References |
1. |
Al‐Zahid, G.,
J. A. Schafer,
S. L. Troutman, and
T. E. Andreoli.
The effect of antidiuretic hormone on water and solute permeation, and the activation energies for these processes, in mammalian cortical collecting tubules: evidence for parallel ADH‐sensitive pathways for water and solute diffusion in luminal plasma membranes.
J. Membr. Biol.
31:
103–129,
1977.
|
2. |
Anderson, W. A. and
E. Brown.
The influence of arginine‐vasopressin upon the production of adenosine‐3′, 5′‐monophosphate by adenyl cyclase from the kidney.
Biochim. Biophys. Acta
67:
674–676,
1963.
|
3. |
Ando, Y.,
H. R. Jacobson, and
M. D. Breyer.
Phorbol myristate acetate, dioctanoylglycerol and phosphatidic acid inhibit the hydroosmotic effect of vasopressin on rabbit cortical collecting tubule.
J. Clin. Invest.
80:
590–593,
1987.
|
4. |
Ando, Y.,
H. R. Jacobson, and
M. D. Breyer.
Phorbol ester and A23187 have additive but mechanistically separate effects on vasopressin action in rabbit collecting tubule.
J. Clin. Invest.
81:
1578–1584,
1988.
|
5. |
Andreoli, T. E. and
J. A. Schafer.
Mass transport across cell membranes: The effects of antidiuretic hormone on water and solute flows in epithelia.
Annu. Rev. Physiol.
39:
451–500,
1976.
|
6. |
Andreoli, T. E. and
J. A. Schafer.
Some considerations of the role of antidiuretic hormone in water homeostasis. In:
Recent Progress in Hormone Research,
edited by R. O. Greep
New York:
Academic Press,
1977,
vol. 3,
p. 387–434.
|
7. |
Andreoli, T. E. and
J. A. Schafer.
Volume absorption in the pars recta. III. Luminal hypotonicity as a driving force for isotonic volume absorption.
Am. J. Physiol.
234
(Renal Fluid Electrolyte Physiol. 3):
F349–F355,
1978.
|
8. |
Andreoli, T. E. and
J. A. Schafer.
Effective luminal hypotonicity: the driving force for isotonic proximal tubular fluid absorption.
Am. J. Physiol.
236
(Renal Fluid Electrolyte Physiol. 5):
F89–F96,
1979.
|
9. |
Andreoli, T. E. and
J. A. Schafer.
External solution driving forces for isotonic fluid absorption in proximal tubules.
Federation Proc.
38:
154–160,
1979.
|
10. |
Andreoli, T. E.,
J. A. Schafer, and
S. L. Troutman.
Perfusion rate‐dependence of transepithelial osmosis in isolated proximal convoluted tubules: estimation of the hydraulic conductance.
Kidney Int.
14:
263–269,
1978.
|
11. |
Andreoli, T. E.,
J. A. Schafer,
S. L. Troutman, and
M. L. Watkins.
Solvent drag component of Cl− flux in superficial proximal straight tubules: Evidence for a paracellular component of isotonic fluid absorption.
Am. J. Physiol.
237
(Renal Fluid Electrolyte Physiol. 6):
F455–F462,
1979.
|
12. |
Andreoli, T. E. and
S. L. Troutman.
An analysis of unstirred layers in series with “tight” and “porous” lipid bilayer membranes.
J. Gen. Physiol.
57:
464–478,
1971.
|
13. |
Argy, W. P. Jr.,
J. S. Handler, and
J. Orloff.
Ca++ and Mg++ effects on toad bladder response to cyclic AMP, theophylline and ADH analogues.
Am. J. Physiol.
213:
803–808,
1967.
|
14. |
Atherton, J. C.
Comparison of chloride concentration and osmolality in proximal tubular fluid, peritubular capillary plasma and systemic plasma in the rat.
J. Physiol. (London)
273:
765–773,
1977.
|
15. |
Barfuss, D. W. and
J. A. Schafer.
Flow dependence of nonelectrolyte absorption in the nephron.
Am. J. Physiol.
236
(Renal Fluid Electrolyte Physiol. 5):
F163–F174,
1979.
|
16. |
Barfuss, D. W. and
J. A. Schafer.
Collection and analysis of absorbate from proximal straight tubules.
Am. J. Physiol.
241
(Renal Fluid Electrolyte Physiol. 10):
F597–F604,
1981.
|
17. |
Barfuss, D. W. and
J. A. Schafer.
Hyperosmolality of absorbate from isolated rabbit proximal tubules.
Am. J. Physiol.
247
(Renal Fluid Electrolyte Physiol. 16):
F130–F139,
1984.
|
18. |
Barfuss, D. W. and
J. A. Schafer.
Rate of formation and composition of absorbate from proximal nephron segments.
Am. J. Physiol.
247
(Renal Fluid Electrolyte Physiol. 16):
F117–F129,
1984.
|
19. |
Beck, T. R. and
M. J. Dunn.
The relationship of antidiuretic hormone and renal prostaglandins.
Mineral Electrolyte Metab.
6:
46–59,
1981.
|
20. |
Bennett, C. M.,
B. Brenner, and
R. W. Berliner.
Concentration of urine in the mammalian kidney.
Am. J. Med.
42:
777–788,
1967.
|
21. |
Bentzel, C. J.,
B. Parsa, and
D. K. Hare.
Osmotic flow across proximal tubule of Necturus. Correlations of physiologic and anatomic studies.
Am. J. Physiol.
217:
570–580,
1969.
|
22. |
Beck, C. A.
Lack of effect of peritubular protein on passive NaCl transport in the rabbit proximal tubule.
J. Clin Invest.
71:
268–281,
1983.
|
23. |
Berry, C. A.
Water permeability and pathways in the proximal tubule.
Am. J. Physiol.
245
(Renal Fluid Electrolyte Physiol. 14):
F279–F294,
1983.
|
24. |
Berry, C. A.
Characteristics of water diffusion of the rabbit proximal convoluted tubule.
Am. J. Physiol.
249
(Renal Fluid Electrolyte Physiol. 18):
F729–F738,
1985.
|
25. |
Berry, C. A. and
E. L. Boulpaep.
Nonelectrolyte permeability of the paracellular pathway in the Necturus proximal tubule.
Am. J. Physiol.
228:
581–595,
1975.
|
26. |
Berry, C. A. and
F. C. Rector, Jr.
Active and passive sodium transport in the proximal tubule.
Mineral Electrolyte Metab.
4:
149–160,
1980.
|
27. |
Berry, C. A. and
A. S. Verkman.
Osmotic gradient dependence of water permeability in rabbit proximal convoluted tubule.
J. Membr. Biol.
105:
33–43,
1988.
|
28. |
Biber, T. U. L. and
P. F. Curran.
Coupled solute fluxes in toad skin.
J. Gen. Physiol.
51:
606–620,
1968.
|
29. |
Bishop, J. H. V.,
R. Green, and
S. Thomas.
Free‐flow reabsorption of glucose, sodium, osmoles and water in rat proximal convoluted tubule.
J. Physiol.
288:
331–351,
1979.
|
30. |
Bockaert, J.,
C. Roy,
R. Rajerison, and
S. Jard.
Specific binding of (3H) lysine‐vasopressin to pig kidney plasma membranes. Relationship of receptor occupancy to adenylate cyclase activation.
J. Biol. Chem.
248:
5922–5931,
1973.
|
31. |
Bomsztyk, K. and
F. S. Wright.
Dependence of ion fluxes on fluid transport by rat proximal tubule.
Am. J. Physiol.
250
(Renal Fluid Electrolyte Physiol. 19):
F680–F689,
1986.
|
32. |
Boulpaep, E.
Electrophysiological properties of the proximal tubule: importance of cellular and intercellular transport pathways. In:
Electrophysiology of Epithelial Cells,
edited by G. Giebisch
Stuttgart:
Shattauer,
1971,
p. 91–115.
|
33. |
Boulpaep, E. L.
Permeability changes of the proximal tubule of Necturus during saline loading.
Am. J. Physiol.
222:
517–531,
1972.
|
34. |
Brodsky, W. A.,
W. S. Rehm,
W. H. Dennis, and
D. G. Miller.
Thermodynamic analysis of the intracellular osmotic gradient hypothesis of active water transport.
Science
121:
302–303,
1955.
|
35. |
Brown, D. and
L. Orci.
Vasopressin stimulates formation of coated pits in rat kidney collecting ducts.
Nature
302:
253–255,
1983.
|
36. |
Bulger, R. E.,
W. B. Lorentz,
R. E. Colindres, and
C. W. Gottschalk.
Morphologic changes in rat renal proximal tubules and their tight junctions with increased intraluminal pressure.
Lab. Invest.
30:
36–144,
1974.
|
37. |
Burg, M.,
S. Helman,
J. J. Grantham, and
J. Orloff.
Effect of vasopressin on the permeability of isolated rabbit cortical collecting tubules to urea, acetamide, and thiourea. In:
Urea and the Kidney,
edited by B. Schmidt‐Nielsen
Amsterdam:
Excerpta Medica,
1970,
p. 193–208.
|
38. |
Burg, M. B.,
C. Patlak,
N. Green, and
D. Villey.
Organic solutes in fluid absorption by renal proximal convoluted tubules.
Am. J. Physiol.
231:
627–637,
1976.
|
39. |
Campbell, B. J.,
G. Woodward, and
V. Borberg.
Calcium‐mediated interactions between antidiuretic hormone and renal plasma membranes.
