Comprehensive Physiology Wiley Online Library

Renal Acidification: Integrated Tubular Responses

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Normal Acidification by Nephron Segments
1.1 Overview of Mechanisms of Acidification
1.2 Rates of Acidification
1.3 pH Gradient
1.4 Physiological Roles of Normal Renal Acidification
2 Renal Response to Change in Glomerular Filtration Rate and Luminal Flow Rate
2.1 Bicarbonate Reabsorption
3 Renal Response to Decrease in Plasma Bicarbonate Concentration: Metabolic Acidosis
3.1 Bicarbonate Reabsorption
3.2 Ammonium Formation
3.3 Titratable Acid Formation
3.4 Integrated Nephron Response: Renal Net Acid Excretion
4 Renal Response to Increase in Plasma Bicarbonate Concentration: Metabolic Alkalosis
4.1 Exogenous Bicarbonate Administration without Extracellular Volume Contraction or Potassium Depletion
4.2 Bicarbonate Generation or Administration in the Setting of Chloride and Potassium Deficiencies
5 Renal Response to Alterations in Plasma PCO2
5.1 Bicarbonate Reabsorption
5.2 Ammonium and Titratable Acid Formation
5.3 Integrated Nephron Response: Bicarbonate Reabsorption and Net Acid Excretion by the Whole Kidney
Figure 1. Figure 1.

Nephron mechanisms of acidification. Cellular mechanisms of acidification and bicarbonate secretion are shown (top) for proximal convoluted tubule (PCT), cortical collecting tubule (CCT), and medullary collecting tubule (MCT). Principal roles for nephron segments are shown (bottom) for reabsorbing bicarbonate and titrating ammonia and titratable buffers (A).

Adapted from ref. 85
Figure 2. Figure 2.

Bicarbonate filtration, reabsorption, and delivery along rat nephron.

Adapted from refs. 52,58,69,73,74,80,81,103,104,106,111,150,171,226,251
Figure 3. Figure 3.

Axial profile of luminal bicarbonate concentration, rate of bicarbonate transport, and cumulative bicarbonate reabsorption as function of length in proximal convoluted tubule in Munich‐Wistar rat during hydropenia.

Adapted from ref. 233
Figure 4. Figure 4.

Ammonium filtration, transport, and delivery along rat nephron.

Adapted from refs. 33,51,52,150,170,187,190,319,342,343,346,353,385
Figure 5. Figure 5.

pH profile along rat nephron.

Adapted from refs. 33,51,52,102,104,105,106,145,151,170,190,267,342,343,385
Figure 6. Figure 6.

Titratable acid formation and delivery along rat nephron.

Adapted from refs. 33,52,150,170,190,192,342,343,385
Figure 7. Figure 7.

Net acid formation along rat nephron, based on values given in Figures 2, 4, and 6. Net acid at a given site is defined as ammonium plus titratable acid (TA) minus bicarbonate delivery at that site.

Figure 8. Figure 8.

Bicarbonate absorptive rate in early, S1 proximal convoluted tubule (PCT) (solid symbols) and late, S2 PCT (open symbols) in a control period and after systemic angiotensin II (ANG, squares), saralasin (SAR, hexagons), or vehicle (CON, circles) administration.

From Lin and Cogan 236
Figure 9. Figure 9.

Load‐dependency of bicarbonate transport in each millimeter of proximal convoluted tubule of Munich‐Wistar rat under free‐flow conditions. Dotted line from microperfusion data of Alpern et al. 12.

From Liu and Cogan 234
Figure 10. Figure 10.

A. Bicarbonate reabsorption as function of single nephron glomerular filtration rate in normal euvolemic (open circles) or volume‐expanded (closed circles) Munich‐Wistar rats. Dashed lines represent model predictions based on computer‐simulated model derived from in vivo microperfusion data.

Adapted from refs. 13 and 80 and reprinted from Cogan and Alpern 75.] B. Bicarbonate reabsorption as a function of filtered bicarbonate load in normal and acidotic Munich‐Wistar rats during contracted, normal, or expanded extracellular volume states. [Adapted from refs. 73,80, and 81 and reprinted from Cogan and Rector 85
Figure 11. Figure 11.

Bicarbonate reabsorption as function of SNGFR in euvolemic (open circles) or volume‐expanded (closed circles) Munich‐Wistar rats with metabolic alkalosis. Dashed lines represent model predictions based on computer‐simulated model derived from in vivo microperfusion data.

Adapted from refs. 13 and 78 and reprinted from Cogan and Alpern 75
Figure 12. Figure 12.

Distal bicarbonate delivery during metabolic acidosis. Shown are end‐proximal bicarbonate concentration (top) and absolute bicarbonate delivery out of proximal convoluted tubule (bottom) in Munich‐Wistar rats during progressive reduction in glomerular ultrafiltrate bicarbonate concentration, assuming SNGFR of ∼36 nl/min.

Adapted from refs. 80 and 84
Figure 13. Figure 13.

Net acid excretion in normal control and acid‐loaded Munich‐Wistar rats.

From Buerkert et al. 52
Figure 14. Figure 14.

Time course of plasma bicarbonate concentration, urine pH, and urinary net acid excretion during chronic ammonium chloride loading in normal humans.

Adapted from ref. 323
Figure 15. Figure 15.

SNGFR (upper left panel), glomerular ultrafiltrate bicarbonate concentration (lower left panel), and filtration, absolute proximal reabsorption, and distal delivery of bicarbonate (right panel) in Munich‐Wistar rats in a control state and following bicarbonate loading to achieve acute metabolic alkalosis.

Adapted from refs. 71,73,74,78,80,81,234
Figure 16. Figure 16.

Effects of hyperbicarbonatemia and alkalemia on proton secretion in late proximal convoluted tubule as function of mean luminal bicarbonate concentration during in vivo microperfusion.

Adapted from ref. 11 and modified from Cogan and Alpern 75
Figure 17. Figure 17.

Absolute bicarbonate reabsorption as function of proximal convoluted tubule length in Munich‐Wistar rats with normal systemic pH (triangles; treated with either atrial natriuretic factor or glucagon) and chronic metabolic alkalosis (circles) at comparable filtered bicarbonate loads.

From Liu and Cogan 234
Figure 18. Figure 18.

Reabsorbate bicarbonate concentration (absolute reabsorption of bicarbonate divided by absolute reabsorption of water) in Munich‐Wistar rat proximal convoluted tubule. Represented are data from rats with normal systemic pH that are hydropenic (open circle refs. 80,81,83), euvolemic (open hexagon; refs. 74,80,81,83), plasma expanded (closed hexagon; refs. 80 and 83), Ringer expanded (open and closed diamonds; refs. 80 and 83), saline expanded (closed triangle; refs. 80 and 84), or treated with atrial natriuretic factor (open hexagon with enclosed dot; ref. 73); with metabolic acidosis (ammonium chloride loading) that are hydropenic (open triangle; refs. 80 and 84) or euvolemic (open inverted triangle; refs. 79 and 84); with acute metabolic alkalosis (open square or closed circle; refs. 71,78, and unpublished observations) and during superimposed aortic constriction (open circle with enclosed cross; unpublished observations); with chronic metabolic alkalosis (open square with enclosed circle; refs. 71 and 78) and during superimposed isohydric Ringer expansion (open square with enclosed closed circle; ref. 78), isohydric plasma expansion (closed square; ref. 78), or atrial natriuretic administration (open circle with enclosed open square; ref. 72).

Figure 19. Figure 19.

Models for maintaining hyperbicarbonatemia. Shown are absolute proximal bicarbonate reabsorption as function of SNGFR (top) or filtered bicarbonate load (bottom) for normal rats (solid line) and for rats with chronic metabolic alkalosis (dashed lines) in which proximal acidification is either suppressed by alkalemia (curve A) or unaffected by alkalemia (curve B). Single and double arrows denote SNGFR or filtered bicarbonate load of inflection points of curve A and curve B, respectively, and therefore highest steady‐state SNGFR or filtered bicarbonate load that would obtain during maintenance phase of chronic metabolic alkalosis. See text for details.

Figure 20. Figure 20.

Plasma bicarbonate concentration, SNGFR, and filtration, proximal reabsorption, and delivery of bicarbonate in normal euvolemic control Munich‐Wistar rats and rats with chronic metabolic alkalosis.

Adapted from refs. 78 and 80 and modified from Cogan and Rector 85
Figure 21. Figure 21.

SNGFR (upper left panel), glomerular ultrafiltrate bicarbonate concentration (lower left panel), and filtration, absolute proximal reabsorption, and distal delivery of bicarbonate (right panel) in Munich‐Wistar rats during chronic metabolic alkalosis and following administration of atrial natriuretic factor.

Adapted from ref. 72
Figure 22. Figure 22.

Absolute proximal bicarbonate reabsorption as function of filtered bicarbonate load during metabolic alkalosis. Shown are data from Munich‐Wistar rats with chronic metabolic alkalosis (open circles) and during superimposed moderate (open circle with enclosed cross) or severe (cross) aortic constriction, atrial natriuretic factor administration (open circle with enclosed letter A), or isohydric expansion with plasma (closed triangle) or Ringer's solution (closed inverted triangle), and acute metabolic alkalosis (closed square).

Adapted from refs. 72 and 78
Figure 23. Figure 23.

Net bicarbonate absorption (dashed lines and open figures) and proton secretion (solid lines and closed figures) during in vivo microperfusion at 15, 30, and 45 nl/min using perfusate bicarbonate concentration of either 25 or 40 mM in late proximal convoluted tubules of normal rats (squares and triangles) or rats with chronic metabolic alkalosis (circles). Shaded area represents passive component of bicarbonate absorption. Asterisks represent significant difference of net bicarbonate absorption and proton secretion during metabolic alkalosis compared to either normal group

From Liu and Cogan 235
Figure 24. Figure 24.

Plasma bicarbonate concentration as function of glomerular filtration rate (GFR) in induction and repair or chronic metabolic alkalosis. A, data of normal rats (large closed circle) that were then subjected to no treatment (open circles), potassium deficiency (triangles, inverted triangles, and diamonds), and moderate (hexagons) or severe (squares) potassium plus chloride deficiencies. B, data of rats with chronic metabolic alkalosis caused by potassium and chloride deficiencies (large closed circle) that were then given potassium replacement (squares), chloride replacement (triangles), or both potassium and chloride replacement (open circles).

From Cogan and Liu 78
Figure 25. Figure 25.

Filtered bicarbonate load during induction and repair of chronic metabolic alkalosis in rat. For induction phase of chronic metabolic alkalosis, hatched bars represent normal control values and open bars the paired values following no treatment (group I), severe chloride plus potassium deficiency (group II), moderate chloride plus potassium deficiency (group III), and potassium deficiency induced by diet with (group IVA) or without (groups IVB and IVC) deoxycorticosterone. For repair phase of chronic metabolic alkalosis, hatched bars represent chronic metabolic alkalosis values and open bars the paired values following no treatment (group V), potassium replacement (group VI), chloride replacement (group VII), and both potassium and chloride replacement (group VIII).

Adapted from ref. 78
Figure 26. Figure 26.

Absolute proximal bicarbonate reabsorption in Munich‐Wistar rats subjected to acute or chronic changes in arterial CO2 tension.

Adapted from refs. 70 and 71 and reprinted from Cogan 73
Figure 27. Figure 27.

Temporal changes in plasma bicarbonate concentration, urine pH, and urinary net acid excretion in response to prolonged hypercapania in the rat.

Adapted from ref. 60


Figure 1.

Nephron mechanisms of acidification. Cellular mechanisms of acidification and bicarbonate secretion are shown (top) for proximal convoluted tubule (PCT), cortical collecting tubule (CCT), and medullary collecting tubule (MCT). Principal roles for nephron segments are shown (bottom) for reabsorbing bicarbonate and titrating ammonia and titratable buffers (A).

Adapted from ref. 85


Figure 2.

Bicarbonate filtration, reabsorption, and delivery along rat nephron.

Adapted from refs. 52,58,69,73,74,80,81,103,104,106,111,150,171,226,251


Figure 3.

Axial profile of luminal bicarbonate concentration, rate of bicarbonate transport, and cumulative bicarbonate reabsorption as function of length in proximal convoluted tubule in Munich‐Wistar rat during hydropenia.

Adapted from ref. 233


Figure 4.

Ammonium filtration, transport, and delivery along rat nephron.

Adapted from refs. 33,51,52,150,170,187,190,319,342,343,346,353,385


Figure 5.

pH profile along rat nephron.

Adapted from refs. 33,51,52,102,104,105,106,145,151,170,190,267,342,343,385


Figure 6.

Titratable acid formation and delivery along rat nephron.

Adapted from refs. 33,52,150,170,190,192,342,343,385


Figure 7.

