Comprehensive Physiology Wiley Online Library

Mechanisms of Fluid Transport Across Renal Tubules

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Theoretical Foundations of Water Transport in Epithelia
2 Volume Absorption in the Proximal Tubule
3 Water Permeability of the Proximal Tubule
3.1 Measurement of Water Permeability
3.2 Importance of the Osmotic Water Permeability
4 Location of the Osmotic Gradient
4.1 Luminal Hypotonicity Produced by Solute Absorption
4.2 Absorbate Hypertonicity
5 “Passive” Driving Forces for Volume Absorption
5.1 NaCl Diffusion in Volume Absorption
5.2 Reflection Coefficient Differences
6 Models of Solute‐Solvent Coupling in Proximal Volume Absorption
7 Routes of Volume Movement in the Proximal Nephron
7.1 Measurement of Cell Membrane Osmotic Water Permeabilities
8 Consequences of Transcellular Volume Flow
9 The ADH‐Sensitive Distal Nephron
9.1 Measurement of Permeability Changes Produced by ADH
9.2 Wafer Permeability of ADH‐Sensitive Nephron Segments in Vivo and in Vitro
10 Site of the Change in Water Permeability with ADH
11 Evaluation of the Pf/PDw Ratio
11.1 Large Pore Hypothesis
11.2 Unstirred Layer Effects
12 The Narrow Channel Hypothesis: Single‐File Diffusion Through Small Aqueous Channels
13 ADH Increases the Number of Narrow Aqueous Channels in Apical Plasma Membranes
14 The Apparent EA for Water Transport in Cortical Collecting Tubules
14.1 The Raw Data
14.2 Correction for Diffusion Constraints in Series with Apical Membranes
14.3 The “True” EA for Water Transport
15 Pseudo‐“Breaks” in EA Measurements
16 Comparison of ADH‐Dependent Apical Membrane Water Channels with Gramicidin A Channels
17 Parallel Paths for Water and Solute Permeation
18 Morphologic Studies
19 Intracellular Mediators of ADH Action
19.1 Modulation of ADH Action—α‐Adrenergic Agents
19.2 Atrial Natriuretic Peptide
20 Prostaglandins
20.1 Calcium
20.2 Protein Kinase C
21 Summary
Figure 1. Figure 1.

Estimate of osmotic water permeability in rabbit proximal convoluted tubule by extrapolation to infinite perfusion rate. Tubule segments were bathed in isosmotic bicarbonate buffer at 25° C to block active transport. They were perfused with a solution that was hypoosmotic to the bathing solution by 20 mOsm/kg H2O. A. Rate of volume absorption (Jv, nl/min, not normalized per tubule length) plotted as function of perfusion rate (V0, nl/min). B. Inverse of volume absorption plotted as function of inverse of perfusion rate. Data points were fitted with a straight line. Y‐intercept is predicted inverse of volume flow that would occur at an infinite perfusion rate when the whole tubule length would be exposed to uniform transepithelial osmolality difference of 20 mOsm/kg H2O. Volume flow rate and osmolality difference were used to compute osmotic water permeability of 2,420 μm/s.

Adapted from Andreoli et al. 10 with permission
Figure 2. Figure 2.

Effect of osmotic water permeability on osmotic gradient required to produce normal rates of volume absorption. Transepithelial osmolality differences that would be required to produce volume reabsorption rates in the normal range observed in the mammalian proximal tubule are calculated using the relationship: Jv = PfA′w ΔC, where Jv is volume flow, Pf is osmotic water permeability coefficient, A′ is area of apparent luminal surface area per millimeter of tubule length, w is partial molal volume of water, and ΔC is required osmolality difference. Relationship between Jv and ΔC plotted for four values of osmotic water permeability that span the range of commonly reported values.

Figure 3. Figure 3.

Demonstration of development of luminal hypotonicity during volume absorption in proximal tubule. Segments of in vivo rat proximal convoluted tubules, isolated between oil blocks, were perfused at two different rates with 154 mM NaCl. Adjacent peritubular capillary network was perfused simultaneously with the same solution and rate of volume absorption and osmolality of perfused and collected samples was measured so that transepithelial osmolality difference could be determined. Both volume absorption rate and luminal hypotonicity increase as perfusion rate is increased, and both are not significantly different from zero when active transport is inhibited by NaCN.

Adapted from the data of Green and Giebisch 108 and reprinted with permission from Kidney International 245
Figure 4. Figure 4.

Method of collection of absorbate droplets from proximal tubules. Isolated segment of rabbit proximal convoluted or straight tubule is perfused (left to right in the figure) while bathed in light mineral oil. Absorbate appears on peritubular surface as torus‐shaped droplets surrounding tubule. Absorbate can be collected and analyzed at regular intervals using volumetric collection pipet.

Reprinted with permission from American Journal of Physiology 16
Figure 5. Figure 5.

Hyperosmolality and composition of absorbate from (A) rabbit proximal convoluted tubule and (B) rabbit proximal straight tubule. Tubule segments are perfused under oil and absorbate forming on peritubular surface is sampled for analysis as shown in Figure 4. The composition of the perfusate (left) is average of measured perfusate and collectate concentrations. Concentrations indicated are in mM for Na+ and glucose. Osmolalities are in mOsm/kg H2O. P values indicate significance of paired difference in average perfusate and absorbate compositions.

Data from Barfuss and Schafer 16,18. Reproduced with permission from Kidney International 245
Figure 6. Figure 6.

Changes in transepithelial voltage with rapid cooling in isolated perfused Ambystoma proximal tubule segments. A. Rapid cooling with symmetrical solutions. B. Rapid cooling with simultaneous 8% increase in NaCl concentration of bathing solution. Phase of slow depolarization at low temperature (A) is attributed to relaxation of paracellular diffusion potential (ΔEpar) by 0.27 mV, resulting from diffusion of NaCl out of interspace, in which NaCl concentration is 3 mM higher than in bathing solution. Repolarization in B is attributed to hyperpolarization by ΔEpar −0.43 mV resulting from equilibration of higher NaCl concentration in bathing solution with that in interspace. Absence of either slow depolarization or repolarization with cooling would indicate a match between interspace and bathing solution NaCl concentration.

Reprinted from the work of Sackin 239 with permission from author and American Journal of Physiology
Figure 7. Figure 7.

Flow dependence of volume absorption in rabbit proximal straight tubules. For upper two sets of data, tubules were perfused with high Cl, low perfusate resembling late proximal tubule fluid and bathed with the normal Cl concentration bathing solution. Lowest group of data points was obtained when Cl and HCO3 concentrations were equal in the perfusate and bathing solutions.

Data from Schafer et al. 255. Figure reprinted from 245 with permission from Kidney International
Figure 8. Figure 8.

Time course of ADH effect on water permeability in mammalian cortical collecting tubule. A. Rabbit cortical collecting tubule perfused at 25° C 113. B. Rat cortical collecting tubule perfused at 37° C 232.

Figure 9. Figure 9.

Rate‐limiting site for water permeation. Segment of cortical collecting tubule was perfused with 125 mOsm Krebs‐Ringer‐phosphate (KRP) buffer and bathed in 290 mOsm Krebs‐Ringer‐bicarbonate (KRB) buffer at 25° C. Time shown below each photomicrograph is that elapsed after rabbit was sacrificed. At 200 min, ADH was added to bath. Interval between small divisions in photomicrograph scale is 2.13 μm.

Adapted from 247
Figure 10. Figure 10.

Rate‐limiting site for urea permeation in cortical collecting tubule. Perfusing solution was 125 mOsm KRP buffer plus 165 mOsm urea throughout experiment. Bath was initially 290 mOsm KRB buffer, but was changed to 125 mOsm KRP plus 165 mOsm urea at 250 min after rabbit was sacrificed. Bath contained 250 μU ml−1 ADH throughout. Interval between small divisions in photomicrograph scale is 2.13 μm.

Adapted from 248
Figure 11. Figure 11.

Series resistance elements for water diffusion across membrane bordered by two unstirred layers. Total resistance of unstirred layer Runs is sum of and . Total resistance to water diffusion across membrane and unstirred layers is given by equation 6.

From 126
Figure 12. Figure 12.

Plot of relationship between Pf and PDw according to equation 14. Values of n used at various temperatures were free solution viscosity values 124.

Figure 13. Figure 13.

Arrhenius plots of relation between In Pf and 1/T in cortical collecting tubules in absence (closed circles, ± SEM) and presence (open circles, ± SEM) of ADH. EA values calculated according to equation 16.

Adapted from 1,124
Figure 14. Figure 14.

Arrhenius plots of relation between In PDw and 1/T in cortical collecting tubules in the absence (closed circles, ± SEM) and the presence (open circles, ± SEM) of ADH. The EA values calculated according to equation 16.

Adapted from 124
Figure 15. Figure 15.

Arrhenius plot of relation between In PDn−butanol and 1/T between 6° and 38° C, in cortical collecting tubules. Open circles are mean experimental values with indicated SEM. EA values calculated according to equation 16.

Adapted from 124
Figure 16. Figure 16.

Schematic illustration of shuttle mechanism for moving water channels into apical cell membrane. In resting state (left), water channels (heavy dots) reside in walls of small tubular vesicles in cytoplasm. Upon stimulation by ADH, these vesicles fuse with apical membrane (middle). Termination of ADH effect involves removal of channel from apical membrane and transport to multivesicular bodies (MVB).

Figure 17. Figure 17.

Flux inhibition in toad urinary bladder. Time course of ADH‐induced hydroosmotic response was measured at various transepithelial osmotic gradients. In presence of large osmotic gradients, ADH effect decays rapidly but is relatively stable in presence of small osmotic gradients 119.

Figure 18. Figure 18.

Schematic illustration of hormone‐receptor‐adenylate cyclase system. Rs and Ri denote hormone receptors for stimulatory and inhibitory hormones, respectively. Gs and Gi are stimulatory and inhibitory guanine‐nucleotide binding regulatory proteins; C is the catalytic subunit of adenylate cyclase 127.



Figure 1.

