References |
1. |
Ashcroft, F. M.
Adenosine 5′‐triphosphate—sensitive potassium channels.
Annu. Rev. Neurosci.
11:
97–118,
1988.
|
2. |
Benos, D. J.,
G. Saccomani,
B. M. Brenner, and
S. Sariban‐Sohraby.
Purification and characterization of the amiloride‐sensitive sodium channel from A6 cultured cells and bovine renal papilla.
Proc. Natl. Acad. Sci. USA
83:
8525–8529,
1986.
|
3. |
Benz, R., and
P. Läuger.
Kinetic analysis of carrier‐mediated ion transport by the charge‐pulse technique.
J. Membr. Biol.
27:
171–191,
1976.
|
4. |
Cantiello, H. F.,
C. R. Patenaude, and
D.A. Ausiello.
G‐protein subunit, α1‐3, activates a pertussis‐toxin‐sensitive Na+ channel from the epithelial cell line A6.
J. Biol. Chem.
264:
20867–20870,
1989.
|
5. |
Christensen, O.
Mediation of cell volume regulation by Ca2+ influx through stretch‐activated channels.
Nature
330:
66–68,
1987.
|
6. |
Das, S. and
L. G. Palmer.
Extracellular Ca2+ controls outward rectification by apical cation channels in toad urinary bladder: patch clamp and whole bladder studies.
J. Membr. Biol.
107:
157–168,
1989.
|
7. |
Dubé, L.,
L. Parent, and
R. Sauvé
Hypotonic shock activates a maxiK channel in primary cultured proximal tubule cells.
Am. J. Physiol.
259
(Renal Fluid Electrolyte Physiol. 28):
F348–F356,
1990.
|
8. |
Eaton, D.C., and
K. L. Hamilton.
The amiloride‐blockable sodium channel of epithelial tissue. In:
Ion Channels,
edited by T. Narahashi.
New York:
Plenum,
1988,
vol. 1,
p. 251–282.
|
9. |
Eaton, D. C.,
Y. Marunaka, and
B. N. Ling.
Channels in epithelial tissue. In:
Membrane Transport in Biology
(2nd ed.),
edited by G. Giebisch,
D. C. Tosteson, and
H. H. Ussing.
New York:
Springer‐Verlag
(in press).
|
10. |
Engbretson, B. G.,
K. W. Beyenbach, and
L. C. Stoner.
The everted renal tubule: a methodology for direct assessment of apical membrane function.
Am. J. Physiol.
255
(Renal Fluid Electrolyte Physiol., 24):
F1276–F1280,
1988.
|
11. |
Filipovic, D., and
H. Sackin.
A calcium‐permeable stretch‐activated cation channel in renal proximal tubule.
Am. J. Physiol.
260
(Renal Fluid Electrolyte Physiol. 29):
F119–F129,
1991.
|
12. |
Frindt, G., and
L. G. Palmer.
Ca‐activated K channels in apical membrane of mammalian CCT, and their role in K secretion.
Am. J. Physiol.
252
(Renal Fluid Electrolyte Physiol. 21):
F458–F467,
1987.
|
13. |
Frindt, G., and
L. G. Palmer.
Low conductance K channels in apical membrane of rat cortical collecting tubule.
Am. J. Physiol.
256
(Renal Fluid Electrolyte Physiol. 25):
F143–F151,
1989.
|
14. |
Frindt, G.,
H. Sackin, and
L. G. Palmer.
Whole‐cell currents in rat cortical collecting tubule: low‐Na diet increases amiloride‐sensitive conductance.
Am. J. Physiol.
258
(Renal Fluid Electrolyte Physiol. 27):
F562–F567,
1990.
|
15. |
Frings, S.,
R. D. Purves, and
A. D. C. Macknight.
Single‐channel recordings from the apical membrane of the toad urinary bladder epithelial cell.
J. Membr. Biol.
106:
157–172,
1988.
|
16. |
Frizzell, R. A.,
D. R. Halm,
G. Rechkemmer, and
R. L. Shoemaker.
Chloride channel regulation in secretory epithelia.