Net acid formation along rat nephron, based on values given in Figures 2, 4, and 6. Net acid at a given site is defined as ammonium plus titratable acid (TA) minus bicarbonate delivery at that site.



Figure 8.

Bicarbonate absorptive rate in early, S1 proximal convoluted tubule (PCT) (solid symbols) and late, S2 PCT (open symbols) in a control period and after systemic angiotensin II (ANG, squares), saralasin (SAR, hexagons), or vehicle (CON, circles) administration.

From Lin and Cogan 236


Figure 9.

Load‐dependency of bicarbonate transport in each millimeter of proximal convoluted tubule of Munich‐Wistar rat under free‐flow conditions. Dotted line from microperfusion data of Alpern et al. 12.

From Liu and Cogan 234


Figure 10.

A. Bicarbonate reabsorption as function of single nephron glomerular filtration rate in normal euvolemic (open circles) or volume‐expanded (closed circles) Munich‐Wistar rats. Dashed lines represent model predictions based on computer‐simulated model derived from in vivo microperfusion data.

Adapted from refs. 13 and 80 and reprinted from Cogan and Alpern 75.] B. Bicarbonate reabsorption as a function of filtered bicarbonate load in normal and acidotic Munich‐Wistar rats during contracted, normal, or expanded extracellular volume states. [Adapted from refs. 73,80, and 81 and reprinted from Cogan and Rector 85


Figure 11.

Bicarbonate reabsorption as function of SNGFR in euvolemic (open circles) or volume‐expanded (closed circles) Munich‐Wistar rats with metabolic alkalosis. Dashed lines represent model predictions based on computer‐simulated model derived from in vivo microperfusion data.

Adapted from refs. 13 and 78 and reprinted from Cogan and Alpern 75


Figure 12.

Distal bicarbonate delivery during metabolic acidosis. Shown are end‐proximal bicarbonate concentration (top) and absolute bicarbonate delivery out of proximal convoluted tubule (bottom) in Munich‐Wistar rats during progressive reduction in glomerular ultrafiltrate bicarbonate concentration, assuming SNGFR of ∼36 nl/min.

Adapted from refs. 80 and 84


Figure 13.

Net acid excretion in normal control and acid‐loaded Munich‐Wistar rats.

From Buerkert et al. 52


Figure 14.

Time course of plasma bicarbonate concentration, urine pH, and urinary net acid excretion during chronic ammonium chloride loading in normal humans.

Adapted from ref. 323


Figure 15.

SNGFR (upper left panel), glomerular ultrafiltrate bicarbonate concentration (lower left panel), and filtration, absolute proximal reabsorption, and distal delivery of bicarbonate (right panel) in Munich‐Wistar rats in a control state and following bicarbonate loading to achieve acute metabolic alkalosis.

Adapted from refs. 71,73,74,78,80,81,234


Figure 16.

Effects of hyperbicarbonatemia and alkalemia on proton secretion in late proximal convoluted tubule as function of mean luminal bicarbonate concentration during in vivo microperfusion.

Adapted from ref. 11 and modified from Cogan and Alpern 75


Figure 17.

Absolute bicarbonate reabsorption as function of proximal convoluted tubule length in Munich‐Wistar rats with normal systemic pH (triangles; treated with either atrial natriuretic factor or glucagon) and chronic metabolic alkalosis (circles) at comparable filtered bicarbonate loads.

From Liu and Cogan 234


Figure 18.

Reabsorbate bicarbonate concentration (absolute reabsorption of bicarbonate divided by absolute reabsorption of water) in Munich‐Wistar rat proximal convoluted tubule. Represented are data from rats with normal systemic pH that are hydropenic (open circle refs. 80,81,83), euvolemic (open hexagon; refs. 74,80,81,83), plasma expanded (closed hexagon; refs. 80 and 83), Ringer expanded (open and closed diamonds; refs. 80 and 83), saline expanded (closed triangle; refs. 80 and 84), or treated with atrial natriuretic factor (open hexagon with enclosed dot; ref. 73); with metabolic acidosis (ammonium chloride loading) that are hydropenic (open triangle; refs. 80 and 84) or euvolemic (open inverted triangle; refs. 79 and 84); with acute metabolic alkalosis (open square or closed circle; refs. 71,78, and unpublished observations) and during superimposed aortic constriction (open circle with enclosed cross; unpublished observations); with chronic metabolic alkalosis (open square with enclosed circle; refs. 71 and 78) and during superimposed isohydric Ringer expansion (open square with enclosed closed circle; ref. 78), isohydric plasma expansion (closed square; ref. 78), or atrial natriuretic administration (open circle with enclosed open square; ref. 72).



Figure 19.

Models for maintaining hyperbicarbonatemia. Shown are absolute proximal bicarbonate reabsorption as function of SNGFR (top) or filtered bicarbonate load (bottom) for normal rats (solid line) and for rats with chronic metabolic alkalosis (dashed lines) in which proximal acidification is either suppressed by alkalemia (curve A) or unaffected by alkalemia (curve B). Single and double arrows denote SNGFR or filtered bicarbonate load of inflection points of curve A and curve B, respectively, and therefore highest steady‐state SNGFR or filtered bicarbonate load that would obtain during maintenance phase of chronic metabolic alkalosis. See text for details.



Figure 20.

Plasma bicarbonate concentration, SNGFR, and filtration, proximal reabsorption, and delivery of bicarbonate in normal euvolemic control Munich‐Wistar rats and rats with chronic metabolic alkalosis.

Adapted from refs. 78 and 80 and modified from Cogan and Rector 85


Figure 21.

SNGFR (upper left panel), glomerular ultrafiltrate bicarbonate concentration (lower left panel), and filtration, absolute proximal reabsorption, and distal delivery of bicarbonate (right panel) in Munich‐Wistar rats during chronic metabolic alkalosis and following administration of atrial natriuretic factor.

Adapted from ref. 72


Figure 22.

Absolute proximal bicarbonate reabsorption as function of filtered bicarbonate load during metabolic alkalosis. Shown are data from Munich‐Wistar rats with chronic metabolic alkalosis (open circles) and during superimposed moderate (open circle with enclosed cross) or severe (cross) aortic constriction, atrial natriuretic factor administration (open circle with enclosed letter A), or isohydric expansion with plasma (closed triangle) or Ringer's solution (closed inverted triangle), and acute metabolic alkalosis (closed square).

Adapted from refs. 72 and 78


Figure 23.

Net bicarbonate absorption (dashed lines and open figures) and proton secretion (solid lines and closed figures) during in vivo microperfusion at 15, 30, and 45 nl/min using perfusate bicarbonate concentration of either 25 or 40 mM in late proximal convoluted tubules of normal rats (squares and triangles) or rats with chronic metabolic alkalosis (circles). Shaded area represents passive component of bicarbonate absorption. Asterisks represent significant difference of net bicarbonate absorption and proton secretion during metabolic alkalosis compared to either normal group

From Liu and Cogan 235


Figure 24.

Plasma bicarbonate concentration as function of glomerular filtration rate (GFR) in induction and repair or chronic metabolic alkalosis. A, data of normal rats (large closed circle) that were then subjected to no treatment (open circles), potassium deficiency (triangles, inverted triangles, and diamonds), and moderate (hexagons) or severe (squares) potassium plus chloride deficiencies. B, data of rats with chronic metabolic alkalosis caused by potassium and chloride deficiencies (large closed circle) that were then given potassium replacement (squares), chloride replacement (triangles), or both potassium and chloride replacement (open circles).

From Cogan and Liu 78


Figure 25.

Filtered bicarbonate load during induction and repair of chronic metabolic alkalosis in rat. For induction phase of chronic metabolic alkalosis, hatched bars represent normal control values and open bars the paired values following no treatment (group I), severe chloride plus potassium deficiency (group II), moderate chloride plus potassium deficiency (group III), and potassium deficiency induced by diet with (group IVA) or without (groups IVB and IVC) deoxycorticosterone. For repair phase of chronic metabolic alkalosis, hatched bars represent chronic metabolic alkalosis values and open bars the paired values following no treatment (group V), potassium replacement (group VI), chloride replacement (group VII), and both potassium and chloride replacement (group VIII).

Adapted from ref. 78


Figure 26.

Absolute proximal bicarbonate reabsorption in Munich‐Wistar rats subjected to acute or chronic changes in arterial CO2 tension.

Adapted from refs. 70 and 71 and reprinted from Cogan 73


Figure 27.

Temporal changes in plasma bicarbonate concentration, urine pH, and urinary net acid excretion in response to prolonged hypercapania in the rat.

