Comprehensive Physiology Wiley Online Library

Control of Sodium Excretion: An Integrative Approach

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Intrarenal Hemodynamic Control of Sodium Excretion
1.1 Effects of Peritubular Starling Forces on Sodium Excretion
1.2 Effects of Medullary Blood Flow on Sodium Excretion
1.3 Effects of Renal Perfusion Pressure on Sodium Excretion
2 Neural Control of Sodium Excretion
2.1 Sodium Intake and Body Fluid Volumes
2.2 Low‐Pressure Baroreceptors
2.3 Renal Sympathetic Nerve Activity
3 Hormonal Control of Sodium Excretion
3.1 Renin–Angiotensin–Aldosterone System
3.2 Renal Prostaglandin System
3.3 Renal Kallikrein–Kinin System
3.4 Natriuretic Hormone
3.5 Atrial Natriuretic Peptide
4 Summary
Figure 1. Figure 1.

Effect of intrarenal albumin infusion on proximal reabsorption of sodium in extracellular fluid volume‐expanded dogs (left column) and hydropenic dogs (right column).

Adapted from Ott et al. 234
Figure 2. Figure 2.

Effects of intrarenal prostaglandin E2 infusion with (open bar) or without (solid bar) renal interstitial hydrostatic pressure (RIHP) increases and a prostaglandin analogue (PA) (hatched bar) on renal blood flow and fractional sodium excretion.

Adapted from Haas et al. 117
Figure 3. Figure 3.

Relationship between fractional excretion of sodium (FENa) and renal subcapsular pressure (Psc) in rats with (open circles) or without (closed circles) ligated renal lymphatics during normal (A) and volume‐expanded (B) conditions.

Adapted from Wilcox et al. 298
Figure 4. Figure 4.

Representation of proximal tubule cell in relation to peritubular capillary under normal and volume‐expanded conditions. Sodium diffuses down electrochemical concentration gradient from tubule lumen into cell and then is actively transported into interstitial space, with water following passively. Uptake of this reabsorbate from interstitial space into peritubular capillary is determined by balance of Starling forces across capillary wall, where πc and πi represent oncotic pressures and Pc and Pi represent hydrostatic pressures in the peritubular capillary and interstitium, respectively. In response to volume expansion, a new balance of Starling forces is achieved where Pc is elevated and πc is reduced. These changes result in a reduction in uptake of reabsorbate, thereby increasing renal interstitial volume and Pi and reducing πi. The resultant increase in Pi leads to a greater backleak of sodium from paracellular space into tubule lumen, thereby reducing net sodium reabsorption.

Figure 5. Figure 5.

Pathway whereby increases in medullary blood flow increase sodium excretion.

Figure 6. Figure 6.

Effects of renal perfusion pressure on sodium excretion, glomerular filtration rate (GFR), and renal blood flow (RBF).

Adapted from Baer et al. 8
Figure 7. Figure 7.

Pathways whereby increases in renal perfusion pressure increase sodium excretion.

Figure 8. Figure 8.

Effects of renal perfusion pressure on fractional sodium excretion in normal dogs and in dogs pretreated with a prostaglandin synthesis inhibitor, indomethacin.

Adapted from Carmines et al. 46
Figure 9. Figure 9.

Fractional reabsorption of sodium (FRNa) from proximal tubules of deep (lower right panel) and superficial (upper right panel) nephrons and whole kidney (left panel) in response to increases in renal perfusion pressure (RPP).

Adapted from Haas et al. 115
Figure 10. Figure 10.

Effects of aldosterone infusion on mean arterial pressure, cumulative sodium balance, and urinary sodium excretion in dogs when renal perfusion pressure was permitted to increase (left) and when renal perfusion pressure was servocontrolled at normal levels (right).

Adapted from Hall et al. 122
Figure 11. Figure 11.

Pathway whereby renal sympathetic nervous system increases sodium reabsorption in response to extracellular fluid volume contraction.

Figure 12. Figure 12.

Effects of changes in sodium space on blood volume of conscious anephric dogs. Each point represents mean values from dogs in 10% saline infusion group (squares), 5% saline infusion group (triangles), and in control group with no infusion (circles). Solid line has been drawn through mean values of blood volume and sodium space measured at 20 min, 40 min, 1 h, 2 h, 3 h, 4 h, and 5 h after infusion.

Adapted from Manning and Guyton 193
Figure 13. Figure 13.

Sodium excretion of bilaterally denervated (closed circles) and control (open circles) conscious rats during normal‐, low‐ and high‐sodium diet.

Adapted from Bencsáth et al. 23
Figure 14. Figure 14.

Cumulative sodium balance in renal innervated (solid circles) and bilaterally renal denervated (open circles) rats on normal‐ and low‐sodium diet.

Adapted from DiBona and Sawin 69
Figure 15. Figure 15.

Sodium excretory response to saline expansion in normal humans and in humans pretreated with metoclopramide.

Adapted from Krishna et al. 175
Figure 16. Figure 16.

Pathways whereby the renin–angiotensin‐aldosterone system increases sodium reabsorption in response to extracellular fluid volume contraction.

Figure 17. Figure 17.

Effects of sodium depletion on papillary plasma flow (PPF), urine osmolality, and papillary tip sodium content and osmolality.

Adapted from Chou et al. 54
Figure 18. Figure 18.

Effects of peritubular infusion of angiotension II on steady‐state sodium concentration gradient (ΔCNa) across proximal tubule wall. Open circles, angiotensin II; closed circles, control.

Figure 19. Figure 19.

Changes in sodium excretion during increasing rates of angiotensin infusion with renal arterial pressure either maintained at control level (servocontrol; open circles) or permitted to increase (normal; closed circles).

Adapted from Olsen et al. 227
Figure 20. Figure 20.

Intrarenal efects of angiotensin II antagonist on renal hemodynamics and sodium and water excretion, in sodium‐depleted dogs. Open bars, saline; closed bars, antagonist.

Adapted from Hall et al. 120
Figure 21. Figure 21.

Pathway whereby renal prostaglandin system increases sodium excretion in response to extracellular fluid volume expansion.

Figure 22. Figure 22.

Changes in renal function produced by increasing rates of sodium arachidonate in normal dogs (solid circles) and in dogs pretreated with prostaglandin synthesis inhibitor (open circles).

Adapted from Tannenbaum et al. 284
Figure 23. Figure 23.

Effects of vehicle (V) or meclofenamate (M) administration on sodium excretion after load of 77 mEq sodium chloride in normal dogs.

Adapted from Altsheler et al. 3
Figure 24. Figure 24.

Pathway whereby renal kallikrein–kinin system increases sodium excretion in response to extracellular volume expansion.

Figure 25. Figure 25.

Effects of intrarenal infusion of bradykinin for 60 min on glomerular filtration rate, renal blood flow, and sodium excretion.

Adapted from Granger and Hall 108
Figure 26. Figure 26.

Pathway whereby atrial natriuretic peptide system increases sodium excretion in response to extracellular fluid volume expansion.

Figure 27. Figure 27.

Effect of graded constriction of pulmonary artery on plasma atrial natriuretic peptide (ANP) concentration and relationship between change in right atrial pressure (RAP), left atrial pressure (LAP), and plasma ANP.

Adapted from Metzler et al. 210
Figure 28. Figure 28.

Effect of intrarenal infusion of synthetic atrial natriuretic peptide on renal function and renin release. Open bars, control; closed bars, atrial natriuretic peptide; hatched bars, recovery. MAP, mean arterial pressure; FF, filtration fraction; , fractional phosphate excretion; RBF, renal blood flow; V, urinary flow rate; FEPO fractional lithium excretion; GFR, glomerular filtration rate; FENa, fractional sodium excretion, Uosmol, urine osmolality; RVR, renal vascular resistance; FEK, fractional potassium excretion; RSR, renin secretion rate.

Adapted from Burnett et al. 39
Figure 29. Figure 29.

Effect of intrarenal infusion of atrial natriuretic peptide at rate that does not increase glomerular filtration rate on fractional excretion of sodium and lithium.

Adapted from Salazar et al. 251
Figure 30. Figure 30.

Effect of atrial natriuretic peptide on sodium influx into exponential growing cells. Atrial natriuretic peptide was added for 30 min, and 2‐min 22Na + uptakes were measured.

Figure 31. Figure 31.

Effects of acute atrial appendectomy (ATRX) on plasma atrial natriuretic peptide and renal response to acute saline load.

Adapted from Schwab et al. 260
Figure 32. Figure 32.

Effects of acute saline load on plasma atrial natriuretic peptide (ANP) concentration and plasma renin activity (PRA) in conscious dogs.

Adapted from Salazar et al. 254
Figure 33. Figure 33.

Effects of progressive increments of sodium intake by continuous intravenous saline infusion on plasma levels of atrial natriuretic peptide (ANP).

Adapted from Salazar et al. 252
Figure 34. Figure 34.

Temporal changes in plasma levels of atrial natriuretic peptide (ANP), cumulative sodium balance, and sodium excretion during aldosterone escape.

Adapted from Granger et al. 110
Figure 35. Figure 35.

Effects of left atrial (LA) stretch on urine volume, sodium excretion, potassium excretion, and plasma atrial natriuretic factor (ANF) in normal and cardiac‐denervated dogs.

Adapted from Goetz et al. 102


Figure 1.

Effect of intrarenal albumin infusion on proximal reabsorption of sodium in extracellular fluid volume‐expanded dogs (left column) and hydropenic dogs (right column).

Adapted from Ott et al. 234


Figure 2.

Effects of intrarenal prostaglandin E2 infusion with (open bar) or without (solid bar) renal interstitial hydrostatic pressure (RIHP) increases and a prostaglandin analogue (PA) (hatched bar) on renal blood flow and fractional sodium excretion.

Adapted from Haas et al. 117


Figure 3.

Relationship between fractional excretion of sodium (FENa) and renal subcapsular pressure (Psc) in rats with (open circles) or without (closed circles) ligated renal lymphatics during normal (A) and volume‐expanded (B) conditions.

Adapted from Wilcox et al. 298


Figure 4.

