kumagaye, K. Nakajima, T. X. Watanabe, S. Sakakibara, K. Goto, and T. Masaki. Primary structure, synthesis, and biological activity of rat endothelin, an endothelium‐derived vasoconstrictor peptide. Proc. Natl. Acad. Sci. USA 85: 6964–6967, 1988.
 804. Yanagisawa, M., H. Kurihara, S. Kimura, Y. Tomobe, Kobayashi, Y. Mitsui, Y. Yazaki, K. Goto, and T. Masaki. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411–415, 1988.
 805. Yared, A., V. Kon, and I. Ichikawa. Mechanisms of preservation of glomerular perfusion and filtration during acute extracellular fluid volume depletion. J. Clin. Invest. 75: 1477–1487, 1985.
 806. Yoshioka, T., T. Mitarai, V. Kon, W. M. Deen, H. G. Rennke, and I. Ichikawa. Role for angiotensin II in an overt functional proteinuria. Kidney Int. 30: 538–545, 1986.
 807. Yoshioka, T., H. G. Rennke, D. J. Salant, W. M. Deen, and I. Ichikawa. Role of abnormally high transmural pressure in the permselectivity defect of glomerular capillary wall: a study in early passive Heymann nephritis. Circ. Res. 61: 531–538, 1987.
 808. Yoshioka, T., H. Shiraga, Y. Yoshida, A. Fogo, A. D. Glick, W. M. Deen, J. R. Hoyer, and I. Ichikawa. ”Intact nephrons” as the primary origin of proteinuria in chronic renal disease. J. Clin. Invest. 82: 1614–1623, 1988.
 809. Yoshioka, T., A. Yared, H. Miyazawa, and I. Ichikawa. In vivo influence of prostaglandin I2 on systemic and renal circulation in the rat. Hypertension 7: 867–872, 1985.
 810. Yuan, B. H., J. B. Robinette, and J. D. Conger. Effect of angiotensin II and norepinephrine on isolated rat afferent and efferent arterioles. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F741–F750, 1990.
 811. Yun, J., G. Kelly, F. C. Bartter, and H. Smith, Jr.. Role of prostaglandin in the control of renin secretion in the dog. Circ. Res. 40: 459–464, 1977.
 812. Zamlauski‐Tucker, M. J., J. B. Van Liew, and B. Noble. Pathophysiology of the kidney in rats with Heyman nephritis. Kidney Int. 28: 504–512, 1985.
 813. Zatz, R., B. R. Dunn, T. W. Meyer, S. Anderson, H. G. Rennke, and B. M. Brenner. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J. Clin. Invest. 77: 1925–1930, 1986.
 814. Zatz, R., and G. de Nucci. Endothelial‐derived relaxing factor strongly influences renal hemodynamics in the rat. XIth International Congress of Nephrology, Tokyo. (Abstract). p. 302A, 1990.
 815. Zeidel, M. L., H. R. Brady, B. C. Kone, S. R. Gullans, and B. M. Brenner. Endothelin, a peptide inhibitor of Na+‐K+‐ATPase in intact renal tubular epithelial cells. Am. J. Physiol. 257 (Cell Physiol. 26): C1101–C1107, 1989.
 816. Zimmerhackl, B., N. Parekh, H. Kücherer, and M. Steinhausen. Influence of systemically applied angiotensin II on the microcirculation of glomerular capillaries in the rat. Kidney Int. 27: 17–24, 1985.
 817. Zimmerman, K. W. Über der Bau des glomerulus der Säugerniere. Mikrosk. Anat. Forsch. 32: 176–278, 1933.
 818. Zusman, R. M., and H. R. Keiser. Prostaglandin biosynthesis by rabbit renomedullary interstitial cells in tissue culture. J. Clin. Invest. 60: 215–223, 1977.
 819. Zweifach, B. W., and M. Intaglietta. Mechanisms of fluid movement across single capillaries in the rabbit. Microvasc. Res. 1: 83–101, 1968.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

David A. Maddox, William M. Deen, Barry M. Brenner. Glomerular Filtration. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 545-638. First published in print 1992. doi: 10.1002/cphy.cp080113