Adapted from ref. 60
References
 1. Abbrecht, P. H. Effects of potassium deficiency on renal function in the dog. J. Clin. Invest. 48: 432–442, 1969.
 2. Adrogue, H. J., and N. E. Madias. Renal acidification during chronic hypercapnia in the conscious dog. Pflugers Arch. 406: 520–528, 1986.
 3. Adrogue, H. J., B. J. Stinebaugh, A. Gougoux, G. Lemieux, P. Vinay, S.‐C. Tam, M. B. Goldstein, and M. L. Halperin. Decreased distal acidification in acute hypercapnia in the dog. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F19–F27, 1983.
 4. Akiba, T., R. J. Alpern, J. Eveloff, J. Calamina, and D. G. Warnock. Electrogenic sodium/bicarbonate cotransport in rabbit renal cortical basolateral membrane vesicles. J. Clin. Invest. 78: 1472–1478, 1986.
 5. Akiba, T., V. Rocco, and D. G. Warnock. Parallel adaptation of the rabbit renal cortical sodium/proton antiporter and sodium/bicarbonate cotransport in metabolic acidosis and alkalosis. J. Clin. Invest. 80: 308–315, 1987.
 6. Al‐Awqati, Q. Effect of aldosterone on the coupling between H+ transport and glucose oxidation. J. Clin. Invest. 60: 1240–1247, 1977.
 7. Al‐Awqati, Q. The cellular renal response to respiratory acid‐base disorders. Kidney Int. 28: 845–855, 1985.
 8. Alpern, R. J. Bicarbonate‐water interactions in the rat proximal convoluted tubule: an effect of volume flux on active proton secretion. J. Gen. Physiol. 84: 753–770, 1984.
 9. Alpern, R. J. Mechanism of basolateral membrane H+/OH−/HCO3− transport in the rat proximal convoluted tubule: a sodium‐coupled electrogenic process. J. Gen. Physiol. 86: 613–636, 1985.
 10. Alpern, R. J., M. G. Cogan, and F. C. Rector, Jr. Effect of luminal bicarbonate concentration on proximal acidification in the rat. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F53–F59, 1982.
 11. Alpern, R. J., M. G. Cogan, and F. C. Rector, Jr. Effects of extracellular fluid volume and plasma bicarbonate concentration on proximal acidification in the rat. J. Clin. Invest. 71: 736–746, 1983.
 12. Alpern, R. J., M. G. Cogan, and F. C. Rector, Jr. Flow dependence on proximal tubular bicarbonate absorption. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F478–F484, 1983.
 13. Alpern, R. J., and F. C. Rector, Jr. A model of proximal tubular bicarbonate absorption. Am. J Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F272–F281, 1985.
 14. Ariel, I. M., and F. Miller. The effects of hypochloremia upon renal function in surgical patients. Surgery 28: 552–567, 1950.
 15. Aronson, P. S. Mechanisms of active H+ secretion in the proximal tubule. Am. J. Physiol 245 (Renal Fluid Electrolyte Physiol. 14): F647–F659, 1983.
 16. Arruda, J. A. L., and N. A. Kurtzman. Mechanisms and classification of deranged distal urinary acidification. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F515–F523, 1980.
 17. Arruda, J. A. L., S. Sabatini, P. K. Mehta, B. Sodhi, and R. Baranowski. Functional characterization of drug‐induced experimental papillary necrosis. Kidney Int. 15: 264–275, 1979.
 18. Atkins, E. L., and W. B. Schwartz. Factors governing correction of the alkalosis associated with potassium deficiency: the critical role of chloride in the recovery process. J. Clin. Invest. 41: 218–229, 1962.
 19. Atkins, J. L., and M. B. Burg. Bicarbonate transport by isolated perfused rat collecting ducts. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F485–F489, 1985.
 20. Atkins, J. L., and M. B. Burg. Control of steady‐state pH in rabbit proximal straight tubules. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F282–F289, 1987.
 21. Atkins, J. L., and M. A. Knepper. Bicarbonate and ammonia transport in isolated perfused rat proximal straight tubules. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F277–F281, 1987.
 22. Bank, N. The effect of buffer loading upon ammonium excretion in the dog. J. Clin. Invest. 40: 573–578, 1961.
 23. Bank, N., and H. S. Aynedjian. A micropuncture study of renal bicarbonate and chloride reabsorption in hypokalemic alkalosis. Clin. Sci. 29: 159–170, 1965.
 24. Bank, N., and H. S. Aynedjian. A micropuncture study of the effect of parathyroid hormone on renal bicarbonate reabsorption. J. Clin. Invest. 58: 336–344, 1976.
 25. Bank, N., and W. B. Schwartz. The influence of anion penetrating ability on urinary acidification and the excretion of titratable acid. J. Clin. Invest. 39: 1516–1525, 1960.
 26. Barker, E. S., R. B. Singer, J. R. Elkinton, and J. K. Clark. The renal response in man to acute experimental respiratory alkalosis and acidosis. J. Clin. Invest. 36: 515–529, 1957.
 27. Batlle, D. C. Segmental characterization of defects in collecting tubule acidification. Kidney Int. 30: 546–554, 1986.
 28. Batlle, D. C., M. Downer, C. Gutterman, and N. A. Kurtzman. Relationship of urinary and blood carbon dioxide tension during hypercapnia in the rat: its significance in the evaluation of collecting duct hydrogen ion secretion. J. Clin. Invest. 75: 1517–1530, 1985.
 29. Baum, M. Insulin stimulates volume absorption in the rabbit proximal convoluted tubule. J. Clin. Invest. 79: 1104–1109, 1987.
 30. Baum, M., and R. D. Toto. Lack of a direct effect of atrial natriuretic factor in the rabbit proximal tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F66–F69, 1986.
 31. Beck, N., and J. O. Shaw. Thromboxane B2 and prostaglandin E2 in the K+‐depleted rat kidney. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F151–F157, 1981.
 32. Bengele, H. H., M. L. Graber, and E. A. Alexander. Effect of respiratory acidosis on acidification by the medullary collecting duct. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F89–F94, 1983.
 33. Bengele, H. H., E. R. McNamara, J. H. Schwartz, and E. A. Alexander. Suppression of acidification along inner medullary collecting duct. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F307–F312, 1988.
 34. Bengele, H. H., J. H. Schwartz, E. R. McNamara, and E. A. Alexander. Chronic metabolic acidosis augments acidification along the inner medullary collecting duct. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F690–F694, 1986.
 35. Bengele, H. H., J. H. Schwartz, E. R. McNamara, and E. A. Alexander. Effect of buffer infusion during acute respiratory acidosis. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F115–F119, 1986.
 36. Bennett, C. M., P. D. Springberg, and N. R. Falkinburg. Glomerulo‐tubular balance for bicarbonate in the dog. Am. J. Physiol. 228: 98–106, 1975.
 37. Berger, B. E., M. G. Cogan, and A. Sebastian. Reduced glomerular filtration and enhanced bicarbonate reabsorption maintain metabolic alkalosis in humans. Kidney Int. 26: 205–208, 1984.
 38. Berry, C. A., and M. G. Cogan. Influence of peritubular protein on solute absorption in the rabbit proximal tubule: a specific effect on NaCl transport. J. Clin. Invest. 68: 506–516, 1981.
 39. Berry, C. A., and D. G. Warnock. Acidification in the in vitro perfused tubule. Kidney Int. 11: 507–518, 1982.
 40. Bichara, M., O. Mercier, M. Paillard, and F. Leviel. Effects of parathyroid hormone on urinary acidification. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F444–F453, 1986.
 41. Bichara, M., M. Paillard, B. Gorman, C. de Rouffignac, and F. Leviel. Volume expansion modulates NaHCO3 and NaCl transport in the proximal tubule and Henle's loop. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F140–F150, 1984.
 42. Black, D. A. K., and M. D. Milne. Experimental potassium depletion in man. Clin. Sci. 11: 397–415, 1952.
 43. Bleich, H. L., R. L. Tannen, and W. B. Schwartz. The induction of metabolic alkalosis by correction of potassium deficiency. J. Clin. Invest. 45: 573–579, 1966.
 44. Blumenthal, S. S., R. A. Ware, and J. G. Kleinman. Proximal tubule hydrogen ion transport processes in diuretic‐induced metabolic alkalosis. J. Lab. Clin. Med. 106: 17–22, 1985.
 45. Borkan, S., T. E. Northrup, J. J. Cohen, and S. Garella. Renal response to metabolic alkalosis induced by isovolemic hemofiltration in the dog. Kidney Int. 32: 322–328, 1987.
 46. Bosch, J. P., M. H. Goldstein, M. F. Levitt, and T. Kahn. Effect of chronic furosemide administration on hydrogen and sodium excretion in the dog. Am. J. Physiol. 22 (Renal Fluid Electrolyte Physiol. 1): F397–F404, 1977.
 47. Brazeau, P., and A. Gilman. Effect of plasma CO2 tension on renal tubular reabsorption of bicarbonate. Am. J. Physiol. 175: 33–38, 1953.
 48. Breyer, M. D., J. P. Kokko, and H. R. Jacobson. Regulation of net bicarbonate transport in rabbit cortical collecting tubule by peritubular pH, carbon dioxide tension, and bicarbonate concentration, J. Clin. Invest. 77: 1650–1660, 1986.
 49. Brodsky, W. A., J. F. Miley, J. T. Kaim, and N. P. Shah. Characteristics of acidic urine after loading with weak organic acids. Am. J. Physiol. 193: 108–122, 1958.
 50. Brunner, F. P., F. C. Rector, Jr., and D. W. Seldin. The mechanism of the urinary concentrating defect in potassium deficient rats. Pflugers Arch. 290: 202–210, 1966.
 51. Buerkert, J., D. Martin, and D. Trigg. Ammonium handling by superficial and juxtamedullary nephrons in the rat. Evidence for an ammonia shunt between the loop of Henle and the collecting duct. J. Clin. Invest. 70: 1–12, 1982.
 52. Buerkert, J., D. Martin, and D. Trigg. Segmental analysis of the renal tubule in buffer production and net acid formation. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F442–F454, 1983.
 53. Buerkert, J. E., D. Martin, and D. Trigg. Renal tubule handling of ammonium during acute respiratory acidosis. Contrib. Nephrol. 47: 134–139, 1985.
 54. Buerkert, J., D. Martin, D. Trigg, and E. Simon. Effect of reduced renal mass on ammonium handling and net acid formation by the superficial and juxtamedullary nephron of the rat: evidence for impaired reentrapment rather than decreased production of ammonium in the acidosis of uremia. J. Clin. Invest. 71: 1661–1675, 1983.
 55. Burg, M. B., and N. Green. Bicarbonate transport by isolated perfused rabbit proximal convoluted tubules. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F307–F314, 1977.
 56. Cantin, M., and J. Genest. The heart of the atrial natriuretic factor. Endocr. Rev. 6: 107–127, 1985.
 57. Capasso, G., P. Jaeger, G. Giebisch, V. Guckian, and G. Malnic. Renal bicarbonate reabsorption in the rat. II. Distal tubule load dependence and effect of hypokalemia. J. Clin. Invest. 80: 409–414, 1987.
 58. Capasso, G., R. Kinne, G. Malnic, and G. Giebisch. Renal bicarbonate reabsorption in the rat. I. Effects of hypokalemia and carbonic anhydrase. J. Clin. Invest. 78: 1558–1567, 1986.
 59. Carneiro, A. V., A. Sebastian, and M. G. Cogan. Reduced glomerular filtration rate can maintain a rise in plasma bicarbonate concentration in humans. Am. J. Nephrol. 7: 450–454, 1987.
 60. Carter, N. W., D. W. Seldin, and H. C. Teng. Tissue and renal response to chronic respiratory acidosis. J. Clin. Invest. 38: 949–960, 1959.
 61. Cassola, A. G., G. Giebisch, and G. Malnic. Mechanisms and components of renal tubular acidification. J. Physiol. 267: 601–624, 1977.
 62. Chan, Y. L., B. Biagi, and G. Giebisch. Control mechanisms of bicarbonate transport across the rat proximal convoluted tubule. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F532–F543, 1982.
 63. Chan, Y. L., and G. Giebisch. Relationship between sodium and bicarbonate transport in the rat proximal convoluted tubule. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F222–F230, 1981.
 64. Chan, Y. L., G. Malnic, and G. Giebisch. Passive driving forces of proximal tubular fluid and bicarbonate transport: gradient dependence of H+ secretion. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F622–F633, 1983.
 65. Chantrelle, B., M. G. Cogan, and F. C. Rector, Jr. Evidence for coupled sodium/hydrogen exchange in the rat superficial proximal convoluted tubule. Pflugers Arch. 395: 186–189, 1982.
 66. Clapp, J. R., E. E. Owen, and R. R. Robinson. Contribution of the proximal tubule to urinary ammonia excretion by the dog. Am. J. Physiol. 209: 269–272, 1965.
 67. Clapp, J. R., F. C. Rector, Jr., and D. W. Seldin. Effect of unreabsorbed anions on proximal and distal transtubular potentials in rats. Am. J. Physiol. 202: 781–786, 1962.