Representation of proximal tubule cell in relation to peritubular capillary under normal and volume‐expanded conditions. Sodium diffuses down electrochemical concentration gradient from tubule lumen into cell and then is actively transported into interstitial space, with water following passively. Uptake of this reabsorbate from interstitial space into peritubular capillary is determined by balance of Starling forces across capillary wall, where πc and πi represent oncotic pressures and Pc and Pi represent hydrostatic pressures in the peritubular capillary and interstitium, respectively. In response to volume expansion, a new balance of Starling forces is achieved where Pc is elevated and πc is reduced. These changes result in a reduction in uptake of reabsorbate, thereby increasing renal interstitial volume and Pi and reducing πi. The resultant increase in Pi leads to a greater backleak of sodium from paracellular space into tubule lumen, thereby reducing net sodium reabsorption.



Figure 5.

Pathway whereby increases in medullary blood flow increase sodium excretion.



Figure 6.

Effects of renal perfusion pressure on sodium excretion, glomerular filtration rate (GFR), and renal blood flow (RBF).

Adapted from Baer et al. 8


Figure 7.

Pathways whereby increases in renal perfusion pressure increase sodium excretion.



Figure 8.

Effects of renal perfusion pressure on fractional sodium excretion in normal dogs and in dogs pretreated with a prostaglandin synthesis inhibitor, indomethacin.

Adapted from Carmines et al. 46


Figure 9.

Fractional reabsorption of sodium (FRNa) from proximal tubules of deep (lower right panel) and superficial (upper right panel) nephrons and whole kidney (left panel) in response to increases in renal perfusion pressure (RPP).

Adapted from Haas et al. 115


Figure 10.

Effects of aldosterone infusion on mean arterial pressure, cumulative sodium balance, and urinary sodium excretion in dogs when renal perfusion pressure was permitted to increase (left) and when renal perfusion pressure was servocontrolled at normal levels (right).

Adapted from Hall et al. 122


Figure 11.

Pathway whereby renal sympathetic nervous system increases sodium reabsorption in response to extracellular fluid volume contraction.



Figure 12.

Effects of changes in sodium space on blood volume of conscious anephric dogs. Each point represents mean values from dogs in 10% saline infusion group (squares), 5% saline infusion group (triangles), and in control group with no infusion (circles). Solid line has been drawn through mean values of blood volume and sodium space measured at 20 min, 40 min, 1 h, 2 h, 3 h, 4 h, and 5 h after infusion.

Adapted from Manning and Guyton 193


Figure 13.

Sodium excretion of bilaterally denervated (closed circles) and control (open circles) conscious rats during normal‐, low‐ and high‐sodium diet.

Adapted from Bencsáth et al. 23


Figure 14.

Cumulative sodium balance in renal innervated (solid circles) and bilaterally renal denervated (open circles) rats on normal‐ and low‐sodium diet.

Adapted from DiBona and Sawin 69


Figure 15.

Sodium excretory response to saline expansion in normal humans and in humans pretreated with metoclopramide.

Adapted from Krishna et al. 175


Figure 16.

Pathways whereby the renin–angiotensin‐aldosterone system increases sodium reabsorption in response to extracellular fluid volume contraction.



Figure 17.

Effects of sodium depletion on papillary plasma flow (PPF), urine osmolality, and papillary tip sodium content and osmolality.

Adapted from Chou et al. 54


Figure 18.

Effects of peritubular infusion of angiotension II on steady‐state sodium concentration gradient (ΔCNa) across proximal tubule wall. Open circles, angiotensin II; closed circles, control.



Figure 19.

Changes in sodium excretion during increasing rates of angiotensin infusion with renal arterial pressure either maintained at control level (servocontrol; open circles) or permitted to increase (normal; closed circles).

Adapted from Olsen et al. 227


Figure 20.

Intrarenal efects of angiotensin II antagonist on renal hemodynamics and sodium and water excretion, in sodium‐depleted dogs. Open bars, saline; closed bars, antagonist.

Adapted from Hall et al. 120


Figure 21.

Pathway whereby renal prostaglandin system increases sodium excretion in response to extracellular fluid volume expansion.



Figure 22.

Changes in renal function produced by increasing rates of sodium arachidonate in normal dogs (solid circles) and in dogs pretreated with prostaglandin synthesis inhibitor (open circles).

Adapted from Tannenbaum et al. 284


Figure 23.

Effects of vehicle (V) or meclofenamate (M) administration on sodium excretion after load of 77 mEq sodium chloride in normal dogs.

Adapted from Altsheler et al. 3


Figure 24.

Pathway whereby renal kallikrein–kinin system increases sodium excretion in response to extracellular volume expansion.



Figure 25.

Effects of intrarenal infusion of bradykinin for 60 min on glomerular filtration rate, renal blood flow, and sodium excretion.

Adapted from Granger and Hall 108


Figure 26.

Pathway whereby atrial natriuretic peptide system increases sodium excretion in response to extracellular fluid volume expansion.



Figure 27.

Effect of graded constriction of pulmonary artery on plasma atrial natriuretic peptide (ANP) concentration and relationship between change in right atrial pressure (RAP), left atrial pressure (LAP), and plasma ANP.

Adapted from Metzler et al. 210


Figure 28.

Effect of intrarenal infusion of synthetic atrial natriuretic peptide on renal function and renin release. Open bars, control; closed bars, atrial natriuretic peptide; hatched bars, recovery. MAP, mean arterial pressure; FF, filtration fraction; , fractional phosphate excretion; RBF, renal blood flow; V, urinary flow rate; FEPO fractional lithium excretion; GFR, glomerular filtration rate; FENa, fractional sodium excretion, Uosmol, urine osmolality; RVR, renal vascular resistance; FEK, fractional potassium excretion; RSR, renin secretion rate.

Adapted from Burnett et al. 39


Figure 29.

Effect of intrarenal infusion of atrial natriuretic peptide at rate that does not increase glomerular filtration rate on fractional excretion of sodium and lithium.

Adapted from Salazar et al. 251


Figure 30.

Effect of atrial natriuretic peptide on sodium influx into exponential growing cells. Atrial natriuretic peptide was added for 30 min, and 2‐min 22Na + uptakes were measured.



Figure 31.

Effects of acute atrial appendectomy (ATRX) on plasma atrial natriuretic peptide and renal response to acute saline load.

Adapted from Schwab et al. 260


Figure 32.

Effects of acute saline load on plasma atrial natriuretic peptide (ANP) concentration and plasma renin activity (PRA) in conscious dogs.

Adapted from Salazar et al. 254


Figure 33.

Effects of progressive increments of sodium intake by continuous intravenous saline infusion on plasma levels of atrial natriuretic peptide (ANP).

Adapted from Salazar et al. 252


Figure 34.

Temporal changes in plasma levels of atrial natriuretic peptide (ANP), cumulative sodium balance, and sodium excretion during aldosterone escape.

Adapted from Granger et al. 110


Figure 35.

Effects of left atrial (LA) stretch on urine volume, sodium excretion, potassium excretion, and plasma atrial natriuretic factor (ANF) in normal and cardiac‐denervated dogs.

