Comprehensive Physiology Wiley Online Library

Renal Potassium Transport

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 External and Internal Potassium Balance
1.1 Internal Potassium Balance
1.2 External Potassium Balance
2 General Features of Renal Potassium Excretion
3 Cellular Mechanisms of Potassium Transport Along the Nephron
3.1 Glomerulus
3.2 Proximal Tubule
3.3 Loop of Henle
3.4 Potassium Recycling
3.5 Distal Tubule
3.6 Distal Convoluted Tubule
3.7 Connecting Tubule
3.8 Initial Collecting Tubule and Cortical Collecting Duct
3.9 Medullary Collecting Duct
3.10 Inner Medullary Collecting Duct
3.11 Amphibian Distal Nephron
4 Regulation of Potassium Transport
4.1 Potassium Intake and Plasma Potassium Concentration
4.2 Potassium Adaptation
4.3 Adrenal Steroids
5 Regulation of Potassium Excretion by Interactive Stimuli
5.1 Relationship between Plasma Potassium Concentration, Plasma Aldosterone, and Renal Potassium Excretion
5.2 Effects of Sodium Intake on Potassium Balance
5.3 Regulation of Potassium and Sodium Excretion during Alterations in Extracellular Fluid Volume
5.4 Regulation of Potassium and Sodium Excretion during Alterations in Potassium Intake
Figure 1. Figure 1.

Potassium homeostasis depends on maintenance of external and internal potassium balance. External potassium balance is determined by rate of potassium intake (100 mEq/day) and rate of urinary (90 mEq/day) and fecal excretion (10 mEq/day). Internal potassium balance depends on distribution of potassium between muscle, bone, liver, and red blood cells (RBC) and the extracellular fluid (ECF). This distribution is regulated by several hormones and is affected by acid–base balance and tonicity of plasma. (Movement of potassium between the ECF and cells is indicated by the small arrows; see text for details.)

Figure 2. Figure 2.

Schematic illustration of superficial (right) and juxtamedullary (left) nephrons in mammalian kidney. Arrows indicate direction of potassium transport. Abbreviations: CNT, connecting tubule; DCT, distal convoluted tubule; PCT, proximal convoluted tubule; PST, proximal straight tubule (the entire proximal tubule can also be divided into three segments labeled S1, S2, S3); TAL, thick ascending limb; DTL, descending thin limb; ATL, ascending thin limb; ICT, initial collecting tubule; CCD, cortical collecting duct; TAL, thick ascending limb; OMCDo, outer medullary collecting duct (outer stripe); OMCDi, outer medullary collecting duct (inner stripe); IMCDi, inner medullary collecting duct (initial segments); IMCDt, inner medullary collecting duct (terminal segment).

Figure 3. Figure 3.

Schematic illustration of cell types lining distal tubule and cortical collecting duct in rat. Transitions between distal convoluted tubule (DCT), connecting tubule (CNT), and initial collecting duct (ICT) are gradual in the rat and the human but more abrupt in the rabbit.

from 419
Figure 4. Figure 4.

Koefoed‐Johnson—Ussing cell model of sodium transport across frog skin (modified from 245). As discussed in the text, inclusion of additional potassium transport mechanisms in the apical and/or basolateral membrane can account for potassium transport processes observed along the nephron. Apical solution is electrically negative relative to a grounded bath solution.

Figure 5. Figure 5.

Potassium transport mechanisms in renal cells. Direction and magnitude of potassium transport in each nephron segment is integrally related to distribution of one or more of these mechanisms to apical or basolateral membrane.

Figure 6. Figure 6.

Proximal cell model of potassium transport. Transepithelial voltage is lumen‐negative in early convolutions and lumen‐positive in late convolutions (relative to a grounded bath solution). Potassium conductance of the apical membrane is small relative to the potassium conductance of the basolateral membrane. According to this model, which incorporates all known potassium‐transport mechanisms, transcellular potassium movement can only occur in the secretory direction. As noted in the text, however, potassium is normally absorbed by the proximal tubule. Transcellular potassium absorption requires an active uptake mechanism in the apical membrane (not shown); see text for details.

Figure 7. Figure 7.

Expanded cell model to account for active potassium absorption by proximal tubule. Cellular potassium absorption may be driven by Na+,K+‐ATPase in lateral membranes, which lowers potassium concentration in interspace and provides driving force for potassium diffusion across tight junction from tubular lumen into interspace. Some potassium may then cross basement membrane by solvent drag. Potassium that enters cell via Na+,K+‐ATPase across lateral membrane preferentially diffuses out of cell across basal membrane through potassium channels. For this mechanism to work, potassium diffusion from cell into lateral interspace and from interspace into tubular lumen must be relatively small; see the text for details.

Modified from 478,480
Figure 8. Figure 8.

Model of descending thin limb of Henle's loop illustrating known potassium transport pathways (modified from 281). Potassium transport may either be in the secretory or absorptive direction depending on the orientation of potassium transepithelial concentration gradient.

Figure 9. Figure 9.

Model of cells of thick ascending limb of Henle's loop illustrating known potassium‐transport pathways. Transepithelial voltage is oriented lumen‐positive relative to a grounded bath solution. Cl exchanger has been described in apical membrane of mouse thick ascending limb cells 109. This mechanism, in parallel with Na+−H+ exchanger, would mediate electroneutral NaCl absorption 109. Operation of the Cl transporter in concert with the Na+−H+ exchanger would reduce or eliminate sodium‐induced changes in intracellular pH.

Modified from 109
Figure 10. Figure 10.

Potassium recycling. Arrows depict route of potassium recycling within renal medulla.

Figure 11. Figure 11.

Cell model of distal convoluted tubule illustrating known potassium‐transport pathways. KCl cotransport mechanism and potassium‐conductive pathway (not shown) mediate potassium secretion across apical membrane. These potassium‐transport pathways are in parallel with a NaCl cotransport mechanism and a sodium conductive pathway. Transepithelial voltage is oriented lumen‐negative relative to a grounded bath solution.

Figure 12. Figure 12.

Model illustrating known potassium‐transport pathways of principal cells in initial and cortical collecting duct.

see text for details
Figure 13. Figure 13.

Current record of potassium channel in apical membrane of principal cells from rabbit cortical collecting duct. Record was obtained in the cell‐attached configuration with 70 mM NaCl and 70 mM KCl (pH 7.4, Ca2+ free) in the bath and 140 mM KCl in the pipette at 37°C. Closed state is indicated by “C,” and clamp voltage is indicated on left side of the figure. Downward deflection is inward current; upward deflection, outward current.

from 468
Figure 14. Figure 14.

Known hormones and elements regulating small‐conductance apical potassium channel, basolateral potassium channels, and apical sodium channels in principal cells of the cortical collecting duct.

Modified from ref. 475
Figure 15. Figure 15.

Model of the acid‐secreting intercalated cell type in the collecting duct illustrating possible mechanisms of potassium absorption. Potassium may be absorbed via a K+,H+‐ATPase located in the apical membrane. This mechanism may be expressed only during potassium depletion. The mechanism of potassium exit from the cell into the blood is unknown. An H+‐ATPase is also present in the apical membrane. It is not known whether H+‐ATPase and H+,K+‐ATPase are both present in control and potassium‐depleted states.

Figure 16. Figure 16.

Model of inner medullary collecting duct cell (initial segment) illustrating potassium transport pathways. Sodium uptake across apical membrane is mediated by amiloride‐sensitive cation channel (Pna/Pk = 1) in initial segment. In terminal segment, apical membrane does not contain significant conductive pathway for sodium. Potassium transport by this segment may be exclusively paracellular, or may occur via cellular pathway. Cellular route requires potassium transport mechanism in apical membrane. Because cation channel is also conductive to potassium, secretion may occur via this pathway when potassium concentration in tubular fluid is low. The Na+−2Cl−K+ cotransport mechanism in basolateral membrane is present only in rat 147,362.

Figure 17. Figure 17.

Relationship between plasma potassium concentration and potassium secretion by rat distal tubule perfused in vivo at constant flow rate. Potassium was infused intravenously over 4 hours.

from 420
Figure 18. Figure 18.

Effects of potassium (k+), aldosterone (Aldo), k+, and Aldo and dexamethasone (Dex) on potassium secretion (JK; top panel) by distal tubules, urinary potassium excretion (UKV; bottom panel), and urine flow rate (V middle panel).

from 102
Figure 19. Figure 19.

Effect of increased plasma potassium levels on potassium secreting by distal tubule (JK) in control and K‐adapted rats. Potassium‐adapted rats were fed high potassium diet for 2–4 weeks; open bars, plasma potassium 4 mEq/liter: hatched bars, plasma potassium about 7 mEq/liter. Control tubules secreted less potassium than tubules from potassium‐adapted animals. When challenged with an acute K+ load, control animals increased K excretion modestly, although plasma K+ rose to about 7 mEq/liter. In contrast, administration of similar K+ load to K+‐adapted animals led to sharp increase of K+ secretion, although plasma potassium increased less than that in control animals.

Data from 419,420
Figure 20. Figure 20.

Relationship between whole body potassium content as function of plasma potassium levels in adrenalectomized dogs given normal or high aldosterone (5X). Note that for a given amount of exchangeable potassium, a larger fraction of potassium is sequestered inside cells as aldosterone levels increase. [Modified from 469.] At any plasma potassium level, aldosterone reduces total body potassium.

Figure 21. Figure 21.

Time course of “DOCA‐escape” phenomenon. Aldosterone (Aldo) administration increases sodium and fluid absorption by distal tubule and cortical collecting duct (Phase 1), which leads to volume expansion. Sodium “escapes” from sodium retaining effects because of pressure natriuresis (Phase 2);.

from 100
Figure 22. Figure 22.

Transmission electron micrographs illustrating chronic effect of high‐potassium diet on ultrastructure of principal cells in initial and cortical collecting duct. A. Control. B. K+‐adapted animal given a high‐K+ diet for 4 weeks. Bar equals 1 μm (from 419).

Figure 23. Figure 23.

Effects of chronic DOCA treatment (5 mg/day) on electrophysiological and biochemical properties of cortical collecting ducts isolated from adrenal‐intact rabbits. Data in top and middle panels calculated by equivalent circuit analysis. Top: apical membrane sodium () and potassium () current. Middle: apical membrane potassium () and sodium () conductance. Bottom: activity of Na+,K+‐ATPase.

modified from 332
Figure 24. Figure 24.

Effects of chronic (6–10 days) DOCA treatment on transepithelial voltage (Vte) and driving forces for potassium transport across apical (Va−EK) and basolateral (Vbl−EK) membrane of principal cells in isolated rabbit cortical collecting ducts. The negative value of Va−EK for control and DOCA tubules indicates that potassium diffuses out of the cell into the tubule lumen. With regard to Vbl−EK in control tubules, positive value indicates that potassium diffuses out of cell into blood. In DOCA tubules the driving force reverses such that potassium now enters cells from blood through potassium channels in the basolateral membrane.

modified from 372
Figure 25. Figure 25.

Effects of DOCA on the electrophysiological properties of principal cells in the cortical collecting duct from adrenalectomized rabbits. Top: effects of amiloride on DOCA‐induced changes in sodium () and potassium () currents across apical membrane. Bottom: effects of amiloride on DOCA‐induced changes in potassium () and sodium () conductance of apical membrane.

data from 373
Figure 26. Figure 26.

Equivalent circuit diagram illustrating effects of high‐K+ diet on the electrophysiological properties of the cell membranes and the paracellular pathway in adrenalectomized rabbits. INa = sodium current; IK = potassium current; Gtj = conductance of the tight junction; = sodium conductance of the apical membrane, = potassium conductance of the apical membrane; ENa = Nernst equilibrium potential of sodium; EK = Nernst equilibrium potential of potassium; Va = voltage across apical membrane; Vte = transepithelial voltage; Vb = voltage across basolateral membrane; Ki = intracellular potassium activity; Gb = basolateral membrane conductance, IP max = current through Na+,K+‐ATPase. Currents expressed as μA/cm2, conductance as mS‐cm2 and voltage in mV.

data from 320
Figure 27. Figure 27.

Relationship between tubule perfusion rate and tubular fluid‐to‐potassium concentration ratios ([K+] TF/P) in late distal tubule perfused in vivo from control, low K, and K‐adapted rats.

From 287
Figure 28. Figure 28.

A. Relationship between tubule flow rate and potassium secretion (JK) by rat distal tubules as measured by free‐flow micro‐puncture and tubule perfusion. Relationship between flow and secretion is steeper in free‐flow conditions, except when flow is below 1.5 nl/min. B. Relationship between tubule flow rate and sodium absorption (JNa) in rat distal tubules as measured by free‐flow and tubule perfusion. Relationship is steeper in free‐flow conditions because sodium concentration in tubule fluid increased as flow increased whereas the sodium concentration was unchanged in perfusion experiments.

from 287
Figure 29. Figure 29.

Relationship between tubule perfusion rate and potassium secretion () by isolated rabbit cortical collecting ducts. Solid line and filled circles: data from tubules harvested from animals on a control diet. Open line and open circles: data from tubules harvested from animals with elevated aldosterone levels.

data from 95
Figure 30. Figure 30.

Effects of sodium concentration in tubular lumen ([Na]L) on potassium secretion and transepithelial voltage across perfused rat distal tubules (a, b) and isolated perfused rabbit cortical collecting ducts (c, d).

Data from 133,134,135,423
Figure 31. Figure 31.

Transmission electron micrographs of principal cells in cortical collecting duct of rat. A. Control. B. After 6 days of enhanced sodium delivery into the collecting duct produced by furosemide infusion. Note the cell hypertrophy and selective proliferation of basolateral membrane.

from 222
Figure 32. Figure 32.

Relationship between plasma potassium concentration and urinary potassium excretion in dog. Alkalosis increases the slope of the relationship whereas acidosis decreases the slope.

modified from 450
Figure 33. Figure 33.

Relationship between acute changes in plasma pH and potassium secretion (JK) by rat distal tubule. Rats were made acidotic by ammonium chloride gavage and alkalotic by intravenous NaHCO3 infusion.

data from 412
Figure 34. Figure 34.

Effects of acute and chronic metabolic acidosis on urinary potassium excretion.

Figure 35. Figure 35.

Relationship between urinary ammonium and potassium excretion.

modified from 442
Figure 36. Figure 36.

Summary of mechanisms stabilizing potassium balance during water diuresis and antidiuresis. In both conditions, opposing actions of antidiuretic hormone (ADH) and urinary flow rate (tubule flow rate) on potassium secretion by distal tubule (and cortical collecting duct) cancel such that urinary potassium excretion may remain constant and potassium balance is maintained.

from 101,103
Figure 37. Figure 37.

Relationship between steady‐state plasma potassium concentration and potassium excretion as a function of plasm aldosterone in dog. Animals were adrenalectomized and given fixed doses of aldosterone, and potassium content of the diet was varied.

modified from 516
Figure 38. Figure 38.

Relationship between plasma potassium concentration and urinary potassium excretion in dog as a function of dietary sodium intake (in mEq/day). Dogs were adrenalectomized and given a fixed dose of aldosterone, and potassium content of the diet was varied at different sodium intakes.

modified from 513
Figure 39. Figure 39.

Effect of extracellular fluid volume (ECFV) contraction on potassium secretion by distal nephron. Potassium secretion may remain constant because of opposing actions of aldosterone and tubule flow rate on potassium secretion.



Figure 1.

Potassium homeostasis depends on maintenance of external and internal potassium balance. External potassium balance is determined by rate of potassium intake (100 mEq/day) and rate of urinary (90 mEq/day) and fecal excretion (10 mEq/day). Internal potassium balance depends on distribution of potassium between muscle, bone, liver, and red blood cells (RBC) and the extracellular fluid (ECF). This distribution is regulated by several hormones and is affected by acid–base balance and tonicity of plasma. (Movement of potassium between the ECF and cells is indicated by the small arrows; see text for details.)



Figure 2.

Schematic illustration of superficial (right) and juxtamedullary (left) nephrons in mammalian kidney. Arrows indicate direction of potassium transport. Abbreviations: CNT, connecting tubule; DCT, distal convoluted tubule; PCT, proximal convoluted tubule; PST, proximal straight tubule (the entire proximal tubule can also be divided into three segments labeled S1, S2, S3); TAL, thick ascending limb; DTL, descending thin limb; ATL, ascending thin limb; ICT, initial collecting tubule; CCD, cortical collecting duct; TAL, thick ascending limb; OMCDo, outer medullary collecting duct (outer stripe); OMCDi, outer medullary collecting duct (inner stripe); IMCDi, inner medullary collecting duct (initial segments); IMCDt, inner medullary collecting duct (terminal segment).