Estimate of osmotic water permeability in rabbit proximal convoluted tubule by extrapolation to infinite perfusion rate. Tubule segments were bathed in isosmotic bicarbonate buffer at 25° C to block active transport. They were perfused with a solution that was hypoosmotic to the bathing solution by 20 mOsm/kg H2O. A. Rate of volume absorption (Jv, nl/min, not normalized per tubule length) plotted as function of perfusion rate (V0, nl/min). B. Inverse of volume absorption plotted as function of inverse of perfusion rate. Data points were fitted with a straight line. Y‐intercept is predicted inverse of volume flow that would occur at an infinite perfusion rate when the whole tubule length would be exposed to uniform transepithelial osmolality difference of 20 mOsm/kg H2O. Volume flow rate and osmolality difference were used to compute osmotic water permeability of 2,420 μm/s.

Adapted from Andreoli et al. 10 with permission


Figure 2.

Effect of osmotic water permeability on osmotic gradient required to produce normal rates of volume absorption. Transepithelial osmolality differences that would be required to produce volume reabsorption rates in the normal range observed in the mammalian proximal tubule are calculated using the relationship: Jv = PfA′w ΔC, where Jv is volume flow, Pf is osmotic water permeability coefficient, A′ is area of apparent luminal surface area per millimeter of tubule length, w is partial molal volume of water, and ΔC is required osmolality difference. Relationship between Jv and ΔC plotted for four values of osmotic water permeability that span the range of commonly reported values.



Figure 3.

Demonstration of development of luminal hypotonicity during volume absorption in proximal tubule. Segments of in vivo rat proximal convoluted tubules, isolated between oil blocks, were perfused at two different rates with 154 mM NaCl. Adjacent peritubular capillary network was perfused simultaneously with the same solution and rate of volume absorption and osmolality of perfused and collected samples was measured so that transepithelial osmolality difference could be determined. Both volume absorption rate and luminal hypotonicity increase as perfusion rate is increased, and both are not significantly different from zero when active transport is inhibited by NaCN.

Adapted from the data of Green and Giebisch 108 and reprinted with permission from Kidney International 245


Figure 4.

Method of collection of absorbate droplets from proximal tubules. Isolated segment of rabbit proximal convoluted or straight tubule is perfused (left to right in the figure) while bathed in light mineral oil. Absorbate appears on peritubular surface as torus‐shaped droplets surrounding tubule. Absorbate can be collected and analyzed at regular intervals using volumetric collection pipet.

Reprinted with permission from American Journal of Physiology 16


Figure 5.

Hyperosmolality and composition of absorbate from (A) rabbit proximal convoluted tubule and (B) rabbit proximal straight tubule. Tubule segments are perfused under oil and absorbate forming on peritubular surface is sampled for analysis as shown in Figure 4. The composition of the perfusate (left) is average of measured perfusate and collectate concentrations. Concentrations indicated are in mM for Na+ and glucose. Osmolalities are in mOsm/kg H2O. P values indicate significance of paired difference in average perfusate and absorbate compositions.

Data from Barfuss and Schafer 16,18. Reproduced with permission from Kidney International 245


Figure 6.

Changes in transepithelial voltage with rapid cooling in isolated perfused Ambystoma proximal tubule segments. A. Rapid cooling with symmetrical solutions. B. Rapid cooling with simultaneous 8% increase in NaCl concentration of bathing solution. Phase of slow depolarization at low temperature (A) is attributed to relaxation of paracellular diffusion potential (ΔEpar) by 0.27 mV, resulting from diffusion of NaCl out of interspace, in which NaCl concentration is 3 mM higher than in bathing solution. Repolarization in B is attributed to hyperpolarization by ΔEpar −0.43 mV resulting from equilibration of higher NaCl concentration in bathing solution with that in interspace. Absence of either slow depolarization or repolarization with cooling would indicate a match between interspace and bathing solution NaCl concentration.

Reprinted from the work of Sackin 239 with permission from author and American Journal of Physiology


Figure 7.

Flow dependence of volume absorption in rabbit proximal straight tubules. For upper two sets of data, tubules were perfused with high Cl, low perfusate resembling late proximal tubule fluid and bathed with the normal Cl concentration bathing solution. Lowest group of data points was obtained when Cl and HCO3 concentrations were equal in the perfusate and bathing solutions.

Data from Schafer et al. 255. Figure reprinted from 245 with permission from Kidney International


Figure 8.

Time course of ADH effect on water permeability in mammalian cortical collecting tubule. A. Rabbit cortical collecting tubule perfused at 25° C 113. B. Rat cortical collecting tubule perfused at 37° C 232.



Figure 9.

Rate‐limiting site for water permeation. Segment of cortical collecting tubule was perfused with 125 mOsm Krebs‐Ringer‐phosphate (KRP) buffer and bathed in 290 mOsm Krebs‐Ringer‐bicarbonate (KRB) buffer at 25° C. Time shown below each photomicrograph is that elapsed after rabbit was sacrificed. At 200 min, ADH was added to bath. Interval between small divisions in photomicrograph scale is 2.13 μm.

Adapted from 247


Figure 10.

Rate‐limiting site for urea permeation in cortical collecting tubule. Perfusing solution was 125 mOsm KRP buffer plus 165 mOsm urea throughout experiment. Bath was initially 290 mOsm KRB buffer, but was changed to 125 mOsm KRP plus 165 mOsm urea at 250 min after rabbit was sacrificed. Bath contained 250 μU ml−1 ADH throughout. Interval between small divisions in photomicrograph scale is 2.13 μm.

Adapted from 248


Figure 11.

Series resistance elements for water diffusion across membrane bordered by two unstirred layers. Total resistance of unstirred layer Runs is sum of and . Total resistance to water diffusion across membrane and unstirred layers is given by equation 6.

From 126


Figure 12.

Plot of relationship between Pf and PDw according to equation 14. Values of n used at various temperatures were free solution viscosity values 124.



Figure 13.

Arrhenius plots of relation between In Pf and 1/T in cortical collecting tubules in absence (closed circles, ± SEM) and presence (open circles, ± SEM) of ADH. EA values calculated according to equation 16.

Adapted from 1,124


Figure 14.

Arrhenius plots of relation between In PDw and 1/T in cortical collecting tubules in the absence (closed circles, ± SEM) and the presence (open circles, ± SEM) of ADH. The EA values calculated according to equation 16.

Adapted from 124


Figure 15.

Arrhenius plot of relation between In PDn−butanol and 1/T between 6° and 38° C, in cortical collecting tubules. Open circles are mean experimental values with indicated SEM. EA values calculated according to equation 16.

Adapted from 124


Figure 16.

Schematic illustration of shuttle mechanism for moving water channels into apical cell membrane. In resting state (left), water channels (heavy dots) reside in walls of small tubular vesicles in cytoplasm. Upon stimulation by ADH, these vesicles fuse with apical membrane (middle). Termination of ADH effect involves removal of channel from apical membrane and transport to multivesicular bodies (MVB).



Figure 17.

Flux inhibition in toad urinary bladder. Time course of ADH‐induced hydroosmotic response was measured at various transepithelial osmotic gradients. In presence of large osmotic gradients, ADH effect decays rapidly but is relatively stable in presence of small osmotic gradients 119.



Figure 18.

Schematic illustration of hormone‐receptor‐adenylate cyclase system. Rs and Ri denote hormone receptors for stimulatory and inhibitory hormones, respectively. Gs and Gi are stimulatory and inhibitory guanine‐nucleotide binding regulatory proteins; C is the catalytic subunit of adenylate cyclase 127.