 68. Cogan, M. G. Disorders of proximal nephron function. Am. J. Med. 72: 275–288, 1982.
 69. Cogan, M. G. Volume expansion predominantly inhibits proximal reabsorption of NaCl rather than NaHCO3. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F272–F275, 1983.
 70. Cogan, M. G. Chronic hypercapnia stimulates proximal bicarbonate reabsorption in the rat. J. Clin. Invest. 74: 1942–1947, 1984.
 71. Cogan, M. G. Effects of acute alterations in PCO2 on proximal HCO3−, Cl− and H2O reabsorption. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F21–F26, 1984.
 72. Cogan, M. G. Atrial natiuretic factor ameliorates chronic metabolic alkalosis by increasing glomerular filtration. Science 229: 1405–1407, 1985.
 73. Cogan, M. G. Atrial natriuretic factor can increase renal solute excretion primarily by raising glomerular filtration. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F710–F714, 1986.
 74. Cogan, M. G. Neurogenic regulation of proximal bicarbonate and chloride reabsorption. Am. J. Physiol. 50 (Renal Fluid Electrolyte Physiol. 19): F22–F26, 1986.
 75. Cogan, M. G., and R. J. Alpern. Regulation of proximal bicarbonate reabsorption. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F387–F395, 1984.
 76. Cogan, M. G., A. V. Carneiro, J. Tatsuno, J. Colman, R. C. Morris, Jr., and A. Sebastian. Normal diet NaCl variation can affect renal set‐point for plasma pH‐HCO3− maintenance. J. Am. Soc. Nephrol, (in press), 1990.
 77. Cogan, M. G., C.‐L. Huang, F.‐Y. Liu, D. Madden, and K. Wong. Effect of atrial natriuretic factor on acid‐base homeostasis. J. Hypertens. 4 (Suppl. 2): S31–S34, 1986.
 78. Cogan, M. G., and F.‐Y. Liu. Metabolic alkalosis in the rat: evidence that reduced glomerular filtration rather than enhanced tubular bicarbonate reabsorption is responsible for maintaining the alkalotic state. J. Clin. Invest. 71: 1141–1160, 1983.
 79. Cogan, M., G. F.‐Y. Liu, B. E. Berger, A. Sebastian, and F. C. Rector, Jr. Metabolic alkalosis. Med. Clin. North Am. 67: 903–914, 1983.
 80. Cogan, M. G., D. A. Maddox, M. S. Lucci, and F. C. Rector, Jr. Control of proximal bicarbonate reabsorption in normal and acidotic rats. J. Clin. Invest. 64: 1168–1180, 1979.
 81. Cogan, M. G., D. A. Maddox, D. G. Warnock, E. T. Lin, and F. C. Rector, Jr. Effect of acetazolamide on bicarbonate reabsorption in the proximal tubule of the rat. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F447–F454, 1979.
 82. Cogan, M. G., and M. R. Mueller. NaHCO3 therapy corrects the increased urinary Na, K, Cl and H2O excretion induced by NH4Cl. Miner. Electrolyte Metab. 9: 132–136, 1983.
 83. Cogan, M. G., and F. C. Rector, Jr. Determinants of proximal bicarbonate, chloride and water reabsorption during carbonic anhydrase inhibition. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F274–F284, 1982.
 84. Cogan, M. G., and F. C. Rector, Jr. Proximal reabsorption during metabolic acidosis in the rat. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F499–F507, 1982.
 85. Cogan, M. G. and F. C. Rector, Jr. Acid‐base disorders. In: The Kidney (3rd ed.), edited by B. M. Rector and F. C. Rector, Jr. Philadelphia: Saunders, 1986, p. 457–518.
 86. Cohen, J. J. Correction of metabolic alkalosis by the kidney after isometric expansion of extracellular fluid. J. Clin. Invest. 47: 1181–1192, 1968.
 87. Cohen, J. J. Selective Cl retention in repair of metabolic alkalosis without increasing filtered load. Am. J. Physiol. 218: 165–170, 1970.
 88. Cohen, J. J., N. E. Madias, C. J. Wolf, and W. B. Schwartz. Regulation of acid‐base equilibrium in chronic hypocapnia: evidence that the response of the kidney is not geared to the defense of extracellular [H+]. J. Clin. Invest. 57: 1483–1489, 1976.
 89. Cooke, R. E., W. E. Segar, D. B. Cheek, F. E. Coville, and D. C. Darrow. The extrarenal correction of alkalosis associated with potassium deficiency. J. Clin. Invest. 32: 798–805, 1952.
 90. Cooke, R. E., W. E. Segar, C. Reed, D. D. Etzwiler, M. Vita, S. Brusilow, and D. C. Darrow. The role of potassium in the prevention of alkalosis. Am. J. Med. 17: 180–195, 1954.
 91. Corman, B., R. Thomas, R. McLeod, and C. de Rouffignac. Water and total CO2 reabsorption along the rat proximal convoluted tubule. Pflugers Arch. 389: 45–53, 1980.
 92. Costa Silva, V. L., S. S. Campiglia, M. de Mello Aires, G. Malnic, and G. Giebisch. Role of luminal buffers in renal tubular acidification. J. Membr. Biol. 63: 13–24, 1981.
 93. Craig, D. M., J. H. Galla, D. N. Bonduris, and R. G. Luke. Importance of the kidney in the correction of chloride‐depletion alkalosis in the rat. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F54–F57, 1986.
 94. De Graeff, J. A., Struyvenberg, and L. D. F. Lameijer. The role of chloride in hypokalemic alkalosis. Am. J. Med. 41: 78–788, 1964.
 95. Delahousse, M., O. Mercier, M. Bichara, M. Paillard, F. Leviel, and R. Assan. Glucagon inhibits urinary acidification in the rat. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F762–F769, 1988.
 96. de Mello Aires, M., and G. Malnic. Micropuncture study of acidification during hypochloremic alkalosis in the rat. Pflugers Arch. 331: 13–24, 1972.
 97. de Mello Aires, M., and G. Malnic. Peritubular pH and PCO2 in renal tubular acidification. Am. J. Physiol. 228: 1766–1774, 1975.
 98. Dennis, V. W., W. W. Stead, and J. L. Myers. Renal handling of phosphate and calcium. Annu. Rev. Physiol. 41: 257–271, 1979.
 99. De Sousa, R. C., J. T. Harrington, E. S. Ricanati, J. W. Shelkrot, and W. B. Schwartz. Renal regulation of acid‐base equilibrium during chronic administration of mineral acid. J. Clin. Invest. 53: 465–476, 1974.
 100. Di Tella, P. J., b. Sodhi, J. McCreary, J. A. L. Arruda, and N. A. Kurtzman. Mechanism of the metabolic acidosis of selective mineralocorticoid deficiency. Kidney Int. 14: 466–477, 1978.
 101. Dorman, P. J., W. J. Sullivan, and R. F. Pitts. The renal response to acute respiratory acidosis. J. Clin. Invest. 33: 82–90, 1954.
 102. Du Bose, T. D., Jr. Hydrogen ion secretion by the collecting duct as a determinant of the urine to blood PCO2 gradient in alkaline urine. J. Clin. Invest. 69: 145–156, 1982.
 103. Du Bose, T. D., Jr., and M. S. Lucci. Effect of carbonic anhydrase inhibition on superficial and deep nephron bicarbonate reabsorption in the rat. J. Clin. Invest. 71: 55–65, 1983.
 104. Du Bose, T. D., Jr., M. S. Lucci, R. J. Hogg, L. R. Pucacco, J. P. Kokko, and N. W. Carter. Comparison of acidification parameters in superficial and deep nephrons of the rat. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F497–F503, 1983.
 105. Du Bose, T. D., Jr., L. R. Pucacco, and N. W. Carter. Determination of disequilibrium pH in the rat kidney in vivo: evidence for hydrogen secretion. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F138–F146, 1981.
 106. Du Bose, T. D., Jr., L. R. Pucacco, M. S. Lucci, and N. W. Carter. Micropuncture determination of pH, PCO2, and total CO2 concentration in accessible structures of the rat renal cortex. J. Clin. Invest. 64: 476–482, 1979.
 107. Dubrovsky, A. H. E., R. C. Nair, M. K. Byers, and D. Z. Levine. Renal net acid excretion in the adrenalectomized rat. Kidney Int. 19: 516–528, 1981.
 108. Epstein, F. H., C. R. Kleeman, E. Lamdin, and M. E. Rubini. Studies of the antidiuresis of quiet standing: observations upon electrolyte and acid‐base excretion during sulfate diuresis. J. Clin. Invest. 35: 108–313, 1956.
 109. Fine, L. G., and T. Bradley. Adaptation of proximal tubuler structure and function: insights into compensatory renal hypertrophy. Federation Proc. 44: 2723–2727, 1985.
 110. Friedman, P. A., and T. E. Andreoli. CO2‐stimulated NaCl absorption in the mouse renal cortical thick ascending limb of Henle. Evidence for synchronous Na+/ H+ and Cl−/ HCO3− exchange in apical plasma membranes. J. Gen. Physiol. 80: 683–711, 1982.
 111. Frommer, J. P., M. E. Laski, D. E. Wesson, and N. A. Kurtzman. Internephron heterogeneity for carbonic anhydrase‐independent bicarbonate reabsorption in the rat. J. Clin. Invest. 73: 1034–1045, 1984.
 112. Frommer, J. P., D. E. Wesson, M. E. Laski, and N. A. Kurtzman. Juxtamedullary nephrons during acute metabolic alkalosis. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F107–F116, 1985.
 113. Frömter, E., and K. Gessner. Effect of inhibitors and diuretics on electrical potential differences in rat kidney proximal tubule. Pflugers Arch. 357: 109–224, 1975.
 114. Galla, J. H., D. N. Bonduris, S. L. Dumbauld, and R. G. Luke. Segmental chloride and fluid handling during correction of chloride‐depletion alkalosis without volume expansion in the rat. J. Clin. Invest. 73: 96–106, 1984.
 115. Galla, J. H., D. N. Bonduris, and R. G. Luke. Correction of acute chloride‐depletion alkalosis in the rat without volume expansion. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F217–F221, 1983.
 116. Galla, J. H., D. N. Bonduris, and R. G. Luke. Effects of chloride and extracellular volume on bicarbonate reabsorption along the nephron in metabolic alkalosis in the rat: a reassessment of the classical hypothesis of the pathogenesis of metabolic alkalosis. J. Clin. Invest. 80: 41–50, 1987.
 117. Galla, J. H., D. N. Bonduris, P. W. Sanders, and R. G. Luke. Volume‐independent reduction in glomerular filtration rate in acute chloride‐depletion alkalosis in the rat. Evidence for mediation by tubuloglomerular feedback. J. Clin. Invest. 74: 2002–2008, 1984.
 118. Galla, J. H., and R. G. Luke. Chloride transport and disorders of acid‐base balance. Annu. Rev. Physiol. 50: 141–158, 1988.
 119. Gamble, J. L., K. D. Blackfan, and B. Hamilton. A study of the diuretic action of acid producing salts. J. Clin. Invest. 1: 359–387, 1925.
 120. Garcia‐Austt, J., D. W. Good, M. B. Burg, and M. A. Knepper. Deoxycorticosterone‐stimulated bicarbonate secretion in rabbit cortical collecting ducts: effects of luminal chloride removal and in vivo acid loading. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F205–F212, 1985.
 121. Garella, S., B. Chang, and S. I. Kahn. Alterations of hydrogen ion homeostasis in pure potassium depletion: studies in rats and dogs during the recovery phase. J. Lab. Clin. Med. 93: 321–331, 1979.
 122. Garella, S., J. A. Chazan, and J. J. Cohen. Saline‐resistant metabolic alkalosis or “chloride‐wasting nephropathy.” Ann. Intern. Med. 73: 31–38, 1970.
 123. Garella, S., A. H. Tzamaloukas, and J. A. Chazan. Effect of isotonic volume expansion on extracellular bicarbonate stores in normal dogs. Am. J. Physiol. 225: 628–636, 1973.
 124. Garvin, J. L., M. B. Burg, and M. A. Knepper. Ammonium replaces potassium in supporting transport by the Na‐K‐ATPase of renal proximal straight tubules. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F785–F788, 1985.
 125. Garvin, G. L., M. B. Burg, and M. A. Knepper. Active NH4+ absorption by the thick ascending limb. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol.) : F57–F65, 1988.
 126. Garvin, G. L., and M. A. Knepper. Bicarbonate and ammonia transport in isolated perfused rat proximal straight tubules. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F277–F281, 1987.
 127. Gennari, F. J., C. R. Caflisch, C. Johns, D. A. Maddox, and J. J. Cohen. PCO2 measurements in surface proximal tubules and peritubular capillaries of the rat kidney. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F78–F85, 1982.
 128. Gennari, F. J., M. B. Goldstein, and W. B. Schwartz. The nature of the renal adaptation to chronic hypocapnia. J. Clin. Invest. 51: 1722–1730, 1972.
 129. Gennari, F. J., M. L. Ponte, and S. Cortell. Distal tubular chloride delivery and reabsorption after hydrochloric acid administration in the tat. Miner. Electrolyte Metab. 3: 217–222, 1980.
 130. Giammarco, R. A., M. B. Goldstein, M. L. Halperin, and B. J. Stinebaugh. The effect of hyperventilation on distal nephron hydrogen ion secretion. J. Clin. Invest. 58: 77–82, 1976.
 131. Giebisch, G., M. B. MacLeod, and R. F. Pitts. Effect of adrenal steroids on renal tubular reabsorption of bicarbonate. Am. J. Physiol. 183: 377–386, 1955.