J. Biol. Chem.
247:
6167–6175,
1972.
|
40. |
Capraro, G., and
G. Bernini.
Mechanism of action of extracts of the post‐hypophysis on water transport through the skin of the frog (Rana esculenta).
Nature
169:
454,
1952.
|
41. |
Carpi‐Medina, P.,
E. Gonzalez, and
A. Whittembury.
Cell osmotic water permeability of isolated rabbit proximal convoluted tubules.
Am. J. Physiol.
244
(Renal Fluid Electrolyte Physiol. 13):
F554–F563,
1983.
|
42. |
Carpi‐Medina, P.,
B. Lindemann,
E. Gonzalez, and
G. Whittembury.
The continuous measurement of tubular volume changes in response to step changes in contraluminal osmolality.
Pflugers Arch.
400:
343–348,
1984.
|
43. |
Casavola, V.,
L. Iacovelli, and
M. Svelto.
Phorbol ester effect on the hydroosmotic response to vasopressin in frog skin.
Pflugers Arch.
408:
318–320,
1987.
|
44. |
Cass, A., and
A. Finkelstein.
Water permeability of thin lipid membranes.
J. Gen. Physiol.
50:
1765–1784,
1967.
|
45. |
Chantrelle, B. M.,
M. G. Cogan, and
F. C. Rector, Jr.
Active and passive components of NaCl absorption in the proximal convoluted tubule of the rat kidney.
Mineral Electrolyte Metab.
11:
209–214,
1985.
|
46. |
Chase, I. R., and
G. D. Aurbuch.
Renal adenyl cyclase: anatomically separate sites for parathyroid hormone and vasopressin.
Science
159:
545–547,
1968.
|
47. |
Chevalier, J.,
J. Bourguet, and
J. J. Hugon.
Membrane‐associated particles: distribution in frog urinary bladder epithelium at rest and after oxytocin treatment.
Cell Tiss. Res.
152:
129–140,
1974.
|
48. |
Civan, M. M.
Path of bulk water movement through the urinary bladder of the toad.
J. Theor. Biol.
27:
387–391,
1970.
|
49. |
Clapp, J. R., and
R. R. Robinson.
Osmolality of distal tubular fluid in the dog.
J. Clin. Invest.
45:
1847–1853,
1966.
|
50. |
Cohen, B. E.
The permeability of liposomes to nonelectrolytes. I. Activation energies for permeation.
J. Membr. Biol.
20:
205–234,
1975.
|
51. |
Collander, R., and
H. Bärlund.
Permeabilitätsstudien an Chara Ceratophylla. II. Die Permeabilität für Nichtelectrolyte.
Acta Bot. Fenn.
11:
1–114,
1933.
|
52. |
Cook, V. L.,
A. H. Reese,
P. D. Wilson, and
G. G. Pinter.
Access of reabsorbed glucose to renal lymph.
Experientia
38:
108–109,
1982.
|
53. |
Corman, B.,
S. Carrière,
C. Le Grimellec, and
J. Cardinal.
Proximal tubular response to variations in extracellular sodium concentration.
Am. J. Physiol.
238
(Renal Fluid Electrolyte Physiol. 7):
F256–F260,
1980.
|
54. |
Corman, B., and
A. Di Stefano.
Does water drag solutes through kidney proximal tubule?
Pflugers Arch.
397:
35–41,
1983.
|
55. |
Craven, P. A., and
F. R. De Rubertis.
Effects of vasopressin and urea on Ca2+‐calmodulin dependent renal prostaglandin E.
Am. J. Physiol.
241:
F649–F658,
1981.
|
56. |
Culpepper, R. M., and
T. E. Andreoli.
PGE2, forskolin, and cholera toxin interactions in modulating NaCl transport in mouse mTALH.
Am. J. Physiol.
247
(Renal Fluid Electrolyte Physiol. 16):
F784–F792,
1984.
|
57. |
Culpepper, R. M.,
W. Smith,
J. Codina, and
L. Birnbaumer.
Guanine nucleotide regulatory proteins in pars recta and thick ascending limb of rabbit and mouse kidney.
Kidney Int.
29:
333A,
1986.
|
58. |
Curran, P. F., and
J. R. McIntosh.
A model system for biological water transport.
Nature
193:
347–348,
1962.
|
59. |
Dainty, J.
Water relations of plant cells.
Adv. Bot. Res.
1:
279–326,
1963.
|
60. |
Davson, H., and
J. F. Danielli.
The Permeability of Natural Membranes.
Cambridge, England:
Cambridge University Press,
1952.
|
61. |
de Bermudez, L., and
E. E. Windhager.
Osmotically induced changes in electrical resistance of distal tubules of rat kidney.
Am. J. Physiol.
229:
1536–1546,
1975.
|
62. |
de Gier, J.,
J. G. Mandersloot,
J. V. Hupkes,
N. McElhaney, and
P. Van Beer.
On the mechanism of non‐electrolyte permeation through lipid bilayers and through biomembranes.
Biochim. Biophys. Acta
233:
610–618,
1971.
|
63. |
Dellasega, M., and
J. J. Grantham.
Regulation of renal tubule cell volume in hypotonic media.
Am. J. Physiol.
224:
1288–1294,
1973.
|
64. |
Diamond, J. M.
The mechanism of isotonic water transport.
J. Gen. Physiol.
48:
15–42,
1964.
|
65. |
Diamond, J. M.
Transport of salt and water in rabbit and guinea pig gall bladder.
J. Gen. Physiol.
48:
1–14,
1964.
|
66. |
Diamond, J. M.
Osmotic water flow in leaky epithelia.
J. Membr. Biol.
51:
195–216,
1979.
|
67. |
Diamond, J. M., and
W. H. Bossert.
Standing‐gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia.
J. Gen. Physiol.
50:
2061–2083,
1967.
|
68. |
Di Bona, D. R.
Direct visualization of epithelial morphology in the living amphibian urinary bladder.
J. Membr. Biol. Suppl.
40:
45–70,
1978.
|
69. |
Di Bona, D. R., and
M. M. Civan.
Pathways for movement of ions and water across toad urinary bladder. I. Anatomic site of transepithelial shunt pathways.
J. Membr. Biol.
12:
101–128,
1973.
|
70. |
Di Bona, G. F.
Effect of magnesium on water permeability of the rat nephron.
Am. J. Physiol.
223:
1324–1326,
1972.
|
71. |
Dick, D. A. T.
Cell Water.
Washington, DC:
Butterworths,
1966,
p. 102.
|
72. |
Dillingham, M. A., and
R. J. Anderson.
Inhibition of vasopressin action by atrial natriuretic factor.
Science
231:
1572–1573,
1986.
|
73. |
Dousa, T. P.
Effect of renal medullary solutes on vasopressin‐sensitive adenyl cyclase.
Am. J. Physiol.
222:
657–662,
1972.
|
74. |
Dousa, T. P.
Cyclic nucleotides in the cellular action of neurohypophyseal hormones.
Federation Proc.
36:
1867–1871,
1977.
|
75. |
Dousa, T. P.,
L. D. Barnes, and
J. K. Kim.
The role of cyclic AMP‐dependent protein phosphorylations and microtubules in the cellular action of vasopressin in mammalian kidney. In:
Neurohypophysis,
edited by A. M. Moses and
L. Share
Basel:
Karger,
1977,
p. 220.
|
76. |
Dousa, T. P., and
H. Valtin.
Cellular actions of vasopressin in the mammalian kidney.
Kidney Int.
10:
46–63,
1976.
|
77. |
Dousa, T. P.,
R. Walter,
I. L. Schwartz,
H. Sands, and
O. Hechter.
Role of cyclic AMP in the action of neurohypophyseal hormones on kidney.
Adv. Cyclic Nucleotide Res.
1:
121–135,
1972.
|
78. |
Dratwa, M.,
C. Tisher,
J. R. Sommer, and
B. P. Croker.
Intramembranous particle aggregation in toad urinary bladder after vasopressin stimulation.
Lab. Invest.
40:
46–54,
1979.
|
79. |
Eggena, P.,
I. L. Schwartz, and
R. Walter.
Threshold and receptor reserve in the action of neurohypophyseal peptides. A study of synergists and antagonists in the hydroosmotic response on the toad urinary bladder.
J. Gen. Physiol.
56:
250–271,
1970.
|
80. |
Einstein, A.
Investigations on the Theory of the Brownian Movement.
New York:
Dover,
1956.
|
81. |
Erlij, D., and
A. Martinez‐Palomo.
Opening of tight junctions in frog skin by hypertonic urea solutions.
J. Membr. Biol.
9:
229–240,
1972.
|
82. |
Evan, A. P., Jr.
D. A. Hay, and
W. G. Dail.
SEM of the proximal tubule of the adult rabbit kidney.
Anat. Rec.
191:
397–414,
1978.
|
83. |
Fidelman, M. L., and
D. C. Mikulecky.
Network thermodynamic analysis of isotonic solute‐coupled volume flow in leaky epithelia: an example of the use of network theory to provide quantitative aspects of a complex system and its verification by simulation.
J. Theor. Biol.
130:
73–93,
1988.
|
84. |
Field, M.
Modes of action of enterotoxins from Vibrio cholerae and Escherichia coli.
Rev. Infect. Dis.
1:
918–26,
1979.
|
85. |
Finkelstein, A.