Figure 3.

Schematic illustration of cell types lining distal tubule and cortical collecting duct in rat. Transitions between distal convoluted tubule (DCT), connecting tubule (CNT), and initial collecting duct (ICT) are gradual in the rat and the human but more abrupt in the rabbit.

from 419


Figure 4.

Koefoed‐Johnson—Ussing cell model of sodium transport across frog skin (modified from 245). As discussed in the text, inclusion of additional potassium transport mechanisms in the apical and/or basolateral membrane can account for potassium transport processes observed along the nephron. Apical solution is electrically negative relative to a grounded bath solution.



Figure 5.

Potassium transport mechanisms in renal cells. Direction and magnitude of potassium transport in each nephron segment is integrally related to distribution of one or more of these mechanisms to apical or basolateral membrane.



Figure 6.

Proximal cell model of potassium transport. Transepithelial voltage is lumen‐negative in early convolutions and lumen‐positive in late convolutions (relative to a grounded bath solution). Potassium conductance of the apical membrane is small relative to the potassium conductance of the basolateral membrane. According to this model, which incorporates all known potassium‐transport mechanisms, transcellular potassium movement can only occur in the secretory direction. As noted in the text, however, potassium is normally absorbed by the proximal tubule. Transcellular potassium absorption requires an active uptake mechanism in the apical membrane (not shown); see text for details.



Figure 7.

Expanded cell model to account for active potassium absorption by proximal tubule. Cellular potassium absorption may be driven by Na+,K+‐ATPase in lateral membranes, which lowers potassium concentration in interspace and provides driving force for potassium diffusion across tight junction from tubular lumen into interspace. Some potassium may then cross basement membrane by solvent drag. Potassium that enters cell via Na+,K+‐ATPase across lateral membrane preferentially diffuses out of cell across basal membrane through potassium channels. For this mechanism to work, potassium diffusion from cell into lateral interspace and from interspace into tubular lumen must be relatively small; see the text for details.

Modified from 478,480


Figure 8.

Model of descending thin limb of Henle's loop illustrating known potassium transport pathways (modified from 281). Potassium transport may either be in the secretory or absorptive direction depending on the orientation of potassium transepithelial concentration gradient.



Figure 9.

Model of cells of thick ascending limb of Henle's loop illustrating known potassium‐transport pathways. Transepithelial voltage is oriented lumen‐positive relative to a grounded bath solution. Cl exchanger has been described in apical membrane of mouse thick ascending limb cells 109. This mechanism, in parallel with Na+−H+ exchanger, would mediate electroneutral NaCl absorption 109. Operation of the Cl transporter in concert with the Na+−H+ exchanger would reduce or eliminate sodium‐induced changes in intracellular pH.

Modified from 109


Figure 10.

Potassium recycling. Arrows depict route of potassium recycling within renal medulla.



Figure 11.

Cell model of distal convoluted tubule illustrating known potassium‐transport pathways. KCl cotransport mechanism and potassium‐conductive pathway (not shown) mediate potassium secretion across apical membrane. These potassium‐transport pathways are in parallel with a NaCl cotransport mechanism and a sodium conductive pathway. Transepithelial voltage is oriented lumen‐negative relative to a grounded bath solution.



Figure 12.

Model illustrating known potassium‐transport pathways of principal cells in initial and cortical collecting duct.

see text for details


Figure 13.

Current record of potassium channel in apical membrane of principal cells from rabbit cortical collecting duct. Record was obtained in the cell‐attached configuration with 70 mM NaCl and 70 mM KCl (pH 7.4, Ca2+ free) in the bath and 140 mM KCl in the pipette at 37°C. Closed state is indicated by “C,” and clamp voltage is indicated on left side of the figure. Downward deflection is inward current; upward deflection, outward current.

from 468


Figure 14.

Known hormones and elements regulating small‐conductance apical potassium channel, basolateral potassium channels, and apical sodium channels in principal cells of the cortical collecting duct.

Modified from ref. 475


Figure 15.

Model of the acid‐secreting intercalated cell type in the collecting duct illustrating possible mechanisms of potassium absorption. Potassium may be absorbed via a K+,H+‐ATPase located in the apical membrane. This mechanism may be expressed only during potassium depletion. The mechanism of potassium exit from the cell into the blood is unknown. An H+‐ATPase is also present in the apical membrane. It is not known whether H+‐ATPase and H+,K+‐ATPase are both present in control and potassium‐depleted states.



Figure 16.

Model of inner medullary collecting duct cell (initial segment) illustrating potassium transport pathways. Sodium uptake across apical membrane is mediated by amiloride‐sensitive cation channel (Pna/Pk = 1) in initial segment. In terminal segment, apical membrane does not contain significant conductive pathway for sodium. Potassium transport by this segment may be exclusively paracellular, or may occur via cellular pathway. Cellular route requires potassium transport mechanism in apical membrane. Because cation channel is also conductive to potassium, secretion may occur via this pathway when potassium concentration in tubular fluid is low. The Na+−2Cl−K+ cotransport mechanism in basolateral membrane is present only in rat 147,362.



Figure 17.

Relationship between plasma potassium concentration and potassium secretion by rat distal tubule perfused in vivo at constant flow rate. Potassium was infused intravenously over 4 hours.

from 420


Figure 18.

Effects of potassium (k+), aldosterone (Aldo), k+, and Aldo and dexamethasone (Dex) on potassium secretion (JK; top panel) by distal tubules, urinary potassium excretion (UKV; bottom panel), and urine flow rate (V middle panel).

from 102


Figure 19.

Effect of increased plasma potassium levels on potassium secreting by distal tubule (JK) in control and K‐adapted rats. Potassium‐adapted rats were fed high potassium diet for 2–4 weeks; open bars, plasma potassium 4 mEq/liter: hatched bars, plasma potassium about 7 mEq/liter. Control tubules secreted less potassium than tubules from potassium‐adapted animals. When challenged with an acute K+ load, control animals increased K excretion modestly, although plasma K+ rose to about 7 mEq/liter. In contrast, administration of similar K+ load to K+‐adapted animals led to sharp increase of K+ secretion, although plasma potassium increased less than that in control animals.

Data from 419,420


Figure 20.

Relationship between whole body potassium content as function of plasma potassium levels in adrenalectomized dogs given normal or high aldosterone (5X). Note that for a given amount of exchangeable potassium, a larger fraction of potassium is sequestered inside cells as aldosterone levels increase. [Modified from 469.] At any plasma potassium level, aldosterone reduces total body potassium.



Figure 21.

Time course of “DOCA‐escape” phenomenon. Aldosterone (Aldo) administration increases sodium and fluid absorption by distal tubule and cortical collecting duct (Phase 1), which leads to volume expansion. Sodium “escapes” from sodium retaining effects because of pressure natriuresis (Phase 2);.

from 100


Figure 22.

Transmission electron micrographs illustrating chronic effect of high‐potassium diet on ultrastructure of principal cells in initial and cortical collecting duct. A. Control. B. K+‐adapted animal given a high‐K+ diet for 4 weeks. Bar equals 1 μm (from 419).



Figure 23.

Effects of chronic DOCA treatment (5 mg/day) on electrophysiological and biochemical properties of cortical collecting ducts isolated from adrenal‐intact rabbits. Data in top and middle panels calculated by equivalent circuit analysis. Top: apical membrane sodium () and potassium () current. Middle: apical membrane potassium () and sodium () conductance. Bottom: activity of Na+,K+‐ATPase.

modified from 332


Figure 24.

Effects of chronic (6–10 days) DOCA treatment on transepithelial voltage (Vte) and driving forces for potassium transport across apical (Va−EK) and basolateral (Vbl−EK) membrane of principal cells in isolated rabbit cortical collecting ducts. The negative value of Va−EK for control and DOCA tubules indicates that potassium diffuses out of the cell into the tubule lumen. With regard to Vbl−EK in control tubules, positive value indicates that potassium diffuses out of cell into blood. In DOCA tubules the driving force reverses such that potassium now enters cells from blood through potassium channels in the basolateral membrane.

modified from 372


Figure 25.

Effects of DOCA on the electrophysiological properties of principal cells in the cortical collecting duct from adrenalectomized rabbits. Top: effects of amiloride on DOCA‐induced changes in sodium () and potassium () currents across apical membrane. Bottom: effects of amiloride on DOCA‐induced changes in potassium () and sodium () conductance of apical membrane.

data from 373


Figure 26.

Equivalent circuit diagram illustrating effects of high‐K+ diet on the electrophysiological properties of the cell membranes and the paracellular pathway in adrenalectomized rabbits. INa = sodium current; IK = potassium current; Gtj = conductance of the tight junction; = sodium conductance of the apical membrane, = potassium conductance of the apical membrane; ENa = Nernst equilibrium potential of sodium; EK = Nernst equilibrium potential of potassium; Va = voltage across apical membrane; Vte = transepithelial voltage; Vb = voltage across basolateral membrane; Ki = intracellular potassium activity; Gb = basolateral membrane conductance, IP max = current through Na+,K+‐ATPase. Currents expressed as μA/cm2, conductance as mS‐cm2 and voltage in mV.

data from 320


Figure 27.

Relationship between tubule perfusion rate and tubular fluid‐to‐potassium concentration ratios ([K+] TF/P) in late distal tubule perfused in vivo from control, low K, and K‐adapted rats.

From 287


Figure 28.

A. Relationship between tubule flow rate and potassium secretion (JK) by rat distal tubules as measured by free‐flow micro‐puncture and tubule perfusion. Relationship between flow and secretion is steeper in free‐flow conditions, except when flow is below 1.5 nl/min. B. Relationship between tubule flow rate and sodium absorption (JNa) in rat distal tubules as measured by free‐flow and tubule perfusion. Relationship is steeper in free‐flow conditions because sodium concentration in tubule fluid increased as flow increased whereas the sodium concentration was unchanged in perfusion experiments.

from 287


Figure 29.

Relationship between tubule perfusion rate and potassium secretion () by isolated rabbit cortical collecting ducts. Solid line and filled circles: data from tubules harvested from animals on a control diet. Open line and open circles: data from tubules harvested from animals with elevated aldosterone levels.

data from 95


Figure 30.

Effects of sodium concentration in tubular lumen ([Na]L) on potassium secretion and transepithelial voltage across perfused rat distal tubules (a, b) and isolated perfused rabbit cortical collecting ducts (c, d).

Data from 133,134,135,423


Figure 31.

Transmission electron micrographs of principal cells in cortical collecting duct of rat. A. Control. B. After 6 days of enhanced sodium delivery into the collecting duct produced by furosemide infusion. Note the cell hypertrophy and selective proliferation of basolateral membrane.

from 222


Figure 32.

Relationship between plasma potassium concentration and urinary potassium excretion in dog. Alkalosis increases the slope of the relationship whereas acidosis decreases the slope.

modified from 450


Figure 33.

Relationship between acute changes in plasma pH and potassium secretion (JK) by rat distal tubule. Rats were made acidotic by ammonium chloride gavage and alkalotic by intravenous NaHCO3 infusion.

data from 412


Figure 34.

Effects of acute and chronic metabolic acidosis on urinary potassium excretion.



Figure 35.

Relationship between urinary ammonium and potassium excretion.

modified from 442


Figure 36.

Summary of mechanisms stabilizing potassium balance during water diuresis and antidiuresis. In both conditions, opposing actions of antidiuretic hormone (ADH) and urinary flow rate (tubule flow rate) on potassium secretion by distal tubule (and cortical collecting duct) cancel such that urinary potassium excretion may remain constant and potassium balance is maintained.

from 101,103


Figure 37.

Relationship between steady‐state plasma potassium concentration and potassium excretion as a function of plasm aldosterone in dog. Animals were adrenalectomized and given fixed doses of aldosterone, and potassium content of the diet was varied.

modified from 516


Figure 38.

Relationship between plasma potassium concentration and urinary potassium excretion in dog as a function of dietary sodium intake (in mEq/day). Dogs were adrenalectomized and given a fixed dose of aldosterone, and potassium content of the diet was varied at different sodium intakes.

modified from 513


Figure 39.

Effect of extracellular fluid volume (ECFV) contraction on potassium secretion by distal nephron. Potassium secretion may remain constant because of opposing actions of aldosterone and tubule flow rate on potassium secretion.

