Comprehensive Physiology Wiley Online Library

Renal Ammonia Production and Excretion

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Role of Ammonia Excretion in the Maintenance of Acid–Base Balance
1.1 Overview of Acid–Base Balance
1.2 Renal Acidification Mechanisms
1.3 NH4 Excretion in Response to Acute and Chronic Acidosis
1.4 Relationship between Amino Acid Metabolism and Acid–Base Balance
2 Renal Ammonium Excretion
2.1 Nephron Sites of Ammonia Transport
2.2 Mechanism of Ammonia Transport across the Tubular Epithelium
2.3 Integrative View of Ammonia Excretion
2.4 Factors Altering Ammonia Excretion
3 Renal Ammonia Production
3.1 Substrates for Ammoniagenesis
3.2 Pathways of Ammonia Metabolism
3.3 Nephron Sites of Ammonia Production
4 Contribution of Extrarenal Organs to Ammonia Homeostasis
5 Response of Renal Ammonia Production to Acid‐Base Perturbations
5.1 Acute Acidosis
5.2 Chronic Acidosis
5.3 Acute Alkalosis
5.4 Chronic Metabolic Alkalosis
6 Response of Ammonia Production to Alterations in K+ Homeostasis
6.1 Hypokalemia and Potassium Depletion
6.2 Hyperkalemia and Ingestion of a High‐Potassium Diet
6.3 Influence of NH3 Production on K+ Excretion
7 Other Factors that Influence Ammoniagenesis
7.1 Tricarboxylic Acid Cycle Intermediates
7.2 Prostaglandins
7.3 Intracellular Mediators (Cyclic AMP, Calcium, Phorbol Esters)
7.4 Adrenal Hormones
7.5 Other Hormones (Insulin, Growth Hormone, Angiotensin II)
7.6 Other Factors
8 Altered Ammonia Metabolism in Disease
8.1 Chronic Renal Failure
8.2 Ammonia‐Induced Renal Injury
9 Reflections on the Future
Figure 1. Figure 1.

Fractional delivery of ammonium to micropuncture sites in control rats (open circles) and animals with chronic metabolic acidosis (solid circles). Asterisks denote statistical significance.

From Buerkert et al. 45
Figure 2. Figure 2.

Effects of high urine flow rate on urinary ammonium () and free ammonia (NH3) concentration. Data obtained from normal men subjected to acute NH4Cl ingestion on two separate occasions with normal and high rates of urine flow induced by water diuresis. NH3 concentration was relatively unresponsive to changes in urine volume, while concentration responded in a relatively proportional fashion.

From Tannen 359
Figure 3. Figure 3.

Pathways of renal ammoniagenesis. OAA, oxaloacetate; αKG, α‐ketoglutarate; AcCoA, acetyl‐CoA. See text for other abbreviations and discussion.

From Tannen and Sastrasinh 373
Figure 4. Figure 4.

Reaction mechanism of γ‐glutamyl transpeptidase. Gin, glutamine; Enz, enzyme; γ‐Glu, γ‐glutamyl; AA, amino acid. See text for discussion.

Figure 5. Figure 5.

Purine nucleotide cycle. AMP, adenosine monophosphate, Pi‐phosphate; GTP, guanosine triphosphate; GDP, guanidine diphosphate; IMP, inosine monophosphate. Net reaction for one turn of the cycle is aspartate + GTP + H2O → fumarate + GDP + Pi + NH3.

From Tannen 362
Figure 6. Figure 6.

Glycine metabolism. H4 folate, tetrahydrofolate; N5,N10‐methylene H4 folate, methylene tetrahydrofolate. Glycine is metabolized by “glycine cleavage” reaction coupled to serine hydroxymethyl transferase reaction.

Figure 7. Figure 7.

Interorgan glutamine metabolism. Glutamine is metabolized by kidney and gastrointestinal tract and can be produced by skeletal muscle and liver. Liver also can consume glutamine.