Adapted from Goetz et al. 102
References
 1. Adetuyibi, A., and I. H. Mills. Relation between urinary kallikrein and renal function, hypertension, and excretion of sodium and water in man. Lancet 2: 203–207, 1971.
 2. Alexander, R. W., J. R. Gill, Jr., H. Yamabe, W. Lovenberg, and H. R. Keiser. Effects of dietary sodium and of acute saline infusion on the interrelationship between dopamine excretion and adrenergic activity in man. J. Clin. Invest. 54: 194–200, 1974.
 3. Altsheler, P., S. Klahr, R. Rosenbaum, and E. Slatopolsky. Effects of inhibitors of prostaglandin synthesis on renal sodium excretion in normal dogs and dogs with decreased renal mass. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F338–F344, 1978.
 4. Armstrong, P. W., T. P. Stopps, S. E. Ford, and A. J. De Bold. Rapid ventricular pacing in the dog: pathophysiologic studies of heart failure. Circulation 74: 1075–1084, 1986.
 5. Awazu, M., Granger, J. P., and Knox, F. G. Natriuretic Effect of Atrial Natriuretic Peptide in Diabetes Insipidus Rates (42650). Exp. Biol. Med. 187: 165–168, 1988.
 6. Awazu, M., Imada, T., Kon, V., Inagami, T., and Ichikawa, I. Role of endogenous atrial natriuretic peptide in congestive heart failure. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 26): R641–R646, 1989.
 7. Baer, P. G., and J. C. McGiff. Hormonal system and renal hemodynamics. Annu. Rev. Physiol. 42: 589–601, 1980.
 8. Baer, P. G., L. G. Navar, and A. C. Guyton. Renal autoregulation, filtration rate, and electrolyte excretion during vasodilation. Am. J. Physiol. 219: 619–625, 1970.
 9. Banks, R. O. Effects of a Physiological dose of ANP on renal function in dogs. Am. J. Physiol. 24 (Renal Fluid Electrolyte Physiol. 24): F907–F910, 1988.
 10. Baldamus, C. A., K. Hierholzer, G. Rumrich, H. Stolte, E. Uhlich, K. Ullrich, and M. Wiederholt. Natriumtransportt in den proximalen Tubuli und den Sammelrohren bei Variation der Natriumkonzentration im umgebenden Interstitium. Pflugers Arch. 310: 354–368, 1969.
 11. Ball, S. G., and M. B. Lee. The effect of carbidopa administration on urinary sodium excreted in man. Is dopamine an intrarenal natriuretic hormone? Br. J. Clin. Pharmacol. 4: 115–119, 1977.
 12. Ball, S. G., N. S. Oats, and M. B. Lee. Urinary dopamine in man and rat: effects of inorganic salts on dopamine excretion. Clin. Sci. Mol. Med. 55: 167–173, 1978.
 13. Ballermann, B. J., and B. M. Brenner. Biologically active atrial peptides. J. Clin. Invest. 76: 2041–2048, 1985.
 14. Bank, N., H. Aynedjian, V. Bandel, and D. Goldman. Effect of acute hypertension on sodium transport by the distal nephron. Am. J. Physiol. 219: 275–280, 1970.
 15. Bank, N., H. S. Aynedjian, and T. Wada. Effect of peritubular capillary perfusion rate on proximal sodium reabsorption. Kidney Int. 1: 397–405, 1972.
 16. Barajas, L., K. Powers, and P. Wang. Innervation of the renal cortical tubules: a quantitative study. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F50–F60, 1984.
 17. Barraclough, M. A., and I. H. Mills. Effect of bradykinin on renal function. Clin. Sci. 28: 69–74, 1965.
 18. Baum, M., and R. D. Toto. Lack of a direct effect of atrial natriuretic factor in the rabbit proximal tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F66–F69, 1986.
 19. Baylis, C., W. M. Deen, B. D. Myers, and B. M. Brenner. Effects of some vasodilator drugs on transcapillary fluid exchange in renal cortex. Am. J. Physiol. 230: 1148–1158, 1976.
 20. Beck, T. R., and M. F. Dunn. The relationship of antidiuretic hormone and renal prostaglandins. Miner. Electrolyte Metab. 6: 46–59, 1981.
 21. Bello‐Reuss, E., Y. Higashi, and Y. Kaneda. Dopamine decreases fluid reabsorption in straight portions of rabbit proximal tubule. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F634–F640, 1982.
 22. Bello‐Reuss, E., D. L. Trevino, and C. W. Gottschalk. Effect of renal sympathetic nerve stimulation on proximal water and sodium reabsorption. J. Clin. Invest. 57: 1104–1107, 1976.
 23. Bencsáth, P., M. I. Fekete, B. Kanyicska, G. Szénási, and L. Takács. Renal excretion of sodium after bilateral renal sympathectomy in the anaesthetized and conscious rat. J. Physiol. Lond. 331: 443–450, 1982.
 24. Bencsáth, P., G. Szénási, and L. Takács. Renal nerves and sodium conservation in conscious rats (Letter to the editor). Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F616–F617, 1985.
 25. Blaustein, M. P. Sodium ions, calcium ions, blood pressure regulation and hypertension: a reassessment and a hypothesis. Am. J. Physiol. 232 (Cell Physiol. 1): C165–C173, 1977.
 26. Bonjour, J.‐P., and R. L. Malvin. Effect of angiotensin in the denervated kidney of the dog. Proc. Soc. Exp. Biol. Med. 131: 469–473, 1969.
 27. Boulpaep, E. L. Permeability changes of the proximal tubule of Necturus during saline loading. Am. J. Physiol. 222: 517–531, 1972.
 28. Bourgoignie, J. J., K. H. Hwang, C. Espinel, S. Klahr, and N. S. Bricker. A natriuretic factor in the serum of patients with chronic uremia. J. Clin. Invest. 51: 1514–1527, 1972.
 29. Brenner, B. M., K. Falchuk, R. Keimowitz, and R. Berliner. The relationship between peritubular capillary protein concentration and fluid reabsorption by the renal proximal tubule. J. Clin. Invest. 48: 1519–1531, 1969.
 30. Brenner, B. M., and J. L. Troy. Postglomerular vascular protein concentration: evidence for a causal role in government fluid reabsorption and glomerular balance by the renal proximal tubule. J. Clin. Invest. 50: 336–349, 1971.
 31. Bricker, N. S., L. G. Fine, M. Kaplan, M. Epstein, J. J. Bourgoignie, and A. Licht. “Magnification phenomenon” in chronic renal disease. N. Engl. J. Med. 299: 1287–1293, 1978.
 32. Briggs, J. P., B. Steipe, G. Schubert, and J. Schnermann. Micropuncture studies of the renal effects of atrial natriuretic substance. Pflugers Arch. 395: 271–276, 1982.
 33. Brown, G. P., and J. G. Douglas. Angiotensin II binding sites in isolated rat renal brush border membranes. Endocrinology 111: 1830–1836, 1982.
 34. Brown, G. P., and J. G. Douglas. Angiotensin II binding sites in rat and primate isolated renal tubular basolateral membranes. Endocrinology 112: 2007–2014, 1983.
 35. Buckalew, V. M., Jr., and K. A. Gruber. Natriuretic hormone. Annu. Rev. Physiol. 46: 343–358, 1982.
 36. Buckalew, V. M., J. B. Puschett, and J. E. Kintzel. Mechanism of exaggerated natriuresis in hypertensive man: impaired sodium transport in the loop of Henle. J. Clin. Invest. 48: 1007–1016, 1969.
 37. Burnett, J. C., Jr., J. P. Granger, and T. J. Opgenorth. Effects of synthetic atrial natriuretic factor on renal function and renin release. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F863–F866, 1984.
 38. Burnett, J. C., Jr., J. A. Haas, and F. G. Knox. Segmental analysis of sodium reabsorption during renal vein constriction. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F19–F22, 1982.
 39. Burnett, J. C., Jr., J. A. Haas, and M. S. Larson. Renal interstitial pressure in mineralocorticoid escape. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F396–F399, 1985.
 40. Burnett, J. C., Jr., P. C. Kao, D. C. Hu, D. W. Heser, D. Heublein, J. P. Granger, T. J. Opgenorth, and G. S. Reeder. Atrial natriuretic peptide elevation in congestive heart failure in the human. Science 231: 1145–1147, 1986.
 41. Burnett, J. C., Jr., T. J. Opgenorth, and J. P. Granger. The renal action of atrial natriuretic peptide during control of glomerular filtration. Kidney Int. 30: 16–19, 1986.
 42. Camargo, M. J. F., H. D. Kleinert, S. A. Atlas, J. E. Sealey, J. H. Laragh, and T. Maack. Ca‐dependent hemodynamic and natriuretic effects of atrial extract in isolated rat kidney. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F447–F456, 1984.
 43. Campbell, W. B., M. G. Currie, and P. Needleman. Inhibition of aldosterone biosynthesis by atriopeptins in rat adrenal cells. Cire. Res. 57: 113–118, 1985.
 44. Cantiello, H. F., and D. A. Ausiello. Atrial natriuretic factor and cGMP inhibit amiloride‐sensitive Na+ transport in the cultured renal epithelial cell line, LLC‐PK1. Biochem. Biophys. Res. Commun. 134: 852–860, 1986.
 45. Capelo, L. R., and F. Alzamora. A stop flow analysis of the effects of intrarenal infusion of bradykinin. Arch. Int. Pharmacodyn. Ther. 230: 156–165, 1977.
 46. Carmines, P. K., P. D. Bell, R. J. Roman, J. Work, and L. G. Navar. Prostaglandins in the sodium excretory response to altered renal arterial pressure in dogs. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F8–F14, 1985.
 47. Carone, F. A., T. N. Pullman, S. Oparil, and S. Nakamura. Micropuncture evidence of rapid hydrolysis of bradykinin by rat proximal tubule. Am. J. Physiol. 230: 1420–1424, 1976.
 48. Carretero, O. A., and A. G. Scicli. Renal kallikrein: its localization and possible role in renal function. Federation Proc. 35: 194–195, 1976.
 49. Carretero, O. A., and A. G. Scicli. Possible role of kinins in circulatory homeostasis. Hypertension 3: 14–112, 1981.
 50. Carroll, R. G., T. E. Lohmeier, and A. J. Brown. Chronic angiotensin II infusion decreases renal norepinephrine overflow in conscious dogs. Hypertension 6: 675–681, 1984.
 51. Chartier, L., E. Schiffrin, G. Thibault, and R. Garcia. Atrial natriuretic factor inhibits the stimulation of aldosterone secretion by angiotensin II, ACTH, and potassium in vitro and angiotensin II‐induced steroidogenesis in vivo. Endocrinology 115: 2026–2028, 1984.
 52. Chou, C., and D. J. Marsh. Time course of proximal tubule response to acute arterial hypertension in the rat. Am. J. Physiol, 254 (Renal Fluid Electrolyte Physiol. 21): F601–F607, 1988.
 53. Chou, S.‐Y., P. F. Faubert, and J. G. Porush. Contribution of angiotensin to the control of medullary hemodynamics. Federation Proc. 45: 1438–1443, 1986.
 54. Chou, S.‐Y., S. Spitalewitz, P. F. Faubert, I. Y. Park, and J. G. Porush. Inner medullary hemodynamics in chronic salt‐depleted dogs. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F146–F154, 1984.