Aqueous pores created in thin lipid membranes by the antibiotics amphotericin B and gramicidin A: implications for pores in biological membranes. In:
Drugs and Transport Processes,
edited by B. A. Callingham
Baltimore:
University Park Press,
1974,
p. 241.
|
86. |
Franki, N.,
G. Ding,
N. Quintana, and
R. M. Hays.
Evidence that heads of ADH‐sensitive aggrephores are clathrincoated vesicles: implications for aggrephore structure and function.
Tissue Cell.
18:
803–807,
1986.
|
87. |
Franz, J. J.,
W. R. Galey, and
J. T. van Bruggen.
Further observations on asymmetrical solute movement across membranes.
J. Gen. Physiol.
51:
1–12,
1968.
|
88. |
Frömter, E.
Solute transport across epithelia: what can we learn from micropuncture studies on kidney tubules?
J. Physiol.
288:
1–31,
1979.
|
89. |
Frömter, E., and
J. Diamond.
Route of passive ion permeation in epithelia.
Nature [New Biol.]
235:
9–13,
1972.
|
90. |
Frömter, E.,
G. Rumrich, and
K. J. Ullrich.
Phenomenologic description of Na+, Cl− and HCO3− absorption from proximal tubules of the rat kidney.
Pflugers Arch.
343:
189–220,
1973.
|
91. |
Gagnon, J.,
D. Quimet,
H. Nguyen,
R. Laprade,
C. Le Grimmelec,
S. Carriere, and
J. Cardinal.
Cell volume regulation in the proximal convoluted tubule.
Am. J. Physiol.
243
(Renal Fluid Electrolyte Physiol. 12):
F408–F415,
1982.
|
92. |
Galey, W. R., and
J. T. van Bruggen.
The coupling of solute fluxes in membranes.
J. Gen. Physiol.
55:
220–242,
1970.
|
93. |
Ganote, C. E.,
J. J. Grantham,
J. L. Moses,
M. B. Burg, and
J. Orloff.
Ultrastructural studies of vasopressin effect on isolated perfused renal collecting tubules of the rabbit.
J. Cell Biol.
36:
355–367,
1970.
|
94. |
Giebisch, G., and
E. E. Windhager.
Renal tubular transfer of sodium, chloride and potassium.
Am. J. Med.
36:
643–669,
1964.
|
95. |
Gilman, A. G.
Guanine nucleotide‐binding regulatory proteins and dual control of adenylate cyclase.
J. Clin. Invest.
73:
1–4,
1984.
|
96. |
Goldfarb, S.
Effects of calcium on ADH action in the cortical collecting tubule perfused in vitro.
Am. J. Physiol.
243
(Renal Fluid Electrolyte Physiol. 12):
F481–F486,
1982.
|
97. |
González, E.,
P. Carpi‐Medina,
H. Linares, and
G. Whittembury.
Water osmotic permeability of the apical membrane of proximal straight tubular (PST) cells.
Pflugers Arch.
402:
337–339,
1984.
|
98. |
González, E.,
P. Carpi‐Medina, and
G. Whittembury.
Cell osmotic water permeability of isolated rabbit proximal straight tubules.
Am. J. Physiol.
242
(Renal Fluid Electrolyte Physiol. 11):
F321–F330,
1982.
|
99. |
Gottschalk, C. W.,
W. Lassiter, and
M. Mylle.
Localization of urine acidification in the mammalian kidney.
Am. J. Physiol.
198:
581–585,
1960.
|
100. |
Gottschalk, C. W., and
M. Mylle.
Micropuncture study of the mammalian urinary concentrating mechanism: evidence for the countercurrent hypothesis.
Am. J. Physiol.
196:
927–936,
1959.
|
101. |
Grandchamp, A., and
E. L. Boulpaep.
Pressure control of sodium reabsorption and intercellular backflux across proximal kidney tubule.
J. Clin. Invest.
54:
69–82,
1974.
|
102. |
Grantham, J. J., and
M. B. Burg.
Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules.
Am. J. Physiol.
211:
255–259,
1966.
|
103. |
Grantham, J. J.,
G. E. Ganote,
M. B. Burg, and
J. Orloff.
Paths of transtubular water flow in isolated renal collecting tubules.
J. Cell Biol.
41:
562–576,
1969.
|
104. |
Grantham, J. J.,
C. M. Lowe,
M. Dellasega, and
B. R. Cole.
Effect of hypotonic medium on K and Na content of proximal renal tubules.
Am. J. Physiol.
232
(Renal Fluid Electrolyte Physiol. 1):
F42–F49,
1977.
|
105. |
Grantham, J. J., and
J. Orloff.
Effect of prostaglandin E1 on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3′,5′‐monophosphate, and theophylline.
J. Clin. Invest.
45:
1154–1161,
1968.
|
106. |
Grantham, J. J.,
P. B. Qualizza, and
R. L. Irwin.
Net fluid secretion in proximal straight renal tubules in vitro: role of PAH.
Am. J. Physiol.
226:
191–197,
1974.
|
107. |
Green, R.,
J. H. V. Bishop, and
G. Giebisch.
Ionic requirements of proximal tubular sodium transport. III. Selective luminal anion substitution.
Am. J. Physiol.
236
(Renal Fluid Electrolyte Physiol. 5):
F268–F277,
1979.
|
108. |
Green, R., and
G. Giebisch.
Luminal hypotonicity: a driving force for fluid absorption from the proximal tubule.
Am. J. Physiol.
246
(Renal Fluid Electrolyte Physiol. 15):
F167–F174,
1984.
|
109. |
Green, R., and
G. Giebisch.
Reflection coefficients and water permeability in rat proximal tubule.
Am. J. Physiol.
257
(Renal Fluid Electrolyte Physiol. 26):
F658–F668,
1989.
|
110. |
Green, R., and
G. Giebisch.
Osmotic forces driving water reabsorption in the proximal tubule of the rat kidney.
Am. J. Physiol.
257
(Renal Fluid Electrolyte Physiol. 26):
F669–F675,
1989.
|
111. |
Green, R.,
E. E. Windhager, and
G. Giebisch.
Protein oncotic pressure effects on proximal tubular fluid movement in the rat.
Am. J. Physiol.
226:
265–276,
1974.
|
112. |
Gupta, B. L.,
T. A. Hall, and
R. J. Naftalin.
1978. Microprobe measurements of Na, K and Cl concentration profiles in epithelial cells and intercellular spaces of rabbit ileum.
Nature
272:
70–73,
1978.
|
113. |
Hall, D. A., and
J. J. Grantham.
Temperature effect on ADH response of isolated perfused rabbit collecting tubules.
Am. J. Physiol.
239
(Renal Fluid Electrolyte Physiol. 8):
F595–F601,
1980.
|
114. |
Handler, J. S.
Vasopressin‐prostaglandin interaction in the regulation of epithelial cell permeability to water.
Kidney Int.
19:
831–838,
1981.
|
115. |
Harmanci, M. C.,
W. A. Kachadorian,
H. Valtin, and
V. A. Di Scala.
Antidiuretic hormone‐induced intramembranous alteration in mammalian collecting ducts.
Am. J. Physiol.
235:
F440–F443,
1978.
|
116. |
Harmanci, M. C.,
M. Lorenzen, and
W. A. Kachadorian.
Vasopressin‐induced intramembranous particle aggregates in isolated rabbit collecting duct.
Kidney Int.
21:
275A,
1982.
|
117. |
Harmanci, M. C.,
P. Stern,
W. A. Kachadorian,
H. Valtin, and
V. A. Di Scala.
Vasopressin and collecting duct intramembranous particle clusters: a dose‐response relationship.
Am. J. Physiol.
239
(Renal Fluid Electrolyte Physiol. 8):
F560–F564,
1980.
|
118. |
Harris, H. W., Jr.
J. B. Wade, and
J. S. Handler.
Fluorescent markers to study membrane retrieval in ADH treated toad urinary bladder.
Am. J. Physiol.
251
(Cell Physiol. 20):
C274–C284,
1986.
|
119. |
Harris, H. W., Jr.
J. B. Wade, and
J. S. Handler.
Transepithelial water flow regulates apical membrane and retrieval on ADH‐stimulated toad urinary bladder.
J. Clin. Invest.
78:
703–712,
1986.
|
120. |
Haydon, D. A., and
S. B. Hladky.
Ion transport across thin‐lipid membranes: a critical discussion of mechanisms in selected systems.
Q. Rev. Biophys.
5:
187–195,
1972.
|
121. |
Hays, R. M.,
G. Ding, and
N. Franki.
Morphological aspects of the actions of ADH.
Kidney Int.
21:
551–555,
1987.
|
122. |
Hays, R. M., and
N. Franki.
The role of water diffusion in the action of vasopressin.
J. Membr. Biol.
2:
267–276,
1970.
|
123. |
Hays, R. M.,
N. Franki, and
R. Soberman.
Activation energy for water diffusion across the toad bladder: evidence against the pore enlargement hypothesis.
J. Clin. Invest.
50:
1016–1018,
1971.
|
124. |
Hebert, S. C., and
T. E. Andreoli.
Interactions of temperature and ADH on transport processes in cortical collecting tubules: evidence for ADH‐induced narrow aqueous channels in apical membranes.
Am. J. Physiol.
238
(Renal Fluid Electrolyte Physiol. 7):
F470–F480,
1980.
|
125. |
Hebert, S. C., and
T. E. Andreoli.
Water movement across the mammalian cortical collecting duct.
Kidney Int.