Fed. Proc.
45:
2727–2731,
1986.
|
17. |
Garty, H., and
D. J. Benos.
Characteristics and regulatory mechanisms of the amiloride‐blockade Na+ channel.
Physiol. Rev.
68:
309–373,
1988.
|
18. |
Germann, W. J.,
M. E. Lowy,
S. A. Ernst, and
D. C. Dawson.
Differentiation of two distinct K conductances in the basolateral membrane of turtle colon.
J. Gen. Physiol.
88:
237–251,
1986.
|
19. |
Gitter, A. H.,
K. W. Beyenbach,
C. Christine,
P. Gross,
W. W. Minuth, and
E. Frömter.
High conductance K+ channel in apical membranes of principal cells cultured from rabbit renal cortical collecting duct anlagen.
Pflugers Arch.
408:
282–290,
1987.
|
20. |
Gögelein, H.
Chloride channels in epithelia.
Biochim. Biophys. Acta
947:
521–547,
1988.
|
21. |
Gögelein, H.
Ion channels in mammalian proximal tubules.
Renal Physiol. Biochem.
13:
8–25,
1990.
|
22. |
Gögelein, H., and
R. Greger.
Single‐channel recordings from basolateral and apical membranes of renal proximal tubules.
Pflugers Arch.
401:
424–426,
1984.
|
23. |
Gögelein, H., and
R. Greger.
Na+‐selective channels in the apical membrane of rabbit late proximal tubules (pars recta).
Pflugers Arch.
406:
198–203,
1986.
|
24. |
Gögelein, H., and
R. Greger.
Properties of single K+ channels in the basolateral membrane of rabbit proximal straight tubules.
Pflugers Arch.
410:
288–295,
1987.
|
25. |
Greger, R.
Ion transport mechanisms in thick ascending limb of Henle's loop of mammalian nephron.
Physiol. Rev.
65:
760–797,
1985.
|
26. |
Greger, R.,
M. Bleich, and
E. Schlatter.
Ion channels in the thick ascending limb of Henle's loop.
Renal Physiol. Biochem.
13:
37–50,
1990.
|
27. |
Guggino, S. E.,
W. B. Guggino,
N. Green, and
B. Sacktor.
Ca2+‐activated K+ channels in cultured medullary thick ascending limb cells.
Am. J. Physiol.
252
(Cell Physiol. 21):
C121–C127,
1985.
|
28. |
Guggino, S. E.,
W. B. Guggino,
N. Green, and
B. Sacktor.
Blocking agents of Ca2+‐activated K+ channels in cultured medullary thick ascending limb cells.
Am. J. Physiol.
252
(Cell Physiol. 21):
C128–C137,
1985.
|
29. |
Guggino, S.E.,
B. A. Suarez‐Isla,
W. B. Guggino, and
B. Sacktor.
Forskolin and the antidiuretic hormone stimulate Ca2+‐activated K+ channels in cultured kidney cells.
Am. J. Physiol
249
(Renal Fluid Electrolyte Physiol. 18):
F448–F455,
1985.
|
30. |
Guggino, W. B.,
H. Oberleithner, and
G. Giebisch.
The amphibian diluting segment.
Am. J. Physiol.
254
(Renal Fluid Electrolyte Physiol. 23):
F615–F627,
1988.
|
31. |
Hamilton, K., and
D. C. Eaton.
Single‐channel recordings from amiloride‐sensitive epithelial sodium channels.
Am. J. Physiol.
249
(Cell Physiol. 18):
C200–C207,
1985.
|
32. |
Hamilton, K., and
D. C. Eaton.
Regulation of single sodium channels in renal tissue: a role in sodium homeostasis.
Fed. Proc.
45:
2713–2717,
1986.
|
33. |
Hanrahan, J. W.,
W. P. Alles, and
S. A. Lewis.
Single anion‐selective channels in basolateral membrane of a mammalian tight epithelium.
Proc. Natl. Acad. Sci USA
82:
7791–7795,
1984.
|
34. |
Hebert, S. C.,
R. M. Culpepper, and
T. E. Andreoli.
NaCl transport in mouse medullary thick ascending limbs. I. Functional nephron heterogeneity and ADH‐stimulated NaCl transport.