 132. Giebisch, G., G. Malnic, G. B. de Mello, and M. de Mello Aires. Kinetics of luminal acidification in cortical tubules of the rat kidney. J. Physiol. 267: 571–599, 1977.
 133. Giebisch, G., G. Malnic, R. M. Klose, and E. E. Windhager. Effect of ionic substitutions on distal potential differences in rat kidney. Am. J. Physiol. 211: 560–568, 1966.
 134. Glassman, V. P., R. Safirstein, and V. A. Di Scala. Effects of metabolic acidosis on proximal tubule ion reabsorption in dog kidney. Am. J. Physiol. 227: 759–765, 1974.
 135. Gledhill, N., G. J. Beirne, and J. A. Dempsey. Renal response to short‐term hypocapnia in man. Kidney Int. 8: 376–386, 1975.
 136. Gluck, S., and Q. Al‐Awqati. An electrogenic proton‐translocating adenosine triphosphatase from bovine kidney medulla. J. Clin. Invest. 73: 1704–1710, 1984.
 137. Good, D. W. Sodium‐dependent bicarbonate absorption by cortical thick ascending limb of rat kidney. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F821–F829, 1985.
 138. Good, D. W. Effects of potassium on ammonia transport by medullary thick ascending limb of the rat. J. Clin. Invest. 80: 1358–1365, 1987.
 139. Good, D. W. Active absorption of NH4+ by rat medullary thick ascending limb: inhibition by potassium. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F78–F87, 1988.
 140. Good, D. W., and M. B. Burg. Ammonia production by individual segments of the rat nephron. J. Clin. Invest. 73: 602–610, 1984.
 141. Good, D. W., C. Caflisch, and T. D. Du Bose, Jr. Trans‐epithelial ammonia concentration gradients in inner medulla of the rat. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F491–F500, 1987.
 142. Good, D. W., and T. D. Du Bose, Jr. Ammonia transport by early and late proximal convoluted tubule of the rat. J. Clin. Invest. 79: 684–691, 1987.
 143. Good, D. W., and M. A. Knepper. Ammonia transport in the mammalian kidney. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F459–F471, 1985.
 144. Good, D. W., M. A. Knepper, and M. B. Burg. Ammonia and bicarbonate transport by thick ascending limb of rat kidney. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F35–F44, 1984.
 145. Gottschalk, C. W., W. E. Lassiter, and M. Mylle. Localization of urine acidification in the mammalian kidney. Am. J. Physiol. 198: 581–585, 1960.
 146. Gougoux, A., W. D. Kaehny, and J. J. Cohen. Renal adaptation to chronic hypocapnia: dietary constraints in achieving H+ retention. Am. J. Physiol. 229: 1330–1337, 1975.
 147. Gougoux, A., P. Vinay, M. Cardoso, M. Duplain, and G. Lemieux. Immediate adaptation of the dog kidney to acute hypercapnia. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F227–F234, 1982.
 148. Gougoux, A., P. Vinay, G. Lemieux, M.‐A. Duran, C.‐B. Chen, M. B. Goldstein, B. J. Stinebaugh, S.‐C. Tam, and M. L. Halperin. Studies on the mechanism whereby acidemia stimulates collecting duct hydrogen ion secretion in vivo. Kidney Int. 20: 643–648, 1981.
 149. Gougoux, A., P. Vinay, G. Lemieux, R. M. A. Richardson, S.‐C. Tam, M. B. Goldstein, B. J. Stinebaugh, and M. L. Halperin. Effect of blood pH on distal nephron hydrogen ion secretion. Kidney Int. 17: 615–621, 1980.
 150. Graber, M. L., H. H. Bengele, E. Mroz, C. Lechene, and E. A. Alexander. Acute metabolic acidosis augments collecting duct acidification rate in the rat. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F669–F676, 1981.
 151. Graber, M. L., H. H. Bengele, J. H. Schwartz, and E. A. Alexander. pH and PCO2 profiles of the rat inner medullary collecting duct. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F659–F668, 1981.
 152. Grollman, A. P., and J. L. Gamble, Jr. Metabolic alkalosis, a specific effect of adrenocortical hormones. Am. J. Physiol. 196: 135–140, 1959.
 153. Gulyassy, P. F., C. Van Ypersele de Strihou, and W. B. Schwartz. On the mechanism of nitrate‐induced alkalosis. The possible role of selective chloride depletion in acid‐base regulation. J. Clin. Invest. 41: 1850–1862, 1962.
 154. Guntupalli, J., B. Eby, and K. Lau. Mechanism for the phosphaturia of NH4Cl: dependence on acidemia but not on diet PO4 or PTH. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F552–F560, 1982.
 155. Gyory, A. Z., and D. Lissner. Independence of ethacrynic acid‐induced renal hydrogen ion excretion of sodium‐volume depletion in man. Clin. Sci. Mol. Med. 53: 125–132, 1977.
 156. Halperin, M. L., M. B. Goldstein, R. M. A. Richardson, and B. J. Stinebaugh. Distal renal tubular acidosis syndromes: a pathophysiological approach. Am. J. Nephrol. 5: 1–8, 1985.
 157. Halperin, M. L., and R. L. Jungas. Metabolic production and renal disposal of hydrogen ions. Kidney Int. 24: 709–713, 1983.
 158. Hamm, L. Ammonia transport in the rabbit medullary collecting tubule, abstracted. Kidney Int. 29: 367, 1986.
 159. Hamm, L. L., and E. E. Simon. Roles and mechanisms of urinary buffer excretion. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F595–F605, 1987.
 160. Harrington, J. T., H. N. Hulter, J. J. Cohen, and N. E. Madias. Mineralocorticoid‐stimulated renal acidification: the critical role of dietary sodium. Kidney Int. 30: 43–48, 1986.
 161. Hayes, C. P., Jr., J. S. Mayson, E. E. Owen, and R. R. Robinson. A micropuncture evaluation of renal ammonia excretion in the rat. Am. J. Physiol. 207: 77–83, 1964.
 162. Hays, S., J. P. Kokko, and H. R. Jacobson. Hormonal regulation of proton secretion in rabbit medullary collecting duct. J. Clin. Invest. 78: 1279–1286, 1986.
 163. Hernandez, R., M. Schambelan, M. G. Cogan, J. Colman, R. C. Morris, Jr., and A. Sebastian. Dietary NaCl determines the severity of potassium depletion‐induced metabolic alkalosis. Kidney Int. 31: 1356–1367, 1987.
 164. Hierholzer, K. Secretion of potassium and acidification in collecting ducts of mammalian kidney. Am. J. Physiol. 201: 318–324, 1961.
 165. Higashara, E., N. W. Carter, L. Pucacco, and J. P. Kokko. The effect of aldosterone on papillary collecting duct pH profile of normal and adrenalectomized rat. Kidney Int. 25: 276, 1984.
 166. Hills, A. G., and E. L. Reid. PCO2 and PNH3 in mammalian kidney and urinary tract related to urine pH and flow. Am. J. Physiol. 219: 423–434, 1970.
 167. Hilton, J. G., N. E. Capeci, G. T. Kiss, O. R. Kruesi, V. V. Glaviano, and R. Wegria. The effect of acute elevation of the plasma chloride concentration on the renal excretion of bicarbonate during acute respiratory acidosis. J. Clin. Invest. 35: 481–487, 1956.
 168. Holliday, M. A., and T. J. Egan. Changes in GFR and CH2O before and after repair of K deficiency in rats. Am. J. Physiol. 202: 773–776, 1962.
 169. Homberg, C., J. P. Kokko, and H. R. Jacobson. Determination of chloride and bicarbonate permeabilities in proximal convoluted tubules. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F386–F394, 1981.
 170. Hropot, M., N. Fowler, B. Karlmark, and G. Giebisch. Tubular action of diuretics: distal effects on electrolyte transport and acidification. Kidney Int. 28: 477–489, 1985.
 171. Huang, C.‐L., J. Lewicki, L. K. Johnson, and M. G. Cogan. Renal mechanism of action of rat atrial natriuretic factor. J. Clin. Invest. 75: 769–773, 1985.
 172. Hulter, H. N. Hypophosphaturia impairs the renal defense against metabolic acidosis. Kidney Int. 26: 302–307, 1984.
 173. Hulter, H. N. Effects and interrelationships of PTH, Ca2+, vitamin D, Pi in acid–base homeostasis. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F739–F752, 1985.
 174. Hulter, H. N., L. P. Ilnicki, J. A. Harbottle, and A. Sebastian. Impaired renal H+ secretion and NH3 production in mineralocorticoid‐deficient glucocorticoid‐replete dogs. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F136–F146, 1977.
 175. Hulter, H. N., J. H. Licht, E. L. Bonner, Jr., R. D. Glynn, and A. Sebastian. Effects of glucocorticoid steroids on renal and systemic acid‐base metabolism. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F30–F43, 1980.
 176. Hulter, H. N., J. H. Licht, R. D. Glynn, and A. Sebastian. Renal acidosis in mineralocorticoid deficiency is not dependent on NaCl depletion or hyperkalemia. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F283–F294, 1979.
 177. Hulter, H. N., J. H. Licht, and A. Sebastian. K+ deprivation potentiates the renal acid excretory effect of mineralocorticoid: obliteration by amiloride. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F48–F57, 1979.
 178. Hulter, H. N., J. F. Sigala, and A. Sebastian. K+ deprivation potentiates the renal alkalosis‐producing effect of mineralocorticoid. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F298–F309, 1978.
 179. Hutchison, B. G., M. S. Lucci, D. W. Seldin, J. P. Kokko, and T. D. Du Bose, Jr. Deep proximal nephrons participate in the maintenance of chronic metabolic alkalosis, abstracted. Kidney Int. 26: 231, 1984.
 180. Huth, E. J., R. D. Squires, and J. R. Elkinton. Experimental potassium depletion in normal human subjects. II. Renal and hormonal factors in the development of extracellular alkalosis during depletion. J. Clin. Invest. 38: 1149–1165, 1959.
 181. Iacovitti, M., L. Nash, L. N. Peterson, J. Rochon, and D. Z. Levine. Distal tubule bicarbonate accumulation in vivo: effect of flow and transtubular bicarbonate gradients. J. Clin. Invest. 78: 1658–1665, 1986.
 182. Ichikawa, I., D. A. Maddox, M. G. Cogan, and B. M. Brenner. Dynamics of glomerular ultrafiltration in euvolemic Munich‐Wistar rats. Renal Physiol. 1: 121–131, 1978.
 183. Iino, Y., and M. B. Burg. Effect of acid‐base status in vivo on bicarbonate transport by rabbit renal tubules in vitro. Jpn. J. Physiol. 31: 99–107, 1981.
 184. Ishibashi, K., S. Sasaki, N. Yoshiyama, T. Shiigai, and J. Takeuchi. Generation of pH gradient across the rabbit collecting duct segments perfused in vitro. Kidney Int. 31: 930–936, 1987.
 185. Jacobson, H. R. Effects of CO2 and acetazolamide on bicarbonate and fluid transport in rabbit proximal tubules. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F54–F62, 1981.
 186. Jacobson, H. R. Medullary collecting duct acidification. Effects of potassium, HCO3 concentration, and PCO2. J. Clin. Invest. 74: 2107–2114, 1984.
 187. Jaeger, P., B. Karlmark, and G. Giebisch. Ammonium transport in rat cortical tubule: relationship to potassium metabolism. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F593–F600, 1983.
 188. Jones, J. W., A. Sebastian, H. N. Hulter, M. Schambelan, J. M. Sutton, and E. G. Biglieri. Systemic and renal acid‐base effects of chronic dietary potassium depletion in humans. Kidney Int. 21: 402–410, 1982.
 189. Kaissling, B. Structural adaptation to altered electrolyte metabolism by cortical distal segments. Federation Proc. 4: 2710–2716, 1985.
 190. Karlmark, B., and B. G. Danielson. Titratable acid, PCO2, bicarbonate and ammonium ions along the rat proximal tubule. Acta Physiol. Scand. 91: 243–258, 1974.
 191. Karlmark, B., P. Jaeger, and G. Giebisch. Luminal buffer transport in rat cortical tubule: relationship to potassium metabolism. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F584–F592, 1983.
 192. Kassirer, J. P., F. M. Appleton, J. A. Chazan, and W. B. Schwartz. Aldosterone in metabolic alkalosis. J. Clin. Invest. 46: 1558–1571, 1967.
 193. Kassirer, J. P., P. M. Berkman, D. R. Lawrenz, and W. B. Schwartz. The critical role of chloride in the correction of the hypokalemic alkalosis in man. Am. J. Med. 38: 172–189, 1965.
 194. Kassirer, J. P., A. M. London, D. M. Goldman, and W. B. Schwartz. On the pathogenesis of metabolic alkalosis in hyperaldosteronism. Am. J. Med. 49: 306–315, 1970.
 195. Kassirer, J. P., and W. B. Schwartz. Correction of metabolic alkalosis in man without repair of potassium deficiency: a re‐evaluation of the role of potassium. Am. J. Med. 40: 19–26, 1966.
 196. Kassirer, J. P., and W. B. Schwartz. The response of normal man to selective depletion of hydrochloric acid. Am. J. Med. 40: 10–18, 1966.
 197. Kaufman, A. M., C. Brod‐Miller, and T. Kahn. Role of citrate excretion in acid–base balance in diuretic‐induced alkalosis in the rat. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F796–F803, 1985.