References
 1. Adam, W. R., B. A. Adams, and A. G. Ellis. In vivo estimation of changes in distal tubule flow and their role in dexamethasone‐induced kaliuresis in control and potassium‐adapted rats. Clin. Exp. Pharmacol. Physiol. 14: 47–57, 1987.
 2. Adam, W. R., and J. K. Dawborn. Potassium tolerance in rats. Aust. J. Exp. Biol. Med. Sci. 50: 757–768, 1972.
 3. Adam, W. R., G. J. Goland, and R. M. Wellard. Aldosterone is a physiologically significant kaliuretic hormone. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F1048–F1054, 1987.
 4. Adam, W. R., G. J. Goland, and R. M. Wellard. Renal potassium adaptation in the rat: role of glucocorticoids and aldosterone. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F300–F308, 1984.
 5. Adam, W. R., A. P. Koretsky, and M. W. Weiner. 31P‐NMR in vivo measurement of renal intracellular pH: effects of acidosis and K+ depletion in rats. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F904–F910, 1986.
 6. Adam, W. R., A. P. Koretsky, and M. W. Weiner. Potassium adaptation: 39K‐NMR evidence for intracellular compartmentalization of K+. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F401–F406, 1988.
 7. Aithal, H. N., F. G. Toback, S. Dube, G. S. Getz, and B. H. Spargo. Formation of renal medullary lysomsomes during potassium depletion nephropathy. Lab. Invest. 36: 107–113, 1977.
 8. Aithal, H. N., F. G. Toback, N. G. Ordonez, and B. H. Spargo. Functional defects in mitochondria of renal inner red medulla during potassium nephropathy. Lab. Invest. 37: 423–429, 1977.
 9. Alexander, E. A., and N. G. Levinsky. An extrarenal mechanism of potassium adaptation. J. Clin. Invest. 47: 740–748, 1978.
 10. Allen, G. G., and L. J. Barrett. Origin of positive trans‐epithelial potential difference in early distal segments of rat kidney. Kidney Int. 27: 622–629, 1985.
 11. Allen, G., and C. C. Tisher. Morphology of the ascending thick limb of Henle. Kidney Int. 9: 8–22, 1976.
 12. Almeida, A. J., and M. B. Burg. Sodium transport in the rabbit connecting tubule. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F330–F334, 1982.
 13. Avison, M. J., S. R. Gullans, T. Ogino, and G. Giebisch. Na+ and K+ fluxes stimulated by Na+‐coupled glucose transport: evidence for a Ba2+‐insensitive K+ efflux pathway in rabbit proximal tubules. J. Membr. Biol. 105: 197–205, 1988.
 14. Backman, K. A., and J. P. Hayslett. Role of medullary collecting duct in potassium conservation. Pflugers Arch. 396: 297–300, 1983.
 15. Bank, N., and H. S. Aynedjian. A micropuncture study of potassium excretion by the remnant kidney. J. Clin. Invest. 52: 1480–1490, 1973.
 16. Barajas, L., K. Powers, and P. Wang. Innervation of the renal cortical tubules: a quantitative study. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F50–F60, 1984.
 17. Barfus, D., and J. A. Schafer. Rate of formation and composition of absorbate from proximal nephron segments. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F117–F129, 1984.
 18. Barlet‐Bas, C., and A. Doucet. Aldosterone and sodium induce kidney Na‐K‐ATPase in vitro by two different mechanisms. In: The Na‐K‐Pump, Part B: Cellular Aspects, edited by A. B. Maunsbach. 1988.
 19. Barlet‐Bas, C., C. Khadouri, S. Marsy, and A. Doucet. Sodium‐independent in vitro induction of Na+,K+‐ATPase by aldosterone in renal target cells: permissive effect of triiodothyronine. Proc. Natl. Acad. Sci. USA 85: 1707–1711, 1988.
 20. Bas‐Barlet, C., S. Marsy, and A. Doucet. In vitro induction of Na‐K‐ATPase in the rat collecting tubule: role of aldosterone and intracellular sodium. In: Proc. Xth Int. Cong. Nephrol. (London), 1987, p. 239.
 21. Battilana, C. A., D. C. Dobyan, F. B. Lacy, J. Bhattacharya, and P. A. Johnson. Effect of chronic potassium loading on potassium secretion by the pars recta or descending limb of the juxtamedullary nephron of the rat. J. Clin. Invest. 62: 1093–1103, 1978.
 22. Beck, F., A. Dörge, J. Mason, R. Rick and K. Thurau. Element concentrations of renal and hepatic cells under potassium depletion. Kidney Int. 22: 250–256, 1982.
 23. Beck, F. X., A. Dörge, E. Blumner, G. Giebisch, and K. Thurau. Cell rubidium uptake: a method for studying functional heterogeneity in the nephron. Kidney Int. 33: 642–651, 1988.
 24. Beck, F. X., A. Dörge, G. Giebisch, and K. Thurau. Studies on the mechanism of rubidium‐induced kaliuresis. Kidney Int. 36: 175–182, 1989.
 25. Beck, F. X., A. Dörge, R. Rick, M. Schramm, and K. Thurau. The distribution of potassium, sodium and chloride across the apical membrane of renal tubular cells: effect of acute metabolic alkalosis. Pflugers Arch. 411; 259–267, 1988.
 26. Beck, F. X., A. Dörge, R. Rick, M. Schramm, and K. Thurau. Effect of potassium adaptation on the distribution of potassium, sodium and chloride across the apical membrane of renal tubular cells. Pflugers Arch. 409: 477–485, 1987.
 27. Beck, F. X., M. Schramm, A. Dörge, R. Rick and K. Thurau. Effect of acute metabolic acidosis on transmembrane electrolyte gradients in individual renal tubule cells. Pflugers Arch. 412: 427–433, 1988.
 28. Beck, J. S., and D. J. Potts. Cell swelling, co‐transport activation and potassium conductance in isolated perfused rabbit kidney proximal tubules. J. Physiol. 425: 369–378, 1990.
 29. Beck, L. H., D. Senesky, and M. Goldberg. Sodium‐independent active potassium reabsorption in proximal tubule of the dog. J. Clin. Invest. 52: 2641–2645, 1973.
 30. Bello‐Reuss, E. Electrical properties of the basolateral membrane of the straight portion of the rabbit proximal tubule. J. Physiol. 326: 49–63, 1982.
 31. Bello‐Reuss, E. Cell membrane and paracellular resistance in isolated renal proximal tubules from rabbit and Ambystoma. J. Physiol. 370: 25–38, 1986.
 32. Bengele, H., A. Evan, E. R. McNamara, and E. A. Alexander. Tubular sites of potassium regulation in the normal and uninephrectomized rat. Am. J. Physiol. 234: (Renal Fluid Electrolyte Physiol. 3): F146–F153, 1978.
 33. Bengele, H. H., E. R. McNamara, and E. A. Alexander. Potassium secretion along the inner medullary collecting duct. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F278–F282, 1979.
 34. Berliner, R. W. Renal mechanisms for potassium excretion. Harvey Lect. 55: 141–171, 1961.
 35. Berliner, R. W., T. J. Kennedy, Jr., and J. G. Hilton. Renal mechanisms for excretion of potassium. Am. J. Physiol. 162: 348–367, 1950.
 36. Besseghir, K., M. E. Trimble, and L. Stoner. Action of ADH on isolated thick ascending limb of the Brattleboro rat. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F251–F277, 1986.
 37. Bia, M., and R. A. Defronzo. Extrarenal potassium homeostasis. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F257–F268, 1981.
 38. Bia, M. J., K. Tyler, and R. Defronzo. The effect of dexamethasone on renal potassium excretion and acute potassium tolerance. Endocrinology 113: 1690–1696, 1983.
 39. Bia, M., K. Tyler, and R. A. Defronzo. The effect of dexamethasone on renal electrolyte excretion in the adrenal‐ectomized rat. Endocrinology 111: 882–888, 1982.
 40. Biagi, B., T. Kubota, M. Sohtell, and G. Giebisch. Intracellular potentials in rabbit proximal tubules perfused in vitro. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F200–F210, 1981.
 41. Baigi, B., M. Sohtell, and G. Giebisch. Intracellular potassium activity in the rabbit proximal straight tubule. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F677–F686, 1981.
 42. Baigi, B. A., and M. Sohtell. pH sensitivity of the basolateral membrane of the rabbit proximal tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 199): F261–F266, 1986.
 43. Biemesderfer, D., B. Stanton, J. B. Wade, M. Kashgarian, and G. Giebisch. Ultrastructure of Amphiuma distal nephron: evidence for cellular heterogeneity. Am. J. Physiol. 256 (Cell Physiol. 25): C849–C857, 1989.
 44. Bleich, M., E. Schlatter, and R. Greger. K+ channel of the thick ascending limb of Henle's loop. Pflugers Arch. 415: 449–460, 1990.
 45. Bloomer, H. A., F. C. Rector, and D. W. Seldin. The mechanism of potassium reabsorption in the proximal tubule of the rat. J. Clin. Invest. 42: 277–285, 1963.
 46. Bomsztyk, K., and F. S. Wright. Dependence of ion fluxes on fluid transport by rat proximal tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F680–F689, 1986.
 47. Boudry, J., L. Stoner, and M. Burg. The effect of lumen pH on potassium transport in renal cortical collecting tubules. Am. J. Physiol. 230: 239–244, 1976.
 48. Bourgoignie, J. J., G. Gavellas, V. Vanputten, and T. Berl. Potassium‐aldosterone response in dogs with chronic renal insufficiency. Miner. Elect. Metab. 11: 150–154, 1985.
 49. Bowen, J. W., A. McDonough. Pretranslational regulation of Na‐K‐ATPase in cultured canine kidney cells by low K+. Am. J. Physiol. 252 (Cell Physiol. 21): Cl79–Cl89, 1987.
 50. Brandis, M., J. Keyes, and E. E. Windhager. Potassium‐induced inhibition of proximal tubular fluid reabsorption in rats. Am. J. Physiol. 222: 421–427, 1972.
 51. Breton, S., R. Laprade, and J. Cardinal. Intracellular potassium activity and sodium transport in the rabbit proximal convoluted tubule (PCT) perfused in vitro. Kidney Int. 29: 392, 1986.
 52. Burckhardt, B.‐CH, K. Sato, and E. Fromter. Electrophysiological analysis of bicarbonate permeation across the peritubular cell membrane of rat kidney proximal tubule. I. Basic observations. Pflugers Arch. 401: 23–42, 1984.
 53. Burg, M., J. Grantham, M. Abramow, and J. Orloff. Preparation and study of fragments of single rabbit nephrons. Am. J. Physiol. 210: 1293–1298, 1966.
 54. Camden, T. J., D. A. Vaughn, and D. D. Fanestil. Mineralo‐and glucocorticoid effects on renal excretion of electrolytes. Pflugers Arch. 399: 93–101, 1983.
 55. Cardinal, J., J. Y. Lapointe, and R. Laprade. Luminal and peritubular ionic substitutions and intracellular potential of the rabbit proximal convoluted tubule. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F352–F364, 1984.
 56. Cemerikic, C., C. Wilcox, and G. Giebisch. Intracellular potential and K+ activity in rat kidney proximal tubular cells in acidosis and K depletion. J. Membr. Biol. 69: 159–165, 1982.
 57. Chabardes, D., M. Montegut, M. Imbert‐Teboul, and F. Morel. Inhibition of 2‐adrenergic agonist on AVP‐induced cAMP accumulation in isolated collecting tubule of the rat kidney. Mol. Cell. Endocrinol. 37: 263–275, 1984.
 58. Charnet, A. N., P. Silva, A. Beserab, and E. H. Epstein. Separate effects of aldosterone, DOCA, and methylprednisilone on renal Na‐K‐ATPase. Am. J. Physiol. 227: 345–350, 1974.
 59. Chekal, M., S. K. Mujais, and A. I. Katz. Time course and dose dependence of the changes in renal Na‐K‐ATPase during potassium adaptation. Clin. Res. 33: 479A, 1985.
 60. Cohen, J. J. Hypokalemia. In: Current Topics in Membranes and Transport, edited by G. Giebisch. Orlando, FL: Academic Press, 1987, vol. 28, p. 367–381.
 61. Cornejo, M., S. E. Guggino, and W. B. Guggino. Modification of Ca‐activated K channels in cultured medullary thick ascending limb cells by n‐bromoacetamide. J. Membr. Biol. 99: 147–155, 1987.
 62. Costanzo, L., and E. Windhager. Calcium and sodium transport by the distal convoluted tubule of the rat. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F492–F506, 1978.
 63. Crayen, M., and W. Thoenes. Architekture und Cytologisches charakterisierung des distalen Tubulus der Rattenniere. Fortschr. Zool. 23: 279–288, 1975.
 64. Davidson, D., N. Levinsky, and R. Berliner. Maintenance of potassium excretion despite reduction of glomerular filtration during sodium diuresis. J. Clin. Invest. 37: 548–558, 1958.
 65. Dawson, D. C. Properties of epithelial potassium channels. In Current Topics in Membranes and Transport, edited by G. Giebisch. Orlando, FL: Academic Press, 1987, vol. 28, p. 41–71.
 66. Deeds, D., L. P. Sullivan, and D. J. Welling. Potassium reabsorption and secretion in the perfused bullfrog kidney. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F26–F32, 1978.
 67. Defronzo, R. A. Regulation of extrarenal potassium homeostasis by insulin and catecholamines. In: Current Topics in Membranes and Transport, edited by G. Giebisch. Orlando, FL: Academic Press, 1987, vol. 28, p. 299–329.
 68. Defronzo, R. A., M. Bia, and A. Birkhead. Epinephrine and potassium homeostasis. Kidney Int. 20: 83–91, 1981.
 69. Defronzo, R. A., C. R. Cooke, R. Andres, G. A. Faloona, and P. J. Davis. The effect of insulin on renal handling of sodium, potassium, calcium, and phosphate in man. J. Clin. Invest. 55: 845–855, 1975.
 70. Defronzo, R. A., B. Stanton, G. Klein‐Robbenhaar, and G. Giebisch. Inhibitory effect of epinephrine on renal potassium secretion: a micropuncture study. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F303–F311, 1983.
 71. De Rouffignac, C., and F. Morel. Micropuncture study of water, electrolyte and urea movements along the loops of Henle in Psammomys. J. Clin. Invest. 48: 474–486, 1969.
 72. Dietl, P., D. Good, and B. Stanton. Adrenal corticosteroid action on the thick ascending limb. Semin. Nephrol. 10: 350–364, 1990.
 73. Diezi, J., P. Michoud, J. Achieves, and G. Giebisch. Micropuncture study of electrolyte transport across papillary collecting duct of the rat. Am. J. Physiol. 224: 623–634, 1973.
 74. Diezi, J., P. Michoud, A. Grandchamps, and G. Giebisch. Effects of nephrectomy on renal salt and water transport in the remnant kidney. Kidney Int. 10: 450–462, 1976.
 75. Dobyan, D. C., J. F. Arrascue, C. De Rouffignac, N. Roinel, and R. L. Jamison. Effect of furosemide on sodium and potassium flow at the end of the juxtamedullary descending limb in Psammomys obesus. Renal Physiol. 5: 105–114, 1982.
 76. Dobyan, D. C., J. F. Arrascue, and R. L. Jamison. Terminal papillary collecting duct reabsorption of water, sodium, and potassium in Psammomys obesus. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F539–F544, 1980.
 77. Dobyan, D. C., F. B. Lacy, and R. L. Jamison. Suppression of potassium recycling in the renal medulla by short term potassium deprivation. Kidney Int. 16: 704–709. 1979.
 78. Dorup, J. Structural adaptation of intercalated cells in rat renal cortex to acute metabolic acidosis and alkalosis. J. Ultrastruct. Res. 92: 119–131, 1985.
 79. Dorup, J. Ultrastructure of distal nephron cells in rat renal cortex. J. Ultrastruct. Res. 92: 101–118, 1985.
 80. Doucet, A. Functional control of Na‐K‐ATPase in single nephron segments of the mammalian kidney. Kidney Int. 34: 749–760, 1988.
 81. Doucet, A., and C. Barlet‐Bas. Involvement of Na‐K‐ATPase in the antinatriuretic action of mineralocorticoids in the mammalian kidney. In: Current Topics in Membranes and Transport, edited by S. Schultz. Orlando, FL: Academic Press, 1988.
 82. Doucet, A., and A. I. Katz. Renal potassium adaptation: Na‐K‐ATPase activity along the nephron after chronic potassium loading. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F380–F386, 1980.
 83. Doucet, A., and S. Marsy. Characterization of K‐ATPase activity in distal nephron: stimulation by potassium depletion. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F418–F423, 1987.
 84. Duarte, C. G., F. Chomety, and G. Giebisch. Effect of amiloride, ouabain, and furosemide on distal tubular function in the rat. Am. J. Physiol. 221: 632–639, 1971.
 85. Edelman, I. S., I. Cruci, I. Samarziji, and E. Fromter. Determination of intracellular K+ activity in rat kidney proximal tubular cells. Pflugers Arch. 378: 37–45, 1978.
 86. Elalouf, J. M., N. Roinel, and C. De Rouffignac. Effects of antidiuretic hormone on electrolyte reabsorption and secretion in distal tubules of rat kidney. Pflugers Arch. 401: 167–173, 1984.
 87. Ellison, D. H., H. Velazquez, and F. S. Wright. Adaptation of the distal convoluted tubule of the rat: structural and functional effects of dietary salt intake and chronic diuretic infusion. J. Clin. Invest. 83: 113–126, 1989.
 88. Ellison, D. H., H. Velazquez, and F. S. Wright. Stimulation of distal potassium secretion by low lumen chloride in the presence of barium. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F638–F649, 1985.