References
 1. Al‐Zahid, G., J. A. Schafer, S. L. Troutman, and T. E. Andreoli. The effect of antidiuretic hormone on water and solute permeation, and the activation energies for these processes, in mammalian cortical collecting tubules: evidence for parallel ADH‐sensitive pathways for water and solute diffusion in luminal plasma membranes. J. Membr. Biol. 31: 103–129, 1977.
 2. Anderson, W. A. and E. Brown. The influence of arginine‐vasopressin upon the production of adenosine‐3′, 5′‐monophosphate by adenyl cyclase from the kidney. Biochim. Biophys. Acta 67: 674–676, 1963.
 3. Ando, Y., H. R. Jacobson, and M. D. Breyer. Phorbol myristate acetate, dioctanoylglycerol and phosphatidic acid inhibit the hydroosmotic effect of vasopressin on rabbit cortical collecting tubule. J. Clin. Invest. 80: 590–593, 1987.
 4. Ando, Y., H. R. Jacobson, and M. D. Breyer. Phorbol ester and A23187 have additive but mechanistically separate effects on vasopressin action in rabbit collecting tubule. J. Clin. Invest. 81: 1578–1584, 1988.
 5. Andreoli, T. E. and J. A. Schafer. Mass transport across cell membranes: The effects of antidiuretic hormone on water and solute flows in epithelia. Annu. Rev. Physiol. 39: 451–500, 1976.
 6. Andreoli, T. E. and J. A. Schafer. Some considerations of the role of antidiuretic hormone in water homeostasis. In: Recent Progress in Hormone Research, edited by R. O. Greep New York: Academic Press, 1977, vol. 3, p. 387–434.
 7. Andreoli, T. E. and J. A. Schafer. Volume absorption in the pars recta. III. Luminal hypotonicity as a driving force for isotonic volume absorption. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F349–F355, 1978.
 8. Andreoli, T. E. and J. A. Schafer. Effective luminal hypotonicity: the driving force for isotonic proximal tubular fluid absorption. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F89–F96, 1979.
 9. Andreoli, T. E. and J. A. Schafer. External solution driving forces for isotonic fluid absorption in proximal tubules. Federation Proc. 38: 154–160, 1979.
 10. Andreoli, T. E., J. A. Schafer, and S. L. Troutman. Perfusion rate‐dependence of transepithelial osmosis in isolated proximal convoluted tubules: estimation of the hydraulic conductance. Kidney Int. 14: 263–269, 1978.
 11. Andreoli, T. E., J. A. Schafer, S. L. Troutman, and M. L. Watkins. Solvent drag component of Cl− flux in superficial proximal straight tubules: Evidence for a paracellular component of isotonic fluid absorption. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F455–F462, 1979.
 12. Andreoli, T. E. and S. L. Troutman. An analysis of unstirred layers in series with “tight” and “porous” lipid bilayer membranes. J. Gen. Physiol. 57: 464–478, 1971.
 13. Argy, W. P. Jr., J. S. Handler, and J. Orloff. Ca++ and Mg++ effects on toad bladder response to cyclic AMP, theophylline and ADH analogues. Am. J. Physiol. 213: 803–808, 1967.
 14. Atherton, J. C. Comparison of chloride concentration and osmolality in proximal tubular fluid, peritubular capillary plasma and systemic plasma in the rat. J. Physiol. (London) 273: 765–773, 1977.
 15. Barfuss, D. W. and J. A. Schafer. Flow dependence of nonelectrolyte absorption in the nephron. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F163–F174, 1979.
 16. Barfuss, D. W. and J. A. Schafer. Collection and analysis of absorbate from proximal straight tubules. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F597–F604, 1981.
 17. Barfuss, D. W. and J. A. Schafer. Hyperosmolality of absorbate from isolated rabbit proximal tubules. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F130–F139, 1984.
 18. Barfuss, D. W. and J. A. Schafer. Rate of formation and composition of absorbate from proximal nephron segments. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F117–F129, 1984.
 19. Beck, T. R. and M. J. Dunn. The relationship of antidiuretic hormone and renal prostaglandins. Mineral Electrolyte Metab. 6: 46–59, 1981.
 20. Bennett, C. M., B. Brenner, and R. W. Berliner. Concentration of urine in the mammalian kidney. Am. J. Med. 42: 777–788, 1967.
 21. Bentzel, C. J., B. Parsa, and D. K. Hare. Osmotic flow across proximal tubule of Necturus. Correlations of physiologic and anatomic studies. Am. J. Physiol. 217: 570–580, 1969.
 22. Beck, C. A. Lack of effect of peritubular protein on passive NaCl transport in the rabbit proximal tubule. J. Clin Invest. 71: 268–281, 1983.
 23. Berry, C. A. Water permeability and pathways in the proximal tubule. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F279–F294, 1983.
 24. Berry, C. A. Characteristics of water diffusion of the rabbit proximal convoluted tubule. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F729–F738, 1985.
 25. Berry, C. A. and E. L. Boulpaep. Nonelectrolyte permeability of the paracellular pathway in the Necturus proximal tubule. Am. J. Physiol. 228: 581–595, 1975.
 26. Berry, C. A. and F. C. Rector, Jr. Active and passive sodium transport in the proximal tubule. Mineral Electrolyte Metab. 4: 149–160, 1980.
 27. Berry, C. A. and A. S. Verkman. Osmotic gradient dependence of water permeability in rabbit proximal convoluted tubule. J. Membr. Biol. 105: 33–43, 1988.
 28. Biber, T. U. L. and P. F. Curran. Coupled solute fluxes in toad skin. J. Gen. Physiol. 51: 606–620, 1968.
 29. Bishop, J. H. V., R. Green, and S. Thomas. Free‐flow reabsorption of glucose, sodium, osmoles and water in rat proximal convoluted tubule. J. Physiol. 288: 331–351, 1979.
 30. Bockaert, J., C. Roy, R. Rajerison, and S. Jard. Specific binding of (3H) lysine‐vasopressin to pig kidney plasma membranes. Relationship of receptor occupancy to adenylate cyclase activation. J. Biol. Chem. 248: 5922–5931, 1973.
 31. Bomsztyk, K. and F. S. Wright. Dependence of ion fluxes on fluid transport by rat proximal tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F680–F689, 1986.
 32. Boulpaep, E. Electrophysiological properties of the proximal tubule: importance of cellular and intercellular transport pathways. In: Electrophysiology of Epithelial Cells, edited by G. Giebisch Stuttgart: Shattauer, 1971, p. 91–115.
 33. Boulpaep, E. L. Permeability changes of the proximal tubule of Necturus during saline loading. Am. J. Physiol. 222: 517–531, 1972.
 34. Brodsky, W. A., W. S. Rehm, W. H. Dennis, and D. G. Miller. Thermodynamic analysis of the intracellular osmotic gradient hypothesis of active water transport. Science 121: 302–303, 1955.
 35. Brown, D. and L. Orci. Vasopressin stimulates formation of coated pits in rat kidney collecting ducts. Nature 302: 253–255, 1983.
 36. Bulger, R. E., W. B. Lorentz, R. E. Colindres, and C. W. Gottschalk. Morphologic changes in rat renal proximal tubules and their tight junctions with increased intraluminal pressure. Lab. Invest. 30: 36–144, 1974.
 37. Burg, M., S. Helman, J. J. Grantham, and J. Orloff. Effect of vasopressin on the permeability of isolated rabbit cortical collecting tubules to urea, acetamide, and thiourea. In: Urea and the Kidney, edited by B. Schmidt‐Nielsen Amsterdam: Excerpta Medica, 1970, p. 193–208.
 38. Burg, M. B., C. Patlak, N. Green, and D. Villey. Organic solutes in fluid absorption by renal proximal convoluted tubules. Am. J. Physiol. 231: 627–637, 1976.
 39. Campbell, B. J., G. Woodward, and V. Borberg. Calcium‐mediated interactions between antidiuretic hormone and renal plasma membranes. J. Biol. Chem. 247: 6167–6175, 1972.
 40. Capraro, G., and G. Bernini. Mechanism of action of extracts of the post‐hypophysis on water transport through the skin of the frog (Rana esculenta). Nature 169: 454, 1952.
 41. Carpi‐Medina, P., E. Gonzalez, and A. Whittembury. Cell osmotic water permeability of isolated rabbit proximal convoluted tubules. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F554–F563, 1983.
 42. Carpi‐Medina, P., B. Lindemann, E. Gonzalez, and G. Whittembury. The continuous measurement of tubular volume changes in response to step changes in contraluminal osmolality. Pflugers Arch. 400: 343–348, 1984.
 43. Casavola, V., L. Iacovelli, and M. Svelto. Phorbol ester effect on the hydroosmotic response to vasopressin in frog skin. Pflugers Arch. 408: 318–320, 1987.
 44. Cass, A., and A. Finkelstein. Water permeability of thin lipid membranes. J. Gen. Physiol. 50: 1765–1784, 1967.
 45. Chantrelle, B. M., M. G. Cogan, and F. C. Rector, Jr. Active and passive components of NaCl absorption in the proximal convoluted tubule of the rat kidney. Mineral Electrolyte Metab. 11: 209–214, 1985.
 46. Chase, I. R., and G. D. Aurbuch. Renal adenyl cyclase: anatomically separate sites for parathyroid hormone and vasopressin. Science 159: 545–547, 1968.
 47. Chevalier, J., J. Bourguet, and J. J. Hugon. Membrane‐associated particles: distribution in frog urinary bladder epithelium at rest and after oxytocin treatment. Cell Tiss. Res. 152: 129–140, 1974.
 48. Civan, M. M. Path of bulk water movement through the urinary bladder of the toad. J. Theor. Biol. 27: 387–391, 1970.
 49. Clapp, J. R., and R. R. Robinson. Osmolality of distal tubular fluid in the dog. J. Clin. Invest. 45: 1847–1853, 1966.
 50. Cohen, B. E. The permeability of liposomes to nonelectrolytes. I. Activation energies for permeation. J. Membr. Biol. 20: 205–234, 1975.
 51. Collander, R., and H. Bärlund. Permeabilitätsstudien an Chara Ceratophylla. II. Die Permeabilität für Nichtelectrolyte. Acta Bot. Fenn. 11: 1–114, 1933.
 52. Cook, V. L., A. H. Reese, P. D. Wilson, and G. G. Pinter. Access of reabsorbed glucose to renal lymph. Experientia 38: 108–109, 1982.
 53. Corman, B., S. Carrière, C. Le Grimellec, and J. Cardinal. Proximal tubular response to variations in extracellular sodium concentration. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F256–F260, 1980.