Figure 8. Figure 8.

Effect of chronic respiratory acidosis on glutamine metabolism by rat cortical tubules. In contrast to chronic metabolic acidosis, there is no adaptive increase in either NH3 or glucose production with chronic respiratory acidosis.

From Rodriguez‐Nichols et al. 301
Figure 9. Figure 9.

Effect of acute respiratory alkalosis on NH3 production by isolated perfused rat kidney. NH3 production was unaltered during initial 45 min period of respiratory alkalosis, but decreased during subsequent 45 min period of perfusion at normal pH and then returned to baseline.

From Tannen and Goyal 363


Figure 1.

Fractional delivery of ammonium to micropuncture sites in control rats (open circles) and animals with chronic metabolic acidosis (solid circles). Asterisks denote statistical significance.

From Buerkert et al. 45


Figure 2.

Effects of high urine flow rate on urinary ammonium () and free ammonia (NH3) concentration. Data obtained from normal men subjected to acute NH4Cl ingestion on two separate occasions with normal and high rates of urine flow induced by water diuresis. NH3 concentration was relatively unresponsive to changes in urine volume, while concentration responded in a relatively proportional fashion.

From Tannen 359


Figure 3.

Pathways of renal ammoniagenesis. OAA, oxaloacetate; αKG, α‐ketoglutarate; AcCoA, acetyl‐CoA. See text for other abbreviations and discussion.

From Tannen and Sastrasinh 373


Figure 4.

Reaction mechanism of γ‐glutamyl transpeptidase. Gin, glutamine; Enz, enzyme; γ‐Glu, γ‐glutamyl; AA, amino acid. See text for discussion.



Figure 5.

Purine nucleotide cycle. AMP, adenosine monophosphate, Pi‐phosphate; GTP, guanosine triphosphate; GDP, guanidine diphosphate; IMP, inosine monophosphate. Net reaction for one turn of the cycle is aspartate + GTP + H2O → fumarate + GDP + Pi + NH3.

From Tannen 362


Figure 6.

Glycine metabolism. H4 folate, tetrahydrofolate; N5,N10‐methylene H4 folate, methylene tetrahydrofolate. Glycine is metabolized by “glycine cleavage” reaction coupled to serine hydroxymethyl transferase reaction.



Figure 7.

Interorgan glutamine metabolism. Glutamine is metabolized by kidney and gastrointestinal tract and can be produced by skeletal muscle and liver. Liver also can consume glutamine.



Figure 8.

Effect of chronic respiratory acidosis on glutamine metabolism by rat cortical tubules. In contrast to chronic metabolic acidosis, there is no adaptive increase in either NH3 or glucose production with chronic respiratory acidosis.

From Rodriguez‐Nichols et al. 301


Figure 9.

Effect of acute respiratory alkalosis on NH3 production by isolated perfused rat kidney. NH3 production was unaltered during initial 45 min period of respiratory alkalosis, but decreased during subsequent 45 min period of perfusion at normal pH and then returned to baseline.