 89. Ellison, D. H., H. Velazquez, and F. S. Wright. Thiazide‐sensitive sodium chloride cotransport in early distal tubule. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F546–F554, 1987.
 90. Ellison, D. H., H. Velazquez, and F. S. Wright. Unidirectional potassium fluxes in the renal distal tubule: effects of chloride and barium. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F885–F894, 1986.
 91. Ellison, D. H., H. Velazquez, and F. S. Wright. Mechanisms of sodium, potassium and chloride transport by the renal distal tubule. Miner. Electrolyte Metab. 13: 422–432, 1987.
 92. El Mernissi, G., and A. Doucet. Short term effect of aldosterone on renal sodium transport and tubular Na‐K‐ATPase in the rat. Pflugers Arch. 399; 139–146, 1983.
 93. El Mernissi, G., and A. Doucet. Short term effects of aldosterone and dexamethasone on Na‐K‐ATPase along the rabbit nephron. Pflugers Arch. 399: 147–151, 1983.
 94. El Mernissi, G., and A. Doucet. Specific activity of Na‐K‐ATPase after adrenalectomy and hormone replacement along the rabbit nephron. Pflugers Arch. 402: 258–263, 1984.
 95. Engbretson, B. G., and L. C. Stoner. Flow‐dependent potassium secretion by rabbit cortical collecting tubule in vitro. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F896–F903, 1987.
 96. Epstein, F. H., A. N. Charney, and P. Silva. Factors influencing the increase in Na‐K‐ATPase in compensatory renal hypertrophy. Yale J. Biol. Med. 51: 365–372, 1978.
 97. Evan, A., J. Husei, H. H. Bengele, and E. A. Alexander. The effect of alterations in dietary potassium on collecting system morphology in the rat. Lab. Invest. 42: 668–675, 1980.
 98. Eveloff, J., and D. G. Warnock. K‐Cl transport systems in rabbit renal basolateral membrane vesicles. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F883–F889, 1987.
 99. Fejes‐Toth, G., and A. Naray‐Fejes‐Toth. Differentiated transport functions in primary cultures of rabbit collecting ducts. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F1302–F1307, 1987.
 100. Field, M., and G. Giebisch. Steroid effects on renal function. In: Hypertension, edited by B. Brenner and J. Laragh. New York: Raven Press, 1989.
 101. Field, M. J., and G. Giebisch. Hormonal control of renal potassium excretion. Kidney Int. 27: 379–387, 1985.
 102. Field, M. J., B. A. Stanton, and G. H. Giebisch. Differential acute effects of aldosterone, dexamethasone and hyperkalemia on distal tubular potassium secretion in the rat kidney. J. Clin. Invest. 74: 1792–1802, 1984.
 103. Field, M. J., B. A. Stanton, and G. H. Giebisch. Influence of ADH on renal potassium handling: a micropuncture and microperfusion study. Kidney Int. 25: 502–511, 1984.
 104. Filipovic, D., and H. Sackin. A calcium‐permeable stretch‐activated cation channel in renal proximal tubule. Am. J. Physiol. 260 (Renal Fluid Electrolyte Physiol. 29): F119–F129, 1991.
 105. Fimognari, G., D. Fanestil, and I. S. Edelman. Induction of RNA and protein synthesis in the action of aldosterone in the rat. Am. J. Physiol. 213: 954–962, 1967.
 106. Fine, L. G., N. Yanagawa, R. G. Schultze, M. Tuck, W. Trizna. Functional profile of the isolated uremic nephron: potassium adaptation in the rabbit cortical collecting tubule. J. Clin. Invest. 64: 1033–1043, 1979.
 107. Fowler, N., G. Giebisch, G. Whittembury. Distal tubular tracer microinjection study of renal tubular potassium transport. Am. J. Physiol. 229: 1227–1233, 1975.
 108. Fraley, D., and S. Adler. Isohydric regulation of plasma potassium by bicarbonate in the rat. Kidney Int. 9: 333–343, 1976.
 109. Friedman, P. A., and T. A. Andreoli. CO2‐stimulated NaCl absorption in the mouse renal cortical thick ascending limb of Henle. Evidence for synchronous Na‐H‐Cl‐HCO3 exchange in apical plasma membranes. J. Gen. Physiol. 80: 683–711, 1982.
 110. Frindt, G., and L. G. Palmer. Low‐conductance K channels in apical membrane of rat cortical collecting tubule. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F143–F151, 1989.
 111. Frindt, G., and L. G. Palmer. Ca‐activated K channels in apical membrane of mammalian CCT and their role in K secretion. Am. J. Physiol. 25 (Renal Fluid Electrolyte Physiol. 21): F458–F467, 1987.
 112. Frömter, E. Viewing the kidney through microelectrodes. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F695–F705, 1984.
 113. Fuji, Y., S. K. Mujais, and A. I. Katz. Renal potassium adaptation: role of the Na‐K‐ATP pump in rat cortical collecting tubules. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F279–F284, 1989.
 114. Fujimoto, M., T. Kubota, and K. Kotera. Electrochemical profile of K and Cl ions across the proximal tubule of bullfrog kidneys. Contrib. Nephrol. 6: 114–123, 1977.
 115. Garcia‐Filho, E., G. Malnic, and G. Giebisch. Effects of changes in electrical potential difference upon tubular potassium transport. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F235–F246, 1980.
 116. Garg, L. C., M. A. Knepper and M. B. Burg. Mineralocorticoid effects on Na‐K‐ATPase in individual nephron segments. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F536–F544, 1981.
 117. Garg, L. C., S. Mackie, and C. C. Tisher. Effect of low potassium‐diet on Na+‐K+‐ATPase in rat nephron segments. Pflugers Arch. 394; 113–117, 1982.
 118. Garg, L. C., and N. Narang. Renal adaptation to potassium in the adrenalectomized rabbit: role of distal tubular sodium‐potassium adenosine triphosphate. J. Clin. Invest. 76: 1065–1070, 1985.
 119. Garg, L. C., and N. Narang. Effects of potassium bicarbonate on distal nephron Na‐K‐ATPase in adrenalectomized rabbits. Pflugers Arch. 409: 126–131, 1987.
 120. Garg, L. C., and N. Narang. Ouabain‐insensitive K‐adenosine triphosphatase in distal nephron segments of the rabbit. J. Clin. Invest. 81: 1204–1208, 1988.
 121. Geering, K., M. Girardet, C. Bron, J.‐P. Kraehenbuhl, and B. C. Rossier. Hormonal regulation of (Na+, K+) ‐ATPase biosynthesis in the toad bladder. J. Biol. Chem. 257: 10338–10343, 1982.
 122. Gellai, M., and R. M. Edwards. Mechanism of alpha 2‐adrenoceptor agonist‐induced diuresis. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F317–F323, 1988.
 123. Gellai, M., R. Ruffolo, Jr. Renal effects of selective alpha1‐and alpha2‐adrenoceptor agonists in conscious normotensive rats. J. Pharmacol. Exp. Ther. 240: 723–728, 1987.
 124. Gennari, F. J., and J. J. Cohen. The role of the kidney in potassium homeostasis: lessons from acid‐base disturbances. Kidney Int. 8: 1–5, 1975.
 125. Giebisch, G. Physiology of potassium metabolism. In: Potassium in Cardiovascular and Renal Medicine, edited by P. K. Whelton, A. Whelton, and W. G. Walker. New York: Marcel Dekker, 1986, p. 3–22.
 126. Giebisch, G. H. Cell models of potassium transport in the renal tubule. In: Current Topics in Membranes and Transport, edited by G. Giebisch. Orlando, FL: Academic Press, 1987, vol. 28, p. 133–183.
 127. Girard, P., M. Brun‐Pascaud, and M. Paillard. Selective dietary potassium depletion and acid‐base equilibrium in the rat. Clin. Sci. 68: 301–309. 1985.
 128. Gitter, A. H., K. W. Beyenbach, C. W. Christine, P. Gross, W. W. Minuth, and E. Frömter. High‐conductance K channels in apical membranes of principal cells cultured from rabbit cortical collecting duct anlagen. Pflugers Arch. 408: 282–290, 1987.
 129. Gogelein, H., and R. Greger. Properties of single K channels in the basolateral membrane of rabbit proximal straight tubules. Pflugers Arch. 410: 288–295, 1987.
 130. Good, D. W. Sodium‐dependent bicarbonate absorption by cortical thick ascending limb of rat kidney. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F821–F829, 1985.
 131. Good, D. W. Active absorption of NH4 by rat medullary thick ascending limb: inhibition by potassium. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F78–F87, 1988.
 132. Good, D. W. Effects of potassium on ammonium transport by medullary thick ascending limb of the rat. J. Clin. Invest. 80: 1358–1365, 1987.
 133. Good, D. W., H. Velazquez, and F. S. Wright. Luminal influences on potassium secretion: low sodium concentration. Am. J. Physiol. 246 (Renal Fluid Electrolyte, Physiol. 15): F609–F619, 1984.
 134. Good, D. W., and F. S. Wright. Luminal influences on potassium secretion: transepithelial voltage. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F289–F298, 1980.
 135. Good, D. W., and F. S. Wright. Luminal influences of potassium secretion, sodium concentration and fluid flow rate. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F192–F205, 1979.
 136. Grantham, J. J., M. B. Burg, and J. Orloff. The nature of transtubular Na and K transport in isolated rabbit collecting tubules. J. Clin. Invest. 49: 1815–1826, 1970.
 137. Grantham, J. J., P. B. Qualizza, and R. L. Irwin. Net fluid secretion in proximal straight renal tubules in vitro: role of PAH. Am. J. Physiol. 226: 191–197, 1974.
 138. Greger, R. Ion transport mechanisms in thick ascending limb of Henle's loop of mammalian nephrons. Physiol. Rev. 65: 760–797, 1985.
 139. Greger, R., M. Bleich, and E. Schlatter. Ion channels in the thick ascending limb of Henle's loop. Renal Physiol. Biochem. 13: 37–50, 1990.
 140. Greger, R. and H. Gogelein. Role of K+ conductive pathways in the nephron. Kidney Int. 31: 1055–1064, 1987.
 141. Greger, R., H. Oberleithner, E. Schlatter, A. Cassola, and C. H. Weidke. Chloride activity in cells of isolated perfused cortical thick ascending limbs of rabbit kidneys. Pflugers Arch. 399: 29–34, 1983.
 142. Greger, R., and E. Schlatter. Presence of luminal K+, a prerequisite for active NaCl transport in the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 392: 92–94, 1982.
 143. Greger, R., C. Weidtke, E. Schlatter, M. Wittner, and B. Gebler. Potassium activity in cells of isolated perfused cortical thick ascending limbs of rabbit kidney. Pflugers Arch. 401: 52–57, 1984.
 144. Gross, J. B., and J. P. Kokko. Effects of aldosterone and potassium sparing diuretics on electrical potential differences across distal nephron. J. Clin. Invest. 59: 82–89, 1977.
 145. Gross, J. B., M. Imai, J. P. Kokko. A functional comparison of the cortical collecting tubule and the distal convoluted tubule. J. Clin. Invest. 55: 1284–1294, 1975.
 146. Grossman, E. B., and S. C. Hebert. Modulation of Na‐K‐ATPase activity in thick ascending limb of Henle: Effects of mineralocorticoids and sodium. J. Clin. Invest. 81: 885–892, 1988.
 147. Grupp, C., R. Pavenstadt‐Grupp, W. Grunewald, C. Bevan, J. B. Stokes, and K. H. Kinne. A Na‐K‐Cl cotransporter in isolated rat papillary collecting duct cells. Kidney Int. 36: 201–209. 1989.
 148. Guggino, S. E., W. B. Guggino, N. Green, and B. Sacktor. Blocking agents of calcium‐activated potassium channels in cultured rabbit medullary thick ascending limb cells. Am. J. Physiol. 252 (Cell Physiol. 21): C128–C137, 1987.
 149. Guggino, S. E., W. B. Guggino, N. Green, and B. Sacktor. Calcium‐activated potassium channels in cultured medullary thick ascending limb cells. Am. J. Physiol. 252 (Cell Physiol. 21); C121–C127, 1987.
 150. Guggino, S. E., B. A. Suarez‐Isla, W. B. Guggino, and B. Sacktor. Forskolin and antidiuretic hormone stimulate a Ca2+‐activated K+ channel in cultured kidney cells. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F448–F455, 1985.
 151. Guggino, W. B. Functional heterogeneity in the early distal tubule of the Amphiuma kidney: evidence for two modes of Cl− and K+ transport across the basolateral cell membrane. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F430–F440, 1986.
 152. Guggino, W. B., H. Oberleithner and A. Giebisch. The amphibian diluting segment. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F615–F627, 1988.
 153. Gullans, S. R., B. C. Kone, M. J. Avison, and G. Giebisch. Succinate alters respiration, membrane potential, and intracellular K+ in proximal tubule. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F1170–1177, 1988.
 154. Haas, J. A., and F. Knox. Mechanisms of escape from the salt‐retaining effects of mineralocorticoids. Semin. Nephrol. 10: 380–387, 1990.
 155. Hall, J. E., J. P. Granger, M. J. Smith, and A. J. Premen. Role of renal hemodynamics and arterial pressure in aldosterone “escape.” Hypertension 6 (Suppl I): 183–192, 1984.
 156. Halperin, M. L., U. Honrath, D. R. Wilson, and H. Sonnenberg. Effects of chronic hypokalaemia and adrenalectomy on potassium transport by the medullary collecting duct of the rat. Clin. Sci. 76: 189–194, 1989.
 157. Hansen, G. P., C. C. Tisher, and R. R. Robinson. Response of the collecting duct to disturbances of acid‐base and potassium balance. Kidney Int. 17: 326–337, 1980.
 158. Hayashi, M., and A. I. Katz. The kidney in potassium depletion. I. Na+‐K+‐ATPase activity and [3H]ouabain binding in MCT. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F437–F446, 1987.
 159. Hayhurst, R. A., and R. G. O'Neil. Time‐dependent actions of aldosterone and amiloride on Na+‐K+‐ATPase of cortical collecting duct. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F689–F696, 1988.
 160. Hays, S. R., M. Baum, and J. P. Kokko. Effects of protein kinase C activation on sodium, potassium chloride, and total CO2 transport in the rabbit cortical collecting tubule. J. Clin. Invest. 80: 1561–1570, 1987.
 161. Hayslett, J. P. Functional adaptation to reduced renal mass. Physiol. Rev. 59: 137–164, 1979.
 162. Hayslett, J. P., and H. J. Binder. Mechanism of potassium adaptation. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F103–F112, 1982.
 163. Hayslett, J. P., E. L. Boulpaep, M. Kashgarian, and G. Giebisch. Electrical characteristics of the mammalian distal tubule: comparison of the Ling‐Gerard and macroelectrode. Kidney Int. 12: 324–331, 1977.
 164. Hayslett, J. P., N. Myletey, H. J. Binder, and P. S. Aronson. Mechanism of increased potassium secretion in potassium loading and sodium deprivation. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F378–F382, 1980.
 165. Herbert, S. C., and T. E. Andreoli. Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle. II. Determinants of the ADH‐mediated increase in transepithelial voltage and in net Cl absorption. J. Membr. Biol. 80: 221–233, 1984.
 166. Hebert, S. C., and T. E. Andreoli. Ionic conductance pathways in the mouse medullary thick ascending limb of Henle: the paracellular pathway and electrogenic Cl− absorption. J. Gen. Physiol. 87: 567–590, 1988.
 167. Hebert, S. C., and T. E. Andreoli. Control of NaCl transport in the thick ascending limb. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F745–F756, 1984.
 168. Hebert, S. C., P. A. Friedman, and T. E. Andreoli. Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle; I. ADH increases transcellular conductance pathways. J. Membr. Biol. 80: 201–209, 1984.
 169. Helman, S. I., and R. G. O'Neil. Model of active trans‐epithelial Na and K transport of renal collecting tubules. Am. J. Physiol. 233: F559–F571, 1977.
 170. Hendler, E. D., J. Torretti, L. Kupur, and F. H. Epstein. Effects of adrenalectomy and hormone replacement on Na‐K‐ATPase in renal tissue. Am. J. Physiol. 22: 754–760, 1972.
 171. Hene, R. J., H. A. Koomans, P. Boer, and E. J. Dorhout‐Mees. Adaptation to chronic potassium loading in normal man. Miner. Electrolyte Metab. 12: 165–172, 1986.
 172. Hiatt, N., L. W. Chapman, M. B. Davidson, and J. A. Sheinkopf. Adrenal hormones and the regulation of serum potassium in potassium loaded adrenalectomized dogs. Endocrinology 105: 215–219, 1979.
 173. Hierholzer, K., and S. Lange. The effects of adrenal steroids on renal function. In: MTP International Review of Science, Kidney, and Urinary Tract Physiology, edited by K. Thurau. London: Butterworths, 1975, vol. 6, p. 273–334.
 174. Higashihara, E., and J. P. Kokko. Effects of aldosterone on potassium recycling in the kidney of adrenalectomized rats. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17); F219–F227, 1985.