Am. J. Physiol.
241
(Renal Fluid Electrolyte Physiol. 10):
F412–F431,
1981.
|
35. |
Hille, B.
Ionic channels in nerve membranes.
Prog Biophys. Mol. Biol.
21:
1–32,
1970.
|
36. |
Hille, B.
Ionic Channels of Excitable Membranes.
Sunderland, MA:
Sinauer,
1984.
|
37. |
Hille, B. and
W. Schwartz.
Potassium channels as multi‐ion single‐file pores.
J. Gen. Physiol.
72:
409–442,
1978.
|
38. |
Horn, R., and
A. Marty.
Muscarinic activation of ionic currents measured by a new whole‐cell recording method.
J. Gen. Physiol.
92:
145–159,
1988.
|
39. |
Hudson, R. L., and
S. G. Schultz.
Sodium‐coupled glycine uptake by Ehrlich ascites tumor cells results in an increase in cell volume and plasma membrane channel activities.
Proc. Natl. Acad. Sci USA
85:
279–283,
1988.
|
40. |
Hunter, M.
Stretch‐activated channels in the basolateral membrane of single proximal cells of frog kidney.
Pflugers Arch.
416:
448–452,
1990.
|
41. |
Hunter, M., and
G. Giebisch.
Multibarrelled potassium channels in renal tubules.
Nature
327:
522–524,
1987.
|
42. |
Hunter, M., and
G. Giebisch.
Calcium‐activated potassium channels of Amphiuma early distal tubule: inhibition by ATP.
Pflugers Arch.
412:
331–333,
1988.
|
43. |
Hunter, M.,
A. G. Lopes,
E. L. Boulpaep, and
G. Giebisch.
Single channel recordings of calcium‐activated potassium channels in the apical membrane of the rabbit cortical collecting tubule.
Proc. Natl. Acad. Sci. USA
81:
4237–4239,
1984.
|
44. |
Hunter, M.,
A. G. Lopes,
E. L. Boulpaep, and
G. Giebisch.
Regulation of single potassium ion channels from apical membrane of rabbit collecting tubule.
Am. J. Physiol.
251
(Renal Fluid Electrolyte Physiol. 20):
F725–F722,
1986.
|
45. |
Hunter, M.,
H. Oberleithner,
R. M. Henderson, and
G. Giebisch.
Whole‐cell potassium currents in single early distal tubule cells.
Am. J. Physiol.
255
(Renal Fluid Electrolyte Physiol 24):
F669–F703,
1988.
|
46. |
Hurst, A. M., and
M. Hunter.
Apical channels of frog diluting segment: inhibition by acidification.
Pflugers Arch.
415:
115–117,
1989.
|
47. |
Hviid‐Larsen, E., and
P. Kristensen.
Properties of a conductive cellular pathway in the skin of the toad (Bufo bufo).
Acta Physiol. Scand.
102:
1–21,
1978.
|
48. |
Kawahara, K.
A stretch‐activated K+ channel in the basolateral membrane of Xenopus kidney proximal tubule cells.
Pflugers Arch.
415:
624–629,
1990.
|
49. |
Kawahara, K.,
M. Hunter, and
G. Giebisch.
Potassium channels in Necturus proximal tubule.
Am. J. Physiol.
253
(Renal Fluid Electrolyte Physiol. 22):
F488–F494,
1987.
|
50. |
Kistler, J.,
R. M. Stroud,
R. A. Klymkowski,
R. A. Lalancette, and
R. H. Fairclough.
Structure and function of an acetylcholine receptor.
Biophys. J.
37:
371–383,
1982.
|
51. |
Koeppen, B. M.,
K. W. Beyenbach, and
S. I. Helman.
Single channel currents in renal tubules.
Am. J. Physiol.
247
(Renal Fluid Electrolyte Physiol. 16):
F380–F384,
1984.
|
52. |
Korn, S. J., and
R. Horn.
Statistical discrimination of fractal and Markov models of single‐channel gating.