 54. Corman, B., and A. Di Stefano. Does water drag solutes through kidney proximal tubule? Pflugers Arch. 397: 35–41, 1983.
 55. Craven, P. A., and F. R. De Rubertis. Effects of vasopressin and urea on Ca2+‐calmodulin dependent renal prostaglandin E. Am. J. Physiol. 241: F649–F658, 1981.
 56. Culpepper, R. M., and T. E. Andreoli. PGE2, forskolin, and cholera toxin interactions in modulating NaCl transport in mouse mTALH. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F784–F792, 1984.
 57. Culpepper, R. M., W. Smith, J. Codina, and L. Birnbaumer. Guanine nucleotide regulatory proteins in pars recta and thick ascending limb of rabbit and mouse kidney. Kidney Int. 29: 333A, 1986.
 58. Curran, P. F., and J. R. McIntosh. A model system for biological water transport. Nature 193: 347–348, 1962.
 59. Dainty, J. Water relations of plant cells. Adv. Bot. Res. 1: 279–326, 1963.
 60. Davson, H., and J. F. Danielli. The Permeability of Natural Membranes. Cambridge, England: Cambridge University Press, 1952.
 61. de Bermudez, L., and E. E. Windhager. Osmotically induced changes in electrical resistance of distal tubules of rat kidney. Am. J. Physiol. 229: 1536–1546, 1975.
 62. de Gier, J., J. G. Mandersloot, J. V. Hupkes, N. McElhaney, and P. Van Beer. On the mechanism of non‐electrolyte permeation through lipid bilayers and through biomembranes. Biochim. Biophys. Acta 233: 610–618, 1971.
 63. Dellasega, M., and J. J. Grantham. Regulation of renal tubule cell volume in hypotonic media. Am. J. Physiol. 224: 1288–1294, 1973.
 64. Diamond, J. M. The mechanism of isotonic water transport. J. Gen. Physiol. 48: 15–42, 1964.
 65. Diamond, J. M. Transport of salt and water in rabbit and guinea pig gall bladder. J. Gen. Physiol. 48: 1–14, 1964.
 66. Diamond, J. M. Osmotic water flow in leaky epithelia. J. Membr. Biol. 51: 195–216, 1979.
 67. Diamond, J. M., and W. H. Bossert. Standing‐gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J. Gen. Physiol. 50: 2061–2083, 1967.
 68. Di Bona, D. R. Direct visualization of epithelial morphology in the living amphibian urinary bladder. J. Membr. Biol. Suppl. 40: 45–70, 1978.
 69. Di Bona, D. R., and M. M. Civan. Pathways for movement of ions and water across toad urinary bladder. I. Anatomic site of transepithelial shunt pathways. J. Membr. Biol. 12: 101–128, 1973.
 70. Di Bona, G. F. Effect of magnesium on water permeability of the rat nephron. Am. J. Physiol. 223: 1324–1326, 1972.
 71. Dick, D. A. T. Cell Water. Washington, DC: Butterworths, 1966, p. 102.
 72. Dillingham, M. A., and R. J. Anderson. Inhibition of vasopressin action by atrial natriuretic factor. Science 231: 1572–1573, 1986.
 73. Dousa, T. P. Effect of renal medullary solutes on vasopressin‐sensitive adenyl cyclase. Am. J. Physiol. 222: 657–662, 1972.
 74. Dousa, T. P. Cyclic nucleotides in the cellular action of neurohypophyseal hormones. Federation Proc. 36: 1867–1871, 1977.
 75. Dousa, T. P., L. D. Barnes, and J. K. Kim. The role of cyclic AMP‐dependent protein phosphorylations and microtubules in the cellular action of vasopressin in mammalian kidney. In: Neurohypophysis, edited by A. M. Moses and L. Share Basel: Karger, 1977, p. 220.
 76. Dousa, T. P., and H. Valtin. Cellular actions of vasopressin in the mammalian kidney. Kidney Int. 10: 46–63, 1976.
 77. Dousa, T. P., R. Walter, I. L. Schwartz, H. Sands, and O. Hechter. Role of cyclic AMP in the action of neurohypophyseal hormones on kidney. Adv. Cyclic Nucleotide Res. 1: 121–135, 1972.
 78. Dratwa, M., C. Tisher, J. R. Sommer, and B. P. Croker. Intramembranous particle aggregation in toad urinary bladder after vasopressin stimulation. Lab. Invest. 40: 46–54, 1979.
 79. Eggena, P., I. L. Schwartz, and R. Walter. Threshold and receptor reserve in the action of neurohypophyseal peptides. A study of synergists and antagonists in the hydroosmotic response on the toad urinary bladder. J. Gen. Physiol. 56: 250–271, 1970.
 80. Einstein, A. Investigations on the Theory of the Brownian Movement. New York: Dover, 1956.
 81. Erlij, D., and A. Martinez‐Palomo. Opening of tight junctions in frog skin by hypertonic urea solutions. J. Membr. Biol. 9: 229–240, 1972.
 82. Evan, A. P., Jr. D. A. Hay, and W. G. Dail. SEM of the proximal tubule of the adult rabbit kidney. Anat. Rec. 191: 397–414, 1978.
 83. Fidelman, M. L., and D. C. Mikulecky. Network thermodynamic analysis of isotonic solute‐coupled volume flow in leaky epithelia: an example of the use of network theory to provide quantitative aspects of a complex system and its verification by simulation. J. Theor. Biol. 130: 73–93, 1988.
 84. Field, M. Modes of action of enterotoxins from Vibrio cholerae and Escherichia coli. Rev. Infect. Dis. 1: 918–26, 1979.
 85. Finkelstein, A. Aqueous pores created in thin lipid membranes by the antibiotics amphotericin B and gramicidin A: implications for pores in biological membranes. In: Drugs and Transport Processes, edited by B. A. Callingham Baltimore: University Park Press, 1974, p. 241.
 86. Franki, N., G. Ding, N. Quintana, and R. M. Hays. Evidence that heads of ADH‐sensitive aggrephores are clathrincoated vesicles: implications for aggrephore structure and function. Tissue Cell. 18: 803–807, 1986.
 87. Franz, J. J., W. R. Galey, and J. T. van Bruggen. Further observations on asymmetrical solute movement across membranes. J. Gen. Physiol. 51: 1–12, 1968.
 88. Frömter, E. Solute transport across epithelia: what can we learn from micropuncture studies on kidney tubules? J. Physiol. 288: 1–31, 1979.
 89. Frömter, E., and J. Diamond. Route of passive ion permeation in epithelia. Nature [New Biol.] 235: 9–13, 1972.
 90. Frömter, E., G. Rumrich, and K. J. Ullrich. Phenomenologic description of Na+, Cl− and HCO3− absorption from proximal tubules of the rat kidney. Pflugers Arch. 343: 189–220, 1973.
 91. Gagnon, J., D. Quimet, H. Nguyen, R. Laprade, C. Le Grimmelec, S. Carriere, and J. Cardinal. Cell volume regulation in the proximal convoluted tubule. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F408–F415, 1982.
 92. Galey, W. R., and J. T. van Bruggen. The coupling of solute fluxes in membranes. J. Gen. Physiol. 55: 220–242, 1970.
 93. Ganote, C. E., J. J. Grantham, J. L. Moses, M. B. Burg, and J. Orloff. Ultrastructural studies of vasopressin effect on isolated perfused renal collecting tubules of the rabbit. J. Cell Biol. 36: 355–367, 1970.
 94. Giebisch, G., and E. E. Windhager. Renal tubular transfer of sodium, chloride and potassium. Am. J. Med. 36: 643–669, 1964.
 95. Gilman, A. G. Guanine nucleotide‐binding regulatory proteins and dual control of adenylate cyclase. J. Clin. Invest. 73: 1–4, 1984.
 96. Goldfarb, S. Effects of calcium on ADH action in the cortical collecting tubule perfused in vitro. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F481–F486, 1982.
 97. González, E., P. Carpi‐Medina, H. Linares, and G. Whittembury. Water osmotic permeability of the apical membrane of proximal straight tubular (PST) cells. Pflugers Arch. 402: 337–339, 1984.
 98. González, E., P. Carpi‐Medina, and G. Whittembury. Cell osmotic water permeability of isolated rabbit proximal straight tubules. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F321–F330, 1982.
 99. Gottschalk, C. W., W. Lassiter, and M. Mylle. Localization of urine acidification in the mammalian kidney. Am. J. Physiol. 198: 581–585, 1960.
 100. Gottschalk, C. W., and M. Mylle. Micropuncture study of the mammalian urinary concentrating mechanism: evidence for the countercurrent hypothesis. Am. J. Physiol. 196: 927–936, 1959.
 101. Grandchamp, A., and E. L. Boulpaep. Pressure control of sodium reabsorption and intercellular backflux across proximal kidney tubule. J. Clin. Invest. 54: 69–82, 1974.
 102. Grantham, J. J., and M. B. Burg. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am. J. Physiol. 211: 255–259, 1966.
 103. Grantham, J. J., G. E. Ganote, M. B. Burg, and J. Orloff. Paths of transtubular water flow in isolated renal collecting tubules. J. Cell Biol. 41: 562–576, 1969.
 104. Grantham, J. J., C. M. Lowe, M. Dellasega, and B. R. Cole. Effect of hypotonic medium on K and Na content of proximal renal tubules. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F42–F49, 1977.
 105. Grantham, J. J., and J. Orloff. Effect of prostaglandin E1 on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3′,5′‐monophosphate, and theophylline. J. Clin. Invest. 45: 1154–1161, 1968.
 106. Grantham, J. J., P. B. Qualizza, and R. L. Irwin. Net fluid secretion in proximal straight renal tubules in vitro: role of PAH. Am. J. Physiol. 226: 191–197, 1974.
 107. Green, R., J. H. V. Bishop, and G. Giebisch. Ionic requirements of proximal tubular sodium transport. III. Selective luminal anion substitution. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F268–F277, 1979.
 108. Green, R., and G. Giebisch. Luminal hypotonicity: a driving force for fluid absorption from the proximal tubule. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F167–F174, 1984.
 109. Green, R., and G. Giebisch. Reflection coefficients and water permeability in rat proximal tubule. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F658–F668, 1989.
 110. Green, R., and G. Giebisch. Osmotic forces driving water reabsorption in the proximal tubule of the rat kidney. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F669–F675, 1989.
 111. Green, R., E. E. Windhager, and G. Giebisch. Protein oncotic pressure effects on proximal tubular fluid movement in the rat. Am. J. Physiol. 226: 265–276, 1974.