From Tannen and Goyal 363
References
 1. Adam, W. R., A. P. Koretsky, and M. W. Weiner. 31P‐NMR in vivo measurement of renal intracellular pH: effects of acidosis and K+ depletion in rats. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20) F904–F910, 1986.
 2. Adam, W. R., A. P. Koretsky, and M. W. Weiner. Measurement of renal intracellular pH (pH1) by 31P nuclear magnetic resonance: effects of acute and chronic respiratory acidosis. Clin. Res. 33: 474, 1985 (abstr.).
 3. Adam, W. R., and D. P. Simpson. Glutamine transport in rat kidney mitochondria in metabolic acidosis. J. Clin. Invest. 54: 165–174, 1974.
 4. Adam, W. R., and D. P. Simpson. Renal mitochondrial glutamine metabolism and dietary potassium and protein content. Kidney Int. 7: 325–330, 1975.
 5. Addae, S. K., and W. D. Lotspeich. Glutamine balance in metabolic acidosis as studied with the artificial kidney. Am. J. Physiol. 215: 278–281, 1968.
 6. Addae, S. K., and W. D. Lotspeich. Relation between glutamine utilization and production in metabolic acidosis. Am. J. Physiol. 215: 269–277, 1968.
 7. Adler, S., B. Zett, and B. Anderson. Renal citrate in the potassium deficient rat: role of potassium and chloride ions. J. Lab. Clin. Med. 84: 307–316, 1974.
 8. Aikawa, T., H. Matsutako, H. Yamomoto, T. Okuda, E. Ishikawa, T. Kawano, and E. Matsumura. Gluconeogenesis and amino acid metabolism. II. Inter‐organal relations and roles of glutamine and alanine in the amino acid metabolism of fasted rats. J. Biochem. 74: 1003–1017, 1973.
 9. Alleyne, G. A. O., and A. Roobol. Regulation of renal cortex ammoniagenesis. I. Stimulation of renal cortex ammoniagenesis in vitro by plasma isolated from acutely acidotic rats. J. Clin. Invest. 53: 117–121, 1974.
 10. Alleyne, G. A. O., and A. Roobol. Renal metabolic processes and acid‐base changes. Med. Clin. North Am. 59: 781–795, 1975.
 11. Alleyne, G. A. O., and G. H. Scullard. Renal metabolic response to acid‐base changes. I. Enzymatic control of ammoniagenesis in the rat. J. Clin. Invest. 48: 364–370, 1969.
 12. Almdal, T., H. Vilstrup, K. Bjerrum, and L. O. Kristensen. Decrease in ureagenesis by partial hepatectomy does not influence acid‐base balance. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F696–F699, 1989.
 13. Anderson, N. M., and G. A. O. Alleyne. The effect of metabolic acidosis on gamma‐glutamyl transpeptidase activity in the rat kidney. FEBS Lett. 79: 51–53, 1977.
 14. Anderson, N. M., and G. A. O. Alleyne. Transport of glutamine by rat kidney brush‐border membrane vesicles. Biochem. J. 182: 295–300, 1979.
 15. Aoki, T. T., M. F. Brennan, G. F. Fitzpatrick, and D. C. Knight. Leucine meal increases glutamine and total nitrogen release from forearm muscle. J. Clin. Invest. 68: 1522–1528, 1981.
 16. Arruda, J., and G. Dytko. Ammonia transport by the turtle bladder: relationship to H* secretion. Am. J. Physiol. 248: (Renal Fluid Electrolyte Physiol. 17): F720–F728, 1985.
 17. Arruda, J., G. Dytko, and L. Withers. Ammonia transport by the turtle urinary bladder. Am. J. Physiol. 246: (Renal Fluid Electrolyte Physiol. 15): F635–F647, 1984.
 18. Atkinson, D. E., and E. Bourke. The role of ureagenesis in pH homeostasis. TIBS 9: 297–300, 1984.
 19. Atkinson, D. E., and E. Bourke. Metabolic aspects of the regulation of systemic pH. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F947–F956, 1987.