Biophys. J.
54:
871–877,
1988.
|
53. |
Kregenow, F.
Osmoregulatory salt transporting mechanisms: control of cell volume in anisotonic media.
Annu. Rev. Physiol.
43:
493–505,
1981.
|
54. |
Lang, F.,
F. Friedrich,
M. Paulmilch,
W. Schobersberger,
A. Jungwirth,
M. Ritter,
M. Steidl,
H. Weiss,
E. Woll,
E. Tschernko,
R. Paulmilch, and
C. Hallbrucker.
Ion channels in Madin‐Darby canine kidney cells.
Renal Physiol. Biochem.
13:
82–93,
1990.
|
55. |
Laskowski, F. H.,
C. W. Christine,
A. H. Gitter,
K. W. Beyenbach,
P. Gross, and
E. Frömter.
Cation channels in the apical membrane of collecting duct principal cell epithelium in culture.
Renal Physiol. Biochem.
13:
70–81,
1990.
|
56. |
Latorre, R.,
R. Coronado, and
C. Vergara.
K+ channels gated by voltage and ions.
Annu. Rev. Physiol.
46:
485–495,
1984.
|
57. |
Latorre, R., and
C. Miller.
Conduction and selectivity in potassium channels.
J. Membr. Biol.
71:
11–30,
1983.
|
58. |
Lewis, S. A., and
J. W. Hanrahan.
Apical and basolateral membrane ionic channels in rabbit urinary bladder epithelium.
Pflugers Arch.
405
(Suppl. 1):
S83–S88,
1985.
|
59. |
Lewis, S. A., and
N. K. Wills.
Apical membrane permeability and kinetic properties of the sodium pump in rabbit urinary bladder.
J. Physiol.
341:
169–184,
1983.
|
60. |
Lewis, S. A.,
N. K. Wills, and
D. C. Eaton.
Basolateral membrane potential of a tight epithelium: ionic diffusion and electrogenic pumps.
J. Membr. Biol.
41:
117–142,
1978.
|
61. |
Liebovitch, L. S.,
J. Fischbarg, and
J. P. Koniarek.
Ion channel kinetics: a model based on fractal scaling rather than multistate Markov processes.
Math. Biosci.
84:
37–68,
1987.
|
62. |
Light, D. B.,
D. A. Ausiello, and
B. A. Stanton.
Guanine nucleotide‐binding protein αi‐3 directly activates a cation channel in rat renal inner medullary collecting duct cells.
J. Clin. Invest.
84:
352–356,
1989.
|
63. |
Light, D. B.,
F. V. McCann,
T. M. Keller, and
B. A. Stanton.
Amiloride‐sensitive cation channel in apical membrane of inner medullary collecting duct.
Am. J. Physiol.
255
(Renal Fluid Electrolyte Physiol. 24):
F278–F286,
1988.
|
64. |
Light, D. B.,
E. M. Schwiebert,
G. Fejes‐Toth,
A. Naray‐Fejes‐Toth,
K. H. Karlson,
F. V. McCann, and
B. A. Stanton.
Chloride channels in the apical membrane of cortical collecting duct cells.
Am. J. Physiol.
258
(Renal Fluid Electrolyte Physiol. 27):
F273–F280,
1990.
|
65. |
Light, D. B.,
E. M. Schwiebert,
K. H. Karlson, and
B. A. Stanton.
Atrial natriuretic peptide inhibits a cation channel in renal inner medullary collecting duct cells.
Science
243:
383–385,
1988.
|
66. |
Lindemann, B.
The beginning of fluctuation analysis of epithelial ion transport.
J. Membr. Biol.
54:
1–11,
1980.
|
67. |
Lindemann, B.
Fluctuation analysis of sodium channels in epithelia.
Annu. Rev. Physiol.
46:
497–515,
1984.
|
68. |
Lindemann, B. and
W. Van Driessche.
Sodium specific membrane channels of frog skin are pores: current fluctuations reveal high turnover.