 112. Gupta, B. L., T. A. Hall, and R. J. Naftalin. 1978. Microprobe measurements of Na, K and Cl concentration profiles in epithelial cells and intercellular spaces of rabbit ileum. Nature 272: 70–73, 1978.
 113. Hall, D. A., and J. J. Grantham. Temperature effect on ADH response of isolated perfused rabbit collecting tubules. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F595–F601, 1980.
 114. Handler, J. S. Vasopressin‐prostaglandin interaction in the regulation of epithelial cell permeability to water. Kidney Int. 19: 831–838, 1981.
 115. Harmanci, M. C., W. A. Kachadorian, H. Valtin, and V. A. Di Scala. Antidiuretic hormone‐induced intramembranous alteration in mammalian collecting ducts. Am. J. Physiol. 235: F440–F443, 1978.
 116. Harmanci, M. C., M. Lorenzen, and W. A. Kachadorian. Vasopressin‐induced intramembranous particle aggregates in isolated rabbit collecting duct. Kidney Int. 21: 275A, 1982.
 117. Harmanci, M. C., P. Stern, W. A. Kachadorian, H. Valtin, and V. A. Di Scala. Vasopressin and collecting duct intramembranous particle clusters: a dose‐response relationship. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F560–F564, 1980.
 118. Harris, H. W., Jr. J. B. Wade, and J. S. Handler. Fluorescent markers to study membrane retrieval in ADH treated toad urinary bladder. Am. J. Physiol. 251 (Cell Physiol. 20): C274–C284, 1986.
 119. Harris, H. W., Jr. J. B. Wade, and J. S. Handler. Transepithelial water flow regulates apical membrane and retrieval on ADH‐stimulated toad urinary bladder. J. Clin. Invest. 78: 703–712, 1986.
 120. Haydon, D. A., and S. B. Hladky. Ion transport across thin‐lipid membranes: a critical discussion of mechanisms in selected systems. Q. Rev. Biophys. 5: 187–195, 1972.
 121. Hays, R. M., G. Ding, and N. Franki. Morphological aspects of the actions of ADH. Kidney Int. 21: 551–555, 1987.
 122. Hays, R. M., and N. Franki. The role of water diffusion in the action of vasopressin. J. Membr. Biol. 2: 267–276, 1970.
 123. Hays, R. M., N. Franki, and R. Soberman. Activation energy for water diffusion across the toad bladder: evidence against the pore enlargement hypothesis. J. Clin. Invest. 50: 1016–1018, 1971.
 124. Hebert, S. C., and T. E. Andreoli. Interactions of temperature and ADH on transport processes in cortical collecting tubules: evidence for ADH‐induced narrow aqueous channels in apical membranes. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F470–F480, 1980.
 125. Hebert, S. C., and T. E. Andreoli. Water movement across the mammalian cortical collecting duct. Kidney Int. 22: 526–535, 1982.
 126. Hebert, S. C., and T. E. Andreoli. Water transport and osmoregulation by terminal nephron segments. In: The Kidney, Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch New York: Raven Press, 1985, p. 933.
 127. Hebert, S. C., R. M. Culpepper, and T. E. Andreoli. The posterior pituitary and, water metabolism. In: Textbook of Endocrinology, 7th Edition, edited by D. W. Foster and J. D. Wilson Philadelphia: W. B. Saunders, 1985, p. 614.
 128. Hebert, S. C., J. A. Schafer, and T. E. Andreoli. The effects of antidiuretic hormone (ADH) on solute and water transport in the mammalian nephron. J. Membr. Biol. 58: 1–19, 1981.
 129. Heinz, E. Grundmechanismus der Magensäureproduktion und deren Regulation. Klin. Physiol. 1: 184–203, 1960.
 130. Hevesy, G., E. Hofer, and A. Krogh. The permeability of the skin of frogs to water as determined by D2O and H2O. Scand. Arch. Physiol. 72: 199–214, 1935.
 131. Hildebrandt, J., R. Sekura, J. Codina, R. Iyengar, C. Manclark, and L. Birnbaumer. Stimulation and inhibition of adenyl cyclases mediated by distinct regulatory proteins. Nature 302: 706–709, 1983.
 132. Hill, A. Osmosis: A bimodal theory with implications for symmetry. Proc. R. Soc. 215: 155–174, 1982.
 133. Hill, B., and A. E. Hill. Fluid transfer by Necturus gallbladder epithelium as a function of osmolality. Proc. R. Soc. 200: 151–162, 1978.
 134. Höber, R. The Physical Chemistry of Cells and Tissues. Philadelphia: Blakiston, 1945.
 135. Höber, R., and S. L. Ørskov. Untersuchungen über die Permeabilitätschwindigkeit von Anelecktrolyten bei den roten Blutkörperchen verschiedener Tierarten. Pflugers Arch. 231: 599–615, 1933.
 136. Hodgkin, A. L., and A. F. Huxley. Quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117: 500–544, 1952.
 137. Hoffman, E. K., L. O. Simonsen, and I. H. Lambert. Volume‐induced increase of K+ and Cl− permeabilities in Ehrlich ascites tumor cells. Role of internal Ca2+. J. Membr. Biol. 78: 211–222, 1984.
 138. Huss, R. E., and D. J. Marsh. A model of NaCl and water flow through paracellular pathways of renal proximal tubules. J. Membr. Biol. 23: 305–347, 1975.
 139. Ikonomov, O., M. Simon, and E. Frömter. Electrophysiological studies on lateral intercellular spaces of Necturus gallbladder epithelium. Pflugers Arch. 403: 301–307, 1985.
 140. Jacobs, M. H. Diffusion processes. Ergebnisse Biol. 12: 1–160, 1932.
 141. Jacobson, H. R. Transport characteristics of in vitro perfused proximal convoluted tubules. Kidney Int. 22: 425–433, 1982.
 142. Jacobson, H. R., J. P. Kokko, D. W. Seldin, and C. Holmberg. Lack of solvent drag of NaCl and NaHCO3 in rabbit proximal tubules. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F342–F348, 1982.
 143. Jard, S., J. Bouguet, P. Favard, and N. Carasso. The role of intercellular channels in the transepithelial transfer of water and sodium in the frog urinary bladder. J. Membr. Biol. 4: 124–147, 1971.
 144. Jard, S., C. Roy, T. Barth, R. Rajerison, and J. Bockaert. Antidiuretic hormone‐sensitive kidney adenylate cyclase. Adv. Cyclic Nucleotide Res. 5: 31–52, 1975.
 145. Jones, S. M., G. Frindt, and E. E. Windhager. Effect of peritubular [Ca] or ionomycin on hydroosmotic response of CCTs to ADH or cAMP. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F240–F253, 1988.
 146. Kachadorian, W. A., R. A. Coleman, and J. B. Wade. Water permeability and particle aggregates in ADH‐, cAMP‐, and forskolin‐treated toad bladder. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F120–F125, 1987.
 147. Kachadorian, W. A., S. J. Ellis, and J. Muller. Possible roles for microtubules and microfilaments in ADH action on toad urinary bladder. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F14–F20, 1979.
 148. Kachadorian, W. A., S. D. Levine, J. B. Wade, V. A. Di Scala, and R. M. Hays. Relationship of aggregated intramembranous particles to water permeability in vasopressin‐treated toad urinary bladder. J. Clin. Invest. 59: 576–581, 1977.
 149. Kachadorian, W. A., J. Muller, S. Rudich, and V. A. Di Scala. Temperature dependence of ADH‐induced water flow and intramembranous particle aggregates in toad bladder. Science 205: 910–913, 1979.
 150. Kachadorian, W. A., J. Muller, S. Rudich, and V. A. Di Scala. Relation of ADH effects to altered membrane fluidity in toad urinary bladder. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F63–F69, 1981.
 151. Kachadorian, W. A., J. B. Wade, and V. A. Di Scala. Vasopressin: induced structural change in toad bladder luminal membranes. Science 190: 67–69, 1975.
 152. Kachadorian, W. A., J. B. Wade, C. C. Uiterwyk, and V. A. Di Scala. Membrane structural and functional responses to vasopressin in toad urinary bladder. J. Membr. Biol. 30: 381–401, 1977.
 153. Kaye, G. I., H. O. Wheeler, R. T. Whitlock, and N. Love. Fluid transport in the rabbit gallbladder. J. Cell Biol. 30: 237–268, 1966.
 154. Kedem, O., and A. Katchalsky. A physical interpretation of the phenomenological coefficients of membrane permeability. J. Gen. Physiol. 45: 143–179, 1961.
 155. Kirk, K. L. Origin of ADH‐induced vacuoles in rabbit cortical collecting tubule. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F719–F733, 1988.
 156. Kirk, K. L., B. Angeliki, and P. Eggena. Cell specificity of vasopressin binding in renal collecting duct: computer‐enhanced imaging of a fluorescent hormone analog. Proc. Natl. Acad. Sci. USA 84: 6000–6004, 1987.
 157. Kirk, K. L., D. R. Di Bona, and J. A. Schafer. Morphologic responses of the rabbit cortical collecting tubule to peritubular hypotonicity: quantitative examination with differential interference microscopy. J. Membr. Biol. 79: 53–64, 1984.
 158. Kirk, K. L., D. R. Di Bona, and J. A. Schafer. Regulatory volume decrease in perfused proximal nephron: evidence for a dumping of K+. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F933–F942, 1987.
 159. Kirk, K. L., J. A. Schafer, and D. R. Di Bona. Quantitative analysis of the structural events associated with antidiuretic hormone‐induced volume reabsorption in the rabbit cortical collecting tubule. J. Membr. Biol. 79: 65–74, 1984.
 160. Kirk, K. L., J. A. Schafer, and D. R. Di Bona. Cell volume regulation in rabbit proximal straight tubule perfused in vitro. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F922–F932, 1987.
 161. Koefoed‐Johnsen, V., and H. H. Ussing. The contributions of diffusion and flow to the passage of D2O through living membranes. Acta Physiol. Scand. 28: 60–76, 1953.
 162. Kokko, J. P., M. B. Burg, and J. Orloff. Characteristics of NaCl and water transport in the renal proximal tubule. J. Clin. Invest. 50: 69–76, 1971.
 163. Krothapalli, R. K., W. B. Duffy, H. O. Senekjian, and W. N. Suki. Modulation of the hydro‐osmotic effect of va‐sopressin on the rabbit cortical collecting tubule by adrenergic agents. J. Clin. Invest. 72: 287–294, 1983.
 164. Kyte, J. Immunoferritin determination of the distribution of (Na+ & K+) ATPase over the plasma membranes of renal convoluted tubules. II. Proximal segment. J. Cell Biol. 68: 304–318, 1976.
 165. La Pointe, J.‐Y., R. La Prade, and J. Cardinal. Transepithelial and cell membrane electrical resistances of the rabbit proximal convoluted tubule. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F637–F649, 1984.