 175. Hinton, D. E., L. C. Stoner, M. Burg, and B. F. Trump. Heterogeneity in the distal nephron of the salamander (Ambystoma tigrinum): a structure function study of isolated tubular segments. Anat. Rec. 240: 21–32, 1982.
 176. Hirsch, D., M. Kashgarian, E. L. Boulpaep, and J. D. Hayslett. Role of aldosterone in the mechanism of potassium adaptation in the initial collecting tubule. Kidney Int. 26: 798–807, 1984.
 177. Horisberger, J.‐D., and J. Diezi. Inhibition of aldosterone‐induced antinatriuresis and kaliuresis by actinomycin D. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F201–F204, 1984.
 178. Horisberger, J.‐D., and J. Diezi. Effects of mineralcorticoids on Na+ and K+ excretion in the adrenalectomized rat. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F89–F99, 1983.
 179. Horisberger, J.‐D., and G. Giebhisch. Na‐K‐pump current in the Amphiuma collecting tubule. J. Gen. Physiol. 94: 493–510, 1989.
 180. Horisberger, J.‐D., and G. Giebisch. Voltage dependence of the basolateral membrane conductance in the Amphiuma collecting tubule. J. Membr. Biol. 105: 257–263, 1988.
 181. Horisberger, J.‐D., and G. Giebisch. Potassium‐sparing diuretics. Renal Physiol. 10: 198–220, 1987.
 182. Horisberger, J.‐D., and G. Giebisch. intracellular Na+ and K+ activities and membrane conductances in the collecting tubule of Amphiuma. J. Gen. Physiol. 92: 643–665, 1988.
 183. Horisberger, J.‐D., M. Hunter, B. Stanton, and G. Giebisch. The collecting tubule of Amphiuma. II. Effects of potassium adaptation. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F1263–F1272, 1987.
 184. Horster, M., H. Schmidt, and U. Schmidt. Aldosterone in vitro restores nephron Na‐K‐ATPase of distal segments from adrenalectomized rabbits. Pflugers Arch. 384: 203–206, 1980.
 185. Hoshi, T., Y. Suzuki, and K. Itoi. Differences in functional properties between the early and late segments of the distal tubule of amphibian (Triturus) kidney. Jpn. J. Nephrol. 23: 889–896, 1981.
 186. Howell, D. S., and J. O. Davis. Relationship of sodium retention to potassium excretion by the kidney during administration of desoxycorticosterone acetate to dogs. Am. J. Physiol. 179: 359–363, 1954.
 187. Hropot, M., N. Fowler, B. Karlmark, and G. Giebisch. Tubular action of diuretics: distal effects on electrolyte transport and acidification. Kidney Int. 28: 477–489, 1985.
 188. Hunter, M., and G. Giebisch. Calcium‐activated K‐channels of Amphiuma early distal tubule: inhibition of ATP. Pflugers Arch. 412: 331–333, 1988.
 189. Hunter, M., J.‐D. Horisberger, B. Stanton, and G. Giebisch. The collecting tubule of Amphiuma I. Electrophysiological characterization. Am. J. Physiol. 253 (Renal Fluid Electroltye Physiol. 22): F1273–F1282, 1987.
 190. Hunter, M., K. Kawahara, and G. Giebisch. Potassium channels along the nephron. Federation Proc. 45: 2723–2726, 1986.
 191. Hunter, M., K. Kawahara, and G. Giebisch. Calcium‐activated epithelial potassium channels. Miner. Electrolyte Metab. 14: 48–57, 1988.
 192. Hunter, M., A. Lopes, E. Boulpaep, and G. Giebisch. Regulation of single K‐channels from apical membrane of rabbit collecting tubule. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F725–733, 1986.
 193. Hunter, M., A. G. Lopes, E. L. Boulpaep, and G. Giebisch. Single channel recordings of calcium‐activated potassium channels in the apical membrane of rabbit cortical collecting tubules. Proc. Natl. Acad. Sci. USA 81: 4237–4239, 1984.
 194. Hunter, M., and G. Giebisch. Calcium‐activated K‐channels of Amphiuma early distal tubule: inhibition of ATP. Pflugers Arch. 412: 331–333, 1988.
 195. Hunter, M., H. Oberleithner, R. M. Henderson, and G. Giebisch. Whole cell potassium currents in single early distal tubule cells. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F699–F703, 1988.
 196. Hunter, M. Stretch‐activated channels in the basolateral membrane of single proximal cells of frog kidney. J. Physiol. 416: 448–453, 1990.
 197. Hurst, A. M., and M. Hunter. Apical K+ channels in frog diluting segment: inhibition by acidification. Pflugers Arch. 415: 115–117, 1989.
 198. Husted, R. F., M. Hayashi, and J. B. Stokes. Characteristics of papillary collecting cells in primary culture. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F1160–F1169, 1988.
 199. Husted, R. F., and P. R. Steinmetz. Mechanisms of K+ transport in isolated turtle urinary bladder. Induction of active K+ secretion in a K+‐absorbing epithelium. J. Clin. Invest. 70: 832–834, 1982.
 200. Husted, R. F., and P. R. Steinmetz. Potassium absorptive pump at the luminal membrane of turtle urinary bladder. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F315–F321, 1981.
 201. Iino, Y., J. L. Troy and B. M. Brenner. Effects of catecholamines on electrolyte transport in cortical collecting tubules. J. Membr. Biol. 61: 67–73, 1981.
 202. Imai, M. The connecting tubule: a functional subdivision of the rabbit distal nephron segments. Kidney Int. 15: 346–356, 1979.
 203. Imai, M. Functional heterogeneity of the descending limbs of Henle's loop. II. Interspecies differences among rabbits, rats, and hamsters. Pflugers Arch. 402: 393–401, 1984.
 204. Imai, M., M. Hayashi, and M. Araki. Functional heterogeneity of the descending limbs of Henle's loop. I. Internephron heterogeneity in the hamster kidney. Pflugers Arch. 402: 385–392, 1984.
 205. Imai, M., Y. Kondo, and K. Yoshitomi. Lack of effect of ANP on rat inner medullary collecting duct. Peptides (in press).
 206. Imai, M. and R. Nakamura. Function of distal convoluted and connecting tubules studied by isolated nephron fragments. Kidney Int. 22: 465–472, 1982.
 207. Imai, M., M. Taniguchi, and K. Tabei. Function of thin loops of Henle. Kidney Int. 31: 565–579, 1987.
 208. Imai, M., J. Taniguchi, and K. Yoshitomi. Transition of permeability properties along the descending limb of long‐loop nephron. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F323–F328, 1988.
 209. Imbert‐Teboul, M., A. Doucet, S. Marsy, and S. Siaume‐Perez. Alterations of enzymatic activities along rat collecting tubule in potassium depletion. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F408–F417, 1987.
 210. Ishibashi, K., S. Sasaki, T. Shiigai, and J. Takeuchi. Intracellular electrical potentials in the rabbit collecting ducts perfused in vitro. Jpn. J. Physiol. 36: 671–681, 1986.
 211. Jaeger, P., B. Karlmark, and G. Giebisch. Ammonium transport in rat cortical tubule: relationship to potassium metabolism. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F593–F600, 1983.
 212. Jamison, R. L. Potassium recycling. Kidney Int. 31: 695–703, 1987.
 213. Jamison, R. L., F. B. Lacy, J. P. Pennell, and V. M. Sanjana. Potassium secretion by the descending limb or pars recta of the juxtamedullary nephron in vivo. Kidney Int. 9: 323–332, 1976.
 214. Jamison, R., and R. Muller‐Suur. Potassium recycling. In: Current Topics in Membranes and Transport, edited by G. Giebisch. Orlando, FL: Academic Press, 1987, vol. 28, p. 115–131.
 215. Jones, S. M., and J. Hayslett. Demonstration of active potassium secretion in the late distal tubule. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F83–F88, 1983.
 216. Jorgensen, P. L. Regulation of the (Na+/K+)‐activated ATP hydrolyzing enzyme system in the rat. II. The effect of aldosterone on the activity in kidneys of adrenalectomized rats. Biochem. Biophys. Acta. 192: 326–334, 1969.
 217. Jorgensen, P. L. Regulation of the (Na+/K+)‐activated ATP hydrolyzing enzyme in rat kidney. I. The effect of adrenalectomy and the supply of sodium on the enzyme system. Biochim. Biophys. Acta. 151: 212–224, 1968.
 218. Jorgensen, P. L., and D. A. Klaerke. Structural basis for regulation of active NaCl transport in thick ascending limb of Henle's loop. In: Molecular Nephrology, edited by K. Kovacevic and W. G. Gruder. Berlin: de Gruyter, 1987, p. 71.
 219. Kaissling, B. Structural aspects of adaptive changes in renal electrolyte excretion. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F211–F226, 1982.
 220. Kaissling, B. Structural adaptation to altered electrolyte metabolism by cortical distal segments. Federation Proc. 44: 2710–2716, 1985.
 221. Kaissling, B., and M. Lehir. Distal tubular segments of the rabbit kidney after adaptation to altered Na and K intake. I. Structural changes. Cell Tissue Res. 224: 469–492, 1982.
 222. Kaissling, B., and B. A. Stanton. Adaptation of distal tubule and collecting duct to increased sodium delivery. I. Ultrastructure. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F1256–F1268, 1988.
 223. Kashgarian, M., T. Ardito, D. J. Hirsch, and J. P. Hayslett. Response of collecting tubule cells to aldosterone and potassium loading. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F8–F14, 1987.
 224. Kashgarian, M., D. Biemesderfer, M. Caplan, and B. Forbush, III. Monoclonal antibody to Na,K‐ATPase: immunocytochemical localization along nephron segments. Kidney Int. 28: 899–913, 1985.
 225. Kass, D. A., F. M. Sulzman, C. A. Fuller, and M. C. Moore‐Ede. Are ultradian and circadian rhythms in renal potassium excretion related? Chronobiologia 7: 343–355, 1980.
 226. Katz, A. I. Renal Na‐K‐ATPase: its role in tubular sodium and potassium transport. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F207–F219, 1982.
 227. Katz, A. Corticosteroid regulation of Na,K‐ATPase along the mammalian nephron. Semin. Nephrol. 10: 388–399, 1990.
 228. Kaufman, J. S., R. J. Hamburger. Passive potassium transport in the proximal convoluted tubule. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F228–F232, 1985.
 229. Kaufman, J. S., R. J. Hamburger. Potassium transport in the isolated proximal convoluted tubule. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F297–F313, 1982.
 230. Kawahara, K. A stretch‐activated K+ channel in the basolateral membrane of Xenopus kidney proximal tubule cells. Pflugers Arch. 415: 624–629, 1990.
 231. Kawahara, K., M. Hunter, and G. Giebisch. Potassium channels in Necturus proximal tubule. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F488–F494, 1987.
 232. Kawahara, K., M. Hunter, and G. Giebisch. Potassium and chloride channels in the luminal and basolateral membrane of Amphiuma early distal tubule. Kidney Int. 29: 399, 1986.
 233. Kawahara, K., M. Hunter, and G. Giebisch. Intracellular Na+ blocks outward current through calcium‐activated potassium channel in the luminal membrane of Amphiuma diluting segment. Pflugers Arch. 416: 422–427, 1990.
 234. Kawahara, K., A. Ogawa, and M. Suzuki. Hypoosmotic activation of Ca+ +‐activated K channels in cultured rabbit kidney proximal tubule cells. Am. J. Physiol. 260: F27–F33, 1991.
 235. Khadouri, C., L. Cheval, S. Marsy, C. Barlet‐Bas, and A. Doucet. Characterization and control of proton‐ATPases along the nephron. Kidney Int. (in press).
 236. Khuri, R. N., W. J. Flannagan, and D. E. Oken. Potassium in proximal tubule fluid of rats and Necturus measured with glass microelectrodes. J. Appl. Physiol. 21: 1568–1572, 1966.
 237. Khuri, R. N., M. Wiederholt, N. Strieder, and G. Giebisch. Effects of flow rate and potassium intake on distal tubular potassium transfer. Am. J. Physiol. 228: 1249–1261, 1975.
 238. Khuri, R. N., M. Wiederholt, N. Strieder, and G. Giebisch. Effect of graded solute diuresis on renal tubular sodium transport. Am. J. Physiol. 226: 1262–1268 1975.
 239. Kimmel, P. L., and S. Goldfarb. Effects of isoproterenol on potassium secretion by the cortical collecting tubule. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F804–F810, 1984.
 240. Kirk, K. L., D. R. Dibona, and J. A. Schafer. Cell volume regulation in the rabbit proximal straight tubule perfused in vitro. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F922–F932, 1987.
 241. Kirk, K. L., D. R. DiBona, and J. A. Schafer. Regulatory volume decrease in perfused proximal nephron: evidence for a dumping of cell K+. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F933–F942, 1987.
 242. Knepper, M. A., J. M. Sands, H. Nonoguchi, R. A. Starr, and R. K. Packer. Inner medullary collecting duct. Nephrology I. Proc. XIth Int. Cong. Nephrol., edited by A. M. Davison. London: Baillière Tindall, 1988, p. 317–331.
 243. Knochel, J. P. Role of glucoregulatory hormones in potassium homeostasis. Kidney Int. 11: 443–452, 1977.
 244. Knox, F. D., and J. C. Romero. Mechanism for escape from the sodium‐retaining effects of mineralocorticoids. In: Mineralocorticoids and Hypertension, edited by W. Kaufman, G. Wambach, A. Helber, and K. A. Meuer. Berlin: SpringerVerlag, 1983, p. 81–100.
 245. Koefoed‐Johnsen, V., and H. H. Ussing. The nature of the frog skin potential. Acta Physiol. Scand. 42: 298–308, 1958.
 246. Koeppen, B. M. Conductive properties of the rabbit outer medullary collecting duct: outer stripe. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F70–F76, 1986.
 247. Koeppen, B. M. Conductive properties of the rabbit outer medullary collecting duct: inner stripe. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F500–F506, 1985.
 248. Koeppen, B. M. Elecrophysiological identification of principal and intercalated cells in the rabbit outer medullary collecting duct. Pflugers Arch. 409: 138–141, 1987.
 249. Koeppen, B. M., K. W. Beyenbach, and S. I. Helman. Single‐channel currents in renal tubules. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F380–F384, 1984.
 250. Koeppen, B. M., B. A. Biagi, and G. H. Giebisch. Intracellular microelectrode characterization of the rabbit cortical collecting duct. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F35–F47, 1983.
 251. Koeppen, B. M., and G. Giebisch. Cellular electrophysiology of potassium transport in the mammalian cortical collecting duct. Pflugers Arch. 405: S143–S146, 1985.
 252. Koeppen, B. M., G. Giebisch, and B. A. Biagi. Electrophysiology of mammalian renal tubules; inferences from intracellular microelectrode studies. Annu. Rev. Physiol. 45: 497–517, 1983.
 253. Koeppen, B., and G. H. Giebisch. Mineralocorticoid regulation of sodium and potassium transport by the cortical collecting duct. In: Regulation and Development of Membrane Transport Processes, edited by J. S. Graves. New York: John Wiley and Sons, 1985, p. 89–104.
 254. Kondo, Y., K. Yoshitomi, I. Imai. Effect of pH on Cl transport in TAL of Henle's loop. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F1216–F1222, 1987.
 255. Kondo, Y., K. Yoshitomi, and M. Imai. Effects of anion transport inhibitors and ion substitution on Cl transport in TAL of Henle's loop. Am. J. Physiol. 253: F1206–F1215, 1987.
 256. Kone, B. C., H. R. Brady, and S. R. Gullans. Coordinated regulation of intracellular K+ in the proximal tubule: Ba2+ blockade down‐regulates the Na+,K+‐ATPase and upregulates two K+ permeability pathways. Proc. Natl. Acad. Sci. USA 86: 6431–6435, 1989.
 257. Kone, B. C., R. M. Brenner, and S. R. Gullans. Sulfhydryl‐reactive heavy metals increase cell membrane K+ and Ca2+ transport in renal proximal tubule. J. Membr. Biol. 113: 1–12, 1990.
 258. Kone, B. C., M. Kaleta, and S. R. Gullans. Silver ion (Ag+)‐induced increases in cell membrane K+ and Na+ permeability in the renal proximal tubule: reversal by thiol reagents. J. Membr. Biol. 102: 11–19, 1988.
 259. Kone, B. C., K. M. Madsen, and C. C. Tisher. Ultrastructure of the thick ascending limb of Henle in the rat kidney. Am. J. Anat. 171: 217–226, 1984.
 260. Kone, B. C., D. Kikeri, M. L. Zeidel, and R. Gullans. Cellular pathways of potassium transport in renal inner medullary collecting duct. Am. J. Physiol. 256 (Cell Physiol. 25): C823–C830, 1989.
 261. Kornandakieti, C., and R. L. Tannen. Hydrogen ion secretion by the distal nephron in the rat: effect of potassium. J. Lab. Clin. Med. 104: 293–303, 1984.
 262. Kriz, W., and L. Bankir. A standard nomenclature for structures of the kidney. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F1–F8, 1988.
 263. Krothapalli, R. K., and W. Suki. Functional characterization of the alpha‐adrenergic receptor modulating the hydroosmotic effect of vasopressin on the rabbit cortical collecting tubule. J. Clin. Invest. 73: 740–749, 1984.