22:
526–535,
1982.
|
126. |
Hebert, S. C., and
T. E. Andreoli.
Water transport and osmoregulation by terminal nephron segments. In:
The Kidney, Physiology and Pathophysiology,
edited by D. W. Seldin and
G. Giebisch
New York:
Raven Press,
1985,
p. 933.
|
127. |
Hebert, S. C.,
R. M. Culpepper, and
T. E. Andreoli.
The posterior pituitary and, water metabolism. In:
Textbook of Endocrinology,
7th Edition,
edited by D. W. Foster and
J. D. Wilson
Philadelphia:
W. B. Saunders,
1985,
p. 614.
|
128. |
Hebert, S. C.,
J. A. Schafer, and
T. E. Andreoli.
The effects of antidiuretic hormone (ADH) on solute and water transport in the mammalian nephron.
J. Membr. Biol.
58:
1–19,
1981.
|
129. |
Heinz, E.
Grundmechanismus der Magensäureproduktion und deren Regulation.
Klin. Physiol.
1:
184–203,
1960.
|
130. |
Hevesy, G.,
E. Hofer, and
A. Krogh.
The permeability of the skin of frogs to water as determined by D2O and H2O.
Scand. Arch. Physiol.
72:
199–214,
1935.
|
131. |
Hildebrandt, J.,
R. Sekura,
J. Codina,
R. Iyengar,
C. Manclark, and
L. Birnbaumer.
Stimulation and inhibition of adenyl cyclases mediated by distinct regulatory proteins.
Nature
302:
706–709,
1983.
|
132. |
Hill, A.
Osmosis: A bimodal theory with implications for symmetry.
Proc. R. Soc.
215:
155–174,
1982.
|
133. |
Hill, B., and
A. E. Hill.
Fluid transfer by Necturus gallbladder epithelium as a function of osmolality.
Proc. R. Soc.
200:
151–162,
1978.
|
134. |
Höber, R.
The Physical Chemistry of Cells and Tissues.
Philadelphia:
Blakiston,
1945.
|
135. |
Höber, R., and
S. L. Ørskov.
Untersuchungen über die Permeabilitätschwindigkeit von Anelecktrolyten bei den roten Blutkörperchen verschiedener Tierarten.
Pflugers Arch.
231:
599–615,
1933.
|
136. |
Hodgkin, A. L., and
A. F. Huxley.
Quantitative description of membrane current and its application to conduction and excitation in nerve.
J. Physiol. (Lond.)
117:
500–544,
1952.
|
137. |
Hoffman, E. K.,
L. O. Simonsen, and
I. H. Lambert.
Volume‐induced increase of K+ and Cl− permeabilities in Ehrlich ascites tumor cells. Role of internal Ca2+.
J. Membr. Biol.
78:
211–222,
1984.
|
138. |
Huss, R. E., and
D. J. Marsh.
A model of NaCl and water flow through paracellular pathways of renal proximal tubules.
J. Membr. Biol.
23:
305–347,
1975.
|
139. |
Ikonomov, O.,
M. Simon, and
E. Frömter.
Electrophysiological studies on lateral intercellular spaces of Necturus gallbladder epithelium.
Pflugers Arch.
403:
301–307,
1985.
|
140. |
Jacobs, M. H.
Diffusion processes.
Ergebnisse Biol.
12:
1–160,
1932.
|
141. |
Jacobson, H. R.
Transport characteristics of in vitro perfused proximal convoluted tubules.
Kidney Int.
22:
425–433,
1982.
|
142. |
Jacobson, H. R.,
J. P. Kokko,
D. W. Seldin, and
C. Holmberg.
Lack of solvent drag of NaCl and NaHCO3 in rabbit proximal tubules.
Am. J. Physiol.
243
(Renal Fluid Electrolyte Physiol. 12):
F342–F348,
1982.
|
143. |
Jard, S.,
J. Bouguet,
P. Favard, and
N. Carasso.
The role of intercellular channels in the transepithelial transfer of water and sodium in the frog urinary bladder.
J. Membr. Biol.
4:
124–147,
1971.
|
144. |
Jard, S.,
C. Roy,
T. Barth,
R. Rajerison, and
J. Bockaert.
Antidiuretic hormone‐sensitive kidney adenylate cyclase.
Adv. Cyclic Nucleotide Res.
5:
31–52,
1975.
|
145. |
Jones, S. M.,
G. Frindt, and
E. E. Windhager.
Effect of peritubular [Ca] or ionomycin on hydroosmotic response of CCTs to ADH or cAMP.
Am. J. Physiol.
254
(Renal Fluid Electrolyte Physiol. 23):
F240–F253,
1988.
|
146. |
Kachadorian, W. A.,
R. A. Coleman, and
J. B. Wade.
Water permeability and particle aggregates in ADH‐, cAMP‐, and forskolin‐treated toad bladder.
Am. J. Physiol.
253
(Renal Fluid Electrolyte Physiol. 22):
F120–F125,
1987.
|
147. |
Kachadorian, W. A.,
S. J. Ellis, and
J. Muller.
Possible roles for microtubules and microfilaments in ADH action on toad urinary bladder.
Am. J. Physiol.
236
(Renal Fluid Electrolyte Physiol. 5):
F14–F20,
1979.
|
148. |
Kachadorian, W. A.,
S. D. Levine,
J. B. Wade,
V. A. Di Scala, and
R. M. Hays.
Relationship of aggregated intramembranous particles to water permeability in vasopressin‐treated toad urinary bladder.
J. Clin. Invest.
59:
576–581,
1977.
|
149. |
Kachadorian, W. A.,
J. Muller,
S. Rudich, and
V. A. Di Scala.
Temperature dependence of ADH‐induced water flow and intramembranous particle aggregates in toad bladder.
Science
205:
910–913,
1979.
|
150. |
Kachadorian, W. A.,
J. Muller,
S. Rudich, and
V. A. Di Scala.
Relation of ADH effects to altered membrane fluidity in toad urinary bladder.
Am. J. Physiol.
240
(Renal Fluid Electrolyte Physiol. 9):
F63–F69,
1981.
|
151. |
Kachadorian, W. A.,
J. B. Wade, and
V. A. Di Scala.
Vasopressin: induced structural change in toad bladder luminal membranes.
Science
190:
67–69,
1975.
|
152. |
Kachadorian, W. A.,
J. B. Wade,
C. C. Uiterwyk, and
V. A. Di Scala.
Membrane structural and functional responses to vasopressin in toad urinary bladder.
J. Membr. Biol.
30:
381–401,
1977.
|
153. |
Kaye, G. I.,
H. O. Wheeler,
R. T. Whitlock, and
N. Love.
Fluid transport in the rabbit gallbladder.
J. Cell Biol.
30:
237–268,
1966.
|
154. |
Kedem, O., and
A. Katchalsky.
A physical interpretation of the phenomenological coefficients of membrane permeability.
J. Gen. Physiol.
45:
143–179,
1961.
|
155. |
Kirk, K. L.
Origin of ADH‐induced vacuoles in rabbit cortical collecting tubule.
Am. J. Physiol.
254
(Renal Fluid Electrolyte Physiol. 23):
F719–F733,
1988.
|
156. |
Kirk, K. L.,
B. Angeliki, and
P. Eggena.
Cell specificity of vasopressin binding in renal collecting duct: computer‐enhanced imaging of a fluorescent hormone analog.
Proc. Natl. Acad. Sci. USA
84:
6000–6004,
1987.
|
157. |
Kirk, K. L.,
D. R. Di Bona, and
J. A. Schafer.
Morphologic responses of the rabbit cortical collecting tubule to peritubular hypotonicity: quantitative examination with differential interference microscopy.
J. Membr. Biol.
79:
53–64,
1984.
|
158. |
Kirk, K. L.,
D. R. Di Bona, and
J. A. Schafer.
Regulatory volume decrease in perfused proximal nephron: evidence for a dumping of K+.
Am. J. Physiol.
252
(Renal Fluid Electrolyte Physiol. 21):
F933–F942,
1987.
|
159. |
Kirk, K. L.,
J. A. Schafer, and
D. R. Di Bona.
Quantitative analysis of the structural events associated with antidiuretic hormone‐induced volume reabsorption in the rabbit cortical collecting tubule.
J. Membr. Biol.
79:
65–74,
1984.
|
160. |
Kirk, K. L.,
J. A. Schafer, and
D. R. Di Bona.
Cell volume regulation in rabbit proximal straight tubule perfused in vitro.
Am. J. Physiol.
252
(Renal Fluid Electrolyte Physiol. 21):
F922–F932,
1987.
|
161. |
Koefoed‐Johnsen, V., and
H. H. Ussing.
The contributions of diffusion and flow to the passage of D2O through living membranes.
Acta Physiol. Scand.
28:
60–76,
1953.
|
162. |
Kokko, J. P.,
M. B. Burg, and
J. Orloff.
Characteristics of NaCl and water transport in the renal proximal tubule.
J. Clin. Invest.
50:
69–76,
1971.
|
163. |
Krothapalli, R. K.,
W. B. Duffy,
H. O. Senekjian, and
W. N. Suki.
Modulation of the hydro‐osmotic effect of va‐sopressin on the rabbit cortical collecting tubule by adrenergic agents.
J. Clin. Invest.
72:
287–294,
1983.
|
164. |
Kyte, J.
Immunoferritin determination of the distribution of (Na+ & K+) ATPase over the plasma membranes of renal convoluted tubules. II. Proximal segment.