 20. Atkinson, D. E., and M. N. Camien. The role of urea synthesis in the removal of metabolic bicarbonate and the regulation of blood pH. In: Current Topics in Cellular Regulation, edited by B. L. Horecker and E. R. Stadtman. New York: Academic, 1982, vol. 21, p. 261–302.
 21. Baertl, J. M., S. M. Sancetta, and G. H. Gabuzda. Relation of acute potassium depletion to renal ammonium metabolism in patients with cirrhosis. J. Clin. Invest. 42: 696–706, 1963.
 22. Bagnasco, S. M., D. S. Gaydos, A. Risquez, and H. G. Preuss. The regulation of renal ammoniagenesis in the rat by extracellular factors. III. Effects of various fuels on in vitro ammoniagenesis. Metabolism 32: 900–905, 1983.
 23. Balagura‐Baruch, S., L. M. Shurland, and T. C. Welbourne. Effects of alpha‐ketoglutarate on renal ammonia release in the intact dog. Am. J. Physiol. 218: 1070–1075, 1970.
 24. Bank, N., and W. B. Schwartz. Influence of certain solutes on acidic dissociation constant of ammonium at 37°C. J. Appl. Physiol. 15: 125–127, 1960.
 25. Barnett, D., and T. C. Welbourne. 2,4‐dinitrophenol stimulation of renal ammoniagenesis. Biochim. Biophys. Acta 715: 215–221, 1982.
 26. Baverel, G., C. Genoux, M. Forissier, and M. Pellet. Fate of glutamate carbon and nitrogen in isolated guinea‐pig kidney cortex tubules. Biochem. J. 188: 873–880, 1980.
 27. Bean, E. S., and D. E. Atkinson. Regulation of the rate of urea synthesis in liver by extracellular pH. A major factor in pH homeostasis in mammals. J. Biol. Chem. 259: 1552–1559, 1984.
 28. Bennett, F. I., and G. A. O. Alleyne. Gluconeogenesis and ammoniagenesis in rat kidney: effect of 3‐mercaptopicolinic acid. FEBS Lett. 65: 215–219, 1976.
 29. Bennett, F. I., and G. A. O. Alleyne. Effect of acute metabolic acidosis on the levels of some metabolic intermediates in the rat kidney. Renal Physiol. 1: 307–310, 1978.
 30. Benyajati, S., and L. Goldstein. Renal glutaminase adaptation and ammonia excretion in infant rats. Am. J. Physiol. 228: 693–698, 1975.
 31. Bignall, M. C., O. Elebute, and W. D. Lotspeich. Renal protein and ammonia biochemistry in NH4Cl acidosis and after uninephrectomy. Am J. Physiol. 215: 289–295, 1968.
 32. Bogusky, R. T., and T. T. Aoki. Early events in the initiation of ammonia formation in kidney. J. Biol. Chem. 258: 2795–2801, 1983.
 33. Bogusky, R. T., and R. L. Dietrich. Effect of acute metabolic acidosis on ammonia metabolism in kidney. Am. J. Physiol. 256: (Renal Fluid Electrolyte Physiol. 25) F321–F328, 1989.
 34. Bogusky, R. T., L. M. Lowenstein, and T. T. Aoki. The relationship between glutamate deamination and gluconeogenesis in kidney. Biochem. J. 210: 695–698, 1983.
 35. Bogusky, R. T., L. M. Lowenstein, and J. M. Lowenstein. The purine nucleotide cycle. A pathway for ammonia production in the rat kidney. J. Clin. Invest. 58: 325–326, 1976.
 36. Bogusky, R. T., K. A. Steele, and L. M. Lowenstein. The purine nucleotide cycle in the regulation of ammoniagenesis during induction and cessation of chronic acidosis in the rat kidney. Biochem. J. 196: 323–326, 1981.
 37. Bourke, E., A. Fine, and J. M. Scott. Glutaminase II pathway in human kidney. Nature [New Biol.] 233: 249–250, 1971.
 38. Bourke, E., G. Frindt, R. Rubio‐Paez, and G. E. Schreiner. Effect of chronic alkalosis and acidosis on glutaminase II path in the dog kidney in vivo. Am. J. Physiol. 220: 1033–1036, 1971.