 198. Kaufman, A. M. and T. Kahn. Complementary role of citrate and bicarbonate excretion in acid–base balance in the rat. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F182–F187, 1988.
 199. Knepper, M. A., D. W. Good, and M. B. Burg. Ammonia and bicarbonate transport by rat cortical collecting ducts perfused in vitro. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F870–F877, 1985.
 200. Koeppen, B. M. Conductive properties of the rabbit outer medullary collecting duct: inner stripe. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F500–F506, 1985.
 201. Koeppen, B. M. Conductive properties of the rabbit outer medullary collecting duct: outer stripe. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F70–F76, 1986.
 202. Koeppen, B. M., and S. I. Helman. Acidification of luminal fluid by the rabbit cortical collecting tubule perfused in vitro. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F521–F531, 1982.
 203. Kornandakieti, C., and R. L. Tannen. H+ transport by the aldosterone‐deficient rat distal nephron. Kidney Int. 25: 629–635, 1984.
 204. Krapf, R. Basolateral membrane H/OH/HCO3 transport in the rat cortical thick ascending limb. Evidence for an electrogenic Na/HCO3 cotransporter in parallel with a Na/H anti‐porter. J. Clin. Invest. 82: 234–241, 1988.
 205. Krapf, R. Mechanisms of adaptation to chronic respiratory acidosis in the proximal tubule. J. Clin. Invest. 83: 890–896, 1989.
 206. Krapf, R., R. J. Alpern, F. C. Rector, Jr., and C. A. Berry. Basolateral membrane Na/base cotransport is dependent on CO2/HCO3 in the proximal convoluted tubule. J. Gen. Physiol. 90: 833–853, 1987.
 207. Krapf, R., C. A. Berry, R. J. Alpern, and F. C. Rector, Jr. Regulation of cell pH by ambient bicarbonate, carbon dioxide tension, and pH in the rabbit proximal convoluted tubule. J. Clin. Invest. 81: 381–389, 1988.
 208. Kraut, J. A., J. B. Wish, K. M. Zoller, S. S. Weinstein, M. A. Melby, and J. J. Cohen. Aldosterone and the renal response to sulfuric acid feeding in the dog. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F494–F502, 1982.
 209. Kriz, W. Der architektonische und funktionelle aufbau der rattenniere. Z. Zellforsch. 82: 495–535, 1967.
 210. Kunau, R. T., Jr., J. I. Hart, and K. A. Walker. Effect of metabolic acidosis on proximal tubular total CO2 absorption. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F62–F68, 1985.
 211. Kunau, R. T., Jr., and K. A. Walker. Total CO2 absorption in the distal tubule of the rat. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F468–F473, 1987.
 212. Kurtz, I. Apical Na+/H+ antiporter and glycosis‐dependent H+‐ATPase regulate intracellular pH in the rabbit S3 proximal tubule. J. Clin. Invest. 80: 928–935, 1987.
 213. Kurtz, I., and R. S. Balaban. Ammonium as a substrate for Na+‐K+‐ATPase in rabbit proximal tubules. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F497–F502, 1986.
 214. Kurtz, I., T. Maher, H. N. Hulter, M. Schambelan, and A. Sebastian. Effect of diet on plasma acid‐base composition in normal humans. Kidney Int. 24: 670–680, 1983.
 215. Kurtz, I., R. Star, R. S. Balaban, J. L. Garvin, and M. A. Knepper. Spontaneous luminal disequilibrium pH in S3 proximal tubules: role in ammonia and bicarbonate transport. J. Clin. Invest. 78: 989–996, 1986.
 216. Kurtzman, N. A. Regulation of renal bicarbonate reabsorption by extracellular volume. J. Clin. Invest. 49: 586–595, 1970.
 217. Kurtzman, N. A. Relationship of extracellular volume and CO2 tension to renal bicarbonate reabsorption. Am. J. Physiol. 219: 1299–1304, 1970.
 218. Langberg, H., O. Mathisen, H. Holdaas, and F. Kiil. Filtered bicarbonate and plasma pH as determinants of renal bicarbonate reabsorption. Kidney Int. 20: 780–788, 1981.
 219. Laski, M. E., and N. A. Kurtzman. Characterization of acidification in the cortical and medullary collecting tubule of the rabbit. J. Clin. Invest. 72: 2050–2059, 1983.
 220. Laski, M. E., D. G. Warnock, and F. C. Rector, Jr. Effects of chloride gradients on total CO2 flux in the rabbit cortical collecting tubule. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F112–F121, 1983.
 221. Lemann, J., Jr., E. J. Lennon, A. D. Goodman, J. R. Litzow, and A. S. Relman. The net balance of acid in subjects given large loads of acid or alkali. J. Clin. Invest. 44: 507–517, 1965.
 222. Lemieux, G., and M. Gervais. Acute chloride depletion alkalosis: effect of anions on its maintenance and correction. Am. J. Physiol. 207: 1279–1286, 1964.
 223. Lemieux, G., A. L. Methot, M. Gagnan‐Brunette, G. E. Plante, M. Kobreh, and A. Charghi. The effect of renal artery constriction on tubular reabsorption of bicarbonate. Nephron 5: 362–375, 1968.
 224. Lennon, E. J., J. Lemann, Jr., and J. R. Litzow. The effects of diet and stool composition on the net external acid balance of normal subjects. J. Clin. Invest. 45: 1601–1607, 1966.
 225. Levine, D. Z. An in vivo microperfusion study of distal tubule bicarbonate reabsorption in normal and ammonium chloride rats. J. Clin. Invest. 75: 588–595, 1985.
 226. Levine, D. Z., M. K. Byers, R. A. McLeod, and J. A. Luisello. Loop of Henle bicarbonate accumulation in vivo in the rat. J. Clin. Invest. 63: 59–66, 1979.
 227. Levine, D. Z., M. Iacovetti, L. Nash, and D. Vandorpe. Secretion of bicarbonate by rat distal tubules in vivo. Modulation by overnight fasting. J. Clin. Invest. 81: 1873–1878, 1988.
 228. Levine, D. Z., and H. R. Jacobson. The regulation of renal acid secretion: new observations from studies of distal nephron segments. Kidney Int. 29: 1099–1109, 1986.
 229. Levine, D. Z., and L. A. Nash. Effect of chronic NH4Cl acidosis on proximal tubular H2O and HCO3 reabsorption. Am. J. Physiol. 225: 380–384, 1973.
 230. Levine, D. Z., T. Walker, and L. A. Nash. Effects of KCl infusion on proximal tubular function in normal and potassium‐depleted rats. Kidney Int. 4: 318–325, 1973.
 231. Levitin, H., W. Branscome, and F. H. Epstein. The pathogenesis of hypochloremia in respiratory acidosis. J. Clin. Invest. 37: 1667–1675, 1958.
 232. Linas, S. L., and D. Dickmann. Mechanism of the decreased renal blood flow in the potassium‐depleted conscious rat. Kidney Int. 21: 757–764, 1982.
 233. Liu, F.‐Y., and M. G. Cogan. Axial heterogeneity in the rat proximal convoluted tubule. 1. Bicarbonate, chloride and water transport. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F816–F821, 1984.
 234. Liu, F.‐Y., and M. G. Cogan. Axial heterogeneity of bicarbonate, chloride, and water transport in the rat proximal convoluted tubule: effects of change in luminal flow rate and of alkalemia. J. Clin. Invest. 78: 1547–1557, 1986.
 235. Liu, F.‐Y., and M. G. Cogan. Acidification is inhibited in the late proximal convoluted tubule during chronic metabolic alkalosis. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F89–F94, 1987.
 236. Liu, F. Y., and M. G. Cogan. Angiotensin II: a potent regulator of acidification in the rat early proximal convoluted tubule. J. Clin. Invest. 80: 272–275, 1987.
 237. Liu, F. Y., and M. G. Cogan. Kinetics of bicarbonate transport in the early S1 proximal convoluted tubule. I. Effect of luminal bicarbonate concentration. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F912–F916, 1987.
 238. Liu, F.‐Y., and M. G. Cogan. Angiotensin II stimulates early proximal bicarbonate absorption by decreasing cyclic adenosine monophosphate. J. Clin. Invest. 84: 83–91, 1989.
 239. Liu, F.‐Y., and M. G. Cogan. Angiotensin II stimulation of hydrogen ion secretion in the rat early proximal tubule. Modes of action, mechanism, and kinetics. J. Clin. Invest. 82: 601–607, 1988.
 240. Liu, F.‐Y., and M. G. Cogan. Atrial natriuretic factor does not inhibit basal or angiotensin II‐stimulated proximal transport. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F434–F437, 1988.
 241. Liu, F.‐Y., and M. G. Cogan. Flow‐dependence of bicarbonate transport in the early (S1) proximal convoluted tubule. Am. J. Phsiol. 254 (Renal Fluid Electrolyte Physiol. 23): F851–F855, 1988.
 242. Lombard, W. E., J. P. Kokko, and H. R. Jacobson. Bicarbonate transport in cortical and outer medullary collecting tubules. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F289–F296, 1983.
 243. Lucci, M. S., L. R. Pucacco, N. W. Carter, and T. D. Du Bose, Jr. Evaluation of bicarbonate transport in rat distal tubule: effects of acid‐base status. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F335–F341, 1982.
 244. Lucci, M. S., J. P. Tinker, I. M. Weiner, and T. D. Du Bose, Jr. Function of proximal tubule carbonic anhydrase defined by selective inhibition. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F443–F449, 1983.
 245. Luke, R. G., and J. H. Galla. Chloride‐depletion alkalosis with a normal extracellular fluid volume. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F419–F424, 1983.
 246. Luke, R. G., and H. Levitin. The renal and electrolyte response to respiratory acidosis in the adrenalectomized rat. Yale J. Biol. Med. 39: 27–37, 1966.
 247. Luke, R. G., and H. Levitin. Impaired renal conservation of chloride and the acid‐base changes associated with potassium depletion in the rat. Clin. Sci. 32: 511–526, 1967.
 248. Luke, R. G., R. H. Lyerly, J. Anderson, J. H. Galla, and T. A. Kotchen. Effect of potassium depletion on renin release. Kidney Int. 21: 14–19, 1982.
 249. Luke, R. G., Y. Warren, M. Kashgarian, and H. Levitin. Effects of chloride restriction and depletion on acid‐base balance and chloride conservation in the rat. Clin. Sci. 38: 385–396, 1970.
 250. Maddox, D. A., and F. J. Gennari. Proximal tubular bicarbonate reabsorption and PCO2 in chronic metabolic alkalosis in the rat. J. Clin. Invest. 72: 1385–1395, 1983.
 251. Maddox, D. A., and F. J. Gennari. Load dependence of HCO3 and H2O reabsorption in the early proximal tubule of the Munich‐Wistar rat. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F113–F121, 1985.
 252. Maddox, D. A., and F. J. Gennari. Load dependence of proximal tubular bicarbonate reabsorption in chronic metabolic alkalosis in the rat. J. Clin. Invest. 77: 709–716, 1986.
 253. Maddox, D. A., and F. J. Gennari. The early proximal tubule: a high‐capacity delivery‐responsive reabsorptive site. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F573–F584, 1987.
 254. Maddox, D. A., J. F. Horn, F. C. Famiano, and F. J. Gennari. Load dependence of proximal tubular fluid and bicarbonate reabsorption in the remnant kidney of the Munich‐Wistar rat. J. Clin. Invest. 77: 1639–1649, 1986.
 255. Maddox, D. A., D. G. Price, and F. C. Rector, Jr. Effects of surgery on plasma volume and salt and water excretion in rats. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F600–F606, 1977.
 256. Madias, N. E., H. J. Adrogue, and J. J. Cohen. Maladaptive renal response to secondary hypercapnia in chronic metabolic alkalosis. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F283–F289, 1980.
 257. Madias, N. E., W. B. Schwartz, and J. J. Cohen. The maladaptive renal response to secondary hypocapnia during chronic HCl acidosis in the dog. J. Clin. Invest. 60: 1393–1401, 1977.
 258. Madias, N. E., C. J. Wolf, and J. J. Cohen. Regulation of acid‐base equilibrium in chronic hypercapnia. Kidney Int. 27: 538–543, 1985.
 259. Madias, N. E., and S. J. Zelman. The renal response to chronic mineral acid feeding: a re‐examination of the role of systemic pH. Kidney Int. 29: 667–674, 1986.
 260. Madsen, K. M., and C. C. Tisher. Cellular response to acute respiratory acidosis in rat medullary collecting duct. Am. J. Phsiol. 245 (Renal Fluid Electrolyte Physiol. 14): F670–F679, 1983.
 261. Madsen, K. M., and C. C. Tisher. Response of intercalated cells of rat outer medullary collecting duct to chronic metabolic acidosis. Lab. Invest. 51: 268–276, 1984.
 262. Madsen, K. M., and C. C. Tisher. Structural‐functional relationships along the distal nephron. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F1–F15, 1986.
 263. Mahnensmith, R., S. O. Their, C. R. Cooke, A. Broadus, and R. A. De Fronzo. Effect of acute metabolic acidemia on renal electrolyte transport in man. Metabolism 28: 831–842, 1979.