 55. Chuang, E. L., H. J. Reineck, R. W. Osgood, R. T. Kunau, Jr., and J. H. Stein. Studies on the mechanism of reduced urinary osmolality after exposure of the renal papilla. J. Clin. Invest. 61: 633–639, 1978.
 56. Cody, R. J., S. A. Atlas, and J. H. Laragh. Physiologic and pharmacologic studies of atrial natriuretic factor: a natriuretic and vasoactive peptide. J. Clin. Pharmacol. 27: 927–936, 1987.
 57. Cogan, M. G. Atrial natriuretic factor can increase renal solute excretion primarily by raising glomerular filtration. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F710–F714, 1986.
 58. Cogan, M. G., M. H. Xie, F. Y. Liu, P. C. Wong, and P. B. M. W. M. Timmermans. Effects of DuP 753 on proximal nephron and renal transport. Am. J. Hypertension 4 (4 Suppl): 315S–320S, 1991.
 59. Cohen, H. I., D. J. Marsh, and B. Kayser. Autoregulation in vasa recta of the rat kidney. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F32–F40, 1983.
 60. Conger, J. D., E. Bartoli, and L. E. Earley. A study in vivo of peritubular oncotic pressure and proximal tubular reabsorption in the rat. Clin. Sci. Mol. Med. 51: 379–392, 1976.
 61. Coviello, A. Hydroosmotic effect of angiotensin II: isolated toad bladder. Acta Physiol, Lat. Am. 22: 218–226, 1972.
 62. Coviello, A., and E. S. Braukmann. Hydroosmotic effect of angiotensin II: isolated toad skin. Acta Physiol, Lat. Am. 23: 18–23, 1973.
 63. Davis, C. R., J. Schnermann, and J. Briggs. Effect of atrial natriuretic factor (ANF) on medullary solute gradients (Abstract). Kidney Int. 29: 414, 1986.
 64. DeBold, A. J. Heart atria granularity effects of changes in water‐electrolyte balance. Proc. Soc. Exp. Biol. Med. 161: 508–511, 1979.
 65. DeBold, A. J. Atrial natriuretic factor of the rat heart. Studies on isolation and properties. Proc. Soc. Exp. Biol. Med. 170: 133–138, 1982.
 66. DeBold, A. J., H. B. Borenstein, A. T. Veress, and H. Sonnenberg. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extracts in rats. Life Sci. 28: 89–94, 1981.
 67. DiBona, G. F. The functions of the renal nerves. Rev. Physiol. Biochem. Pharmacol. 94: 76–181, 1982.
 68. DiBona, G. F., and L. L. Sawin. Effect of renal nerve stimulation on NaCl and H2O transport in Henle's loop of the rat. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F576–F580, 1982.
 69. DiBona, G. F., and L. L. Sawin. Renal nerves in renal adaptation to dietary sodium restriction. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F322–F328, 1983.
 70. DiBona, G. F., and L. L. Sawin. Reply. (Letter to the editor) Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F617–F619, 1985.
 71. Dietz, J. R. Release of natriuretic factor from rat heart‐lung preparation by atrial distension. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): R193–R1096, 1984.
 72. Dresser, T. P., R. E. Lynch, E. G. Schneider, and F. G. Knox. Effect of increases in blood pressure on pressure and reabsorption in the proximal tubule. Am. J. Physiol. 220: 444–447, 1971.
 73. Earley, L. E., and R. M. Friedler. Changes in renal blood flow and possibly the intrarenal distribution of blood during the natriuresis accompanying saline loading in the dog. J. Clin. Invest. 44: 929–941, 1965.
 74. Earley, L. E., and R. M. Friedler. Studies on the mechanism of natriuresis accompanying increased renal blood flow and its role in the renal response to extracellular volume expansion. J. Clin. Invest. 44: 1857–1865, 1965.
 75. Earley, L. E., and R. M. Friedler. The effects of combined renal vasodilatation and pressor agents on renal hemodynamics and the tubular reabsorption of sodium. J. Clin. Invest. 45: 542–551, 1966.
 76. Earley, L. E., and R. W. Schrier. Intrarenal control of sodium excretion by hemodynamic and physical factors. In: Handbook of Physiology. Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington, D.C.: Am. Physiol. Soc., 1973, sect. B, chapt. 22, p. 721–762.
 77. Elroy, L., J. P. Grunfeld, F. Bayle, L. Bankir, R. Ramos‐Frendo, and M. M. Tring‐Trang‐Tan. Papillary plasma flow in rats. II. Hormonal control. Pflugers Arch. 398: 253–258, 1983.
 78. Epstein, M. Atrial natriuretic factor in patients with liver disease. Am. J. Nephrol. 9: 89–100, 1989.
 79. Epstein, M., R. D. Loutzenhiser, E. Friedland, R. M. Aceto, M. J. F. Camargo, and S. A. Atlas. Increases in circulating atrial natriuretic factor during immersion‐induced central hypervolaemia in normal humans. J. Hypertension 4 (Suppl. 2): S93–S99, 1986.
 80. Epstein, M., R. Loutzenhiser, E. Friedland, R. M. Aceto, M. J. F. Camargo, and S. A. Atlas. Relationship of increased plasma atrial natriuretic factor and renal sodium handling during immersion‐induced central hypervolemia in normal humans. J. Clin. Invest. 79: 738–745, 1987.
 81. Fadem, S. Z., G. Hernandez‐Llamas, R. V. Patak, S. G. Rosenblatt, M. D. Lifschitz, and J. H. Stein. Studies on the mechanism of sodium excretion during drug‐induced vasodilatation in the dog. J. Clin. Invest. 69: 604–610, 1982.
 82. Fagard, R. H., A. W. Cowley, Jr., L. G. Navar, H. G. Langford, and A. C. Guyton. Renal responses to slight elevations of renal arterial plasma angiotensin II concentration in dogs. Clin. Exp. Pharmacol. Physiol. 3: 539–544, 1976.
 83. Falchuk, K. M., B. M. Brenner, M. Tadokoro, and R. W. Berliner. Oncotic and hydrostatic pressures in peritubular capillaries and fluid reabsorption by proximal tubule. Am. J. Physiol. 220: 1427–1433, 1971.
 84. Faubert, P. F., S. Y. Chou, J. G. Porush, and E. M. Epstein. The role of angiotensin II (AII) in the regulation of papillary plasma flow and Na excretion (Abstract). Kidney Int. 23: 243, 1983.
 85. Felder, R. A., M. Blecher, P. L. Calcagno, and P. A. Jose. Dopamine receptors in the proximal tubule of the rabbit. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F499–F505, 1984.
 86. Fine, L. G., and W. Trizna. Influence of prostaglandins on sodium transport of isolated medullary nephron segments. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F383–F390, 1977.
 87. Firth, J. D., A. E. G. Raine, and J. G. G. Ledingham. Low concentrations of ANP cause pressure‐dependent natriuresis in the isolated kidney. Am. J. Physiol. 255 (Regulatory Integrative Comp. Physiol. 24): F391–F396, 1988.
 88. Fitzgibbons, J. P., J. Gennari, H. B. Garfinkel, and S. Cortell. Dependence of saline‐induced natriuresis upon exposure of the kidney to the physical effects of extracellular fluid volume expansion. J. Clin. Invest. 54: 1428–1436, 1974.
 89. Frederickson, E. D., T. Bradley, and L. I. Goldberg. Blockade of renal effects of dopamine in the dog by the DA1 antagonist SCH 23390. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F236–F240, 1985.
 90. Freeman, R. H., and J. O. Davis. Physiological actions of angiotensin II on the kidney. Federation Proc. 38: 2276–2279, 1979.
 91. Freeman, R. H., J. O. Davis, and R. C. Vari. Renal response to atrial natriuretic factor in conscious dogs with caval constriction. Am. J. Physiol. 248 (Regulatory Integrative Comp. 17): R495–R500, 1985.
 92. Fried, T. A., R. N. McCoy, R. W. Osgood, and J. H. Stein. Effect of atriopeptin II on determinants of glomerular filtration rate in the in vitro perfused dog glomerulus. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F1119–1122, 1986.
 93. Fried, T. A., R. W. Osgood, and J. H. Stein. Tubular site(s) of action of atrial natriuretic peptide in the rat. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F313–F316, 1988.
 94. Füslgraff, G., and A. Meiforth. Effects of prostaglandin E2 on excretion and reabsorption of sodium and fluid in rat kidneys (micropuncture studies). Pflugers Arch. 330: 243–256, 1971.
 95. Garcia‐Estan, J., and R. J. Roman. Role of renal interstitial hydrostatic pressure in the pressure diuresis response. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F63–F70, 1989.
 96. Garcia‐Estan, J., K. Takezawa, and R. J. Roman. Natriuretic effect of atriopeptin III in rats with papillary necrosis. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F859–F865, 1989.
 97. Garvin, J. L. Inhibition of Jv by ANF in rat proximal straight tubules requires angiotensin. Am. j. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F907–F911, 1989.
 98. Gauer, O. H., and J. P. Henry. Neurohormonal control of plasma volume. In: Cardiovascular Physiology II, edited by A. Guyton and A. W. Cowley, Jr. Baltimore, MD: University Park, 1976, Vol. 9, p. 145–190. (Int. Rev. Physiol. Ser.)
 99. Gauer, O. H., J. P. Henry, and C. Behn. The regulation of extracellular fluid volume. Annu. Rev. Physiol. 32: 547–595, 1970.
 100. Gill, J. R., Jr. Neural control of renal tubular sodium reabsorption. Nephron 23: 116–118, 1979.
 101. Gleim, G. W., G. Kao‐Lo, and D. L. Maude. Pressure natriuresis and prostaglandin secretion by perfused rat kidney. Kidney Int. 26: 683–688, 1984.
 102. Goetz, K. L., B. C. Wang, P. G. Geer, R. J. Leadley, Jr., and H. W. Reinhardt. Atrial stretch increases sodium excretion independently of release of atrial peptides. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 19): R946–R950, 1986.
 103. Grandchamp, A., and E. L. Boulpaep. Pressure control of sodium reabsorption and intercellular backflux across proximal kidney tubules. J. Clin. Invest. 54: 69–82, 1974.
 104. Granger, J. P. Regulation of sodium excretion by renal interstitial hydrostatic pressure. Federation Proc. 45: 840–844, 1986.
 105. Granger, J. P., and J. C. Burnett, Jr. Acute effects of angiotensin II on circulating levels of atrial natriuretic peptide in conscious dogs. J. Cardiovasc. Pharmacol. 8: 1324–1325, 1989.
 106. Granger, J. P., J. A. Haas, and F. G. Knox. Role of hydrostatic forces in the effects of angiotensin II on sodium reabsorption in the rat (Abstract). Kidney Int. 25: 288, 1984.