 264. Kubota, T., B. A. Biagi, and G. Giebisch. Intracellular potassium activity measurements in single proximal tubules of Necturus kidney. J. Membr. Biol. 73: 51–60, 1983.
 265. Kudo, L. H., and A. S. Rocha. Effect of vasopressin on sodium transport across inner medullary collecting duct. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F1438–F1447, 1990.
 266. Kudo, L. H., and A. S. Rocha. Chloride and sodium secretion by rat papillary collecting duct. Proc. Xth Int. Cong. Nephrol. (London), 1987, p. 574.
 267. Kunau, R. T., Jr., H. C. Webb, and S. Borman. Characteristics of the relationship between flow rate of tubular fluid and potassium transport in the distal tubule in the rat. J. Clin. Invest. 54; 1488–1495, 1974.
 268. Kunau, R. T., and M. A. Whinnery. Potassium transfer in distal tubules of normal and remnant kidneys. Am. J. Physiol. 235 (Renal Fluid, Electrolyte Physiol. 4): F186–F191, 1978.
 269. Kawahara, M., K. Ishibashi, R. Krapf, F. C. Rector, Jr., and C. A. Berry. Effect of lumen pH on cell pH and cell potential in rabbit proximal tubules. Am. J. Physiol. 256 (6 Pt 2): F1075–1083, 1989.
 270. Lang, F., G. Messner, and W. Rehwald. Electrophysiology of sodium‐coupled transport in proximal renal tubules. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F953–F962, 1986.
 271. Lapointe, J. Y., R. Laprade, and J. Cardinal. Transepithelial and cell membrane electrical resistances of the rabbit proximal convoluted tubule. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F637–F649, 1984.
 272. Lapointe, J. Y., R. Laprade, and J. Cardinal. Characterization of the apical membrane ionic permeability of the rabbit proximal convoluted tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F339–F347, 1986.
 273. Lapointe, J. Y., L. Garneau, P. D. Bell, and J. Cardinal. Membrane crosstalk in the mammalian proximal tubule during alterations in transepithelial sodium transport. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F339–345, 1990.
 274. Le Grimellec, C., N. Roiniel, and F. Morel. Simultaneous Mg, Ca, P, K, Na and Cl analysis in rat tubular fluid. I. During perfusion of either inulin or ferrocyanide. Pflugers Arch. 340: 181–196, 1973.
 275. Le Grimellec, C. Micropuncture study along the proximal convoluted tubule: electrolyte reabsorption in first convolutions. Pflugers Arch. 354: 133–150, 1975.
 276. Lehir, M., B. Kaissling, U. C. Dubach. Analysis of distal segments in the rabbit tubules after adaptation to altered Na and K intake. II. Changes in Na‐K‐ATPase activity. Cell Tissue Res. 224: 493–504, 1982.
 277. Light, D. B., F. V. McCann, T. M. Keller, and B. A. Stanton. Amiloride sensitive cation channel in apical membrane of inner medullary collecting duct. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F278–F286, 1988.
 278. Linas, S. L., L. N. Peterson, R. J. Anderson, G. A. Aisenbrey, F. R. Simon, and T. Bert. Mechanism of renal potassium conservation in the rat. Kidney Int. 15: 601–611, 1979.
 279. Lin, H., and D. B. Young. Impaired control of renal hemodynamics and renin release during hyperkalemia in rabbits. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F704–F710, 1988.
 280. Litchfield, J. B., and P. A. Bott. Micropuncture study of renal excretion of water, K, Na, and Cl in the rat. Am. J. Physiol. 203: 667–670, 1962.
 281. Lopes, A. G., L. M. Amzel, D. Markakis, and W. B. Guggino. Cell volume regulation by the thin descending limb of Henle's loop. Proc. Natl. Acad. Sci. USA 85: 2873–2877, 1988.
 282. Madsen, K. M., and C. C. Tisher. Response of intercalated cells of rat outer medullary collecting duct to chronic metabolic acidosis. Lab. Invest. 51: 268–274, 1984.
 283. Madsen, K. M., and C. C. Tisher. Cellular response to acute respiratory acidosis in rat medullary collecting duct. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F670–F679, 1983.
 284. Madsen, K. M., and C. C. Tisher. Structural‐functional relationships along the distal nephron. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F1–F15, 1986.
 285. Magner, P. O., L. Robinson, R. M. Halperin, R. Zettle, and M. L. Halperin. The plasma potassium concentration in metabolic acidosis: a re‐evaluation. Am. J. Kidney Dis. 3: 220–224, 1988.
 286. Malnic, G., R. W. Berliner, and G. Giebisch. Transport stimulation by native tubule fluid. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F1523–F1527, 1990.
 287. Malnic, G., R. W. Berliner, and G. Giebisch. Flow dependence of K secretion in cortical distal tubules of the rat. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F932–F941, 1989.
 288. Malnic, G., R. Klose, and G. Giebisch. Micropuncture study of renal potassium excretion in the rat. Am. J. Physiol. 206: 674–686, 1964.
 289. Malnic, G., R. M. Klose, and G. Giebisch. Microperfusion study of distal tubular potassium and sodium transfer in rat kidney. Am. J. Physiol. 211: 548–559, 1966.
 290. Malnic, G., R. M. Klose, and G. Giebisch. Micropuncture study of distal tubular potassium and sodium transport in rat nephron. Am. J. Physiol. 211: 529–547, 1966.
 291. Malnic, G., M. Mello‐Aires, and G. Giebisch. Potassium transport across renal distal tubules during acid‐base disturbances. Am. J. Physiol. 221: 1192–1208, 1971.
 292. Marsh, D. J., K. J. Ullrich and G. Rumrich. Micropuncture analysis of the behavior of potassium ions in rat renal cortical tubules. Pflugers Arch. 277: 107–119, 1963.
 293. Martin, R. S., and J. P. Hayslett. Role of aldosterone in the mechanism of renal potassium adaptation. Pflugers Arch. 407: 76–81, 1986.
 294. Marver, D., and J. P. Kokko. Renal target sites and the mechanism of action of aldosterone. Miner. Electrolyte Metab. 9: 1–18, 1983.
 295. Matsumura, Y., B. Cohen, W. B. Guggino, and G. Giebisch. Electrical effects of potassium and bicarbonate on proximal tubule cells of Necturus. J. Membr. Biol. 79: 145–152, 1984.
 296. Matsumura, Y., B. Cohen, W. R. Guggino, and G. Giebisch. Regulation of the basolateral potassium conductance of the Necturus proximal tubule. J. Membr. Biol. 79: 153–161, 1984.
 297. Mello‐Aires, M. G., G. Giebisch, and G. Malnic. Kinetics of potassium transport along single distal tubules of rat kidney. J. Physiol. Lond. 232: 47–70, 1973.
 298. Mello‐Aires, M., and G. Malnic. Renal handling of sodium and potassium during hypochloremic alkalosis in the rat. Pflugers Arch. 331: 215–225, 1972.
 299. Merot, J., M. Bidet, S. Le Maout, M. Tauc, and P. Poujeoul. Two types of K channels in the apical membrane of rabbit proximal tubule in primary culture. Biochim. Biophys. Acta 978: 134–144, 1989.
 300. Milanes, C. L., and R. L. Jamison. Effect of acute potassium load on reabsorption in Henle's loop in chronic renal failure in the rat. Kidney Int. 27: 919–927, 1985.
 301. Miller, P. D., C. Waterhouse, R. Owens, and E. Cohen. The effect of potassium loading on sodium excretion and plasma renin activity in Addisonian man. J. Clin. Invest. 56: 346–353, 1975.
 302. Molony, D. A., W. B. Reeves, S. C. Hebert, and T. E. Andreoli. ADH increases apical Na,K,2Cl entry in mouse medullary thick ascending limbs of Henle. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F177–F187, 1987.
 303. Montrose‐Rafizadek, C., and W. B. Guggino. Cell volume regulation in the nephron. Annu. Rev. Physiol. 52: 761–772, 1990.
 304. Moore‐Ede, M. C., and J. A. Herd. Renal electrolyte circadian rhythms: independence from feeding and activity patterns. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F128–F135, 1977.
 305. Moore‐Ede, M. C., M. M. Meguid, G. F. Fitzpatrick, C. M. Boyden, and M. R. Ball. Circadian variation in response to potassium infusion. Clin. Pharmacol. Ther. 23: 218–227, 1978.
 306. Moore‐Ede, M. C., W. S. Schmeizer, D. A. Kass, and J. A. Herd. Cortisol‐mediated synchronization of circadian rhythm in urinary potassium excretion. Am. J. Physiol. 233 (Regulatory Integrative Comp. Physiol. 2): R230–R238, 1977.
 307. Morel, F. Les modalités de l'excrétion du potassium par la rein; étude experimentale à l'aide du radiopotassium chěfez le lapin. Helv. Physiol. Pharmacol. Acta 13: 276–294, 1955.
 308. Morgan, T., M. Tadokoro, D. Martin, and R. W. Berliner. Effect of furosemide on Na+ and K+ transport studied by microperfusion of the rat nephron. Am. J. Physiol. 218: 292–297, 1970.
 309. Morris, D. J., and A. S. Brem. Metabolic derivatives of aldosterone. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F365–F373, 1987.
 310. Mudge, G. H., J. Foulks, and A. Gilman. The renal excretion of potassium. Proc. Soc. Exp. Biol. Med. 67: 545–547, 1948.
 311. Mudge, G. H., J. Foulks, and A. Gilman. Renal secretion of potassium in the dog during cellular dehydration. Am. J. Physiol. 161: 159–166, 1950.
 312. Mujais, S. K., M. A. Chekal, J. P. Hayslett, and A. I. Katz. Regulation of renal Na+/K+ ATPase in the rat: role of increased potassium transport. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F199–F207, 1986.
 313. Mujais, S. K., M. A. Chekal, W. J. Jones, J. P. Hayslett, and A. I. Katz. Modulation of renal sodium‐potassium‐adenosine triphosphate by aldosterone: effect of high physiologic levels on enzyme activity in isolated rat and rabbit tubules. J. Clin. Invest. 76: 170–176, 1985.
 314. Mujais, S. K., M. A. Chekal, W. J. Jones, J. P. Hayslett, and A. I. Katz. Regulation of renal Na‐K‐ATPase in the rat. Role of the natural mineralocorticoid and glucocorticoid hormones. J. Clin. Invest. 73: 13–19, 1984.
 315. Mujais, S. K., M. A. Chekal, S‐M. K. Lee, and A. I. Katz. Relationship between adrenal steroids and renal Na‐K‐ATPase. Effect of short‐term hormone administration on the rat cortical collecting tubule. Pflugers Arch. 402: 48–51, 1984.
 316. Mujais, S. K. Renal memory after potassium adaptation: role of Na+‐K+‐ATPase. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F840–F850, 1988.
 317. Müller‐Suur, R., and R. L. Jamison. Effects of acute potassium loading on Henle's loop electrolyte transport: a microperfusion study in vivo. Kidney Int. 27: 317A, 1985.
 318. Muto, S., G. Giebisch, and S. Sansom. Effects of adrenalectomy on CCD: evidence for differential response of two cell types. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F742–F752, 1987.
 319. Muto, S., G. Giebisch, and S. Sansom. An acute increase of peritubular K stimulates K transport through cell pathways of CCT. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F108–F114, 1988.
 320. Muto, S., S. Sansom, and G. Giebisch. Effects of high K diet on the electrical properties of cortical collecting ducts from adrenalectomized rabbits. J. Clin. Invest. 81: 376–380, 1988.
 321. Oberleithner, H., P. Dietl, G. Munich, M. Weight, and A. Schwab. Relationship between luminal Na+/H+ exchange and luminal K+ conductance in diluting segment of frog kidney. Pflugers Arch. 405: 5110–5114, 1985.
 322. Oberleithner, H., and G. Giebisch. Mechanism of potassium transport across distal tubular epithelium of Amphiuma. In Epithelial Ion and Water Transport, edited by A. D. C. Macknight and J. P. Leader. New York: Raven Press, 1981, p. 97–105.
 323. Oberleithner, H., W. Guggino, and G. Giebisch. Potassium transport in the distal tubule of Amphiuma kidney: effects of potassium adaptation. Pflugers Arch. 396: 185–191, 1983.
 324. Oberleithner, H., W. Guggino, and G. Giebisch. The effect of furosemide on luminal sodium, chloride and potassium transport in the early distal tubule of Amphiuma kidney: effects of potassium adaptation. Pflugers Arch. 396: 27–33, 1983.
 325. Oberleithner, H., W. Guggino, and G. Giebisch. Resistance properties of the diluting segment of Amphiuma kidney: influence of potassium adaptation. J. Membr. Biol. 88: 139–147, 1985.
 326. Oberleithner, H., F. Lang, R. Greger, W. Wang, and G. Giebisch. Effect of luminal potassium on cellular sodium activity in the early distal tubule of Amphiuma kidney. Pflugers Arch. 396: 34–40, 1983.
 327. Oberleithner, H., F. Lang, W. Wang, G. Messner, and P. Deetjen. Evidence for an amiloride sensitive Na+ pathway in the amphibian diluting segment induced by K+ adaptation. Pflugers Arch. 399: 166–172, 1983.
 328. Oberleithner, H., M. Weight, H. D. Westphale, and W. Wang. Aldosterone activates Na/H exchange and raises cytoplasmic pH in target cells of the amphibian kidney. Proc. Natl. Acad. Sci. USA 84: 1464–1488, 1987.
 329. Okusa, M. D., H. Velazquez, D. H. Ellison, and F. S. Wright. Lumenal calcium regulated potassium transport by the renal distal tubule. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F423–F428, 1990.
 330. Oliver, J., M. MacDowell, L. G. Welt, M. A. Holliday, W. Hollander, Jr., R. W. Winters, T. F. Williams, and W. E. Segar. The renal lesions of electrolyte imbalance. I. The structural alterations in potassium depleted rats. J. Exp. Med. 106: 563–574, 1957.
 331. O'Neil, R., and E. Boulpaep. Effect of amiloride on the apical cell membrane cation channels of a sodium‐absorbing, potassium secreting renal epithelium. J. Membr. Biol. 50: 365–387, 1979.
 332. O'Neil, R. G. Adrenal steroid regulation of potassium transport. In: Current Topics in Membranes and Transport, edited by G. Giebisch. Orlando, FL: Academic Press, 1987, vol. 28, p. 185–206.
 333. O'Neil, R. G. Aldosterone regulation of sodium and potassium transport in the cortical collecting tubule. Semin. Nephrol. 10: 365–374, 1990.
 334. O'Neil, R. G., and R. A. Hayhurst. Functional differentiation of cell types of cortical collecting duct. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F449–F453, 1985.
 335. O'Neil, R. G., and R. A. Hayhurst. Sodium‐dependent modulation of the renal Na‐K‐ATPase: influence of mineral‐ocorticoids on the cortical collecting duct. J. Membr. Biol. 85: 169–179, 1985.
 336. O'Neil, R. G., and S. I. Helman. Transport characteristics of renal collecting tubules: influences of DOCA and diet. Am. J. Physiol. 223: 544–558, 1977.
 337. O'Neil, R. G., and S. C. Sansom. Electrophysiological properties of cellular and paracellular conductive pathways of the rabbit cortical collecting duct. J. Membr. Biol. 82: 281–295, 1984.
 338. O'Neil, R. G., and S. C. Sansom. Characterization of apical cell membrane Na and K conductances of cortical collecting duct using microelectrode techniques. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F14–F24, 1984.
 339. Ornt, D. B. Effect of potassium concentration and ouabain on the renal adaptation to potassium depletion in isolated perfused rat kidney. Can. J. Physiol. Pharmacol. 64: 1427–1433, 1986.
 340. Ornt, D. B., J. D. Scandling, and R. L. Tannen. Adaptation for potassium conservation during dietary potassium deprivation. Semin. Nephrol. 7: 193–205, 1987.
 341. Ornt, D. B., and R. L. Tannen. Demonstration of an intrinsic renal adaptation for K+ conservation in short‐term K + depletion. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F329–F338, 1983.
 342. Palmer, L. G., and H. Sackin. Regulation of renal ion channels. FASEB J. 2: 3061–3065, 1988.
 343. Parent, L., J. Cardinal, and R. Sauve. Single‐channel analysis of a K channel at basolateral membrane of rabbit proximal convoluted tubule. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F105–F113, 1988.
 344. Peterson, L. N., F. S. Wright. Effect of sodium intake on renal potassium excretion. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F225–F234, 1977.
 345. Pettinger, W. A., R. Fallet, Y. Wang, L. Tam, and W. B. Jeffries. Enhanced cAMP response to vasopressin in the CCT of DOCA‐Na hypertensive rats. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F1096–F1100, 1986.
 346. Pettinger, W. A., S. Umemura, D. D. Smyth, and W. B. Jeffries. Renal alpha2‐adrenoreceptors and the adenylate cyclase‐cAMP system: biochemical and physiological interactions. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F199–F208, 1987.
 347. Petty, K. J., J. P. Kokko, and D. Marver. Secondary effect of aldosterone on Na‐K‐ATPase activity in the rabbit cortical collecting tubule. J. Clin. Invest. 68: 1514–1521, 1981.