Science
195:
292–294,
1977.
|
69. |
Ling, B. N., and
D. C. Eaton.
Effects of luminal Na+ on single Na+ channels in A6 cells, a regulatory role for protein kinase C.
Am. J. Physiol.
256
(Renal Fluid Electrolyte Physiol. 25):
F1094–F1103,
1989.
|
70. |
Makowski, L.,
D. L. D. Caspar,
W. C. Phillips, and
D. A. Goodenough.
Gap junction structure. II. Analysis of x‐ray diffraction data.
J. Cell Biol.
74:
629–645,
1977.
|
71. |
Marom, S.,
D. Dagan,
J. Winaver, and
Y. Palti.
Brush‐border membrane cation conducting channels from rat kidney proximal tubules.
Am. J. Physiol.
257
(Renal Fluid Electrolyte Physiol. 26):
F328–F335,
1989.
|
72. |
Marunaka, Y., and
D. C. Eaton.
Chloride channels in the apical membrane of a distal nephron (A6) cell line.
Am. J. Physiol.
258
(Cell Physiol. 27):
C352–C368,
1990.
|
73. |
McManus, O. B.,
D. S. Weiss,
C. E. Spivak, and
A. L. Blatz, and
K. L. Magleby.
Fractal models are inadequate for the kinetics of four different ion channels.
Biophys. J.
54:
859–870,
1988.
|
74. |
Mérot, J.,
M. Bidet,
B. Gachot,
S. Le Maout,
M. Tauc, and
P. Poujeol.
Patch clamp study on primary culture of isolated proximal convoluted tubules.
Pflugers Arch.
413:
51–61,
1988.
|
75. |
Mérot, J.,
M. Bidet,
S. Le Maout,
M. Tauc, and
P. Poujeol.
Two types of K channels in the apical membrane of rabbit proximal tubule in primary culture.
Biochim. Biophys. Acta
978:
134–144,
1989.
|
76. |
Miller, C.
First steps in the reconstruction of ionic channel functions in model membranes. In:
Current Methods in Cellular Neurobiology,
edited by J. L. Barker and
J. F. McKelvy.
New York:
Wiley,
1983,
vol. 3,
p. 1–37.
|
77. |
Miller, C.
Ion Channel Reconstitution.
New York:
Plenum,
1986.
|
78. |
Millhauser, G. L.,
E. E. Salpeter, and
R. E. Oswald.
Diffusion models of ion‐channel gating and the origin of power‐law distributions from single channel recordings.
Proc. Natl. Acad. Sci. USA
85:
1503–1507,
1988.
|
79. |
Misler, S.,
K. Gillis, and
J. Tabcharani.
Modulation of gating of a metabolically regulated ATP‐dependent K+ channel by intracellular pH in B cells of the pancreatic islet.
J. Membr. Biol.
109:
135–143,
1989.
|
80. |
Moczydlowski, E. and
R. Latorre.
Gating effects of Ca2+‐activated K+ channels from rat muscle incorporated into planar lipid bilayers: evidence for two voltage‐dependent binding reactions.
J. Gen. Physiol.
82:
511–542,
1983.
|
81. |
Nelson, D.J.,
J. M. Tang, and
L. G. Palmer.
Single‐channel recordings of apical membrane chloride conductance in A6 epithelial cells.
J. Membr. Biol.
80:
81–89,
1984.
|
82. |
Oberleithner, H.,
M. Weigt,
H. J. Westphale, and
W. Wang.
Aldosterone activates Na/H exchange and raises cytoplasmic pH in target cells of the amphibian kidney.
Proc. Natl. Acad. Sci. USA
84:
1464–1468,
1987.
|
83. |
Pácha, J.,
G. Frindt,
H. Sackin, and
L. G. Palmer
Apical maxi K channels in intercalated cells of CCT.
Am. J. Physiol.
(in press).
|
84. |
Palmer, L. G.
Regulation of NaCl transport in tight epithelia. In:
Advances in Comparative and Environmental Physiology,
edited by R. Greger.
Berlin:
Springer‐Verlag,
p. 291–309,
1988.
|
85. |
Palmer, L. G., and
G. Frindt.
Amiloride‐sensitive Na channels from the apical membrane of the rat cortical collecting tubule.