 107. Granger, J. P., J. A. Haas, and F. G. Knox. Effect of direct increases in renal interstitial hydrostatic pressure on sodium excretion. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F527–F532, 1988.
 108. Granger, J. P., and J. E. Hall. Acute and chronic actions of bradykinin on renal function and arterial pressure. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F87–F92, 1985.
 109. Granger, J. P., T. J. Opgenorth, J. Salazar, J. C. Romero, and J. C. Burnett, Jr. Long‐term hypotensive and renal effects of atrial natriuretic peptide. Hypertension 8: II112–II116, 1986.
 110. Granger, J. P., J. C. Burnett, Jr., J. C. Romero, T. J. Opgenorth, J. Salazar, and M. Joyce. Elevated levels of atrial natriuretic peptide during aldosterone escape. Am. J. Physiol. 252 (Regulatory Integrative Comp. Physiol. 21): R878–R882, 1987.
 111. Granger, J. P., and J. W. Scott. Effects of renal artery pressure on interstitial pressure and Na excretion during renal vasodilation. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F828–F833, 1988.
 112. Gunning, M. E., B. J. Ballerman, P. Silva, B. M. Brenner, and M. L. Zeidel. Characterization of ANP receptors in rabbit inner medullary collecting duct cells. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F324–F330, 1988.
 113. Gupta, P. D., J. P. Henry, R. Sinclair, and R. von Baumgarten. Responses of atrial and aortic baroreceptors to nonhypotensive hemorrhage and to transfusion. Am. J. Physiol. 211: 1429–1437, 1966.
 114. Guyton, A. C. Arterial pressure and hypertension. In: Circulatory Physiology III. Philadelphia: Saunders, 1980, p. 180–192.
 115. Haas, J. A., J. P. Granger, and F. G. Knox. Effect of renal perfusion pressure on sodium reabsorption from proximal tubules of superficial and deep nephrons. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F425–F429, 1986.
 116. Haas, J. A., T. G. Hammond, J. P. Granger, E. H. Blaine, and F. G. Knox. Mechanism of natriuresis during intrarenal infusion of prostaglandin. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F475–F479, 1984.
 117. Haas, J. A., and F. G. Knox. Synthetic atrial natriuretic peptide (ANP) decreases deep nephron proximal tubule sodium reabsorption (Abstract). Physiologist 29: 118, 1986.
 118. Hagege, J., and G. Richet. Proximal tubule dopamine histofluorescence in renal slices incubated in l‐dopa. Kidney Int. 27: 3–8, 1985.
 119. Hall, J. E. Control of sodium excretion by angiotensin II: intrarenal mechanisms and blood pressure regulation. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 19): R960–R972, 1986.
 120. Hall, J. E., T. G. Coleman, A. C. Guyton, J. W. Balfe, and H. C. Salgado. Intrarenal role of angiotensin II and [des‐asp1]angiotensin II. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F232–F239, 1979.
 121. Hall, J. E., J. P. Granger, R. L. Hester, T. G. Coleman, M. J. Smith, Jr., and R. B. Cross. Mechanisms of escape from sodium retention during angiotensin II hypertension. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F627–F634, 1984.
 122. Hall, J. E., J. P. Granger, M. J. Smith, Jr., and A. J. Premen. Role of renal hemodynamics and arterial pressure in aldosterone “escape.” Hypertension 6: 1183–1192, 1984.
 123. Hall, J. E., A. C. Guyton, M. J. Smith, Jr., and T. G. Coleman. Chronic blockade of angiotensin II formation during sodium deprivation. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F424–F432, 1979.
 124. Hall, J. E., A. C. Guyton, M. J. Smith, and T. G. Coleman. Blood pressure and renal function during chronic changes in sodium intake: role of angiotensin. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F271–F280, 1980.
 125. Hall, J. E., A. C. Guyton, N. C. Trippodo, T. E. Lohmeier, R. E. McCaa, and A. W. Cowley, Jr. Intrarenal control of electrolyte excretion by angiotensin II. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F538–F544, 1977.
 126. Hammond, T. G., A. Haramati, and F. G. Knox. Synthetic atrial natriuretic factor decreases renal tubular phosphate reabsorption in rats. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F315–F318, 1985.
 127. Hammond, T. G., A. N. K. Yusufi, F. G. Knox, and T. P. Dousa. Administration of atrial natriuretic factor inhibits sodium‐coupled transport in proximal tubules. J. Clin. Invest. 75: 1983–1989, 1985.
 128. Harris, P. J., and L. G. Navar. Tubular transport responses to angiotensin. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F621–F630, 1985.
 129. Harris, P. J., and J. A. Young. Dose‐dependent stimulation and inhibition of proximal tubular sodium reabsorption by angiotensin II in the rat kidney. Pflugers Arch. 367: 295–297, 1977.
 130. Harris, P. J., D. Thomas, and T. O. Morgan. Atrial natriuretic peptide inhibits angiotensin‐stimulated proximal tubular sodium and water of reabsorption. Nature 326: 697–698, 1987.
 131. Hartupee, D. A., J. C. Burnett, Jr., J. I. Mertz, and F. G. Knox. Acetylcholine‐induced vasodilation without natriuresis during control of interstitial pressure. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F325–F329, 1982.
 132. Haupert, G. T., Jr., C. T. Carilli, and L. C. Cantley. Hypothalamic sodium transport inhibitor is a high affinity, reversible inhibitor of Na + ‐K+ ‐ATPase. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F919–F924, 1984.
 133. Higashihara, E., J. B. Stokes, J. P. Kokko, W. B. Campbell, and T. D. Dubose, Jr. Cortical and papillary micropuncture examination of chloride transport in segments of the rat kidney during inhibition of prostaglandin production: a possible role for prostaglandins in the cholruresis of acute volume expansion. J. Clin. Invest. 64: 1277–1287, 1979.
 134. Hintze, T. H., M. G. Currie, and P. Needleman. Atriopeptins: renal‐specific vasodilators in conscious dogs. Am. J. Physiol. 248 (Heart Circ. Physiol. 17): H587–H591, 1985.
 135. Hirth, C., J. P. Stasch, S. Kazda, A. John, F. Morich, D. Neuser, and S. Wohlfeil. Blockade of the response to volume expansion by monoclonal antibodies against atrial natriuretic peptides. Klin. Wochenschr. 65 (SuppI VIII): 87–91, 1987.
 136. Holt, W., and C. P. Lechene. Vasopressin (ADH) decreases the reabsorption of sodium and chloride across the light segment of the cortical collecting tubule (CCT) of the rabbit. Clin. Res. 28: 448A, 1980.
 137. Holzgreve, H., and R. W. Schrier. Variation of proximal tubular reabsorptive capacity by volume expansion and aortic constriction during constancy of peritubular capillary protein concentration in the rat kidney. Pflugers Arch. 356: 73–86, 1975.
 138. Huang, C. L., J. Lewicki, L. K. Johnson, and M. C. Cogan. Renal mechanism of action of rat atrial natriuretic factor. J. Clin. Invest. 75: 769–773, 1985.
 139. Huang, W.‐C., D. W. Ploth, and L. G. Navar. Angiotensinmediated alterations in nephron function in Goldblatt hypertensive rats. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F553–F560, 1982.
 140. Ichikawa, I., and B. M. Brenner. Mechanism of inhibition of proximal tubule fluid reabsorption after exposure of the rat kidney to the physical effects of expansion of extracellular fluid volume. J. Clin. Invest. 64: 1466–1474, 1979.
 141. Ichikawa, I., and B. M. Brenner. Importance of efferent arteriolar vascular tone in regulation of proximal tubule fluid reabsorption and glomerulotubular balance in the rat. J. Clin. Invest. 65: 1192–1201, 1980.
 142. Iino, Y., and M. Imai. Effects of prostaglandins on Na transport in isolated collecting tubules. Pflugers Arch. 373: 125–132, 1978.
 143. Itskovitz, H. D., and J. C. McGiff. Hormonal regulation of the renal circulation. Circ. Res. (Suppl. I)34/ 35: 64–73, 1974.
 144. Jacobson, H. R., and J. P. Kokko. Intrinsic differences in various segments of the proximal convoluted tubule. J. Clin. Invest. 57: 818–825, 1976.
 145. Jamison, R. L., C. Holliger, K. V. Lemley, and C. R. Robertson. Studies of the effects of antidiuretic hormone and prostaglandin inhibition on red blood cell velocity in vasa recta of the inner medulla. In: Advances in Basic and Clinical Nephrology, edited by W. Zurukzoglu, M. Papadimitriou, M. Pyrpasopoulos, M. Sion, and C. Zamboulis. Basel: Karger, 1981, p. 170–175.
 146. Janssen, W.M.T., D. de Zeeuw, G. K. van der Hem, and P.E. de Jong. Antihypertensive Effect of a 5‐day Infusion of Atrial Natriuretic Factor in Humans. Hypertension, Vol. 13, Part I, 640–646, Jun, 1989.
 147. Johnson, M. D., and R. L. Malvin. Stimulation of renal sodium reabsorption by angiotensin II. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F298–F306, 1977.
 148. Johnston, H. H., J. P. Herzog, and D. P. Lauler. Effect of prostaglandin Et on renal hemodynamics, sodium and water excretion. Am. J. Physiol. 213: 939–946, 1967.
 149. Kaczmarczyk, G., H. W. Reinhardt, J. Riedel, R. Eisele, M. Gatzka, and U. Kuhl. Left atrial pressure and postprandial diuresis in conscious dogs on a high sodium intake. Pflugers Arch. 368: 181–184, 1977.
 150. Källskog, Ö., and M. Wolkgast. Driving forces over the peritibular capillary membrane in the rat kidney during antidiuresis and saline expansion. Acta Physiol. Scand. 89: 116–125, 1973.
 151. Kaloyanides, G. J., M. B. Balabanian, and R. L. Bowman. Evidence that the brain participates in the humoral natriuretic mechanism of blood volume expansion in the dog. J. Clin. Invest. 62: 1288–1295, 1978.
 152. Kaloyanides, G. J., L. Cohen, and G. F. DiBona. Failure of selected endocrine organ ablation to modify the natriuresis of blood volume expansion in the dog. Clin. Sci. Mol. Med 52: 351–356, 1977.
 153. Kauker, M. L. Micropuncture study of renal action of prostaglandin A2 (PGA2) in rats. J. Pharmacol. Exp. Ther. 187: 632–640, 1973.
 154. Kauker, M. L. Prostaglandin E2 effect from the luminal side on renal tubule 22Na efflux: tracer microinjection studies. Proc. Soc. Exp. Biol. Med. 154: 274–277, 1977.
 155. Kauker, M. L. Bradykinin action on the efflux of luminal 22Na in the rat nephron. J. Pharmacol. Exp. Ther. 214: 119–123, 1980.