 166. Larson, M., and K. R. Spring. Volume regulation by Necturus gallbladder: basolateral KCI exit. J. Membr. Biol. 81: 219–232, 1984.
 167. Lassiter, W. E., A. Frick, G. Rumrich, and K. Ullrich. Influence of ionic calcium on water permeability of the proximal and distal tubules in the kidney. Pflugers Arch. 285: 90–95, 1965.
 168. Lea, E. J. A. Permeation through long narrow pores. J. Theoret. Biol. 5: 102–107, 1963.
 169. Lenard, J., and S. J. Singer. Protein conformation in cell membrane preparations as studied by optical rotary dispersion and circular dichroism. Proc. Natl. Acad. Sci. USA 56: 1828–1835, 1966.
 170. Levine, S. D., N. Franki, R. Einhorn, and R. M. Hays. Vasopressin‐stimulated movement of drugs and uric acid across the toad urinary bladder. Kidney Int. 9: 30–35, 1976.
 171. Levine, S. D., and M. Jacoby. Comparison of effects of forskolin, cAMP, and vasopressin on Pf/Pd(w) of toad urinary bladder luminal membrane. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F357–F360, 1987.
 172. Levine, S. D., M. Jacoby, and A. Finkelstein. The water permeability of toad urinary bladder. I. Permeability of barriers in series with the luminal membrane. J. Gen. Physiol. 83: 529–541, 1984.
 173. Levine, S., M. Jacoby, and A. Finkelstein. The water permeability of toad urinary bladder. II. The value of Pf/Pd for antidiuretic hormone‐induced water permeation pathway. J. Gen. Physiol. 83: 543–561, 1984.
 174. Levine, S. D., and W. A. Kachadorian. Barriers to water flow in vasopressin‐treated toad urinary bladder. J. Membr. Biol. 61: 135–139, 1981.
 175. Levitt, D. G. A new theory of transport for cell membrane pores. I. General theory and application to red cell. Biochim. Biophys. Acta 373: 115–131, 1974.
 176. Levitt, D. G., and H. J. Mlekoday. Reflection coefficient and permeability of urea and ethylene glycol in the human red cell membrane. J. Gen. Physiol. 81: 239–253, 1983.
 177. Lewy, J. E., and E. E. Windhager. Peritubular control of proximal tubular fluid reabsorption in the rat kidney. Am. J. Physiol. 214: 943–951, 1968.
 178. Lindley, B. D., T. Hoshiki, and D. E. Leb. Effects of D2O and osmotic gradients on potential and resistance of the isolated frog skin. J. Gen. Physiol. 47: 773–793, 1964.
 179. Linshaw, M. A., and J. J. Grantham. Effects of collagenase and ouabain on renal cell volume in hypotonic media. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F491–F498, 1980.
 180. Liu, F.‐Y., M. G. Cogan, and F. C. Rector, Jr. Axial heterogeneity in the rat proximal convoluted tubule II. Osmolality and osmotic water permeability. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F822–F826, 1984.
 181. Lutz, M. D., J. Cardinal, and M. B. Burg. Electrical resistance of renal proximal tubule perfused in vitro. Am. J. Physiol. 225: 729–734, 1973.
 182. Machen, T. E., and J. M. Diamond. An estimate of the salt concentration in the lateral intercellular spaces of rabbit gallbladder during maximal fluid transport. J. Membr. Biol. 1: 94–213, 1969.
 183. Masters, B. R., J. Yguerabide, and D. D. Fanestil. Microviscosity of mucosal cellular membranes in toad urinary bladder: relation to antidiuretic hormone action on water permeability. J. Membr. Biol. 40: 179–190, 1978.
 184. Masur, S. K., S. Cooper, and M. S. Rubin. Effect of an osmotic gradient on antidiuretic hormone‐induced endocytosis and hydroosmosis in the toad urinary bladder. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F370–F379, 1984.
 185. Masur, S. K., and S. Massardo. ADH and phorbol ester increase immunolabelling of the toad bladder apical membrane by antibodies made to granules. J. Membr. Biol. 96: 193–198, 1987.
 186. Masur, S. K., V. Sapirstein, and D. Rivero. 1985. Phorbol myristate acetate induces endocytosis as well as exocytosis and hydroosmosis in toad urinary bladder. Biochim. Biophys. Acta 281: 286–296, 1985.
 187. Mathias, R. T. Epithelial water transport in a balanced gradient system. Biophys. J. 47: 823–836, 1985.
 188. Maunsbach, A. B., and E. L. Boulpaep. Hydrostatic pressure changes related to paracellular shunt ultrastructure in proximal tubule. Kidney Int. 17: 732–748, 1980.
 189. Maunsbach, A. B., and E. L. Boulpaep. Paracellular shunt ultrastructure and changes in fluid transport in Necturus proximal tubule. Kidney Int. 24: 610–619, 1983.
 190. Maunsbach, A. B., and E. L. Boulpaep. Quantitative ultra‐structure and functional correlates in proximal tubule of Ambystoma and Necturus. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F710–F724, 1984.
 191. Mauro, A. Nature of solvent transfer in osmosis. Science 126: 252–253, 1957.
 192. McLaughlin, S., and R. T. Mathias. Electro‐osmosis and the reabsorption of fluid in renal proximal tubules. J. Gen. Physiol. 85: 699–728, 1985.
 193. Mendoza, S. A., J. S. Handler, and J. Orloff. Effect of inhibitors of sodium transport on response of toad bladder to ADH and cyclic AMP. Am. J. Physiol. 219: 1440–1445, 1970.
 194. Meschia, G., and I. Setnikar. Experimental study of osmosis through a collodion membrane. J. Gen. Physiol. 42: 429–444, 1958.
 195. Meyer, M. M., and A. S. Verkman. Evidence for water channels in renal proximal tubule cell membranes. J. Membr. Biol. 96: 107–119, 1987.
 196. Møllgard, K., and J. Rostgaard. Morphologic aspects of some sodium transporting epithelia suggesting a transcellular pathway via elements of the endoplasmic reticulum. J. Membr. Biol. 42: 71–89, 1978.
 197. Morel, F. Sites of hormone action in the mammalian nephron. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F159–F164, 1981.
 198. Morel, F., and Y. Murayama. Simultaneous measurement of unidirectional and net sodium fluxes in microperfused rat proximal tubules. Pflugers Arch. 320: 1–23, 1970.
 199. Morgan, T., and R. W. Berliner. Permeability of the loop of Henle, vasa recta, and collecting duct to water, urea, and sodium. Am. J. Physiol. 251: 108–115, 1968.
 200. Morgan, T., F. Sakai, and R. W. Berliner. In vitro permeability of medullary collecting ducts to water and urea. Am. J. Physiol. 241: 574–581, 1968.
 201. Muller, J., and W. A. Kachadorian. Aggregate‐carryingmembranes during ADH stimulation and washout in toad bladder. Am. J. Physiol. 247 (Cell Physiol. 16): C90–C98, 1984.
 202. Muller, J., W. A. Kachadorian, and V. A. Di Scala. Evidence that ADH‐stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells. J. Cell Biol. 85: 83–95, 1980.
 203. Nadler, S. P., S. C. Hebert, and B. M. Brenner. PGE2, forskolin, and cholera toxin interaction in rabbit cortical collecting tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F127–F135, 1986.
 204. Nernst, W. Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen. Z. Physk. Chem. (Leipzig) 47: 52–63, 1904.
 205. Neumann, K. H., and F. C. Rector, Jr. Mechanism of NaCl and water reabsorption in the proximal convoluted tubule of rat kidney. Clin. Invest. 58: 1110–1118, 1976.
 206. Ng, R. C., D. Rouse, and W. N. Suki. Calcium transport in the rabbit superficial proximal convoluted tubule. J. Clin. Invest. 74: 834–842, 1984.
 207. O'Morchoe, C. C. C., P. J. O'Morchoe, and E. J. Donati. Comparison of hilar and capsular lymph. Am. J. Physiol. 229: 416–421, 1975.
 208. O'Neil, R. G., and E. L. Boulpaep. Effect of amiloride on the apical cell membrane cation channels of a sodium‐absorbing, potassium‐secreting renal epithelium. J. Membr. Biol. 50: 365–387, 1979.
 209. Onsager, L. Theories and problems of liquid diffusion. Ann. N.Y. Acad. Sci. 46: 241–265, 1945.
 210. Orloff, J., and J. S. Handler. The similarity of effects of vasopressin adenosine‐3′,5′‐monophosphate (cyclic AMP) and theophylline on the toad bladder. J. Clin. Invest. 41: 702–709, 1962.
 211. Orloff, J., J. S. Handler, and S. Bergstrom. Effects of prostaglandin (PGE) on the permeability response of the toad bladder to vasopressin, theophylline and adenosine 3′,5′‐mono‐phosphate. Nature 205: 397–398, 1965.
 212. Overton, E. Beitrage zur allgemeinen Muskel und Nerven Physiologic Pflugers Arch. 92: 115–280, 1902.
 213. Pappenheimer, J. R. Passage of molecules through capillary walls. Physiol. Rev. 33: 387–423, 1953.
 214. Pappenheimer, J. R., E. M. Renkin, and L. M. Borrero. Filtration, diffusion and molecular sieving through peripheral capillary membranes. Am. J. Physiol. 167: 13–46, 1951.
 215. Parsons, D. S., and D. L. Windgate. The effect of osmotic gradients on fluid transfer across the rat intestine in vitro. Biochim. Biophys. Acta 46: 170–183, 1961.
 216. Patlak, C. S., D. A. Goldstein, and J. F. Hoffman. The flow of solute and solvent across a two‐membrane system. J. Theor. Biol. 5: 426–442. 1963.
 217. Pearl, M., and A. Taylor. Actin filaments and vasopressin‐stimulated water flow in toad urinary bladder. Am. J. Physiol. 245 (Cell Physiol. 14): C28–C39, 1983.
 218. Persson, E., J. Schnermann, and B. Ågerup. The hydraulic conductivity of the rat proximal tubular wall determined with colloidal solutions. Pflugers Arch. 360: 25–44, 1975.
 219. Persson, E., and H. R. Ulfendahl. Water permeability in rat distal tubules. Acta Physiol. Scand. 78: 364–375, 1970.
 220. Persson, E., and H. R. Ulfendahl. Water permeability in rat proximal tubules. Acta Physiol. Scand. 78: 353–363, 1970.
 221. Petersen, M. J., and I. S. Edelman. Calcium inhibition of the action of vasopressin on the urinary bladder of toad. J. Clin. Invest. 43: 583–594, 1964.
 222. Pietras, R. J., and E. M. Wright. Non‐electrolyte probes of membrane structure in ADH‐treated toad urinary bladder. Nature 247: 222–224, 1974.
 223. Pietras, R. J., and E. M. Wright. The membrane action of antidiuretic hormone (ADH) on toad urinary bladder. J. Membr. Biol. 22: 107–123, 1975.