J. Cell Biol.
68:
304–318,
1976.
|
165. |
La Pointe, J.‐Y.,
R. La Prade, and
J. Cardinal.
Transepithelial and cell membrane electrical resistances of the rabbit proximal convoluted tubule.
Am. J. Physiol.
247
(Renal Fluid Electrolyte Physiol. 16):
F637–F649,
1984.
|
166. |
Larson, M., and
K. R. Spring.
Volume regulation by Necturus gallbladder: basolateral KCI exit.
J. Membr. Biol.
81:
219–232,
1984.
|
167. |
Lassiter, W. E.,
A. Frick,
G. Rumrich, and
K. Ullrich.
Influence of ionic calcium on water permeability of the proximal and distal tubules in the kidney.
Pflugers Arch.
285:
90–95,
1965.
|
168. |
Lea, E. J. A.
Permeation through long narrow pores.
J. Theoret. Biol.
5:
102–107,
1963.
|
169. |
Lenard, J., and
S. J. Singer.
Protein conformation in cell membrane preparations as studied by optical rotary dispersion and circular dichroism.
Proc. Natl. Acad. Sci. USA
56:
1828–1835,
1966.
|
170. |
Levine, S. D.,
N. Franki,
R. Einhorn, and
R. M. Hays.
Vasopressin‐stimulated movement of drugs and uric acid across the toad urinary bladder.
Kidney Int.
9:
30–35,
1976.
|
171. |
Levine, S. D., and
M. Jacoby.
Comparison of effects of forskolin, cAMP, and vasopressin on Pf/Pd(w) of toad urinary bladder luminal membrane.
Am. J. Physiol.
252
(Renal Fluid Electrolyte Physiol. 21):
F357–F360,
1987.
|
172. |
Levine, S. D.,
M. Jacoby, and
A. Finkelstein.
The water permeability of toad urinary bladder. I. Permeability of barriers in series with the luminal membrane.
J. Gen. Physiol.
83:
529–541,
1984.
|
173. |
Levine, S.,
M. Jacoby, and
A. Finkelstein.
The water permeability of toad urinary bladder. II. The value of Pf/Pd for antidiuretic hormone‐induced water permeation pathway.
J. Gen. Physiol.
83:
543–561,
1984.
|
174. |
Levine, S. D., and
W. A. Kachadorian.
Barriers to water flow in vasopressin‐treated toad urinary bladder.
J. Membr. Biol.
61:
135–139,
1981.
|
175. |
Levitt, D. G.
A new theory of transport for cell membrane pores. I. General theory and application to red cell.
Biochim. Biophys. Acta
373:
115–131,
1974.
|
176. |
Levitt, D. G., and
H. J. Mlekoday.
Reflection coefficient and permeability of urea and ethylene glycol in the human red cell membrane.
J. Gen. Physiol.
81:
239–253,
1983.
|
177. |
Lewy, J. E., and
E. E. Windhager.
Peritubular control of proximal tubular fluid reabsorption in the rat kidney.
Am. J. Physiol.
214:
943–951,
1968.
|
178. |
Lindley, B. D.,
T. Hoshiki, and
D. E. Leb.
Effects of D2O and osmotic gradients on potential and resistance of the isolated frog skin.
J. Gen. Physiol.
47:
773–793,
1964.
|
179. |
Linshaw, M. A., and
J. J. Grantham.
Effects of collagenase and ouabain on renal cell volume in hypotonic media.
Am. J. Physiol.
238
(Renal Fluid Electrolyte Physiol. 7):
F491–F498,
1980.
|
180. |
Liu, F.‐Y.,
M. G. Cogan, and
F. C. Rector, Jr.
Axial heterogeneity in the rat proximal convoluted tubule II. Osmolality and osmotic water permeability.
Am. J. Physiol.
247
(Renal Fluid Electrolyte Physiol. 16):
F822–F826,
1984.
|
181. |
Lutz, M. D.,
J. Cardinal, and
M. B. Burg.
Electrical resistance of renal proximal tubule perfused in vitro.
Am. J. Physiol.
225:
729–734,
1973.
|
182. |
Machen, T. E., and
J. M. Diamond.
An estimate of the salt concentration in the lateral intercellular spaces of rabbit gallbladder during maximal fluid transport.
J. Membr. Biol.
1:
94–213,
1969.
|
183. |
Masters, B. R.,
J. Yguerabide, and
D. D. Fanestil.
Microviscosity of mucosal cellular membranes in toad urinary bladder: relation to antidiuretic hormone action on water permeability.
J. Membr. Biol.
40:
179–190,
1978.
|
184. |
Masur, S. K.,
S. Cooper, and
M. S. Rubin.
Effect of an osmotic gradient on antidiuretic hormone‐induced endocytosis and hydroosmosis in the toad urinary bladder.
Am. J. Physiol.
247
(Renal Fluid Electrolyte Physiol. 16):
F370–F379,
1984.
|
185. |
Masur, S. K., and
S. Massardo.
ADH and phorbol ester increase immunolabelling of the toad bladder apical membrane by antibodies made to granules.
J. Membr. Biol.
96:
193–198,
1987.
|
186. |
Masur, S. K.,
V. Sapirstein, and
D. Rivero.
1985. Phorbol myristate acetate induces endocytosis as well as exocytosis and hydroosmosis in toad urinary bladder.
Biochim. Biophys. Acta
281:
286–296,
1985.
|
187. |
Mathias, R. T.
Epithelial water transport in a balanced gradient system.
Biophys. J.
47:
823–836,
1985.
|
188. |
Maunsbach, A. B., and
E. L. Boulpaep.
Hydrostatic pressure changes related to paracellular shunt ultrastructure in proximal tubule.
Kidney Int.
17:
732–748,
1980.
|
189. |
Maunsbach, A. B., and
E. L. Boulpaep.
Paracellular shunt ultrastructure and changes in fluid transport in Necturus proximal tubule.
Kidney Int.
24:
610–619,
1983.
|
190. |
Maunsbach, A. B., and
E. L. Boulpaep.
Quantitative ultra‐structure and functional correlates in proximal tubule of Ambystoma and Necturus.
Am. J. Physiol.
246
(Renal Fluid Electrolyte Physiol. 15):
F710–F724,
1984.
|
191. |
Mauro, A.
Nature of solvent transfer in osmosis.
Science
126:
252–253,
1957.
|
192. |
McLaughlin, S., and
R. T. Mathias.
Electro‐osmosis and the reabsorption of fluid in renal proximal tubules.
J. Gen. Physiol.
85:
699–728,
1985.
|
193. |
Mendoza, S. A.,
J. S. Handler, and
J. Orloff.
Effect of inhibitors of sodium transport on response of toad bladder to ADH and cyclic AMP.
Am. J. Physiol.
219:
1440–1445,
1970.
|
194. |
Meschia, G., and
I. Setnikar.
Experimental study of osmosis through a collodion membrane.
J. Gen. Physiol.
42:
429–444,
1958.
|
195. |
Meyer, M. M., and
A. S. Verkman.
Evidence for water channels in renal proximal tubule cell membranes.
J. Membr. Biol.
96:
107–119,
1987.
|
196. |
Møllgard, K., and
J. Rostgaard.
Morphologic aspects of some sodium transporting epithelia suggesting a transcellular pathway via elements of the endoplasmic reticulum.
J. Membr. Biol.
42:
71–89,
1978.
|
197. |
Morel, F.
Sites of hormone action in the mammalian nephron.
Am. J. Physiol.
240
(Renal Fluid Electrolyte Physiol. 9):
F159–F164,
1981.
|
198. |
Morel, F., and
Y. Murayama.
Simultaneous measurement of unidirectional and net sodium fluxes in microperfused rat proximal tubules.
Pflugers Arch.
320:
1–23,
1970.
|
199. |
Morgan, T., and
R. W. Berliner.
Permeability of the loop of Henle, vasa recta, and collecting duct to water, urea, and sodium.
Am. J. Physiol.
251:
108–115,
1968.
|
200. |
Morgan, T.,
F. Sakai, and
R. W. Berliner.
In vitro permeability of medullary collecting ducts to water and urea.
Am. J. Physiol.
241:
574–581,
1968.
|
201. |
Muller, J., and
W. A. Kachadorian.
Aggregate‐carryingmembranes during ADH stimulation and washout in toad bladder.
Am. J. Physiol.
247
(Cell Physiol. 16):
C90–C98,
1984.
|
202. |
Muller, J.,
W. A. Kachadorian, and
V. A. Di Scala.
Evidence that ADH‐stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells.
J. Cell Biol.
85:
83–95,
1980.
|
203. |
Nadler, S. P.,
S. C. Hebert, and
B. M. Brenner.
PGE2, forskolin, and cholera toxin interaction in rabbit cortical collecting tubule.
Am. J. Physiol.
250
(Renal Fluid Electrolyte Physiol. 19):
F127–F135,
1986.
|
204. |
Nernst, W.
Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen.
Z. Physk. Chem. (Leipzig)
47:
52–63,
1904.
|
205. |
Neumann, K. H., and
F. C. Rector, Jr.
Mechanism of NaCl and water reabsorption in the proximal convoluted tubule of rat kidney.
Clin. Invest.
58:
1110–1118,
1976.
|
206. |
Ng, R. C.,
D. Rouse, and
W. N. Suki.
Calcium transport in the rabbit superficial proximal convoluted tubule.