 156. Kauker, M. L., and A. Nasjletti. Renal tubular action of aprotinin, a kallikrein inhibitor. Federation Proc. 41: 989, 1982.
 157. Keeler, R., and A. M. Azzarolo. Effects of atrial natriuretic factor on renal handling of water and electrolytes in rats. Can. J. Physiol. Pharmacol. 61: 996–1002, 1983.
 158. Khraibi, A. A., J. A. Haas, and F. G. Knox. Effect of renal perfusion pressure on renal interstitial hydrostatic pressure in rats. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F165–F170, 1989.
 159. Khraibi, A. A., and F. G. Knox. Effect of renal decapsulation on renal interstitial hydrostatic pressure and natriuresis. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 26): R44–R48, 1989.
 160. Kim, J. K., S. L. Linas, and R. W. Schrier. Catecholamines and sodium transport in the kidney. Pharmacol. Rev. 31: 169–178, 1979.
 161. Kinoshita, Y., and F. G. Knox. Response of superficial proximal convoluted tubule to decreased and increased renal perfusion pressure. In vivo microperfusion study in rats. Circ. Res. 66: 1184–1189, 1990.
 162. Kinoshita, Y., and F. G. Knox. Role of prostaglandins in proximal tubule sodium reabsorption: response to elevated renal interstitial hydrostatic pressure. Circ. Res. 64: 1013–1018, 1989.
 163. Kinoshita, Y., J. C. Romero, and F. G. Knox. Effects of renal interstitial infusion of arachidonic acid on proximal sodium reabsorption. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F237–F242, 1989.
 164. Kimbrough, H. M., Jr., E. D. Vaughn, Jr., R. M. Carey, and C. R. Ayers. Effect of intrarenal angiotensin II blockade on renal function in conscious dogs. Circ. Res. 40: 174–178, 1977.
 165. Kirschenbaum, M. A., and E. R. Serros. Are prostaglandins natriuretic? Miner. Electrolyte Metab. 3: 112–121, 1980.
 166. Kleinman, L. I., and R. O. Banks. Pressure natriuresis during saline expansion in newborn and adult dogs. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F828–F834, 1984.
 167. Kline, R. L., and P. F. Mercer. Functional reinnervation and development of supersensitivity to NE after renal denervation. Am. J. Physiol. 238 (Regulatory Integrative Comp. Physiol. 7): R353–R358, 1980.
 168. Knox, F. G., J. C. Burnett, Jr., D. E. Kohan, W. S. Spielman, and J. C. Strand. Escape from the sodium‐retaining effects of mineralocorticoids. Kidney Int. 17: 263–276, 1980.
 169. Knox, F. G., and J. A. Diaz‐Buxo. The hormonal control of sodium excretion. In: Endocrine Physiology II, edited by S. M. McCann. Baltimore, MD: University Park, 1977, vol. 16, 173–198. (Int. Rev. Physiol. Ser.)
 170. Knox, F. G., J. I. Mertz, J. C. Burnett, Jr., and A. Haramati. Role of hydrostatic and oncotic pressures in renal sodium reabsorption. Circ. Res. 52: 491–500, 1983.
 171. Koch, K. M., H. S. Avnedjian, and N. Bank. Effect of acute hypertension on sodium reabsorption by the proximal tubule. J. Clin. Invest. 47: 1696–1709, 1968.
 172. Koepke, J. P., and G. F. DiBona. Function of the renal nerves. Physiologist 28: 47–52, 1985.
 173. Kokko, J. P. Effect of prostaglandins on renal epithelial electrolyte transport. Kidney Int. 19: 791–796, 1981.
 174. Kramer, H. J., T. Moch, L. Von Sicherer, and R. Dusing. Effects of aprotinin on renal function and urinary prostaglandin excretion in conscious rats after acute salt loading. Clin. Sci. 56: 547–553, 1979.
 175. Krishna, G. G., G. M. Danovitch, F. W. Beck, and J. R. Sowers. Dopaminergic mediation of the natriuretic response to volume expansion. J. Lab. Clin. Med. 105: 214–218, 1985.
 176. Kunau, R. T., Jr., and N. H. Lamiere. The effect of an acute increase in renal perfusion pressure on sodium transport in the rat kidney. Circ. Res. 39: 689–695, 1976.
 177. Lamiere, N., S. R. Vanholder, and I. Leusen. Role of medullary hemodynamics in the natriuresis of drug‐induced renal vasodilation in the rat. Circ. Res. 47: 839–844, 1980.
 178. Ledsome, J. R., N. Wilson, C. A. Courneya, and A. J. Rankin. Release of atrial natriuretic peptide by atrial distension. Can. J. Physiol. Pharmacol. 63: 739–742, 1985.
 179. Lemley, K. V., S. L. Schmitt, C. Holliger, M. J. Dunn, C. R. Robertson, and R. L. Jamison. Prostaglandin synthesis inhibitors and vasa recta erythrocyte velocities in the rat. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F562–F567, 1984.
 180. Levens, N. R. Control of intestinal absorption by the renin‐angiotensin system. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G3–G15, 1985.
 181. Levens, N. R., A. R. Freedlander, M. J. Peach, and R. M. Carey. Control of renal function by intrarenal angiotensin II. Endocrinology 112: 43–49, 1983.
 182. Levens, N. R., M. J. Peach, and R. M. Carey. Role of the intrarenal renin‐angiotensin system in control of renal function. Circ. Res. 48: 157–167, 1981.
 183. Lewy, J. E., and E. E. Windhager. Peritubular control of proximal tubular fluid reabsorption in the rat kidney. Am. J. Physiol. 214: 943–954, 1968.
 184. Lifshitz, M. D. Lack of a role for the renal nerves in renal sodium reabsorption in conscious dogs. Clin. Sci. 54: 567–572, 1978.
 185. Lifschitz, M. D. Renal effects of nonsteroidal anti‐inflammatory agents. J. Lab. Clin. Med. 102: 313–323, 1983.
 186. Lifshitz, M. D., R. V. Parak, S. Z. Fadem, and J. H. Stein. Urinary prostaglandin E excretion: effect of chronic alterations in sodium intake and inhibition of prostaglandin synthesis in the rabbit. Prostaglandins 16: 607–619, 1978.
 187. Lohmeier, T. E., A. W. Cowley, Jr., N. C. Trippodo, J. E. Hall, and A. C. Guyton. Effects of endogenous angiotensin II on renal sodium excretion and renal hemodynamics. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F388–F395, 1977.
 188. Lohmeier, T. E., P. R. Kastner, M. J. Smith, Jr., and A. C. Guyton. Is aldosterone important in the maintenance of arterial blood pressure and electrolyte balance during sodium depletion? Hypertension 2: 497–505, 1980.
 189. Lowitz, H. D., K. D. Stumpe, and B. Ochwadt. Micropuncture study of the action of angiotensin‐II on tubular sodium and water reabsorption in the rat. Nephron 6: 173–187, 1969.
 190. Luft, F. C., R. B. Steizel, R. E. Lang, E. V. Trabold, R. Veelken, H. Ruskoaho, Y. Gao, D. Ganten, and T. Unger. Atrial natriuretic factor determinations and chronic sodium homeostasis. Kidney Int. 29: 1004–1010, 1986.
 191. Maack, T., D. N. Marion, M. J. Camargo, H. D. Kleinert, J. H. Laragh, E. D. Vaughn, Jr., and S. A. Atlas. Effect of auriculin (atrial natriuretic factor) on blood pressure, renal function, and the renin‐aldosterone system in dogs. Am. J. Med. 77: 1069–1075, 1984.
 192. Manning, P. T., D. Schwartz, N. C. Katsube, S. W. Holmberg, and P. Needleman. Vasopressin‐stimulated release of atriopeptin: endocrine antagonist in fluid homeostasis. Science 229: 395–397, 1985.
 193. Manning, R. D., and A. C. Guyton. Control of blood volume. Rev. Physiol. Biochem. Pharmacol. 93: 70–114, 1982.
 194. Marchand, G. R. Interstitial pressure during volume expansion at reduced renal artery pressure. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F209–F212, 1978.
 195. Marchand, G. R., C. E. Ott, F. C. Lang, R. F. Greger, and F. G. Knox. Effect of secretin on renal blood flow, interstitial pressure, and sodium excretion. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F147–F151, 1977.
 196. Margolius, H. S. The kallikrein–kinin system, renal function, and hypertensive diseases. Prog. Biochem. Pharmacol. 17: 116–122, 1980.
 197. Margolius, H. S., D. Horwitz, J. J. Pisano, and H. R. Keiser. Urinary kallikrein in hypertension: relationship to sodium intake and sodium‐retaining steroids. Circ. Res. 35: 820–825, 1974.
 198. Marie, J. P., H. Guillemot, and P. Y. Hatt. Le degre de granulation des cardiocytes auriculaires: etude planimetrique au cours de differents apports d'eau et do sodium chez le rat. Pathol. Biol. 24: 549–554, 1976.
 199. Marin‐Grez, M., P. Cottone, and O. A. Carretero. Evidence for an involvement of kinins in regulation of sodium excretion. Am. J. Physiol. 223: 734–796, 1972.
 200. Marin‐Grez, M., N. B. Oza, and O. A. Carretero. The involvement of urinary kallikrein in the renal escape from the sodium retaining effects of mineralocorticoids. Henry Ford Hosp. Med. J. 21: 81–95, 1973.
 201. Martinez‐Maldonado, M., N. Tsaparas, G. Eknoyan, and W. N. Suki. Renal action of prostaglandins: comparison with acetylcholine and volume expansion. Am. J. Physiol. 1147–1152, 1972.
 202. Martino, J. A., and L. E. Earley. Demonstration of a role of physical factors as determinants of the natriuretic response to volume expansion. J. Clin. Invest. 46: 1963–1978, 1967.
 203. Maunsbach, A. B., and E. L. Boulpaep. Hydrostatic pressure changes related to paracellular shunt ultrastructure in proximal tubule. Kidney Int. 17: 732–748, 1980.
 204. Maunsbach, A. B., and E. L. Boulpaep. Paracellular shunt ultrastructure and changes in fluid transport in Necturus proximal tubules. Kidney Int. 24: 610–619, 1983.
 205. McDonald, R. H., Jr., L. I. Goldberg, J. L. McNay, and E. P. Tuttle, Jr. Effects of dopamine in man: augmentation of sodium excretion, glomerular filtration rate and renal plasma flow. J. Clin. Invest. 43: 1116–1124, 1964.
 206. McDonald, S. J., and H. E. de Wardener. The relationship between the renal arterial perfusion pressure and the increase in sodium excretion which occurs during an infusion of saline. Nephron 2: 1–14, 1965.
 207. Mendez, R. E., B. R. Dunn, J. L. Troy, and B. M. Brenner. Modulation of the natriuretic response to atrial natriuretic peptide by alternations in peritubular Starling forces in the rat. Circ. Res. 59: 605–611, 1986.
 208. Mendez, R. E., B. R. Dunn, J. L. Troy, and B. M. Brenner. Atrial natriuretic peptide and furosemide effects on hydraulic pressure in the renal papilla. Kidney Int. 34: 36–42, 1988.
 209. Mertz, J. I., J. A. Haas, T. J. Berndt, J. C. Burnett, Jr., and F. G. Knox. Effects of bradykinin on renal interstitial pressures and proximal tubule reabsorption. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F82–F85, 1984.