 39. Bourke, E., G. Frindt, G. E. Schreiner, and H. G. Preuss. Effects of fluorocitrate on renal ammoniagenesis and glutamine metabolism in the intact dog kidney. Kidney Int. 15: 255–263, 1979.
 40. Boyd, T. A., and L. Goldstein. Kidney metabolite levels and ammonia production in acute acid‐base alterations in the rat. Am. J. Physiol. 236 (Endocrinol. Metal. Gastrointest. Physiol. 5): E289–E294, 1979.
 41. Bregar, F. W., R. P. Hughey, and N. P. Curthoys. Rat renal gamma‐glutamyltransferase activity: a reaction of glutamine synthetase. Can. J. Biochem. 59: 54–59, 1981.
 42. Brosnan, J. T., and B. Hall. The transport and metabolism of glutamine by kidney‐cortex mitochondria from normal and acidotic rats. Biochem. J. 164: 331–337, 1977.
 43. Brosnan, J. T., K. Man, D. E. Hall, S. A. Colbourne, and M. E. Brosnan. Interorgan metabolism of amino acids in streptozotocin‐diabetic ketoacidotic rat. Am. J. Physiol. 24 (Endocrinol. Metab. 7): E151–E158, 1983.
 44. Brosnan, J. T., W. Redmond, D. Morgan, and P. Whalen. The malate/2‐oxoglutarate transporter in mitochondria from rat kidney cortex: increased activity in metabolic acidosis. Int. J. Biochem. 12: 131–134, 1980.
 45. Buerkert, J., D. Martin, and D. Trigg. Ammonium handling by superficial and juxtamedullary nephrons in the rat. J. Clin. Invest. 70: 1–12, 1982.
 46. Buerkert, J., D. Martin, and D. Trigg. Segmental analysis of the renal tubule in buffer production and net acid formation. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F442–F445, 1983.
 47. Buerkert, J., D. Martin, D. Trigg, and E. Simon. Effect of reduced renal mass on ammonium handling and net acid formation by the superficial and juxtamedullary nephron of the rat. Evidence for impaired reentrapment rather than decreased production of ammonium in the acidosis of uremia. J. Clin. Invest. 71: 1661–1675, 1983.
 48. Burch, M. B., S. Choi, W. Z. McCarthy, P. Y. Wong, and O. H. Lowry. The location of glutamine synthetase within the rat and rabbit nephron. Biochem. Biophys. Res. Commun. 82: 498–505, 1978.
 49. Burgmeier, N., R. Zawislak, F. Defeudis, C. Bollack, and J. Helwig. Glutamic acid decarboxylase in tubules and glomeruli from rat kidney cortex. Eur. J. Biochem. 151: 361–364, 1985.
 50. Camien, M. N., D. H. Simmons, and H. C. Gonick. A critical reappraisal of “acid‐base” balance. Am. J. Clin. Nutr. 22: 786–793, 1969.
 51. Canessa‐Fischer, M., R. Shalhoub, S. Glabman, J. De‐Haas, and R. F. Pitts. Effects of infusions of ammonia, amides, and amino acids on excretion of ammonia. Am. J. Physiol. 204: 192–196, 1963.
 52. Carter, N. W., D. W. Seldin, and H. C. Teng. Effect of Diamox on plasma and urine acid‐base composition during chronic respiratory acidosis. Am. J. Physiol. 196: 919–923, 1959.
 53. Carter, N. W., D. W. Seldin, and H. C. Teng. Tissue and renal response to chronic respiratory acidosis. J. Clin. Invest. 38: 949–960, 1959.
 54. Cartier, P., P. Belanger, and G. Lemieux. Characteristics of in vitro ammonia and glucose production by dog kidney cortex. Am. J. Physiol. 228: 934–943, 1975.
 55. Cheema‐Dhadli, S., and M. L. Halperin. Role of mitochondrial anion transporters in the regulation of ammoniagenesis in renal cortex mitochondria of the rabbit and rat. Eur. J. Biochem. 99: 483–489, 1979.
 56. Cheema‐Dhadli, S., R. L. Jungas, and M. L. Halperin. Regulation of urea synthesis by acid‐base balance in vivo: role of NH3 concentration. Am. J. Physiol. 252: (Renal Fluid Electrolyte Physiol. 21:) F221–F225, 1987.