 348. Pitts, R. F., R. S. Gurd, R. H. Kessler, and K. Hierholtzer. Localization of acidification of urine, potassium and ammonia secretion, and phosphate reabsorption in the dog. Am.]. Physiol. 194: 125–134, 1958.
 349. Rabinowitz, L. Homeostatic regulation of potassium excretion. J. Hypertension 7: 433–442, 1989.
 350. Rabinowitz, L. Model of homeostatic regulation of potassium excretion in sheep. Am. J. Physiol. 254 (Regulatory Integrative Comp. Physiol. 23): R381–R388, 1988.
 351. Rabinowitz, L., R. L. Sarason, and H. Yamanchi. Sheep renal potassium excretion: efferent kaliuretic regulatory factors. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F520–F526, 1984.
 352. Rabinowitz, L., R. L. Sarason, H. Yamauchi, K. K. Yamanaka, and P. A. Tzendzalian. Time course of adaptation to altered K intake in rats and sheep. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F607–F617, 1984.
 353. Rabinowitz, L., C. J. Wydner, K. M. Smith, and H. Yamauchi. Diurnal potassium excretory cycles in the rat. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F930–F941, 1986.
 354. Rabinowitz, L., R. Berlin, H. Yamauchi. Plasma potassium and diurnal cyclic potassium excretion in the rat. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F1178–F1181, 1987.
 355. Rastegar, A., D. Biemesderfer, M. Kashgarian, and J. P. Hayslett. Changes in membrane surfaces of collecting duct cells in potassium adaptation. Kidney Int. 18: 293–301, 1980.
 356. Rayson, B. M., and R. K. Gupta. Steroids, intracellular sodium levels and Na/K‐ATPase regulation. J. Biol. Chem. 260: 12740–12743, 1985.
 357. Rayson, B. M., and S. O. Lowther. Steroid regulation of (Na+ + K+) ATPase: differential sensitivities along the nephron. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F656–F662, 1984.
 358. Rector, F. C., Jr., H. A. Bloomer, and D. W. Seldin. Proximal tubule reabsorption of potassium during mannitol diuresis in rats. J. Lab. Clin. Med. 63: 100–105, 1964.
 359. Reeves, W. B., G. A. McDonald, P. Mehta, and T. E. Andreoli. Activation of K channels in renal medullary vesicles by cAMP‐dependent protein kinase. J. Membr. Biol. 109: 65–72, 1989.
 360. Reineck, H. J., R. W. Osgood, T. F. Ferris, and J. H. Stein. Potassium transport in the distal tubule and collecting duct of the rat. Am. J. Physiol. 229: 1403–1409, 1975.
 361. Reineck, H. J., R. W. Osgood, and J. H. Stein. Net potassium addition beyond the superficial distal tubule of the rat. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F104–F110, 1978.
 362. Rocha, A. S., and L. H. Kudo. Atrial peptide and cGMP effects on NaCl transport in inner medullary collecting duct. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F258–F268, 1990.
 363. Rocha, A. S., and L. H. Kudo. Water, urea, sodium, chloride, and potassium transport in the in vitro isolated perfused papillary collecting duct. Kidney Int. 22: 485–491, 1982.
 364. Rossetti, L., G. Klein‐Robbenhaar, G. Giebisch, D. Smith, and R. Defronzo. Effect of insulin on renal potassium metabolism. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F60–F64, 1987.
 365. Rossier, B. C. Mechanisms of action of mineralocorticoid hormones. Endocrine Rev. (in press).
 366. Rutledge, J. C., and L. Rabinowitz. Kaliuretic regulatory factors in the rat. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F930–F941, 1986.
 367. Sackin, H. Stretch‐activated potassium channels in renal proximal tubule. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F1253–F1262, 1987.
 368. Sackin, H. A Stretch‐activated K+ channel sensitive to cell volume. Proc. Natl. Acad. Sci. USA 86: 1731–1735, 1989.
 369. Sackin, H., and E. L. Boulpaep. Rheogenic transport in the renal proximal tubule. J. Gen. Physiol. 82: 819–851, 1983.
 370. Sackin, H., and L. G. Palmer. Basolateral potassium channels in renal proximal tubule. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F476–F487, 1987.
 371. Sansom, S., S. Muto, and G. Giebisch. Microelectrode assessment of conductive properties of “minority cells” of the rabbit cortical collecting duct. Federation Proc. 45: 541, 1986.
 372. Sansom, S. C., S. Agulian, S. Muto, V. Illig, and G. Giebisch. K activity of CCD principal cells from normal and DOCA‐tested rabbits. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F136–F142, 1989.
 373. Sansom, S. C., S. Muto, and G. Giebisch. Na‐dependent effects of DOCA on cellular transport properties of CCDs from ADX rabbits. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F753–F759, 1987.
 374. Sansom, S. C., and R. G. O'Neil. Mineralocorticoid regulation of apical cell membrane Na+ and K+ transport of the cortical collecting duct. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F858–F868, 1985.
 375. Sansom, S. C., and R. G. O'Neil. Effects of mineralocorticoids on transport properties of cortical collecting duct basolateral membrane. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F743–F757, 1986.
 376. Sansom, S. C., E. J. Weinman, and R. G. O'Neil. Micro‐electrode assessment of chloride‐conductive properties of cortical collecting duct. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F291–F302, 1984.
 377. Sasaki, S., K. Ishibashi, N. Yoshiyama, and T. Shiigai. KCl cotransport across the basolateral membrane of rabbit renal proximal straight tubules. J. Clin. Invest. 81: 194–199, 1988.
 378. Sastrasinh, S., and R. L. Tannen. Effect of potassium on renal NH3 production. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F383–F391, 1983.
 379. Sastrasinh, S., and R. L. Tannen. Mechanism by which enhanced ammonia production reduces urinary potassium excretion. Kidney Int. 20: 326–331, 1981.
 380. Sauer, M., A. Dörge, F. Thurau, and F. X. Beck. Effect of ouabain on electrolyte concentrations in principal and intercalated cells of the isolated perfused cortical collecting duct. Pflugers Arch. 413: 651–655, 1989.
 381. Scandling, J. D., and D. B. Ornt. Mechanism of potassium depletion during chronic metabolic acidosis in the rat. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F122–F130, 1987.
 382. Schafer, J. A., and S. L. Troutman. Effect of ADH on rubidium transport in isolated perfused rat cortical collecting tubule. Am. J. Physiol. 250: (Renal Fluid Electrolyte Physiol. 19): F1063–F1072, 1986.
 383. Schafer, J. A., and S. L. Troutman. Potassium transport in cortical collecting tubules from mineralocorticoid‐treated rat. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F76–F88, 1987.
 384. Schafer, J. A., S. L. Troutman, and E. Schlatter. Vasopressin and mineralocorticoid increase apical membrane driving force for K secretion in rat CCD. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F199–F210, 1990.
 385. Schafer, J. A., and J. Work. Transport properties of the pars recta. Nephrology 1: 186–195, 1985.
 386. Schlatter, E. Antidiuretic hormone regulation of electrolyte transport in the distal nephron. Renal Physiol. Biochem. 12: 65–84, 1989.
 387. Schlatter, E., and R. Greger. cAMP increases the basolateral Cl conductance in the isolated perfused medullary thick ascending limb of Henle's loop of the mouse. Pflugers Arch. 405: 367–376, 1985.
 388. Schlatter, E., and J. A. Schafer. Electrophysiological studies in principal cells of rat cortical collecting tubules. ADH increases the apical membrane Na+‐conductance. Pflugers Arch. 409: 81–92, 1987.
 389. Schnermann, J., J. Briggs, and G. Schubert. In situ studies of the distal convoluted tubule in the rat. I. Evidence for NaCl secretion. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F160–F166, 1982.
 390. Schnermann, J., B. Steipe, and J. P. Briggs. In situ studies of distal convoluted tubule. II. K secretion. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F970–F976, 1987.
 391. Schon, D. A., K. A. Backman, and J. P. Hayslett. Role of the medullary collecting duct in potassium excretion in potassium adapted animals. Kidney Int. 20: 655–662, 1981.
 392. Schon, D. A., P. Silva, and J. P. Hayslett. Mechanism of potassium excretion in renal insufficiency. Am. J. Physiol. 227: 1323–1330, 1974.
 393. Schultze, R. G., D. D. Taggart, H. Shapiro, J. P. Pennell, S. Z. Cagler, and N. S. Bricker. On the adaptation to potassium excretion associated with nephron reduction in the dog. J. Clin. Invest. 50: 1061–1068, 1971.
 394. Schwab, A., and H. Oberleithner. Trans‐ and paracellular K+ transport in diluting segment of frog kidney. Pflugers Arch. 411: 268–272, 1988.
 395. Schwartz, G. J., and M. B. Burg. Mineralocorticoid effects on cation transport by cortical collecting tubules in vitro. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F576–F585, 1978.
 396. Sebastian, A., and M. Schambelan. Renal hyperkalemia. Semin. Nephrol. 7: 223–238, 1987.
 397. Sejersted, O. M., T. Montclair, O. Mathisen, A. Hartmann, and F. Kiii. Dependency of renal potassium excretion on Na,K‐ATPase transport rate. Acta Physiol. Scand. 123: 9–19, 1985.
 398. Shareghi, G. R., and L. C. Stoner. Calcium transport across segments of the rabbit distal nephron in vitro. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F367–F375, 1978.
 399. Shimizu, T., K. Yoshitomi, J. Taniguchi, and M. Imai. Effect of high NaCl intake on Na and K transport in rabbit distal convoluted tubule. Pflugers Arch. 414: 500–508, 1989.
 400. Shimizu, T., K. Yoshitomi, M. Nakamura, and M. Imai. Site and mechanism of action of trichlormethiazide in rabbit distal nephron segments perfused in vitro. J. Clin. Invest. 82: 721–730, 1988.
 401. Silva, P., R. S. Brown, and F. H. Epstein. Adaptation to potassium. Kidney Int. 11: 466–475, 1977.
 402. Smith, J. D., M. J. Bia, and R. A. Defronzo. Potassium homeostasis. In: Fluid Electrolyte and Acid‐Base Disorders, edited by A. I. Arieff and R. DeFronzo. New York: Churchill, 1987, Chap. 8.
 403. Soltoff, S. P., and L. J. Mandel. Potassium transport in the rabbit renal proximal tubule: effects of barium, ouabain, valinomycin, and other ionophores. J. Membr. Biol. 94: 153–161, 1986.
 404. Sonnenberg, H., U. Honrath, and D. R. Wilson. Effect of vasopressin analogue (dDAVP) on potassium transport in medullary collecting duct. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F986–F991, 1987.
 405. Stanton, B. Electroneutral NaCl transport by distal tubule: evidence for Na+/H+‐Cl;−/HCO3− exchange. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F80–F86, 1988.
 406. Stanton, B. Regulation by adrenal corticosteroids of sodium and potassium transport in loop of Henle and distal tubule of rat kidney. J. Clin. Invest. 78: 1612–1620, 1986.
 407. Stanton, B. Renal potassium adaptation: cellular mechanisms and morphology. In: Current Topics in Membranes and Transport, edited by G. Giebisch. Orlando, FL: Academic Press, vol. 28, 1987, p. 225–267.
 408. Stanton, B. Characterization of apical and basolateral membrane conductances of rat inner medullary collecting duct. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F862–F868, 1989.
 409. Stanton, B., D. Biemesderfer, M. Kashgarian, and G. Giebisch. Cellular ultrastructure of Amphiuma distal nephron: effects of exposure to potassium. Am. J. Physiol. 247 (Cell Physiol. 16): C204–C216, 1984.
 410. Stanton, B. A. Renal potassium transport: morphological and functional adaptations. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 26): R989–R997, 1989.
 411. Stanton, B., D. Biemesderfer, M. Kashgarian, J. Wade, and G. Giebisch. Mechanism and time course of aldosterone‐induced stimulation of Na+ and K+ transport. Federation Proc. 44: 6761, 1985.
 412. Stanton, B., and G. Giebisch. Effects of pH on potassium transport by renal distal tubule. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F551–F554, 1982.
 413. Stanton, B., G. Giebisch, G. Klein‐Robbenhaar, J. Wade, R. A. DeFronzo. Effects of adrenalectomy and chronic adrenal corticosteroid replacement on potassium transport in rat kidney. J. Clin. Inves. 75: 1317–1326, 1985.
 414. Stanton, B., A. Janzen, J. Wade, R. DeFronzo, and G. Giebisch. Ultrastructure of rat initial collecting tubule: effect of adrenal corticosteroid treatment. J. Clin. Invest. 75: 1317–1326, 1985.
 415. Stanton, B., and B. Kaissling. Regulation of renal ion transport and cell growth by sodium. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F1–F10, 1989.
 416. Stanton, B., and B. Kaissling. Adaptation of distal tubule and collecting duct to increased sodium delivery. II. Na+ and K+ transport. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F1269–F1275, 1988.
 417. Stanton, B., L. Pan, P. Deetjen, V. Guckian, and G. Giebisch. Independent effects of aldosterone and potassium on induction of potassium adaptation in rat kidney. Clin. Invest. 79: 198–206, 1987.
 418. Stanton, B., E. Puglisi, and M. Gellai. Localization of alpha2‐adrenoreceptor‐mediated increase in renal Na+, K+ and water excretion. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F1016–F1021, 1987.
 419. Stanton, B. A., D. Biemesderfer, J. B. Wade, and G. Giebisch. Structural and functional study of the rat distal nephron: effects of potassium adaptation and depletion. Kidney Int. 19: 36–48, 1981.
 420. Stanton, B. A., G. H. Giebisch. Potassium transport by the renal distal tubule: effects of potassium loading. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F487–F493, 1982.
 421. Sterns, R. H., and A. Spital. Disorders of internal potassium balance. Semin. Nephrol. 7: 206–212, 1987.
 422. Stetson, D. L., J. B. Wade, and G. Giebisch. Morphological alterations in the rat medullary collecting duct following K depletion. Kidney Int. 17: 45–56, 1980.
 423. Stokes, J. B. Potassium secretion by cortical collecting tubule: relation to sodium absorption, luminal sodium concentration, and transepithelial voltage. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F395–F402, 1981.
 424. Stokes, J. B. Na and K transport across the cortical and outer medullary collecting tubule of the rabbit: evidence for diffusion across the outer medullary portion. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F514–F520, 1982.
 425. Stokes, J. B. Ion transport by the cortical and outer medullary collecting tubule. Kidney Int. 22: 473–484, 1982.
 426. Stokes, J. B. Consequences of potassium recycling in the renal medulla. J. Clin. Invest. 70: 219–229, 1982.
 427. Stokes, J. B. Mineralocorticoid effect on K+ permeability of the rabbit cortical collecting tubule. Kidney Int. 28: 640–645, 1985.
 428. Stokes, J. B., M. J. Ingram, A. D. Williams, and D. Ingram. Heterogeneity of the rabbit collecting tubule: localization of mineralocorticoid hormone action to the cortical portion. Kidney Int. 20: 340–347, 1981.
 429. Stoner, L. C. Isolated perfused amphibian renal tubules: the diluting segment. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F438–F444, 1977.
 430. Stoner, L. C., M. B. Burg, and J. Orloff. Ion transport in cortical collecting tubule: effect of amiloride. Am. J. Physiol. 227: 453–459, 1974.
 431. Strange, K. Volume regulation following Na+ pump inhibition in CCT principal cells: apical K+ loss. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F732–F740, 1990.
 432. Strieder, N., R. N. Khuri, M. Weiderholt, and G. Giebisch. Studies on the renal action of ouabain in the rat: effects in the non‐diuretic state. Pflugers Arch. 349: 91–107, 1974.
 433. Sufit, C. R., and R. L. Jamison. Effect of acute potassium load on reabsorption of Henle's loop in the rat. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F569–F576, 1983.
 434. Sullivan, L. P., D. J. Welling, and L. A. Rome. Effects of sodium and chloride on potassium transport by the bullfrog kidney. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F127–F137, 1981.
 435. Sullivan, L. P., W. S. Wilde, and R. L. Malvin. Renal transport sites for K, H, and NH3: effects of impermeant anions on their transport. Am. J. Physiol. 198: 244–254, 1960.
 436. Sun, A. M., and S. C. Hebert. ADH alters the K requirement for the luminal, furosemide‐sensitive NaCl symporter in mouse medullary thick ascending limbs. Kidney Int. 35: 489, 1989.