 224. Pinter, G. G., and K. Gartner. Peritubular capillary, interstitium, and lymph of the renal cortex. Rev. Physiol. Biochem. Pharmacol. 99: 184–202, 1984.
 225. Portilla, D., J. A. Shayman, and A. R. Morrison. Vasopressin does not hydrolyze polyphosphoinositides in rabbit collecting tubule cells. Biochim. Biophys. Acta 928: 305–311, 1987.
 226. Pratz, J., P. Ripoche, and B. Corman. Evidence for proteic water pathways in the luminal membrane of kidney proximal tubule. Biochim. Biophys. Acta 856: 259–266, 1986.
 227. Preisig, P. A., and C. A. Berry. Evidence for transcellular osmotic water flow in rat proximal tubules. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F124–F131, 1985.
 228. Price, H. O., and T. E. Thompson. Properties of lipid bilayer membranes separating two aqueous phases: temperature dependence of water permeability. J. Mol. Biol. 4: 1443–1457, 1969.
 229. Rajerison, R., J. Marchetti, C. Roy, J. Bockaert, and S. Jard. The vasopressin‐sensitive adenylate cyclase of the rat kidney. J. Biol. Chem. 249: 6390–6400, 1974.
 230. Rector, F. C., Jr., and C. Berry. Preliminary studies on the characterization of the paracellular pathway of proximal convoluted tubules. New Aspects Renal Function 177: 37–40, 1978.
 231. Rector, F. C., M. Martinez‐Maldonado, F. P. Brunner, and D. W. Seldin. Evidence for passive reabsorption of NaCl in proximal tubule of rat kidney. J. Clin. Invest. 45: 1060, 1966.
 232. Reif, M. C., S. L. Troutman, and J. A. Schafer. Sustained response to vasopressin in isolated rat cortical collecting tubules. Kidney Int. 26: 725–732, 1984.
 233. Ribeiro, C. P., F. Ribeiro‐Neto, J. B. Field, and W. N. Suki. Prevention of α2‐adrenergic inhibition on ADH action by pertussis toxin in rabbit CCT. Am. J. Physiol. 253 (Cell Physiol. 22): C105–C112, 1987.
 234. Robertson, J. D. The molecular structure and contact relationships of cell membranes. Prog. Biophys. Biophys. Chem. 10: 343–418, 1960.
 235. Rodbell, M. The role of hormone receptors and GTP‐regulatory proteins in membrane transduction. Nature 284: 17–22, 1980.
 236. Rosenberg, P. A., and A. S. Finkelstein. Interaction of ions and water in gramicidin A channels. Streaming potentials across lipid bilayer membranes. J. Gen. Physiol. 72: 327–340, 1978.
 237. Rosenberg, P. A., and A. Finkelstein. Water permeability of gramicidin A‐treated lipid bilayer membranes. J. Gen. Physiol. 72: 341–350, 1978.
 238. Sackin, H. Electrophysiology of salamander proximal tubule I. Effects of rapid cooling. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F319–F333, 1986.
 239. Sackin, H. Electrophysiology of salamander proximal tubule II. Interspace NaCl concentrations and solute‐coupled water transport. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F334–F347, 1986.
 240. Sackin, H., and E. L. Boulpaep. Models for coupling of salt and water transport. Proximal tubular reabsorption in Necturus kidney. J. Gen. Physiol. 66: 671–733, 1975.
 241. Sands, J. M., and M. A. Knepper. Urea permeability of mammalian inner medullary collecting duct system and papillary surface epithelium. J. Clin. Invest. 79: 138–147, 1987.
 242. Sansom, S. C., H. O. Senekjian, T. F. Knight, P. Frommer, and E. J. Weinman. Water absorption in the proximal tubule: effect of bicarbonate, chloride gradient, and organic solutes. Proc. Soc. Exp. Biol. Med. 172: 111–117, 1983.
 243. Sarkadi, B., E. Mack, and R. Rothstein. Ionic events during the volume response of human peripheral blood lymphocytes to hypotonic media. I. Distinctions between volume‐activated Cl− and K+ conductance pathways. J. Gen. Physiol. 83: 497–512, 1984.
 244. Sato, M., and M. J. Dunn. Interaction of vasopressin, prostaglandins and cAMP in rat papillary collecting tubule cells in culture. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F423–F433, 1984.
 245. Schafer, J. A., Robert, F. Pitts Memorial Lecture. Mechanisms coupling the absorption of solute and water in the proximal nephron. Kidney Int. 25: 708–716, 1984.
 246. Schafer, J. A. Fluid absorption in the kidney proximal tubule. NIPS. 2: 22–26, 1987.
 247. Schafer, J. A., and T. E. Andreoli. Cellular constraints to diffusion. The effect of antidiuretic hormone on water flows in isolated mammalian collecting tubules. J. Clin. Invest. 51: 1264–1278, 1972.
 248. Schafer, J. A., and T. E. Andreoli. The effect of antidiuretic hormone on solute flows in mammalian collecting tubules. J. Clin. Invest. 51: 1279–1286, 1972.
 249. Schafer, J. A., and D. W. Barfuss. The study of pars recta function by the perfusion of isolated tubule segments. Kidney Int. 22: 434–448, 1982.
 250. Schafer, J. A., C. S. Patlak, and T. E. Andreoli. Osmosis in cortical collecting tubules. A theoretical and experimental analysis of the osmotic transient phenomenon. J. Gen. Physiol. 64: 201–227, 1974.
 251. Schafer, J. A., C. S. Patlak, and T. E. Andreoli. A component of fluid absorption linked to passive ion flows in the superficial pars recta. J. Gen. Physiol. 66: 445–471, 1975.
 252. Schafer, J. A., C. S. Patlak, and T. E. Andreoli. Fluid absorption and active and passive ion flows in the rabbit superficial pars recta. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F154–F167, 1977.
 253. Schafer, J. A., C. S. Patlak, S. L. Troutman, and T. E. Andreoli. Volume absorption in the pars recta. II. Hydraulic conductivity coefficient. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F340–F348, 1978.
 254. Schafer, J. A., S. L. Troutman, and T. E. Andreoli. Osmosis in cortical collecting tubules. ADH‐independent osmotic flow rectification. J. Gen. Physiol. 64: 228–240, 1974.
 255. Schafer, J. A., S. L. Troutman, M. L. Watkins, and T. E. Andreoli. Flow dependence of fluid transport in the isolated superficial pars recta: evidence that osmotic disequilibrium between external solutions drives isotonic fluid absorption. Kidney Int. 20: 588–597, 1981.
 256. Schlondorff, D., and S. D. Levine. Inhibition of vasopressin‐stimulated water flow in toad bladder by phorbol myristate acetate, dioctanoylglycerol and RHC‐80267. J. Clin. Invest. 76: 1071–1078, 1985.
 257. Schlondorff, D., J. A. Satriano, and G. J. Schwartz. Synthesis of prostaglandin E2 in different segments of isolated collecting tubules from adult and neonatal rabbits. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F134–F144, 1985.
 258. Schultz, S. G. The role of paracellular pathways in isotonic fluid transport. Yale J. Biol. Med. 50: 99–113, 1977.
 259. Schultz, S. G. Homocellular regulatory mechanisms in sodium‐transporting epithelia: avoidance of extinction by “flush‐through” Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F579–F590, 1981.
 260. Schwartz, I. L., C. J. Huang, A. J. Fischman, S. K. Masur, and H. R. Wyssbrod. Current ideas on the sequence of events involved in the hydroosmotic action of anti‐diuretic hormones. In: Neurohypophyseal Peptide Hormones and Other Biologically Active Peptides, edited by D. H. Schlessinger New York: Elsevier, 1981, p. 101–110.
 261. Schwartz, I. L., L. J. Shlatz, E. Kinne‐Saffran, and R. Kinne. Target cell polarity and membrane phosphorylation in relation to the mechanism of action of antidiuretic hormone. Proc. Natl. Acad. Sci. USA 71: 2595–2599, 1974.
 262. Seamon, K. B., and J. W. Daly. Forskolin, cyclic AMP and cellular physiology. Trends Pharmacol. Sci. 4: 120–123, 1983.
 263. Seely, J. F. Variation in electrical resistance along length of rat proximal convoluted tubule. Am. J. Physiol. 225: 48–57, 1973.
 264. Simon, M., S. Curci, B. Gebler, and E. Frömter. Attempts to determine ion concentrations in lateral spaces by direct micropuncture with ion‐sensitive microelectrodes. In: Water Transport across Epithelia, edited by H. H. Ussing, N. Bindslev N. A. Lassen, and O. Sten‐Knudsen Copenhagen: Munksgard, 1981.
 265. Smith, H. W. The Kidney. Structure and Function in Health and Disease. New York: Oxford University Press, 1951.
 266. Smyth, D. H., and C. B. Taylor. Transfer of water and solutes by an in vitro intestinal preparation. J. Physiol. (Lond.) 136: 632–648, 1957.
 267. Solomon, A. K. Characterization of biological membranes by equivalent pores. J. Gen. Physiol. 51: 3355–3645, 1968.
 268. Sonnenberg, H. Medullary collecting‐duct function in antidiuretic and in salt‐ or water‐diuretic rats. Am. J. Physiol. 226: 501–506, 1974.
 269. Spring, K. R. Optical techniques for the evaluation of epithelial transport processes. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F167–F174, 1979.
 270. Spring, K. R., and A. Hope. Size and shape of the lateral intercellular spaces in a living epithelium. Science 200: 54–58, 1978.
 271. Starling, E. H. On the absorption of fluid from the connective tissue spaces. J. Physiol. (Lond.) 19: 312–326, 1896.
 272. Staverman, A. J. The theory of the measurement of osmotic pressure. Recueil. Trav. Chim. 70: 344–352, 1951.
 273. Stetson, D. L., S. A. Lewis, W. Alles, and J. B. Wade. Evaluation by capacitance measurements of antidiuretic hormone induced membrane area changes in toad bladder. Biochim. Biophys. Acta 689: 267–274, 1982.
 274. Stolte, H., J. P. Brecht, M. Wiederholt, and H. Hierholzer. Einfluss von Adrenalektomie und Glukocorticoiden auf die Wasserpermeabilität corticaler Nephronabschnitte der Rattenniere. Pflugers Arch. 299: 99–127, 1968.
 275. Strange, K., and K. R. Spring. Absence of significant cellular dilution during ADH‐stimulated water reabsorption. Science 235: 1068–1070, 1987.
 276. Strange, K., and K. R. Spring. Cell membrane water permeability of rabbit cortical collecting duct. J. Membr. Biol. 96: 27–43, 1987.