Proc. Natl. Acad. Sci. USA
83:
2767–2770,
1986.
|
86. |
Palmer, L. G., and
G. Frindt.
Epithelial sodium channels: characterization by using the patch‐clamp technique.
Fed. Proc.
45:
2708–2712,
1986.
|
87. |
Palmer, L. G., and
G. Frindt.
Effects of cell Ca and pH on Na channels from rat cortical collecting tubules.
Am. J. Physiol.
253
(Renal Fluid Electrolyte Physiol. 22):
F333–F339,
1987.
|
88. |
Palmer, L. G., and
G. Frindt.
Conductance and gating of epithelial Na channels from rat cortical collecting tubule. Effects of Na and Li.
J. Gen. Physiol.
92:
121–138,
1988.
|
89. |
Palmer, L. G.,
G. Frindt,
R. Silver, and
J. Stieter.
Feedback regulation of epithelial sodium channels.
Current Top. Membr. Transp.
34:
45–60,
1989.
|
90. |
Palmer, L. G., and
H. Sackin.
Regulation of renal ion channels.
FASEB J.
2:
3061–3065,
1988.
|
91. |
Parent, L.,
J. Cardinal, and
R. Sauvé.
Single channel analysis of a K channel at basolateral membrane of rabbit proximal convoluted tubule.
Am. J. Physiol.
254
(Renal Fluid Electrolyte Physiol. 23):
F105–F113,
1988.
|
92. |
Parsegian, A.
Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems.
Nature
281:
844–846,
1969.
|
93. |
Paulais, M., and
J. Teulon.
cAMP‐activated chloride channel in the basolateral membrane of the thick ascending limb of the mouse kidney.
J. Membr. Biol.
113:
253–260,
1990.
|
94. |
Petersen, O. H., and
Y. Maruyama.
Calcium‐activated potassium channels and their role in secretion.
Nature
307:
693–696,
1984.
|
95. |
Quinton, P. M.
Cystic fibrosis: a disease in electrolyte transport.
FASEB J.
4:
2709–2717,
1990.
|
96. |
Reeves, W. B., and
T. E. Andreoli.
Cl− transport in basolateral renal medullary vesicles: II. Cl− channels in planar lipid bilayers.
J. Membr. Biol.
113:
57–65,
1990.
|
97. |
Sachs, F.
Baroreceptor mechanisms at the cellular level.
Federation Proc.
46:
12–16,
1987.
|
98. |
Sackin, H.
Stretch‐activated potassium channels in renal proximal tubules.
Am. J. Physiol.
253
(Renal Fluid Electrolyte Physiol. 22):
F1253–F1262,
1987.
|
99. |
Sackin, H.
A stretch‐activated K+ channel sensitive to cell volume.
Proc. Natl. Acad. Sci. USA
86:
1731–1735,
1989.
|
100. |
Sackin, H., and
L. G. Palmer.
Basolateral potassium channels in renal proximal tubule.
Am. J. Physiol.
253
(Renal Fluid Electrolyte Physiol. 22):
F476–F487,
1987.
|
101. |
Sakmann, B. and
E. Neher.
Single Channel Recording.
New York:
Plenum,
1983.
|
102. |
Sansom, S. C.,
B.‐C. La, and
S. L. Carosi.
Double‐barrelled chloride channels of collecting duct basolateral membrane.
Am. J. Physiol.
259
(Renal Fluid Electrolyte Physiol. 28):
F46–F52,
1990.
|
103. |
Sansom, S. C.,
E. J. Weinman, and
R. G. O'Neill.
Micro‐electrode assessment of chloride‐conductive properties of cortical collecting duct.
Am. J. Physiol.
251
(Renal Fluid Electrolyte Physiol. 20):
F743–F757,
1984.
|
104. |
Sariban‐Sohraby, S.,
R. Latorre,
M. Burg,
L. Olans, and
D. Benos.
Amiloride‐sensitive epithelial Na+ channels reconstituted into planar lipid bilayers membranes.