 264. Makoff, D., and B. J. Rosenbaum. Adaptation to chronic hypercapnia in the potassium‐depleted dog. Am. J. Physiol. 220: 1724–1727, 1971.
 265. Malnic, G. H+ secretion in renal cortical tubules. Kidney Int. 32: 136–150, 1987.
 266. Malnic, G., and M. de Mello Aires. Kinetic study of bicarbonate reabsorption in proximal tubule of the rat. Am. J. Physiol. 220: 1759–1767, 1971.
 267. Malnic, G., M. de Mello Aires, and G. Giebisch. Micro‐puncture study of renal tubular hydrogen ion transport in the rat. Am. J. Physiol. 222: 147–158, 1972.
 268. Massry, S. G., A. I. Katz, J. Agmon, and M. Toor. Effect of water diuresis on electrolyte and hydrogen ion excretion in hot climate. Nephron 5: 124–133, 1968.
 269. Mathisen, O., T. Monclair, M. Raeder, and F. Kiil. Coupling of NaHCO3 and NaCl reabsorption in dog kidneys during changes in plasma PCO2. Am. J. Physiol. 236: F232–F239, 1979.
 270. Maunsbach, A. B. Observations on the segmentation of the proximal tubule in the rat kidney. J. Ultrastruct. Res. 16: 239–258, 1966.
 271. Maunsbach, A. B., G. H. Giebisch, and B. A. Stanton. Effects of flow rate on proximal tubule ultrastructure. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F582–F587, 1987.
 272. McKinney, T. D., and M. B. Burg. Bicarbonate and fluid absorption by renal proximal straight tubules. Kidney Int. 12: 1–8, 1977.
 273. McKinney, T. D., and M. B. Burg. Bicarbonate transport by rabbit cortical collecting tubules: effect of acid and alkali loads in vivo on transport in vitro. J. Clin. Invest. 60: 766–768, 1977.
 274. McKinney, T. D., and M. B. Burg. Bicarbonate absorption by rabbit cortical collecting tubules in vitro. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F141–F145, 1978.
 275. McKinney, T. D., and M. B. Burg. Bicarbonate secretion by rabbit cortical collecting tubules in vitro. J. Clin. Invest. 61: 1421–1427, 1978.
 276. McKinney, T. D., and K. K. Davidson. Effect of potassium depletion and protein uptake in vivo on renal tubular bicarbonate transport in vitro. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F509–F516, 1987.
 277. McKinney, T. D., and K. K. Davidson. Effects of respiratory acidosis on HCO3− transport by rabbit collecting tubules. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F656–F665, 1988.
 278. Mello‐Aires, M., M. A. MacLaughlin, and G. Malnic. Proximal tubular acidification in metabolic alkalosis. Brazilian J. Med. Biol. Res. 16: 365–374, 1983.
 279. Mercier, O., M. Bichara, and M. Paillard. Effects of parathyroid hormone and urinary phosphate on collecting duct hydrogen secretion. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F802–F809, 1986.
 280. Mercier, O., M. Bichara, M. Paillard, J. P. Gardin, and F. Leviel. Parathyroid hormone contributes to volume expansion‐induced inhibition of proximal reabsorption. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F100–F103, 1985.
 281. Molony, D. A., J. P. Kokko, D. Seldin, and H. R. Jacobson. Acid peritubular pH suppresses sodium reabsorption in cortical collecting tubules, abstracted. Kidney Int. 25: 279, 1984.
 282. Muntwyler, E., and G. E. Griffin. Creatinine clearance in normal and potassium deficient rats. Am. J. Physiol. 173: 145–150, 1953.
 283. Nagami, G. T., and K. Kurokawa. Regulation of ammonia production by mouse proximal tubules pefused in vitro. Effect of luminal perfusion. J. Clin. Invest. 75: 844–849, 1985.
 284. Nagami, G. T., C. M. Sonu, and K. Kurokawa. Ammonia production by isolated mouse proximal tubules perfused in vitro: effect of metabolic acidosis. J. Clin. Invest. 78: 124–129, 1986.
 285. Nasca, T. J., B. S. Chang, D. D. Clark, and S. Garella. Effect of acute hypercapnia on renal bicarbonate reabsorption in the dog. J. Lab. Clin. Med. 106: 524–533, 1985.
 286. Needle, M. A., G. J. Kaloyanides, and W. B. Schwartz. The effects of selective depletion of hydrochloric acid on acid‐base and electrolyte equilibrium. J. Clin. Invest. 43: 1836–1846, 1964.
 287. Northrup, T. E., S. Garella, E. Perticucci, and J. J. Cohen. Acidemia alone does not stimulate rat renal Na+‐H+ antiporter activity. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F237–F243, 1988.
 288. Orloff, J., and R. W. Berliner. The mechanism of the excretion of ammonia in the dog. J. Clin. Invest. 35: 223–235, 1956.
 289. Orloff, J., T. J. Kennedy, Jr., and R. W. Berliner. The effect of potassium in nephrectomized rats with hypokalemic alkalosis. J. Clin. Invest. 32: 538–542, 1953.
 290. Perez, G. O., J. R. Oster, F. H. Katz, and C. A. Vaamonde. The effect of acute metabolic acidosis on plasma Cortisol, renin activity and aldosterone. Horm. Res. 11: 12–21, 1979.
 291. Pitts, R. F. The renal regulation of acid base balance with special reference to the mechanism for acidifying the urine. Science 102: 49–54, 81–85, 1945.
 292. Pitts, R. F. Mechanisms for stabilizing the alkaline reserves of the body. Harvey Lect. 48: 172–209, 1952/1953.
 293. Pitts, R. F. Renal production and excretion of ammonia. Am. J. Med. 36: 720–742, 1964.
 294. Pitts, R. F., J. L. Ayer, and W. A. Schiess. The renal regulation of acid‐base balance in man. III. The reabsorption and excretion of bicarbonate. J. Clin. Invest. 28: 35–44, 1985.
 295. Pitts, R. F., and W. D. Lotspeich. Bicarbonate and the renal regulation of acid‐base balance. Am. J. Physiol. 147: 138–154, 1946.
 296. Polak, A., G. D. Haynie, R. M. Hays, and W. B. Schwartz. Effects of chronic hypercapnia on electrolyte and acid‐base equilibrium. I. Adaptation. J. Clin. Invest. 40: 1223–1237, 1961.
 297. Preisig, P. A., and R. J. Alpern. Chronic metabolic acidosis causes an adaptation in the apical membrane Na/H antiporter and basolateral membrane Na (HCO3)3 symporter on the rat proximal convoluted tubule. J. Clin. Invest. 82: 1445–1453, 1988.
 298. Preisig, P. A., H. E. Ives, E. J. Cragoe, Jr., R. J. Alpern, and F. C. Rector, Jr. Role of the Na+/H+ antiporter in rat proximal tubule bicarbonate absorption. J. Clin. Invest. 80: 970–978, 1987.
 299. Prigent, A., M. Bichara, and M. Paillar. Hydrogen transport in papillary collecting duct of rabbit kidney. Am. J. Physiol. 248 (Cell Physiol. 17): C241–C246, 1985.
 300. Purkerson, M. L., H. Lubowitz, R. W. White, and N. S. Bricker. On the influence of extracellular fluid volume expansion on bicarbonate reabsorption in the rat. J. Clin. Invest. 48: 1754–1760, 1969.
 301. Puschett, J. B., and M. Goldberg. The acute effects of furosemide on acid and electrolyte excretion in man. J. Lab. Clin. Med. 71: 666–677, 1968.
 302. Rector, F. C., Jr. Micropuncture studies on the mechanism of urinary acidification. In: Renal Metabolism and Epidemiology of Some Renal Diseases, edited by J. Metcoff. New York: National Kidney Foundatin, 1964, p. 9–31.
 303. Rector, F. C., Jr. Sodium, bicarbonate, and chloride absorption by the proximal tubule. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F461–F471, 1983.
 304. Rector, F. C., Jr., and M. G. Cogan. The renal acidoses. Hosp. Pract. 15: 99–111, 1980.
 305. Rector, F. C., Jr., and D. W. Seldin. Influence of unreabsorbed anions on renal threshold and Tm for bicarbonate. Am. J. Physiol. 202: 313–318, 1962.
 306. Rector, F. C., Jr., D. W. Seldin, and J. H. Copenhaver. The mechanism of ammonia excretion during ammonium chloride acidosis. J. Clin. Invest. 34: 20–26, 1955.
 307. Rector, F. C., Jr., D. W. Seldin, A. D. Roberts, Jr., and J. H. Copenhaver. Relation of ammonia excretion to urine pH. Am. J. Physiol. 179: 353–358, 1954.
 308. Rector, F. C., Jr., D. W. Seldin, A. D. Roberts, Jr., and J. S. Smith. The role of plasma CO2 tension and carbonic anhydrase activity in the renal reabsorption of bicarbonate. J. Clin. Invest. 39: 1706–1721, 1960.
 309. Relman, A. S., B. Epstein, and W. B. Schwartz. The regulation of renal bicarbonate reabsorption by plasma carbon dioxide tension. J. Clin. Invest. 32: 972–978, 1953.
 310. Relman, A. S., and W. B. Schwartz. The effect of DOCA on electrolyte balance in normal man and its relation to sodium chloride intake. Yale J. Biol. Med. 24: 540–558, 1952.
 311. Richardson, R. M. A., and R. T. Kunau, Jr. Bicarbonate reabsorption in the papillary collecting duct: effect of acetazolamide. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F74–F80, 1982.
 312. Roberts, K. E., H. T. Randall, H. L. Sanders, and M. Hood. Effects of potassium on renal tubular reabsorption of bicarbonate. J. Clin. Invest. 34: 666–672, 1955.
 313. Robinson, R. R., and E. E. Owen. Intrarenal distribution of ammonia during diuresis and antidiuresis. Am. J. Physiol. 208: 1129–1134, 1965.
 314. Rosen, R. A., B. A. Julian, E. V. Dubovsky, J. H. Galla, and R. G. Luke. On the mechanism by which chloride corrects metabolic alkalosis in man. Am. J. Med. 84: 449–458, 1988.
 315. Rostand, S. G., and J. B. Watkins. Response of the isolated rat kidney to metabolic and respiratory acidosis. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F84–F88, 1977.
 316. Roth, D. G., and G. L. Gamble, Jr. Deoxycorticosteroneinduced alkalosis in dogs. Am. J. Physiol. 208: 90–93, 1965.
 317. Sabatini, S., V. Alla, A. Wilson, M. Cruz‐Soto, A. de‐White, N. A. Kurtzman, and J. A. L. Arruda. The effects of chronic papillary necrosis on acid excretion. Pflugers Arch. 393: 262–268, 1982.
 318. Safirstein, R., V. P. Glassman, and V. A. Di Scala. Effects of an NH4Cl‐induced metabolic acidosis on salt and water reabsorption in dog kidney. Am. J. Physiol. 225: 805–809, 1973.
 319. Sajo, I. M., M. B. Goldstein, H. Sonnenberg, B. J. Stinebaugh, D. R. Wilson, and M. L. Halperin. Sites of ammonia addition to tubular fluid in rats with chronic metabolic acidosis. Kidney Int. 20: 353–358, 1981.
 320. Sapir, D. G., D. Z. Levine, and W. B. Schwartz. The effects of chronic hypoxemia on electrolyte and acid‐base equilibrium: an examination of normocapneic hypoxemia and of the influence of hypoxemia on the adaptation to chronic hypercapnia. J. Clin. Invest. 46: 369–377, 1967.
 321. Sartorius, O. W., D. Calhoon, and R. F. Pitts. The capacity of the adrenalectomized rat to secrete hydrogen and ammonium ions. Endocrinology 51: 444–450, 1952.
 322. Sartorius, O. W., D. Calhoon, and R. F. Pitts. Studies on the interrelationships of the adrenal cortex and renal ammonia excretion by the rat. Endocrinology 52: 256–265, 1953.
 323. Sartorius, O. W., J. C. Roemmelt, and R. F. Pitts. The renal regulation of acid‐base balance in man. IV. The nature of the renal compensations in ammonium chloride acidosis. J. Clin. Invest. 28: 423–439, 1949.
 324. Sasaki, S., C. A. Berry, and F. C. Rector, Jr. Effect of luminal and peritubular HCO3− concentrations and PCO2 on HCO) reabsorption in rabbit proximal convoluted tubules perfused in vitro. J. Clin. Invest. 70: 639–649, 1982.
 325. Sasaki, S., C. A. Berry, and F. C. Rector, Jr. Effect of potassium concentration on bicarbonate reabsorption in the rabbit proximal convoluted tubule. Am. J. Physiol. 24 (Renal Fluid Electrolyte Physiol. 1): F122–F128, 1983.
 326. Sasaki, S., T. Shiigai, N. Yoshiyama, and J. Takeuchi. Mechanism of bicarbonate exit across basolateral membrane of rabbit proximal straight tubule. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F11–F18, 1987.
 327. Sasaki, S., and N. Yoshiyama. Interaction of chloride and bicarbonate transport across the basolateral membrane of rabbit proximal straight tubule: evidence for sodium coupled chloride/bicarbonate exchange. J. Clin. Invest. 81: 1004–1011, 1988.
 328. Schiess, W. A., J. L. Ayer, W. D. Lotspeich, and R. F. Pitts. The renal regulation of acid‐base balance in man. II. Factors affecting the excretion of titratable acid by the normal human subject. Am. J. Physiol. 27: 57–64, 1948.
 329. Schloeder, F. X., and B. J. Stinebaugh. Urinary ammonia content as a determinant of urinary pH during chronic metabolic acidosis. Metabolism 26: 1321–1331, 1977.
 330. Schuster, V. L. Cyclic adenosine monophosphate‐stimulated anion transport in rabbit cortical collecting duct: kinetics, stoichiometry, and conductive pathways. J. Clin. Invest. 78: 1621–1630, 1986.
 331. Schwartz, G. J., and Q. Al‐Awqati. Carbon dioxide causes exocytosis of vesicles containing H+ pumps in isolated perfused proximal and collecting tubules. J. Clin. Invest. 75: 1638–1644, 1985.