 437. Tabei, K., and M. Imai. K transport in upper portion of descending limbs of long‐loop nephron from hamster. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F387–F392, 1987.
 438. Tabei, K., and M. Ima. Potassium transport in the upper portion of descending limbs of Henle's loop of long‐loop nephron isolated from hamster kidney. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F438–F445, 1988.
 439. Tabei, K. The biological transport system of the proximal kidney tubules. Sodium and potassium. Nippon Rinsho (Jpn. J. Clin. Med.) 47: 1507–1512, 1989.
 440. Taniguchi, J., K. Yoshitomi, and M. Imai. K+ channel currents in the basolateral membrane of distal convoluted tubule of rabbit kidney. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F246–F254, 1989.
 441. Taniguchi, J., K. Tabei, and M. Imai. Profiles of water and solute transport along long‐loop descending limb: analysis by mathematical model. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F393–F402, 1987.
 442. Tannen, R. L. Effect of potassium on renal acidification and acid‐base homeostasis. Semin. Nephrol. 7: 263–272, 1987.
 443. Tannen, R. L. Potassium and acid‐base balance. In: Current Topics in Membranes and Transport, edited by G. Giebisch. Orlando, FL: Academic Press, 1987, vol. 28, p. 207–223.
 444. Teulon, J., and T. Anagnostopoulos. Proximal cell K+ activity: technical problems and dependence on plasma K+ concentration. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F12–F18, 1982.
 445. Thatcher, J. S., and A. W. Radike. Tolerance to potassium intoxication in the albino rat. Am. J. Physiol. 151: 138–146, 1947.
 446. Toback, G. F., N. G. Ordonez, S. L. Bortz, and B. H. Spargo. Zonal changes in renal structure and phospholipid metabolism in potassium‐deficient rats. Lab. Invest. 34: 115–124, 1976.
 447. Tomita, K., A. Owada, Y. Iino, N. Yoshiyama, and T. Shiigai. Effect of vasopressin on Na+‐Ka+‐ATPase activity in rat cortical collecting duct. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F874–F879, 1987.
 448. Tomita, K. and F. Marumo. Regulation of Na,K transport in collecting duct. Nippon Rinsho J. Clin. Med.) 47: 1554–1560, 1989.
 449. Tomita, K., J. J. Pisano, and M. A. Knepper. Control of sodium and potassium transport in the cortical collecting duct of the rat. Effects of bradykinin, vasopressin, and deoxycorticosterone. J. Clin. Invest. 76: 132–136, 1985.
 450. Toussaint, C., and P. Vereerstraaeten. Effects of blood pH changes on potassium excretion in the dog. Am. J. Physiol. 202: 768–772, 1962.
 451. Unwin, R., G. Copasso, S. Agulian, and G. Giebisch. Effect of adrenal steroids on loop of Henle bicarbonate transport. Kidney Int. 37: 548A, 1990.
 452. Valtin, H. Physiological effects of vasopressin on the kidney. In: Vasopressin, Principles and Properties, edited by D. M. Gash and G. J. Boer, New York: Plenum Press, 1987, p. 369–387.
 453. Velazquez, H. Thiazide diuretics. Renal Physiol. 10: 184–197, 1987.
 454. Velazquez, H., D. H. Ellison, and F. S. Wright. Chloride‐dependent potassium secretion in early and late renal distal tubules. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22); F555–F562, 1987.
 455. Velazquez, H., D. H. Ellison, and F. S. Wright. Multiple pathways for potassium transport across basolateral membrane of rabbit distal convoluted tubule cell. Kidney Int. 33: 429A, 1988.
 456. Velazquez, H., D. H. Ellison, and F. S. Wright. Chloride‐dependent potassium secretion in early and late renal distal tubules. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F555–F562, 1987.
 457. Velazquez, H., and G. Giebisch. Effect of diuretics on specific transport systems: potassium. Semin. Nephrol. 8: 295–304, 1988.
 458. Velazquez, H., and R. Greger. Influences on basolateral K conductance of cells of early distal convoluted tubule. Kidney Int. 29: 409, 1986.
 459. Velazquez, H., and F. S. Wright. Control by drugs of renal potassium handling. Annu. Rev. Pharmacol. Toxicol. 26: 293–309, 1986.
 460. Velazquez, H., and F. S. Wright. Effects of diuretic drugs on Na, Cl, and K transport by rat renal distal tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F1013–F1023, 1986.
 461. Velazquez, H., F. S. Wright, and D. W. Good. Luminal influences on potassium secretion: chloride replacement with sulfate. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F46–F55, 1982.
 462. Verlander, J. W., K. M. Madsen, and C. C. Tisher. Effect of acute respiratory acidosis on two populations of intercalated cells in rat cortical collecting duct. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F1142–F1156, 1987.
 463. Verrey, F., E. Schaerer, P. Zoerkler, M. P. Paccolat, K. Geering, J. P. Kraehenbuhl, and B. C. Rossier. Regulation by aldosterone of Na‐K‐ATPase mRNAs, protein synthesis, and sodium transport in cultured kidney cells. J. Cell Biol. 104: 1231–1237, 1987.
 464. Völkl, H., and F. Lang. Electrophysiology of cell volume regulation in proximal tubules of the mouse kidney. Pflugers Arch. 411: 514–519, 1988.
 465. Waack, S., M. M. Walsch‐Reitz, and F. G. Toback. Extracellular potassium modifies the structure of kidney epithelial cells in culture. Am. J. Physiol. 249 (Cell Physiol. 18): C105–C110, 1985.
 466. Wade, J. B., R. G. O'Neil, J. L. Pryor, and E. L. Boulpaep. Modulation of cell membrane area in renal cortical collecting tubules by corticosteroid hormones. J. Cell Biol. 81: 439–445, 1979.
 467. Wang, W., J. Geibel, and G. Giebisch. Potassium channels in apical membrane of rat thick ascending limb of Henle's loop. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F244–F253, 1990.
 468. Wang, W., J. Geibel, and G. Giebisch. Regulation of small conductance K channel in the apical membrane of rat cortical collecting tubule. Am. J. Physiol. 259: F494–F502, 1990.
 469. Wang, W., J. Geibel, and G. Giebisch. The role of intracellular pH in aldosterone‐induced increase of K conductance in early distal tubule cells of frogs. Kidney Int. 36: 491, 1989.
 470. Wang, W., and G. Giebisch. cAMP‐dependent protein kinase opens the K+ channel on the apical membrane of cortical collecting tubule (CCT) of rat kidney. (Proc. 74th Annual FASEB Meeting, Washington, D.C.) FASEB J. 4: 4, 1990.
 471. Wang, W., and G. Giebisch. Protein kinase A (PKA) and protein kinase C (PKC) modulate the apical small‐conductance K+ channel of rat CCD. J. Am. Soc. Nephrol. 1: 694, 1991.
 472. Wang, W., and G. Giebisch. Dual effect of ATP on the apical small conductance K+ channel of rat cortical collecting duct. J. Gen. Physiol., in press, 1991.
 473. Warden, D. H., M. Hayashi, V. L. Schuster, and J. B. Stokes. K+ and Rb+ transport by the rabbit CCD: Rb+ reduces K+ conductance and Na+ transport. Am. J. Physiol. 257: (Renal Fluid Electrolyte Physiol. 26): F43–F52, 1989.
 474. Warnock, D. G., and J. Eveloff. K‐Cl cotransport systems. Kidney Int. 36: 412–417, 1989.
 475. Wang, W., and G. Giebisch. The role of potassium and sodium channels in renal tubule electrolyte transport. Jpn. J. Nephrol. (in press).
 476. Wasserman, A. G., and Z. S. Agus. Potassium secretion in the rabbit proximal straight tubule. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F167–F174, 1983.
 477. Watson, J. F., J. R. Clapp, and R. W. Berliner. Micropuncture study of potassium concentration in proximal tubule of dog, rat, and Necturus. J. Clin. Invest. 43: 595–605, 1964.
 478. Weinstein, A. M. Convective paracellular solute flux: a source of ion‐ion interaction in the epithelial transport equations. J. Gen. Physiol. 88: 501–518, 1987.
 479. Weinstein, A. M. A mathematical model of the rat proximal tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F860–F873, 1986.
 480. Weinstein, A. M. Modeling the proximal tubule: complications of the paracellular pathway. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F297–F305, 1988.
 481. Welling, P. A., M. A. Linshaw, and L. P. Sullivan. Effect of barium on cell volume regulation in rabbit proximal straight tubules. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F20–F27, 1985.
 482. Welling, P. A., and R. G. O'Neil. Ionic conductive properties of rabbit proximal straight tubule basolateral membrane. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F940–F950, 1990.
 483. West, M. L., P. A. Marsden, R. M. A. Richardson, R. M. Zettle, and M. L. Halperin. New clinical approach to evaluate disorders of potassium excretion. Miner. Electrolyte Metab. 12: 234–238, 1986.
 484. Welling, P. A., and R. G. O'Neil. Cell swelling activates basolateral membrane Cl and K conductances in rabbit proximal tubule. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F951–F962, 1990.
 485. Wiederholt, M., W. J. Sullivan, G. Giebisch, A. K. Solomon, and P. F. Curran. Transport of potassium and sodium across single distal tubules of Amphiuma. J. Gen. Physiol. 57: 495–529, 1971.
 486. Wilcox, C. S. Diuretics and potassium. In: Current Topics in Membranes and Transport, edited by G. Giebisch. Orlando, FL: Academic Press, 1987, vol. 28, p. 331–350.
 487. Wingo, C. S. Effect of ouabain on K secretion in cortical collecting tubule from adrenalectomized rabbits. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F588–F595, 1984.
 488. Wingo, C. S. Cortical collecting tubule potassium secretion: effect of amiloride, ouabain, and luminal sodium concentration. Kidney Int. 27: 886–891, 1985.
 489. Wingo, C. S. Potassium transport by the medullary collecting tubule of the rabbit: effects of variation in K intake. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F1136–F1141, 1987.
 490. Wingo, C. S. Potassium secretion by the cortical collecting tubule: effect of Cl gradients and ouabain. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F306–F313, 1989.
 491. Wingo, C. S. Reversible chloride‐dependent potassium flux across the rabbit cortical collecting tubule. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F697–F704, 1989.
 492. Wingo, C. S., J. P. Kokko, and H. R. Jacobson. Effects of in vitro aldosterone on the rabbit cortical collecting tubule. Kidney Int. 28: 51–57, 1985.
 493. Wingo, C. S., D. W. Seldin, J. P. Kokko, and H. R. Jacobson. Dietary modulation of active potassium secretion in the cortical collecting tubule of adrenalectomized rabbits. J. Clin. Invest. 70: 579–586, 1982.
 494. Wingo, C. S., and S. S. Straub. Active proton secretion and potassium absorption in the rabbit outer medullary collecting duct. Functional evidence for proton‐potassium‐activated adenosine triphosphatase. J. Clin. Invest. 84: 361–365, 1989.
 495. Wittner, M., A. Distefano, P. Wangemann, R. Nitschke, and R. Greger. Differential effects of ADH on sodium, chloride, potassium, calcium and magnesium transport in cortical and medullary thick ascending limbs of mouse nephron. Pflugers Arch. 412: 516–523, 1988.
 496. Woodhall, P. B., and C. C. Tisher. Response of the distal tubule and cortical collecting duct to vasopressin in the rat. J. Clin. Invest. 52: 3095–3108, 1973.
 497. Work, J., and R. L. Jamison. Effect of adrenalectomy on transport in the rat medullary thick ascending limb. J. Clin. Invest. 80: 1160–1164, 1987.
 498. Work, J., S. L. Troutman, and J. A. Schafer. Transport of potassium in the rabbit pars recta. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F226–F237, 1982.
 499. Wright, F., N. Strieder, N. Fowler, and G. Giebisch. Potassium secretion by distal tubule after potassium adaptation. Am. J. Physiol. 221: 437–448, 1971.
 500. Wright, F. S. Increasing magnitude of electrical potential along the renal tubule. Am. J. Physiol. 220: 624–638, 1971.
 501. Wright, F. S. Overview: renal potassium transport along the nephron. In: Current Topics in Membranes and Transport, edited by G. Giebisch. Orlando, FL: Academic Press, 1987, vol. 28, p. 99–113.
 502. Wright, F. S. Renal potassium handling. Semin. Nephrol. 7: 174–184, 1987.
 503. Wright, F. S. Flow‐dependent transport processes: filtration, absorption, secretion. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F1–F11, 1982.
 504. Wright, F. S., and G. Giebisch. Regulation of potassium excretion. In: Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, chap. 51, p. 1223–1249.
 505. Yeyati, N. L., J. C. Etcheverry, and H. J. Adrogue. Kaliuretic response to potassium loading in amiloride‐treated dogs. Renal Physiol. Biochem. 13: 190–199, 1990.
 506. Yoshitomi, K., C. Koseki, J. Taniguchi, and M. Imai. Functional heterogeneity in the hamster medullary thick ascending limb of Henle's loop. Pflugers Arch. 408: 600–608, 1987.
 507. Yoshitomi, K., T. Shimizu, J. Taniguchi, and M. Imai. Electrophysiological characterization of rabbit distal convoluted tubule cell. Pflugers Arch. 414: 457–463, 1989.
 508. Yoshitomi, K., T. Shimizu, and M. Imai. Functional cellular heterogeneity in the rabbit connecting tubule. Kidney Int. 33: 430A, 1988.
 509. Young, D. B. Relationship between plasma potassium concentration and renal potassium excretion. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F599–F603, 1982.
 510. Young, D. B. Quantitative analysis of aldosterone's role in potassium regulation. Am. J. Physiol. 255: F811–F822, 1988.
 511. Young, D. B. Quantitative analysis of steady‐state potassium regulation. In: Current Topics in Membranes and Transport, edited by G. Giebisch. Orlando, FL: Academic Press, 1987, vol. 28, p. 269–295.
 512. Young, D. B., and T. E. Jackson. Effects of aldosterone on potassium distribution. Am. J. Physiol. 243 (Regulatory Integrative Comp. Physiol. 12): R526–R530, 1982.
 513. Young, D. B., T. E. Jackson, U. Tipayamontri, and R. C. Scott. Effects of sodium intake on steady‐state potassium excretion. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F772–F778, 1984.
 514. Young, D. B., and R. E. McCaa. Role of renin‐angiotensin system in potassium control. Am. J. Physiol. 238 (Regulatory Integrative Comp. Physiol. 7): R359–R363, 1980.
 515. Young, D. B., R. E. McCaa, Y‐J. Pan, and A. C. Guyton. Effectiveness of the aldosterone‐sodium and ‐potassium feedback control system. Am. J. Physiol. 231: 945–953, 1976.
 516. Young, D. B., and A. W. Paulsen. Interrelated effects of aldosterone and plasma potassium on potassium excretion. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F28–F34, 1983.
 517. Young, D. B., M. J. Smith, Jr., T. E. Jackson, and R. E. Scott. Multiplicative interaction between angiotensin II and K concentration in stimulation of aldosterone. Am. J. Physiol. 247 (Endocrinol. Metab. 10): E328–E335, 1984
 518. Zalups, R. K. Effect of dietary K and 75% nephrectomy on the morphology of principal cells in CCDs. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F387–F396, 1989.
 519. Zalups, R. K., B. A. Stanton, J. B. Wade, and G. Giebisch. Structural adaptation in initial collecting tubule following reduction in renal mass. Kidney Int. 27: 636–642, 1985.
 520. Zeidel, M. L., J. L. Seifter, S. Leor, B. M. Brenner, and P. Silva. Atrial peptides inhibit oxygen consumption in kidney medullary collecting duct cells. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F379–F383, 1986.
 521. Zeidel, M. L., P. Silva, B. M. Brenner, and J. L. Seifter. cGMP mediates effects of atrial peptides on medullary collecting duct cells. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F551–F559, 1987.
 522. Zettle, R. M., M. L. West, C. B. Chen, and M. L. Halperin. Does the kidney “escape” from the kaliuretic action of mineralocorticoids? Miner. Electrolyte Metab. 13: 340–346, 1987.
 523. Zupka, M. T., and L. P. Sullivan. Effect of barium on potassium transport in amphibian kidney. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F433–F443, 1986.
 524. Zwiefach, A., S. Desir, P. Aronson, and G. Giebisch. Potassium channels from proximal brush border membranes incorporated into lipid bilayers. FASEB J. 2: A750 (abstr. 2655), 1988.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Bruce A. Stanton, Gerhard H. Giebisch. Renal Potassium Transport. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 813-874. First published in print 1992. doi: 10.1002/cphy.cp080119