Nature
308:
80–81,
1984.
|
105. |
Schafer, J. A.,
S. L. Troutman, and
E. Schlatter.
Vasopressin and mineralocorticoid increase apical membrane driving force for K+ secretion in rat CCD.
Am. J. Physiol.
258
(Renal Fluid Electrolyte Physiol. 27):
F199–F210,
1990.
|
106. |
Schultz, S. G.
Homocellular regulatory mechanisms in sodium‐transporting epithelia: avoidance of extinction by “flush‐through.”
Am. J. Physiol.
241
(Renal Fluid Electrolyte Physiol. 10):
F579–F590,
1981.
|
107. |
Stevens, C. F.
Inferences about membrane properties from electrical noise measurements.
Biophys. J.
12:
1028–1047,
1972.
|
108. |
Strange, K.
Cell volume regulation following Na+ pump inhibition in CCT principal cells: apical K+ loss.
Am J. Physiol.
258:
F732–F740,
1990.
|
109. |
Strieter, J.,
J. L. Stephenson,
L. G. Palmer, and
A. M. Weinstein.
Volume‐activated chloride permeability can mediate cell volume regulation in a mathematical model of a tight epithelium.
J. Gen. Physiol.
96:
319–344,
1990.
|
110. |
Takumi, T.,
H. Ohkubo, and
S. Nakanishi.
Cloning of a membrane protein that induces a slow voltage—gated potassium current.
Science
242:
1042–1045,
1989.
|
111. |
Taniguchi, J. and
W. B. Guggino.
Membrane stretch: a physiological stimulator of Ca2+‐activated K+ channels in thick ascending limb.
Am. J. Physiol.
257
(Renal Fluid Electrolyte Physiol. 26):
F347–F352,
1989.
|
112. |
Taylor, A., and
E. E. Windhager.
Possible role of cytosolic calcium and Na‐Ca exchange in regulation of transepithelial sodium transport.
Am. J. Physiol.
236
(Renal Fluid Electrolyte Physiol. 5):
F505–F512,
1979.
|
113. |
Ubl, J. H.,
H. Murer, and
H.‐A. Kolb.
Ion channels activated by; osmotic and mechanical stress in membranes of opossum kidney cells.
J. Membr. Biol.
104:
223–232,
1988.
|
114. |
Urry, D. W.
The gramicidin A transmembrane channel: a proposed π(L,D) helix.
Proc. Natl. Acad. Sci. USA
68:
672–676,
1971.
|
115. |
Ussing, H. H.
Volume regulation of frog skin epithelium.
Acta Physiol. Scand.
114:
363–369,
1982.
|
116. |
Vigne, P.,
G. Champigny,
R. Marsault,
P. Barbry,
C. Frelin, and
M. Lazdunski.
A new type of amiloride‐sensitive cationic channel in endothelial cells of brain microvessels.
J. Biol. Chem.
264:
7663–7668,
1989.
|
117. |
Wang, W.,
R. M. Henderson,
J. Geibel,
S. White, and
G. Giebisch.
Mechanism of aldosterone‐induced increase of K+ conductance in early distal renal tubule cells of the frog.
J. Membr. Biol.
111:
277–289,
1989.
|
118. |
Wang, W.,
A. Schwab, and
G. Giebisch.
Regulation of small conductance K+ channel in apical membrane of rat cortical collecting tubule.
Am. J. Physiol.
259
(Renal Fluid Electrolyte Physiol. 28):
F494–F502,
1990.
|
119. |
Wang, W.,
A. Schwab,
J. Geibel, and
G. Giebisch.
A potassium channel in the apical membrane of rabbit thick ascending limb of Henle's loop.
Am. J. Physiol.
258:
F244–F253,
1990.
|
120. |
Welsh, M. J.
Abnormal regulation of ion channels in cystic fibrosis epithelia.
FASEB J.
4:
2718–2725,
1990.
|
121. |
Willis, N. K., and
A. Zweifach.
Recent advances in the characterization of epithelial ionic channels.
Biochim. Biophys. Acta
906:
1–32,
1987.
|