J. Clin. Invest.
74:
834–842,
1984.
|
207. |
O'Morchoe, C. C. C.,
P. J. O'Morchoe, and
E. J. Donati.
Comparison of hilar and capsular lymph.
Am. J. Physiol.
229:
416–421,
1975.
|
208. |
O'Neil, R. G., and
E. L. Boulpaep.
Effect of amiloride on the apical cell membrane cation channels of a sodium‐absorbing, potassium‐secreting renal epithelium.
J. Membr. Biol.
50:
365–387,
1979.
|
209. |
Onsager, L.
Theories and problems of liquid diffusion.
Ann. N.Y. Acad. Sci.
46:
241–265,
1945.
|
210. |
Orloff, J., and
J. S. Handler.
The similarity of effects of vasopressin adenosine‐3′,5′‐monophosphate (cyclic AMP) and theophylline on the toad bladder.
J. Clin. Invest.
41:
702–709,
1962.
|
211. |
Orloff, J.,
J. S. Handler, and
S. Bergstrom.
Effects of prostaglandin (PGE) on the permeability response of the toad bladder to vasopressin, theophylline and adenosine 3′,5′‐mono‐phosphate.
Nature
205:
397–398,
1965.
|
212. |
Overton, E.
Beitrage zur allgemeinen Muskel und Nerven Physiologic
Pflugers Arch.
92:
115–280,
1902.
|
213. |
Pappenheimer, J. R.
Passage of molecules through capillary walls.
Physiol. Rev.
33:
387–423,
1953.
|
214. |
Pappenheimer, J. R.,
E. M. Renkin, and
L. M. Borrero.
Filtration, diffusion and molecular sieving through peripheral capillary membranes.
Am. J. Physiol.
167:
13–46,
1951.
|
215. |
Parsons, D. S., and
D. L. Windgate.
The effect of osmotic gradients on fluid transfer across the rat intestine in vitro.
Biochim. Biophys. Acta
46:
170–183,
1961.
|
216. |
Patlak, C. S.,
D. A. Goldstein, and
J. F. Hoffman.
The flow of solute and solvent across a two‐membrane system.
J. Theor. Biol.
5:
426–442.
1963.
|
217. |
Pearl, M., and
A. Taylor.
Actin filaments and vasopressin‐stimulated water flow in toad urinary bladder.
Am. J. Physiol.
245
(Cell Physiol. 14):
C28–C39,
1983.
|
218. |
Persson, E.,
J. Schnermann, and
B. Ågerup.
The hydraulic conductivity of the rat proximal tubular wall determined with colloidal solutions.
Pflugers Arch.
360:
25–44,
1975.
|
219. |
Persson, E., and
H. R. Ulfendahl.
Water permeability in rat distal tubules.
Acta Physiol. Scand.
78:
364–375,
1970.
|
220. |
Persson, E., and
H. R. Ulfendahl.
Water permeability in rat proximal tubules.
Acta Physiol. Scand.
78:
353–363,
1970.
|
221. |
Petersen, M. J., and
I. S. Edelman.
Calcium inhibition of the action of vasopressin on the urinary bladder of toad.
J. Clin. Invest.
43:
583–594,
1964.
|
222. |
Pietras, R. J., and
E. M. Wright.
Non‐electrolyte probes of membrane structure in ADH‐treated toad urinary bladder.
Nature
247:
222–224,
1974.
|
223. |
Pietras, R. J., and
E. M. Wright.
The membrane action of antidiuretic hormone (ADH) on toad urinary bladder.
J. Membr. Biol.
22:
107–123,
1975.
|
224. |
Pinter, G. G., and
K. Gartner.
Peritubular capillary, interstitium, and lymph of the renal cortex.
Rev. Physiol. Biochem. Pharmacol.
99:
184–202,
1984.
|
225. |
Portilla, D.,
J. A. Shayman, and
A. R. Morrison.
Vasopressin does not hydrolyze polyphosphoinositides in rabbit collecting tubule cells.
Biochim. Biophys. Acta
928:
305–311,
1987.
|
226. |
Pratz, J.,
P. Ripoche, and
B. Corman.
Evidence for proteic water pathways in the luminal membrane of kidney proximal tubule.
Biochim. Biophys. Acta
856:
259–266,
1986.
|
227. |
Preisig, P. A., and
C. A. Berry.
Evidence for transcellular osmotic water flow in rat proximal tubules.
Am. J. Physiol.
249
(Renal Fluid Electrolyte Physiol. 18):
F124–F131,
1985.
|
228. |
Price, H. O., and
T. E. Thompson.
Properties of lipid bilayer membranes separating two aqueous phases: temperature dependence of water permeability.
J. Mol. Biol.
4:
1443–1457,
1969.
|
229. |
Rajerison, R.,
J. Marchetti,
C. Roy,
J. Bockaert, and
S. Jard.
The vasopressin‐sensitive adenylate cyclase of the rat kidney.
J. Biol. Chem.
249:
6390–6400,
1974.
|
230. |
Rector, F. C., Jr., and
C. Berry.
Preliminary studies on the characterization of the paracellular pathway of proximal convoluted tubules.
New Aspects Renal Function
177:
37–40,
1978.
|
231. |
Rector, F. C.,
M. Martinez‐Maldonado,
F. P. Brunner, and
D. W. Seldin.
Evidence for passive reabsorption of NaCl in proximal tubule of rat kidney.
J. Clin. Invest.
45:
1060,
1966.
|
232. |
Reif, M. C.,
S. L. Troutman, and
J. A. Schafer.
Sustained response to vasopressin in isolated rat cortical collecting tubules.
Kidney Int.
26:
725–732,
1984.
|
233. |
Ribeiro, C. P.,
F. Ribeiro‐Neto,
J. B. Field, and
W. N. Suki.
Prevention of α2‐adrenergic inhibition on ADH action by pertussis toxin in rabbit CCT.
Am. J. Physiol.
253
(Cell Physiol. 22):
C105–C112,
1987.
|
234. |
Robertson, J. D.
The molecular structure and contact relationships of cell membranes.
Prog. Biophys. Biophys. Chem.
10:
343–418,
1960.
|
235. |
Rodbell, M.
The role of hormone receptors and GTP‐regulatory proteins in membrane transduction.
Nature
284:
17–22,
1980.
|
236. |
Rosenberg, P. A., and
A. S. Finkelstein.
Interaction of ions and water in gramicidin A channels. Streaming potentials across lipid bilayer membranes.
J. Gen. Physiol.
72:
327–340,
1978.
|
237. |
Rosenberg, P. A., and
A. Finkelstein.
Water permeability of gramicidin A‐treated lipid bilayer membranes.
J. Gen. Physiol.
72:
341–350,
1978.
|
238. |
Sackin, H.
Electrophysiology of salamander proximal tubule I. Effects of rapid cooling.
Am. J. Physiol.
251
(Renal Fluid Electrolyte Physiol. 20):
F319–F333,
1986.
|
239. |
Sackin, H.
Electrophysiology of salamander proximal tubule II. Interspace NaCl concentrations and solute‐coupled water transport.
Am. J. Physiol.
251
(Renal Fluid Electrolyte Physiol. 20):
F334–F347,
1986.
|
240. |
Sackin, H., and
E. L. Boulpaep.
Models for coupling of salt and water transport. Proximal tubular reabsorption in Necturus kidney.
J. Gen. Physiol.
66:
671–733,
1975.
|
241. |
Sands, J. M., and
M. A. Knepper.
Urea permeability of mammalian inner medullary collecting duct system and papillary surface epithelium.
J. Clin. Invest.
79:
138–147,
1987.
|
242. |
Sansom, S. C.,
H. O. Senekjian,
T. F. Knight,
P. Frommer, and
E. J. Weinman.
Water absorption in the proximal tubule: effect of bicarbonate, chloride gradient, and organic solutes.
Proc. Soc. Exp. Biol. Med.
172:
111–117,
1983.
|
243. |
Sarkadi, B.,
E. Mack, and
R. Rothstein.
Ionic events during the volume response of human peripheral blood lymphocytes to hypotonic media. I. Distinctions between volume‐activated Cl− and K+ conductance pathways.
J. Gen. Physiol.
83:
497–512,
1984.
|
244. |
Sato, M., and
M. J. Dunn.
Interaction of vasopressin, prostaglandins and cAMP in rat papillary collecting tubule cells in culture.
Am. J. Physiol.
247
(Renal Fluid Electrolyte Physiol. 16):
F423–F433,
1984.
|
245. |
Schafer, J. A.,
Robert, F.
Pitts Memorial Lecture. Mechanisms coupling the absorption of solute and water in the proximal nephron.
Kidney Int.
25:
708–716,
1984.
|
246. |
Schafer, J. A.
Fluid absorption in the kidney proximal tubule.
NIPS.
2:
22–26,
1987.
|
247. |
Schafer, J. A., and
T. E. Andreoli.
Cellular constraints to diffusion. The effect of antidiuretic hormone on water flows in isolated mammalian collecting tubules.
J. Clin. Invest.
51:
1264–1278,
1972.
|
248. |
Schafer, J. A., and
T. E. Andreoli.
The effect of antidiuretic hormone on solute flows in mammalian collecting tubules.
J. Clin. Invest.
51:
1279–1286,
1972.
|
249. |
Schafer, J. A., and
D. W. Barfuss.
The study of pars recta function by the perfusion of isolated tubule segments.
Kidney Int.