 210. Metzler, C. H., M. E. Lee, T. N. Thrasher, and D. J. Ramsay. Increased right or left atrial pressure stimulates release of atrial natriuretic peptides in conscious dogs. Endocrinology 1191 (5): 2396–2398, 1986.
 211. Metzler, C. H., and D. J. Ramsay. Atrial peptide potentiates renal responses to volume expansion in conscious dogs. Am. J. Physiol. 256 (Regulatory Integrative Comp. Physiol. 25): R284–R289, 1989.
 212. Meyer, M. B., J. L. McNay, and L. I. Goldberg. Effects of dopamine on renal function and hemodynamics in the dog. J. Pharmacol. Exp. Ther. 156: 186–192, 1967.
 213. Mills, I. H., N. MacFarlane, P. Ward, and L. Obika. The renal kallikrein–kinin system and the regulation of salt and water excretion. Federation Proc. 35: 181–188, 1976.
 214. Mills, I. H., and P. E. Ward. The relationship between kallikrein and water excretion and the conditional relationship between kallikrein and sodium excretion. J. Physiol. Land. 246: 695–707, 1975.
 215. Mizelle, H. L., J. C. Hall, and D. A. Hildebrandt. Atrial natriuretic peptide and pressure natriuresis: interactions with the renin‐angiotensin system. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 26): R1169–R1144, 1989.
 216. Mizelle, H. L., J. C. Hall, L. L. Woods, J. P. Montani, D. J. Dzielak, and Y. J. Pan. Role of renal nerves in adaptation to chronic sodium deprivation. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F291–F298, 1987.
 217. Mukoyama, M., K. Nakao, H. Sugawa, N. Morii, A. Sugawara, T. Yamada, H. Itoh, S. Shiono, Y. Saito, H. Arai, T. Mori, H. Yamada, Y. Sano, and H. Imura. A monoclonal antibody to human atrial natriuretic polypeptide. Monoclonal antibody to ANP. Hypertension 12: 117–121, 1988.
 218. Murray, R. D., S. Itoh, T. Inagami, K. Misono, S. Seto, A. G. Scicli, and O. A. Carretero. Effects of synthetic atrial natriuretic factor in the isolated perfused rat kidney. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F603–F609, 1985.
 219. Nasjletti, A. J., J. Colina‐Chourio, and J. G. McGiff. Effects of kininase inhibition on canine renal blood flow and sodium excretion. Acta Physiol. Latin Am. 24: 507–591, 1974.
 220. Nasjletti, A., J. Colina‐Chourio, and J. C. McGiff. Disappearance of bradykinin in the renal circulation of dogs: effects of kininase inhibition. Circ. Res. 37: 59–65, 1975.
 221. Navar, L. G. Distal nephron diluting segment responses to altered arterial pressure and solute loading. Am. J. Physiol. 222: 945–952, 1971.
 222. Navar, L. G. Renal regulation of body fluid balance. In: Edema, edited by N. C. Staub and A. E. Taylor. New York: Raven, 1984, 319–352.
 223. Navar, L. G., P. D. Bell, and T. J. Burke. Autoregulatory responses of superficial nephrons, and their association with sodium excretion during arterial pressure alterations in the dog. Circ. Res. 41: 487–496, 1977.
 224. Needleman, P., S. P. Adams, B. R. Cole, M. G. Currie, D. M. Geller, M. L. Michener, C. B. Saper, D. Schwartz, and D. G. Standaert. Atriopeptins as cardiac hormones. Hypertension 7: 469–482, 1985.
 225. Nonoguchi, H., J. M. Sands, and M. A. Knepper. ANF inhibits NaCl and fluid absorption in cortical collecting duct of rat kidney. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F179–F186, 1989.
 226. Olivera, A., J. Gutkowska, D. Rodriguez‐Puyol, A. Ferenandez‐Cruz, and J. M. Lopez‐Nova. Atrial natriuretic peptide in rats with experimental cirrhosis of the liver without ascites. Endocrinology 122: 840–846, 1988.
 227. Olsen, M. E., J. E. Hall, J. P. Montani, A. C. Guyton, H. G. Langford, and J. E. Cornell. Mechanisms of angiotensin II natriuresis and antinatriuresis. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F299–F307, 1985.
 228. Opgenorth, T. J., J. C. Burnett, Jr., J. P. Granger, and T. A. Scriven. Effects of atrial natriuretic peptide on renin secretion in nonfiltering kidney. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F798–F801, 1986.
 229. Opgenorth, T. J., J. P. Granger, A. Chakravarthy, F. G. Knox, and J. C. Romero. Effect of intrarenal angiotensin II infusion on the renal escape from mineralocorticoid. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F813–F818, 1985.
 230. Osgood, R. W., N. H. Lamiere, M. I. Sorkin, and J. H. Stein. Effect of aortic clamping on proximal reabsorption and sodium excretion in the rat. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F92–F96, 1977.
 231. Oshima, T., M. G. Currie, D. M. Geller, and P. Needleman. An atrial peptide is a potent renal vasodilator substance. Circ. Res. 54: 612–616, 1984.
 232. Ott, C. E. Effect of saline expansion on peritubule capillary pressures and reabsorption. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F106–F110, 1981.
 233. Ott, C. E., J.‐L. Cuche, and F. G. Knox. Measurement of renal interstitial fluid pressure with polyethylene matrix capsules. J. Appl. Physiol. 38: 937–941, 1975.
 234. Ott, C. E., J. A. Haas, J. L. Cuche, and F. G. Knox. Effect of increased peritubule protein concentration on proximal tubule reabsorption in the presence and absence of extracellular volume expansion. J. Clin. Invest. 55: 612–620, 1975.
 235. Ott, C. E., L. G. Navar, and A. C. Guyton. Pressures in static and dynamic states from capsules implanted in the kidney. Am. J. Physiol. 221: 394–400, 1971.
 236. Papper, S., J. L. Belsky, and K. H. Bleifer. The response to the administration of an isotonic sodium chloride‐lactate solution in patients with essential hypertension. J. Clin. Invest. 39: 876–884, 1960.
 237. Pelayo, J. C., and R. C. Blantz. Analysis of renal denervation in the hydropenic rat: interactions with angiotensin II. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F87–F95, 1984.
 238. Pollock, D. M., and W. J. Arendshorst. Effect of atrial natriuretic factor on renal hemodynamics in the rat. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F795–F801, 1986.
 239. Pollock, D. M., and R. O. Banks. Effect of atrial extract on renal function in the rat. Clin. Sci. 65: 47–55, 1983.
 240. Pollock, D. M., M. J. Butterfield, J.‐L. Ader, and W. J. Arendshorst. Dissociation of urinary kallikrein activity and salt and water excretion in the rat. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F1082–F1089, 1986.
 241. Pollock, D. M., M. M. Mullins, and R. O. Banks. Failure of atrial myocardial extract to inhibit renal Na +, K + ‐ATPase. Renal Physiol. 6: 295–299, 1983.
 242. Proud, D., M. A. Knepper, and J. J. Pisano. Distribution of immunoreactive kallikrein along the rat nephron. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F510–F515, 1983.
 243. Quinn, M. D., and D. J. Marsh. Peritubular capillary control of proximal tubule reabsorption in the rat. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F478–F487, 1975.
 244. Reineck, H. J., and B. Parma. Effect of medullary tonicity on urinary sodium excretion in the rat. J. Clin. Invest. 69: 981–988, 1982.
 245. Reinhardt, H. W., and D. W. Behrenbeck. Untersuchungen an wachen Hunden über die Einstellung der Natriumbilanz. I. Die Bedeutung des Extracellulärraumes für die Einstellung der Natrium‐Tagesbilanz. Pflugers Arch. 295: 266–279, 1967.
 246. Roman, R. J., and C. Smits. Laser‐Doppler determination of papillary blood flow in young and adult rats. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F115–F124, 1986.
 247. Romero, J. C., F. G. Knox, T. J. Opgenorth, J. P. Granger, and J. A. Keiser. Contribution of sympathetic neural reflexes to mineralocorticoid escape. Federation Proc. 44: 2382–2387, 1985.
 248. Roy, D. R. Effect of synthetic ANP on renal and loop of Henle functions in the young rat. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F220–F225, 1986.
 249. Rumrich, G., and K. J. Ullrich. The minimum requirements for the maintenance of sodium chloride reabsorption in the proximal convolution of the mammalian kidney (Abstract). J. Physiol. Lond. 197: 69P–70P, 1968.
 250. Sagnella, G. A., N. D. Markandu, A. C. Shore, and G. A. MacGregor. Effects of changes in dietary sodium intake and saline infusion on immunoreactive atrial natriuretic peptide in human plasma. Lancet 2: 1208–1212, 1985.
 251. Salazar, F. J., M. J. Fiksen‐Olsen, T. J. Opgenorth, J. P. Granger, J. C. Burnett, Jr., and J. C. Romero. Renal effects of ANP without changes in glomerular filtration rate and blood pressure. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F532–F536, 1986.
 252. Salazar, F. J., J. P. Granger, M. Joyce, J. C. Burnett, Jr., A. A. Bove, and J. C. Romero. Effects of hypertonic saline infusion and water drinking on atrial peptide. Am. J. Physiol. 251 (Regulatory Integrative Comp. Physiol. 20): R1091–R1094, 1986.
 253. Salazar, F. J., J. P. Granger, and M. J. Fiksen‐Olsen. Possible modulatory role of angiotensin II on atrial peptide induced natriuresis. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F880–F883, 1987.
 254. Salazar, F. J., J. C. Romero, J. C. Burnett, Jr., S. Schryver, and J. P. Granger. Atrial natriuretic peptide levels during acute and chronic saline loading in conscious dogs. Am. J. Physiol. 251 (Regulatory Integrative Comp. Physiol. 29): R499–R503, 1985.
 255. Sasaki, A., O. Koda, J. Kato, S. Nakamura, K. Kodama, A. Miyata, K. Kangawa, H. Matsuo, and K. Tanaka. Effects of antiserum against α rat atrial natriuretic peptide in anesthetized rats. Hypertension 10: 308–312, 1987.
 256. Schneider, E., L. McLane‐Vega, R. Hanson, J. Childers, and S. Gleason. Effect of chronic bilateral renal denervation on daily sodium excretion in the conscious dog. Federation Proc. 37: 645 1978.
 257. Schneider, E. G., J. W. Strandhoy, L. R. Willis, and F. G. Knox. Relationship between proximal sodium reabsorption and excretion of calcium, magnesium, and phosphate. Kidney Int. 4: 369–376, 1973.