 277. Strange, K., M. C. Willingham, J. S. Handler, and H. W. Harris, Jr. Apical membrane retrieval via clathrin‐coated pits is stimulated by removal of ADH from isolated perfused rabbit cortical tubule. J. Membr. Biol., in press.
 278. Takaichi, K., S. Uchida, and K. Kurokawa. High Ca2+ inhibits AVP‐dependent cAMP production in thick ascending limbs of Henle. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F770–F776, 1986.
 279. Thomas, S. R., and D. C. Mikulecky. A network thermodynamic analysis of salt and water flow across the kidney proximal tubule. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F638–F648, 1978.
 280. Thull, N. B., and W. S. Rehm. Composition and osmolality of gastric juice as a function of plasma osmolality. Am. J. Physiol. 185: 317–324, 1956.
 281. Tisher, C. C., R. E. Bulger, and H. Valtin. Morphology of the renal medulla in water diuresis and vasopressin‐induced antidiuresis. Am. J. Physiol. 220: 87–97, 1971.
 282. Tisher, C. C., and J. P. Kokko. Relationship between peritubular oncotic pressure gradients and morphology in isolated proximal tubules. Kidney Int. 6: 146–156, 1974.
 283. Tisher, C. C., and W. E. Yarger. Lanthanum permeability of the tight junction (zonula occludens) in the renal tubule of the rat. Kidney Int. 3: 238–250, 1973.
 284. Tormey, J. M., and J. M. Diamond. The ultrastructural route of fluid transport in rabbit gallbladder. J. Gen. Physiol. 50: 2031–2060, 1967.
 285. Ullrich, K. J., G. Rumrich, and G. Fuchs. Wasserpermeabilität und transtubulärer Wasserfluss corticaler Nephron‐abschnitte bei verschiedenen Diuresezuständen. Pflugers Arch. 280: 99–119, 1964.
 286. Urry, D. W., M. C. Goodall, J. D. Glickson, and D. F. Mayers. The gramicidin A transmembrane channel: characteristics of head to head dimerized πL,D helices. Proc. Natl. Acad. Sci. USA 68: 1907–1911, 1971.
 287. Ussing, H. H. Anomalous transport of electrolytes and sucrose through the isolated frog skin induced by hypertonicity of the outside bathing solution. Ann. N.Y. Acad. Sci. 317: 543–555, 1966.
 288. Ussing, H. H. The interpretation of tracer fluxes in terms of membrane structure. Q. Rev. Biophys. 4: 365–379, 1969.
 289. Ussing, H. H., and E. E. Windhager. Nature of shunt path and active sodium transport path through frog skin epithelium. Acta Physiol. Scand. 61: 484–509, 1964.
 290. van Heeswijk, M. P. E., and C. H. Os. Osmotic water permeability of brush border and basolateral membrane vesicles from rat renal cortex and small intestine. J. Membr. Biol. 92: 183–193, 1987.
 291. van Os, C. H., G. Weber, and E. M. Wright. Volume flow across gallbladder epithelium induced by small hydrostatic and osmotic gradients. J. Membr. Biol. 49: 1–20, 1979.
 292. van't Hoff, J. H. Die Rolle des osmotischen Druckes in der Analogie zwischen Lösungen und Gasen. Zr. Physik. Chem. 1: 481–508, 1887.
 293. Verkman, A. S., J. A. Dix, and J. L. Seifter. Water and urea transport in renal microvillous membrane vesicles. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F650–F655, 1985.
 294. Verkman, A. S., and K. R. Wong. Proton nuclear magnetic resonance measurement of diffusional water permeability in suspended renal proximal tubules. Biophys. J. 51: 717–723, 1987.
 295. Wade, J. B. Membrane structural studies of the action of vasopressin. Federation Proc. 44: 2687–2692, 1985.
 296. Wade, J. B., R. G. O'Neill, J. L. Pryor, and E. L. Boulpaep. Modulation of cell membrane area in renal collecting tubules by corticosteroid hormones. J. Cell. Biol. 81: 439–445, 1979.
 297. Wade, J. B., D. L. Stetson, and S. A. Lewis. ADH action: evidence for a membrane shuttle mechanism. Ann. N.Y. Acad. Sci. 372: 106–117, 1981.
 298. Walker, A. M., P. A. Bott, J. Oliver, and M. C. MacDowell. The collection and analysis of fluid from single nephrons of the mammalian kidney. Am. J. Physiol. 134: 580–595, 1941.
 299. Wall, B. J., J. L. Ochsman, and B. Schmidt‐Nielsen. Fluid transport: concentration of the intercellular compartment. Science 167: 1497–1498, 1970.
 300. Wallach, D. F. H., and P. H. Zahler. Protein conformations in cellular membranes. Proc. Natl. Acad. Sci. USA 56: 1552–1559, 1966.
 301. Wang, J. H., C. V. Robinson, and I. S. Edelman. Self‐diffusion and structure of liquid water. III. Measurement of the self‐diffusion of liquid water with H2, H3 and O18 as tracers. J. Am. Chem. Soc. 75: 466–470, 1953.
 302. Warner, R. R., and C. Lechene. Isosmotic volume reabsorption in rat proximal tubule. J. Gen. Physiol. 76: 559–586, 1980.
 303. Warner, R. R., and C. Lechene. Analysis of standing droplets in rat proximal tubules. J. Gen. Physiol. 79: 709–735, 1982.
 304. Weinstein, A. M. Nonequilibrium thermodynamic model of the rat proximal tubule epithelium. Biophys. J. 153–170, 1983.
 305. Weinstein, A. M. An equation for flow in the renal proximal tubule. Bull. Math. Biol. 48: 29–57, 1986.
 306. Weinstein, A. M. A mathematical model of the rat proximal tubule. Am. J. Physiol. 250: 860–873, 1986.
 307. Weinstein, A. M. Modeling the proximal tubule: complications of the paracellular pathway. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F297–F305, 1988.
 308. Weinstein, A. M., and J. L. Stephenson. Coupled water transport in standing gradient models of the lateral intercellular space. Biophys. J. 35: 167–191, 1981.
 309. Weinstein, A. M., and J. L. Stephenson. Models of coupled salt and water transport across leaky epithelia. J. Membr. Biol. 60: 1–20, 1981.
 310. Weinstein, A. M., and E. E. Windhager. Sodium transport along the proximal tubule. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York, Raven Press, 1985, p. 1033–1062.
 311. Welling, D. J., L. W. Welling, and J. J. Hill. Phenomenological model relating cell shape to water reabsorption in proximal nephron. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F308–F317, 1978.
 312. Welling, L. W., and J. J. Grantham. Physical properties of isolated perfused renal tubules and tubular basement membranes. J. Clin. Invest. 51: 1063–1075, 1972.
 313. Welling, L. W., and D. J. Welling. Surface areas of brush border and lateral cell walls in the rabbit proximal nephron. Kidney Int. 8: 343–348, 1975.
 314. Welling, L. W., and D. J. Welling. Shape of epithelial cells and intercellular channels in the rabbit proximal nephron. Kidney Int. 9: 385–394, 1976.
 315. Welling, L. W., D. J. Welling, J. W. Holsapple, and A. P. Evan. Morphometric analysis of distinct microanatomy near the base of proximal tubule cells. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F126–F140, 1987.
 316. Welling, L. W., D. J. Welling, and T. J. Ochs. Video measurement of basolateral membrane hydraulic conductivity in the proximal tubule. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F123–F129, 1983.
 317. Welling, L. W., D. J. Welling, and T. J. Ochs. Video measurement of basolateral NaCl reflection coefficient in proximal tubule. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F290–F298, 1987.
 318. Welling, P. A., M. A. Linshaw, and L. P. Sullivan. Effect of barium on cell volume regulation in rabbit proximal straight tubules. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F20–F27, 1985.
 319. Whitlock, R. T., and H. O. Wheeler. Coupled transport of solute and water across gallbladder epithelium. J. Clin. Invest. 48: 2249–2265, 1964.
 320. Whittembury, G., and B. S. Hill. Fluid reabsorption by Necturus proximal tubule perfused with solutions of normal and reduced osmolality. Proc. R. Soc. Lond. B 215: 411–431, 1982.
 321. Whittembury, G., B. Lindemann, P. Carpi‐Medina, and H. Linares. Continuous measurements of cell volume in single kidney tubules. Kidney Int. 30: 187–191, 1986.
 322. Whittembury, G., A. Paz‐Aliaga, A. Biondi, P. Carpi‐Medina, E. González, and H. Linares. Pathways for volume flow and volume regulation in leaky epithelia. Pflugers Arch. 405: S17–S22, 1985.
 323. Williams, J. C., Jr. D. W. Barfuss, and J. A. Schafer. Transport of solute in proximal tubules is modified by changes in medium osmolality. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F246–F255, 1986.
 324. Williams, J. C., Jr. and J. A. Schafer. A model of osmotic and hydrostatic pressure effects on volume absorption in the proximal tubule. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F563–F575, 1987.
 325. Williams, J. C., Jr. and J. A. Schafer. The cortical interstitium as a site for solute polarization during tubular absorption. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F813–F823, 1988.
 326. Wirz, H. Der osmotische Druck in den corticalen Tubuli der Rattenniere. Helv. Physiol. Acta 14: 353–362, 1956.
 327. Wirz, H., B. Hargitay, and W. Kuhn. Lokalisation des Konzentrierugsprozesses in der Niere durch direkte Kryoscopie. Helv. Physiol. Acta 9: 196–207, 1951.
 328. Wright, E. M., and R. J. Pietras. Routes of nonelectrolyte permeation across epithelial membranes. J. Membr. Biol. 17: 293–312, 1974.
 329. Wright, E. M., A. P. Smulders, and J. M. Tormey. The role of lateral intercellular spaces and solute polarization effects in the passive flow of water across the rabbit gallbladder. J. Membr. Biol. 7: 198–219, 1972.
 330. Wuthrich, R. P., R. Loup, L. Favre, and M. B. Vallolton. Dynamic response of PG synthesis to peptide hormones and osmolality in renal tubular cells. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F790–F797, 1986.
 331. Zeuthen, T. Relations between intracellular ion activities and extracellular osmolality in Necturus gallbladder epithelium. J. Membr. Biol. 66: 109–121, 1982.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

James A. Schafer, W. Brian Reeves, Thomas E. Andreoli. Mechanisms of Fluid Transport Across Renal Tubules. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 659-713. First published in print 1992. doi: 10.1002/cphy.cp080115