22:
434–448,
1982.
|
250. |
Schafer, J. A.,
C. S. Patlak, and
T. E. Andreoli.
Osmosis in cortical collecting tubules. A theoretical and experimental analysis of the osmotic transient phenomenon.
J. Gen. Physiol.
64:
201–227,
1974.
|
251. |
Schafer, J. A.,
C. S. Patlak, and
T. E. Andreoli.
A component of fluid absorption linked to passive ion flows in the superficial pars recta.
J. Gen. Physiol.
66:
445–471,
1975.
|
252. |
Schafer, J. A.,
C. S. Patlak, and
T. E. Andreoli.
Fluid absorption and active and passive ion flows in the rabbit superficial pars recta.
Am. J. Physiol.
233
(Renal Fluid Electrolyte Physiol. 2):
F154–F167,
1977.
|
253. |
Schafer, J. A.,
C. S. Patlak,
S. L. Troutman, and
T. E. Andreoli.
Volume absorption in the pars recta. II. Hydraulic conductivity coefficient.
Am. J. Physiol.
234
(Renal Fluid Electrolyte Physiol. 3):
F340–F348,
1978.
|
254. |
Schafer, J. A.,
S. L. Troutman, and
T. E. Andreoli.
Osmosis in cortical collecting tubules. ADH‐independent osmotic flow rectification.
J. Gen. Physiol.
64:
228–240,
1974.
|
255. |
Schafer, J. A.,
S. L. Troutman,
M. L. Watkins, and
T. E. Andreoli.
Flow dependence of fluid transport in the isolated superficial pars recta: evidence that osmotic disequilibrium between external solutions drives isotonic fluid absorption.
Kidney Int.
20:
588–597,
1981.
|
256. |
Schlondorff, D., and
S. D. Levine.
Inhibition of vasopressin‐stimulated water flow in toad bladder by phorbol myristate acetate, dioctanoylglycerol and RHC‐80267.
J. Clin. Invest.
76:
1071–1078,
1985.
|
257. |
Schlondorff, D.,
J. A. Satriano, and
G. J. Schwartz.
Synthesis of prostaglandin E2 in different segments of isolated collecting tubules from adult and neonatal rabbits.
Am. J. Physiol.
248
(Renal Fluid Electrolyte Physiol. 17):
F134–F144,
1985.
|
258. |
Schultz, S. G.
The role of paracellular pathways in isotonic fluid transport.
Yale J. Biol. Med.
50:
99–113,
1977.
|
259. |
Schultz, S. G.
Homocellular regulatory mechanisms in sodium‐transporting epithelia: avoidance of extinction by “flush‐through”
Am. J. Physiol.
241
(Renal Fluid Electrolyte Physiol. 10):
F579–F590,
1981.
|
260. |
Schwartz, I. L.,
C. J. Huang,
A. J. Fischman,
S. K. Masur, and
H. R. Wyssbrod.
Current ideas on the sequence of events involved in the hydroosmotic action of anti‐diuretic hormones. In:
Neurohypophyseal Peptide Hormones and Other Biologically Active Peptides,
edited by D. H. Schlessinger
New York:
Elsevier,
1981,
p. 101–110.
|
261. |
Schwartz, I. L.,
L. J. Shlatz,
E. Kinne‐Saffran, and
R. Kinne.
Target cell polarity and membrane phosphorylation in relation to the mechanism of action of antidiuretic hormone.
Proc. Natl. Acad. Sci. USA
71:
2595–2599,
1974.
|
262. |
Seamon, K. B., and
J. W. Daly.
Forskolin, cyclic AMP and cellular physiology.
Trends Pharmacol. Sci.
4:
120–123,
1983.
|
263. |
Seely, J. F.
Variation in electrical resistance along length of rat proximal convoluted tubule.
Am. J. Physiol.
225:
48–57,
1973.
|
264. |
Simon, M.,
S. Curci,
B. Gebler, and
E. Frömter.
Attempts to determine ion concentrations in lateral spaces by direct micropuncture with ion‐sensitive microelectrodes. In:
Water Transport across Epithelia,
edited by H. H. Ussing,
N. Bindslev
N. A. Lassen, and
O. Sten‐Knudsen
Copenhagen:
Munksgard,
1981.
|
265. |
Smith, H. W.
The Kidney. Structure and Function in Health and Disease.
New York:
Oxford University Press,
1951.
|
266. |
Smyth, D. H., and
C. B. Taylor.
Transfer of water and solutes by an in vitro intestinal preparation.
J. Physiol. (Lond.)
136:
632–648,
1957.
|
267. |
Solomon, A. K.
Characterization of biological membranes by equivalent pores.
J. Gen. Physiol.
51:
3355–3645,
1968.
|
268. |
Sonnenberg, H.
Medullary collecting‐duct function in antidiuretic and in salt‐ or water‐diuretic rats.
Am. J. Physiol.
226:
501–506,
1974.
|
269. |
Spring, K. R.
Optical techniques for the evaluation of epithelial transport processes.
Am. J. Physiol.
237
(Renal Fluid Electrolyte Physiol. 6):
F167–F174,
1979.
|
270. |
Spring, K. R., and
A. Hope.
Size and shape of the lateral intercellular spaces in a living epithelium.
Science
200:
54–58,
1978.
|
271. |
Starling, E. H.
On the absorption of fluid from the connective tissue spaces.
J. Physiol. (Lond.)
19:
312–326,
1896.
|
272. |
Staverman, A. J.
The theory of the measurement of osmotic pressure.
Recueil. Trav. Chim.
70:
344–352,
1951.
|
273. |
Stetson, D. L.,
S. A. Lewis,
W. Alles, and
J. B. Wade.
Evaluation by capacitance measurements of antidiuretic hormone induced membrane area changes in toad bladder.
Biochim. Biophys. Acta
689:
267–274,
1982.
|
274. |
Stolte, H.,
J. P. Brecht,
M. Wiederholt, and
H. Hierholzer.
Einfluss von Adrenalektomie und Glukocorticoiden auf die Wasserpermeabilität corticaler Nephronabschnitte der Rattenniere.
Pflugers Arch.
299:
99–127,
1968.
|
275. |
Strange, K., and
K. R. Spring.
Absence of significant cellular dilution during ADH‐stimulated water reabsorption.
Science
235:
1068–1070,
1987.
|
276. |
Strange, K., and
K. R. Spring.
Cell membrane water permeability of rabbit cortical collecting duct.
J. Membr. Biol.
96:
27–43,
1987.
|
277. |
Strange, K.,
M. C. Willingham,
J. S. Handler, and
H. W. Harris, Jr.
Apical membrane retrieval via clathrin‐coated pits is stimulated by removal of ADH from isolated perfused rabbit cortical tubule.
J. Membr. Biol., in press.
|
278. |
Takaichi, K.,
S. Uchida, and
K. Kurokawa.
High Ca2+ inhibits AVP‐dependent cAMP production in thick ascending limbs of Henle.
Am. J. Physiol.
250
(Renal Fluid Electrolyte Physiol. 19):
F770–F776,
1986.
|
279. |
Thomas, S. R., and
D. C. Mikulecky.
A network thermodynamic analysis of salt and water flow across the kidney proximal tubule.
Am. J. Physiol.
235
(Renal Fluid Electrolyte Physiol. 4):
F638–F648,
1978.
|
280. |
Thull, N. B., and
W. S. Rehm.
Composition and osmolality of gastric juice as a function of plasma osmolality.
Am. J. Physiol.
185:
317–324,
1956.
|
281. |
Tisher, C. C.,
R. E. Bulger, and
H. Valtin.
Morphology of the renal medulla in water diuresis and vasopressin‐induced antidiuresis.
Am. J. Physiol.
220:
87–97,
1971.
|
282. |
Tisher, C. C., and
J. P. Kokko.
Relationship between peritubular oncotic pressure gradients and morphology in isolated proximal tubules.
Kidney Int.
6:
146–156,
1974.
|
283. |
Tisher, C. C., and
W. E. Yarger.
Lanthanum permeability of the tight junction (zonula occludens) in the renal tubule of the rat.
Kidney Int.
3:
238–250,
1973.
|
284. |
Tormey, J. M., and
J. M. Diamond.
The ultrastructural route of fluid transport in rabbit gallbladder.
J. Gen. Physiol.
50:
2031–2060,
1967.
|
285. |
Ullrich, K. J.,
G. Rumrich, and
G. Fuchs.
Wasserpermeabilität und transtubulärer Wasserfluss corticaler Nephron‐abschnitte bei verschiedenen Diuresezuständen.
Pflugers Arch.
280:
99–119,
1964.
|
286. |
Urry, D. W.,
M. C. Goodall,
J. D. Glickson, and
D. F. Mayers.
The gramicidin A transmembrane channel: characteristics of head to head dimerized πL,D helices.
Proc. Natl. Acad. Sci. USA
68:
1907–1911,
1971.
|
287. |
Ussing, H. H.
Anomalous transport of electrolytes and sucrose through the isolated frog skin induced by hypertonicity of the outside bathing solution.
Ann. N.Y. Acad. Sci.
317:
543–555,
1966.
|
288. |
Ussing, H. H.
The interpretation of tracer fluxes in terms of membrane structure.
Q. Rev. Biophys.
4:
365–379,
1969.
|
289. |
Ussing, H. H., and
E. E. Windhager.
Nature of shunt path and active sodium transport path through frog skin epithelium.
Acta Physiol. Scand.