 258. Schnermann, J. Physical forces and transtubular movement of solutes and water. In: Kidney and Urinary Tract Physiology, edited by K. Thurau. Baltimore, MD: University Park, 1974, vol. 6., p. 157–198. (Int. Rev. Physiol. Ser.)
 259. Schuster, V. L., J. P. Kokko, and H. R. Jacobson. Angiotensin II directly stimulates transport in rabbit proximal convoluted tubules. J. Clin. Invest. 73: 507–515, 1984.
 260. Schwab, T. R., B. S. Edwards, D. M. Heublein, and J. C. Burnett, Jr. Role of atrial natriuretic peptide in volume‐expansion natriuresis. Am. J. Physiol. 251 (Regulatory Integrative Comp. Physiol. 20): R310–R313, 1986.
 261. Seifter, J. L., K. L. Skorecki, J. C. Stivelman, G. Haupert, and B. M. Brenner. Control of extracellular fluid volume and pathophysiology of edema formation. In: Disturbances in Control of Body Fluid Volume and Composition, edited by D. Seldin and G. Giebisch. New York: Raven, 1985, chapt. 10, p. 343–384.
 262. Selen, G., and A. E. G. Persson. Hydrostatic and oncotic pressures in the interstitium of dehydrated and volume expanded rats. Acta Physiol. Scand. 117: 75–81, 1983.
 263. Selkurt, E. E., J. Womack, and W. N. Dailey. Mechanism of natriuresis and diuresis during elevated renal arterial pressure. Am. J. Physiol. 209: 95–99, 1965.
 264. Seymour, A. A., E. H. Blaine, E. K. Mazack, S. G. Smith, I. I. Stabilito, A. B. Haley, M. A. Napier, M. A. Whinnery, and R. F. Nutt. Renal and systemic effects of synthetic atrial natriuretic factor. Life Sci. 36: 33–44, 1985.
 265. Shenker, Y., R. S. Sider, E. A. Ostalin, and R. J. Grekin. Plasma levels of immunoreactive atrial natriuretic factor in healthy subjects and in patients with edema. J. Clin. Invest. 76: 1684–1687, 1985.
 266. Shipley, R. E., and R. S. Study. Changes in renal blood flow, extraction of inulin, GFR, tissue pressure and urine flow with acute alterations of renal artery blood pressure. Am. J. Physiol. 167: 676–688, 1951.
 267. Smith, H. W. The Kidney: Structure and Functions in Health and Disease. New York: Oxford University Press, 1951, p. 424–596.
 268. Soejima, H., R. J. Grekin, J. P. Briggs, and J. Schnermann. Renal response of anesthetized rats to low‐dose infusion of atrial natriuretic peptide. Am. J. Physiol. 255 (Regulatory Integrative Comp. Physiol. 24): R449–R455, 1988.
 269. Sonnenberg, H., and W. A. Cupples. Intrarenal localization of the natriuretic effect of cardiac atrial extract. Can. J. Physiol. Pharmacol. 60: 1149–1152, 1982.
 270. Sonnenberg, H., U. Honrath, C. K. Chong, and D. R. Wilson. Atrial natriuretic factor inhibits sodium transport in medullary collecting duct. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F963–F966, 1986.
 271. Sonnenberg, H., R. F. Krebs, and A. T. Veress. Release of atrial natriuretic factor from incubated rat heart atria. IRCS Med. Sci. Libr. Compend. 12: 783–784, 1984.
 272. Sonnenberg, H., A. T. Veress, and J. W. Pearce. A humoral component of the natriuretic mechanism in sustained blood volume expansion. J. Clin. Invest. 51: 2631–2644, 1972.
 273. Sonnenberg, H. On the physiological role of atrial natriuretic factor. Klin. Wochenschr. 65 (Suppl VIII): 8–13, 1987.
 274. Sonnenberg, H. Renal effects of atrial natriuretic factor. In: ISI Atlas of Science: Pharmacology, 1988, p. 171–174.
 275. Sosa, R. E., M. Volpe, D. N. Marion, S. A. Atlas, J. H. Laragh, E. D. Vaughan, Jr., and T. Maack. Relationship between renal hemodynamic and natriuretic effects of atrial natriuretic factors. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F520–F524, 1986.
 276. Spitzer, A., and E. E. Windhager. Effect of peritubular oncotic pressure changes on proximal tubular fluid reabsorption. Am. J. Physiol. 218: 1188–1193, 1970.
 277. Stein, J. H., R. C. Congbalay, K. L. Karsh, R. W. Osgood, and T. F. Ferris. The effect of bradykinin on proximal tubular sodium reabsorption in the dog. Evidence for functional nephron heterogeneity. J. Clin. Invest. 51: 1709–1721, 1972.
 278. Steiner, R. W., B. J. Tucker, and R. C. Blantz. Glomerular hemodynamics in rats with chronic sodium depletion. J. Clin. Invest. 64: 503–512, 1979.
 279. Stokes, J. B. Effect of prostaglandin E2 on chloride transport across the rabbit thick ascending limb of Henle: selective inhibition of the medullary portion. J. Clin. Invest. 64: 495–502, 1979.
 280. Stokes, J. B. Integrated actions of renal medullary prostaglandins in the control of water excretion. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F471–F480, 1981.
 281. Stokes, J. B., and J. P. Kokko. Inhibition of sodium transport by prostaglandin E2 across the isolated, perfused rabbit collecting tubule. J. Clin. Invest. 59: 1099–1104, 1977.
 282. Strandhoy, J. W., C. E. Ott, E. G. Schneider, L. R. Willis, N. P. Beck, B. B. David, and F. G. Knox. Effects of prostaglandin E1 and E2 on renal sodium reabsorption and Starling forces. Am. J. Physiol. 226: 1015–1021, 1974.
 283. Stumpe, K. D., H. D. Lowitz, and B. Ochwadt. Fluid reabsorption in Henle's loop and urinary excretion of sodium and water in normal rats and rats with hypertension. J. Clin. Invest. 49: 1200–1212, 1970.
 284. Tannenbaum, J., J. A. Splawinski, J. A. Oates, and A. S. Nies. Enhanced renal prostaglandin production in the dog. Circ. Res. 36: 197–203, 1975.
 285. Tomita, K., J. J. Pisano, and M. A. Knepper. Control of sodium and potassium transport in the cortical collecting duct of the rat. Effects of bradykinin, vasopressin, and deoxycorticosterone. J. Clin. Invest. 76: 132–136, 1985.
 286. Trippodo, N. C., F. E. Cole, A. A. Macphee, and B. L. Pegram. Biologic mechanisms of atrial natriuretic factor. J. Lab. Clin. Med. 109: 112–119, 1987.
 287. Trippodo, N. C. An update on the physiology of atrial natriuretic factor. Hypertension (Suppl I) 10: 122–127, 1987.
 288. Veldkamp, P. J., P. K. Carmines, and E. W. Inscho. Direct evaluation of the microvascular actions of ANP in juxtamedullary nephrons. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F440–F444, 1988.
 289. Veress, A. T., and H. Sonnenberg. Right atrial appendectomy reduces the renal response to acute hypervolemia in the rat. Am. J. Physiol. 247 (Regulatory Integrative Comp. Physiol. 16): R610–R613, 1984.
 290. Wardener, H. E. de. The control of sodium excretion. In: Handbook of Physiology. Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington, D.C.: Am. Physiol. Soc., 1973, sect. 8, chap. 21, p. 677–720.
 291. Wardener, H. E. de. Natriuretic hormone. Clin. Sci. Mol. Med. 53: 1–8, 1977.
 292. Wardener, H. E. de, and G. A. MacGregor. Dahl's hypothesis that a saluretic substance may be responsible for a sustained rise in arterial pressure. Its possible role in essential hypertension. Kidney Int. 18: 1–9, 1980.
 293. Wardener, H. E. de, I. H. Mills, W. F. Clapham, and C. J. Hayter. Studies on the efferent mechanism of the sodium diuresis which follows the administration of intravenous saline in the dog. Clin. Sci. 21: 249–258, 1961.
 294. Watkins, L., Jr., J. A. Burton, E. Haber, J. R. Cant, F. W. Smith, and A. C. Barger. The renin‐angiotensin‐aldosterone system in congestive heart failure in conscious dogs. J. Clin. Invest. 57: 1606–1617, 1976.
 295. Weber, P. C., C. Larsson, and B. Schere. Prostaglandin E2‐9‐ketoreductase as a mediator of salt intake‐related prostaglandin‐renin interaction. Nature 266: 65–66, 1977.
 296. Webster, M. E., and J. P. Gilmore. Influence of kallidin‐10 on renal function. Am. J. Physiol. 206: 714–718, 1964.
 297. Weinman, E. J., M. Kashgarian, and J. P. Hayslett. Role of peritubular protein concentration in sodium reabsorption. Am. J. Physiol. 221: 1521–1528, 1971.
 298. Wilcox, C. S., R. B. Stersel, P. T. Dunckel, M. Mohrmann, and M. Perfetto. Renal interstitial pressure and sodium excretion during hilar lymphatic ligation. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F344–F351, 1984.
 299. Willis, L. R. Effect of bradykinin on the renal medullary osmotic gradient in water diuresis. Eur. J. Pharmacol. 45: 173–183, 1977.
 300. Willis, L. R., J. H. Ludeno, J. Hook, and H. E. Williamson. Mechanism of natriuretic action of bradykinin. Am. J. Physiol. 217: 1–5, 1969.
 301. Wolgast, M. Renal interstitium and lymphatics. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, chapt. 22, p. 497–517.
 302. Wong, P. Y., R. C. Talamo, G. H. Williams, and R. W. Colman. Response of the kallikrein–kinin and renin‐angiotensin systems to saline infusion and upright posture. J. Clin. Invest. 55: 691–698, 1975.
 303. Yamajo, T., M. Ishibashi, and F. Takaku. Atrial natriuretic factor in human blood. J. Clin. Invest. 76: 1705–1709, 1985.
 304. Yeh, B. K., J. L. McNay, and L. l. Goldberg. Attenuation of dopamine renal and mesenteric vasodilator by haloperidol. Evidence for a specific dopamine receptor. J. Pharmacol. Exp. Ther. 168: 303–309, 1969.
 305. Zeidel, M. L., J. L. Seifter, S. Lear, B. M. Brenner, and P. Silva. Atrial peptides inhibit oxygen consumption in kidney medullary collecting duct cells. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F379–F383, 1986.
 306. Zeidel, M. L., P. Silva, B. M. Brenner, and J. L. Seifter. cGmp mediates effects of atrial peptides on medullary collecting duct cells. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F551–F559, 1987.
 307. Zimmerhackl, B., C. R. Robertson, and R. L. Jamison. The microcirculation of the renal medulla. Circ. Res. 57: 657–667, 1985.
 308. Zimmerman, B. G. Adrenergic facilitation by angiotensin: does it serve a physiological function? Clin. Sci. 60: 343–348, 1981.
 309. Zipser, R. D., Z. Priseilla, R. A. Stone, and R. Horton. The prostaglandin and kallikrein‐renin systems in mineralocorticoid escape. J. Clin. Endocrinol. Metab. 47: 996–1000, 1978.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Franklyn G. Knox, Joey P. Granger. Control of Sodium Excretion: An Integrative Approach. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 927-967. First published in print 1992. doi: 10.1002/cphy.cp080121