 332. Schwartz, J. H. H+ current response to CO2 and carbonic anhydrase inhibition in turtle bladder. Am. J. Physiol. 231: 565–572, 1976.
 333. Schwartz, W. B., N. C. Brackett, Jr., and J. J. Cohen. The response of extracellular hydrogen ion concentration to graded degrees of chronic hypercapnia: the physiologic limits of the defense of pH. J. Clin. Invest. 44: 291–301, 1965.
 334. Schwartz, W. B., A. Falbriard, and G. Lemieux. The kinetics of bicarbonate reabsorption during acute respiratory acidosis. J. Clin. Invest. 38: 939–944, 1959.
 335. Schwartz, W. B., R. L. Jenson, and A. S. Relman. Acidification of the urine and increased ammonium excretion without change in acid‐base equilibrium: sodium reabsorption as a stimulus to the acidifying process. J. Clin. Invest. 34: 673–682, 1955.
 336. Schwartz, W. B., and A. S. Relman. Metabolic and renal studies in chronic potassium depletion resulting from overuse of laxatives. J. Clin. Invest. 32: 258–271, 1953.
 337. Sebastian, A., J. M. Sutton, H. N. Hulter, M. Schambelan, and S. M. Poler. Effect of mineralocorticoid replacement therapy on renal acid‐base homeostasis in adrenalectomized patients. Kidney Int. 18: 762–773, 1980.
 338. Sehy, J. T., M. K. Roseman, J. A. L. Arruda, and N. A. Kurtzman. Characterization of distal hydrogen ion secretion in acute respiratory alkalosis. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F203–F208, 1978.
 339. Seldin, D. W., L. G. Welt, and J. H. Cort. The role of sodium salts and adrenal steroids in production of hypokalemic alkalosis. Yale J. Biol. Med. 29: 229–247, 1956.
 340. Simmons, D. H., N. A. Assali, and M. Avedon. Relative influence of respiratory and metabolic acid‐base changes on renal acid excretion. Am. J. Physiol. 198: 237–243, 1960.
 341. Simon, E. E., and L. L. Hamm. Ammonia entry along rat proximal tubule in vivo: effects of luminal pH and flow rate. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F760–F766, 1987.
 342. Simon, E., D. Martin, and J. Buerkert. Handling of ammonium by the renal proximal tubule during acute metabolic acidosis. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F680–F686, 1983.
 343. Simon, E., D. Martin, and J. Buerkert. Contribution of individual superficial nephron segments to ammonium handling in chronic metabolic acidosis in the rat. Evidence for ammonia disequilibrium in the renal cortex. J. Clin. Invest. 76: 855–864, 1985.
 344. Slatopolsky, E., P. Hoffsten, M. Purkerson, and N. S. Bricker. On the influence of extracellular fluid volume expansion and of uremia on bicarbonate reabsorption in man. J. Clin. Invest. 49: 988–998, 1970.
 345. Slaughter, B. D., H. S. Osiecki, R. B. Cross, O. Budtz‐Olsen, and H. Jedrzejczyk. The regulation of bicarbonate reabsorption. The role of arterial pH, PCO2 and plasma bicarbonate concentration. Pflugers Arch. 349: 29–40, 1974.
 346. Sonnenberg, H., S. Cheema‐Dhadli, M. B. Goldstein, B. J. Stinebaugh, D. R. Wilson, and M. L. Halperin. Ammonia addition into the medullary collecting duct of the rat. Kidney Int. 19: 281–287, 1981.
 347. Squires, R. D., and E. J. Huth. Experimental potassium depletion in normal human subjects. I. Relation of ionic intakes to the renal conservation of potassium. J. Clin. Invest. 38: 1134–1148, 1959.
 348. Stanbury, S. W., and A. E. Thomson. The renal response to respiratory alkalosis. Clin. Sci. 11: 357–374, 1952.
 349. Stanton, B. Role of adrenal hormones in regulating distal nephron structure and ion transport. Federation Proc. 44: 2717–2722, 1985.
 350. Star, R. A., M. B. Burg, and M. A. Knepper. Bicarbonate secretion and chloride absorption by rabbit cortical collecting ducts: role of chloride/bicarbonate exchange. J. Clin. Invest. 76: 1123–1130, 1985.
 351. Star, R. A., R. Mejia, M. B. Burg, and M. A. Knepper. Disequilibrium pH and ammonia transport in isolated perfused cortical collecting ducts. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F1232–F1242, 1987.
 352. Steinmetz, P. R., and N. Bank. Effects of acute increases in the excretion of solute and water on renal acid excretion in man. J. Clin. Invest. 42: 1142–1149, 1963.
 353. Stern, L., K. A. Backman, and J. P. Hayslett. Effect of cortical‐medullary gradient for ammonia on urinary excretion of ammonia. Kidney Int. 27: 652–661, 1985.
 354. Stokes, T. J., Jr., C. L. McConkey, Jr., and K. J. Martin. Atriopeptin III increases cGMP in glomeruli but not in proximal tubules of dog kidney. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F27–F31, 1986.
 355. Stone, D. K., D. W. Seldin, J. P. Kokko, and H. R. Jacobson. Anion dependence of rabbit medullary collecting duct acidification. J. Clin. Invest. 71: 1505–1508, 1983.
 356. Stone, D. K., D. W. Seldin, J. P. Kokko, and H. R. Jacobson. Mineralocorticoid modulation of rabbit medullary collecting duct acidification: a sodium‐independent effect. J. Clin. Invest. 72: 77–83, 1983.
 357. Stone, D. K., and S.‐S. Xie. Proton translocating ATPases: issues in structure and function. Kidney Int. 33: 767–774, 1988.
 358. Stoner, L. C., M. B. Burg, and J. Orloff. Ion transport in cortical collecting tubule: effect of amiloride. Am. J. Physiol. 227: 453–459, 1974.
 359. Struyvenberg, A., J. De Graeff, and L. D. F. Lameijer. The role of chloride in hypokalemic alkalosis in the rat. J. Clin. Invest. 44: 326–337, 1965.
 360. Suki, W., F. C. Rector, Jr., and D. W. Seldin. The site of action of furosemide and other sulfonamide diuretics in the dog. J. Clin. Invest. 44: 1458–1469, 1965.
 361. Sullivan, L. P. Ammonium excretion during stopped flow: a hypothetical ammonium countercurrent system. Am. J. Physiol. 209: 273–282, 1965.
 362. Sullivan, W. J., and P. J. Dorman. The renal response to chronic respiratory acidosis. J. Clin. Invest. 34: 268–276, 1955.
 363. Tago, K., V. L. Schuster, and J. B. Stokes. Regulation of chloride self exchange by cAMP in cortical collecting tubule. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F40–F48, 1986.
 364. Tago, K., V. L. Schuster, and J. B. Stokes. Stimulation of chloride transport by HCO3‐CO2 in rabbit cortical collecting tubule. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F49–F56, 1986.
 365. Talor, Z., W. C. Yang, J. Shuffield, C. Sack, and J. A. L. Arruda. Chronic hypercapnia enhances the Vmax of Na‐H antiporter of renal brush border membranes. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F394–F400, 1987.
 366. Tannen, R. L. The relatinship between urine pH and acid excretion – the influence of urine flow rate. J. Lab. Clin. Med. 74: 757–769, 1969.
 367. Tannen, R. L., H. L. Bleich, and W. B. Schwartz. The renal response to acid loads in metabolic alkalosis: an assessment of the mechanisms regulating acid excretion. J. Clin. Invest. 45: 562–572, 1966.
 368. Tannen, R. L., and B. Hamid. Adaptive changes in renal acidification in response to chronic respiratory acidosis. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F492–F499, 1985.
 369. Tannen, R. L., and S. Sastrasinh. Response of ammonia metabolism to acute acidosis. Kidney Int. 25: 1–10, 1984.
 370. Thompson, D. D., and M. J. Barrett. Renal reabsorption of bicarbonate. Am. J. Physiol. 176: 201–206, 1954.
 371. Toussaint, C., M. Telerman, and P. Vereerstraeten. Bicarbonate excretion after prolonged exposure to carbon dioxide in the normal dog. Experientia 15: 434–436, 1959.
 372. Tsai, C.‐J., H. E. Ives, R. J. Alpern, V. J. Yee, D. G. Warnock, and F. C. Rector, Jr. Increased Vmax for Na+/H+ antiporter activity in proximal tubule brush border vesicles from rabbits with metabolic acidosis. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F339–F343, 1984.
 373. Ullrich, K. J., and F. Papavassiliou. Bicarbonate reabsorption in the papillary collecting duct of rats. Pflugers Arch 389: 271–275, 1981.
 374. Ullrich, K. J., G. Rumrich, and K. Baumann. Renal proximal tubular buffer‐(glycodiazine) transport: inhomogeneity of local transport rate, dependence on sodium, effect of inhibitors and chronic adaptation. Pflugers Arch 357: 149–163, 1975.
 375. Van Goidsenhoven, G. M.‐T., O. V. Gray, A. V. Price, and P. H. Sanderson. The effect of prolonged administration of large doses of sodium bicarbonate in man. Clin. Sci. 13: 383–401, 1954.
 376. Van Ypersele de Strihou, C., P. F. Gulyassy, and W. B. Schwartz. Effects of chronic hypercapnia on electrolyte and acid‐base equilibrium. III. Characteristics of the adaptive and recovery process as evaluated by provision of alkali. J. Clin. Invest. 41: 2246–2253, 1962.
 377. Van Ypersele de Strihou, C., and J. Morales‐Barria. The influence of dietary sodium and potassium intake on the genesis of frusemide induced alkalosis. Clin. Sci. 37: 859–871, 1969.
 378. Verlander, J. W., K. M. Madsen, and C. C. Tisher. Effect of acute respiratory acidosis on two populations of intercalated cells in rat cortical collecting duct. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F1142–F1156, 1987.
 379. Walker, A. M., and J. Oliver. Methods for the collection of fluid from single glomeruli and tubules of the mammalian kidney. Am. J. Physiol. 134: 562–579, 1941.
 380. Wall, B. M., G. V. Byrum, J. H. Galla, and R. G. Luke. Importance of chloride for the correction of chronic metabolic alkalosis in man. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F1031–F1039, 1987.
 381. Waring, D. W., L. P. Sullivan, D. A. Mayhew, and J. M. Tucker. A study of factors affecting renal bicarbonate reabsorption. Am. J. Physiol. 226: 1392–1400, 1974.
 382. Warnock, D. G., and M. B. Burg. Urinary acidification: CO2 transport by the rabbit proximal straight tubule. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F20–F25, 1977.
 383. Warren, Y., R. G. Luke, M. Kashgarian, and H. Levitin. Micropuncture studies of chloride and bicarbonate absorption in the proximal renal tubule of the rat in respiratory acidosis and in chloride depletion. Clin. Sci. 38: 375–383, 1970.
 384. Wilcox, C. S., D. A. Cemerikic, and G. Giebisch. Differential effects of acute mineralo‐ and glucocorticosteroid administration on renal acid elimination. Kidney Int. 21: 546–556, 1982.
 385. Wilcox, C. S., F. Granges, G. Kirk, D. Gordon, and G. Giebisch. Effects of saline infusion on titratable acid generation and ammonia secretion. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F506–F519, 1984.
 386. Williams, J. C., and J. A. Schafer. Cortical interstitium as a site for solute polarization during tubular absorption. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F813–F823, 1988.
 387. Wingo, C. S. Effect of acidosis on chloride transport in the cortical thick ascending limb of Henle perfused in vitro. J. Clin. Invest. 78: 1324–1330, 1986.
 388. Womersley, R. A., and J. H. Darragh. Potassium and sodium restriction in the normal human. J. Clin. Invest. 34: 456–461, 1955.
 389. Wrong, O., and H. E. F. Davies. The excretion of acid in renal disease. Q. J. Med. 28: 259–314, 1959.
 390. Xie, M.‐H., F.‐Y. Liu, and M. G. Cogan. Recovery of chronic metabolic alkalosis: dependency on distal bicarbonate versus chloride delivery, abstracted. FASEB J. 3: A555, 1989.
 391. Yang, W. C., J. A. L. Arruda, and Z. Talor. Na+/H+ antiporter in posthypercapnic state. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F833–F840, 1987.
 392. Yoshitomi, K., B.‐Ch. Burckhardt, and E. Fromter. Rheogenic sodium‐bicarbonate cotransport in the peritubular cell membrane of rat renal proximal tubule. Pflugers Arch. 405: 360–366, 1985.
 393. Zeidel, M. L., and J. L. Seifter. Regulation of Na/H exchange in renal microvillus vesicles in chronic hypercapnia. Kidney Int. 34: 60–66, 1988.
 394. Zeidel, M. L., P. Silva, and J. L. Seifter. Intracellular pH regulation and proton transport by rabbit renal medullary collecting duct cells: role of plasma membrane proton adenosine triphosphatase. J. Clin. Invest. 77: 113–120, 1986.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Martin G. Cogan, Albert H. Quan. Renal Acidification: Integrated Tubular Responses. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 970-1016. First published in print 1992. doi: 10.1002/cphy.cp080122