61:
484–509,
1964.
|
290. |
van Heeswijk, M. P. E., and
C. H. Os.
Osmotic water permeability of brush border and basolateral membrane vesicles from rat renal cortex and small intestine.
J. Membr. Biol.
92:
183–193,
1987.
|
291. |
van Os, C. H.,
G. Weber, and
E. M. Wright.
Volume flow across gallbladder epithelium induced by small hydrostatic and osmotic gradients.
J. Membr. Biol.
49:
1–20,
1979.
|
292. |
van't Hoff, J. H.
Die Rolle des osmotischen Druckes in der Analogie zwischen Lösungen und Gasen.
Zr. Physik. Chem.
1:
481–508,
1887.
|
293. |
Verkman, A. S.,
J. A. Dix, and
J. L. Seifter.
Water and urea transport in renal microvillous membrane vesicles.
Am. J. Physiol.
248
(Renal Fluid Electrolyte Physiol. 17):
F650–F655,
1985.
|
294. |
Verkman, A. S., and
K. R. Wong.
Proton nuclear magnetic resonance measurement of diffusional water permeability in suspended renal proximal tubules.
Biophys. J.
51:
717–723,
1987.
|
295. |
Wade, J. B.
Membrane structural studies of the action of vasopressin.
Federation Proc.
44:
2687–2692,
1985.
|
296. |
Wade, J. B.,
R. G. O'Neill,
J. L. Pryor, and
E. L. Boulpaep.
Modulation of cell membrane area in renal collecting tubules by corticosteroid hormones.
J. Cell. Biol.
81:
439–445,
1979.
|
297. |
Wade, J. B.,
D. L. Stetson, and
S. A. Lewis.
ADH action: evidence for a membrane shuttle mechanism.
Ann. N.Y. Acad. Sci.
372:
106–117,
1981.
|
298. |
Walker, A. M.,
P. A. Bott,
J. Oliver, and
M. C. MacDowell.
The collection and analysis of fluid from single nephrons of the mammalian kidney.
Am. J. Physiol.
134:
580–595,
1941.
|
299. |
Wall, B. J.,
J. L. Ochsman, and
B. Schmidt‐Nielsen.
Fluid transport: concentration of the intercellular compartment.
Science
167:
1497–1498,
1970.
|
300. |
Wallach, D. F. H., and
P. H. Zahler.
Protein conformations in cellular membranes.
Proc. Natl. Acad. Sci. USA
56:
1552–1559,
1966.
|
301. |
Wang, J. H.,
C. V. Robinson, and
I. S. Edelman.
Self‐diffusion and structure of liquid water. III. Measurement of the self‐diffusion of liquid water with H2, H3 and O18 as tracers.
J. Am. Chem. Soc.
75:
466–470,
1953.
|
302. |
Warner, R. R., and
C. Lechene.
Isosmotic volume reabsorption in rat proximal tubule.
J. Gen. Physiol.
76:
559–586,
1980.
|
303. |
Warner, R. R., and
C. Lechene.
Analysis of standing droplets in rat proximal tubules.
J. Gen. Physiol.
79:
709–735,
1982.
|
304. |
Weinstein, A. M.
Nonequilibrium thermodynamic model of the rat proximal tubule epithelium.
Biophys. J.
153–170,
1983.
|
305. |
Weinstein, A. M.
An equation for flow in the renal proximal tubule.
Bull. Math. Biol.
48:
29–57,
1986.
|
306. |
Weinstein, A. M.
A mathematical model of the rat proximal tubule.
Am. J. Physiol.
250:
860–873,
1986.
|
307. |
Weinstein, A. M.
Modeling the proximal tubule: complications of the paracellular pathway.
Am. J. Physiol.
254
(Renal Fluid Electrolyte Physiol. 23):
F297–F305,
1988.
|
308. |
Weinstein, A. M., and
J. L. Stephenson.
Coupled water transport in standing gradient models of the lateral intercellular space.
Biophys. J.
35:
167–191,
1981.
|
309. |
Weinstein, A. M., and
J. L. Stephenson.
Models of coupled salt and water transport across leaky epithelia.
J. Membr. Biol.
60:
1–20,
1981.
|
310. |
Weinstein, A. M., and
E. E. Windhager.
Sodium transport along the proximal tubule. In:
The Kidney: Physiology and Pathophysiology,
edited by D. W. Seldin and
G. Giebisch.
New York,
Raven Press,
1985,
p. 1033–1062.
|
311. |
Welling, D. J.,
L. W. Welling, and
J. J. Hill.
Phenomenological model relating cell shape to water reabsorption in proximal nephron.
Am. J. Physiol.
234
(Renal Fluid Electrolyte Physiol. 3):
F308–F317,
1978.
|
312. |
Welling, L. W., and
J. J. Grantham.
Physical properties of isolated perfused renal tubules and tubular basement membranes.
J. Clin. Invest.
51:
1063–1075,
1972.
|
313. |
Welling, L. W., and
D. J. Welling.
Surface areas of brush border and lateral cell walls in the rabbit proximal nephron.
Kidney Int.
8:
343–348,
1975.
|
314. |
Welling, L. W., and
D. J. Welling.
Shape of epithelial cells and intercellular channels in the rabbit proximal nephron.
Kidney Int.
9:
385–394,
1976.
|
315. |
Welling, L. W.,
D. J. Welling,
J. W. Holsapple, and
A. P. Evan.
Morphometric analysis of distinct microanatomy near the base of proximal tubule cells.
Am. J. Physiol.
253
(Renal Fluid Electrolyte Physiol. 22):
F126–F140,
1987.
|
316. |
Welling, L. W.,
D. J. Welling, and
T. J. Ochs.
Video measurement of basolateral membrane hydraulic conductivity in the proximal tubule.
Am. J. Physiol.
245
(Renal Fluid Electrolyte Physiol. 14):
F123–F129,
1983.
|
317. |
Welling, L. W.,
D. J. Welling, and
T. J. Ochs.
Video measurement of basolateral NaCl reflection coefficient in proximal tubule.
Am. J. Physiol.
253
(Renal Fluid Electrolyte Physiol. 22):
F290–F298,
1987.
|
318. |
Welling, P. A.,
M. A. Linshaw, and
L. P. Sullivan.
Effect of barium on cell volume regulation in rabbit proximal straight tubules.
Am. J. Physiol.
249
(Renal Fluid Electrolyte Physiol. 18):
F20–F27,
1985.
|
319. |
Whitlock, R. T., and
H. O. Wheeler.
Coupled transport of solute and water across gallbladder epithelium.
J. Clin. Invest.
48:
2249–2265,
1964.
|
320. |
Whittembury, G., and
B. S. Hill.
Fluid reabsorption by Necturus proximal tubule perfused with solutions of normal and reduced osmolality.
Proc. R. Soc. Lond. B
215:
411–431,
1982.
|
321. |
Whittembury, G.,
B. Lindemann,
P. Carpi‐Medina, and
H. Linares.
Continuous measurements of cell volume in single kidney tubules.
Kidney Int.
30:
187–191,
1986.
|
322. |
Whittembury, G.,
A. Paz‐Aliaga,
A. Biondi,
P. Carpi‐Medina,
E. González, and
H. Linares.
Pathways for volume flow and volume regulation in leaky epithelia.
Pflugers Arch.
405:
S17–S22,
1985.
|
323. |
Williams, J. C., Jr.
D. W. Barfuss, and
J. A. Schafer.
Transport of solute in proximal tubules is modified by changes in medium osmolality.
Am. J. Physiol.
250
(Renal Fluid Electrolyte Physiol. 19):
F246–F255,
1986.
|
324. |
Williams, J. C., Jr. and
J. A. Schafer.
A model of osmotic and hydrostatic pressure effects on volume absorption in the proximal tubule.
Am. J. Physiol.
253
(Renal Fluid Electrolyte Physiol. 22):
F563–F575,
1987.
|
325. |
Williams, J. C., Jr. and
J. A. Schafer.
The cortical interstitium as a site for solute polarization during tubular absorption.
Am. J. Physiol.
254
(Renal Fluid Electrolyte Physiol. 23):
F813–F823,
1988.
|
326. |
Wirz, H.
Der osmotische Druck in den corticalen Tubuli der Rattenniere.
Helv. Physiol. Acta
14:
353–362,
1956.
|
327. |
Wirz, H.,
B. Hargitay, and
W. Kuhn.
Lokalisation des Konzentrierugsprozesses in der Niere durch direkte Kryoscopie.
Helv. Physiol. Acta
9:
196–207,
1951.
|
328. |
Wright, E. M., and
R. J. Pietras.
Routes of nonelectrolyte permeation across epithelial membranes.
J. Membr. Biol.
17:
293–312,
1974.
|
329. |
Wright, E. M.,
A. P. Smulders, and
J. M. Tormey.
The role of lateral intercellular spaces and solute polarization effects in the passive flow of water across the rabbit gallbladder.
J. Membr. Biol.
7:
198–219,
1972.
|
330. |
Wuthrich, R. P.,
R. Loup,
L. Favre, and
M. B. Vallolton.
Dynamic response of PG synthesis to peptide hormones and osmolality in renal tubular cells.
Am. J. Physiol.
250
(Renal Fluid Electrolyte Physiol. 19):
F790–F797,
1986.
|
331. |
Zeuthen, T.
Relations between intracellular ion activities and extracellular osmolality in Necturus gallbladder epithelium.
J. Membr. Biol.
66:
109–121,
1982.
|