 57. Ching, S., T. M. Rogoff, and G. J. Gabuzda. Renal ammoniagenesis and tissue glutamine, glutamine synthetase, and glutaminase I levels in potassium‐deficient rats. J. Lab. Clin. Med. 82: 208–214, 1973.
 58. Chobanian, M. C., and M. R. Hammerman. Phorbol esters inhibit ammoniagenesis and gluconeogenesis in proximal tubular segments. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F1073–F1079, 1987.
 59. Chobanian, M. C., and M. R. Hammerman. Insulin stimulates ammoniagenesis in canine renal proximal tubular segments. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F1171–F1177, 1987.
 60. Chobanian, M. C., and C. M. Julin. Growth hormone stimulates ammoniagenesis and gluconeogenesis in canine proximal tubule segments. Abstracts Am. Soc. Nephrol. 22: 338A, 1989.
 61. Chobanian, M. C., C. M. Julin, and T. L. Goodfriend. Angiotensin II stimulates ammoniagenesis in canine renal proximal tubular segments. Abstracts Am. Soc. Nephrol. 21: 295A, 1988.
 62. Clark, V. M., and N. P. Curthoys. Cause of subunit heterogeneity in purified rat renal phosphate‐dependent glutaminase. J. Biol. Chem. 254: 4935–4941, 1979.
 63. Cole, L. A., J. M. Scheid, and R. L. Tannen. Induction of mitochondrial metabolism and pH‐modulated ammoniagenesis by rocking LLC‐PK1 cells. Am. J. Physiol. 251 (Cell Physiol. 20): C293–C298, 1986.
 64. Cooper, A. J. L., and A. Meister. Isolation and properties of a new glutamine transaminase from rat kidney. J. Biol. Chem. 249: 2554–2561, 1974.
 65. Cooper, A. J. L., R. A. Stephani, and A. Meister. Enzymatic reactions of methionine sulfoximine. Conversion to the corresponding alpha‐amino and alpha‐keto acids and to alpha‐ketobutyrate and methane sulfinimide. J. Biol. Chem. 251: 6674–6682, 1976.
 66. Crompton, M., and J. B. Chappell. Transport of glutamine and glutamate in kidney mitochondria in relation to glutamine deamidation. Biochem. J. 132: 35–46, 1973.
 67. Curthoys, N. P., and T. Kuhlenschmidt. Phosphate‐independent glutaminase from rat kidney. Partial purification and identity with gamma glutamyl transpeptidase. J. Biol. Chem. 250: 2099–2105, 1975.
 68. Curthoys, N. P., T. Kuhlenschmidt, and S. S. Godfrey. Regulation of renal ammoniagenesis. Purification and characterization of phosphate‐dependent glutaminase from rat kidney. Arch. Biochem. Biophys. 174: 82–89, 1976.
 69. Curthoys, N. P., and O. H. Lowry. The distribution of glutaminase isoenzymes in the various structures of the nephron in normal, acidotic and alkalotic rat kidney. J. Biol. Chem. 248: 162–168, 1973.
 70. Curthoys, N. P., and O. H. Lowry. Glutamate and glutamine distribution in the rat nephron in acidosis and alkalosis. Am. J. Physiol. 224: 884–889, 1973.
 71. Curthoys, N. P., and R. A. Shapiro. Effect of metabolic acidosis and of phosphate on the presence of glutamine within the matrix space of rat renal mitochondria during glutamine transport. J. Biol. Chem. 253: 63–68, 1978.
 72. Curthoys, N. P. Role ofr. glutamyltranspeptidase in the renal metabolism of glutathione. Miner. Electrolyte Metab. 9: 236–245, 1983.
 73. Curthoys, N. P., and R. F. Weiss. Regulation of renal ammoniagenesis. Subcellular localization of rat kidney glutaminase isoenzymes. J. Biol Chem. 249: 3261–3266, 1974.
 74. Damian, A. C., and R. F. Pitts. Rates of glutaminase I and glutamine synthetase reactions in rat kidney in vivo. Am. J. Physiol. 218: 1249–1255, 1970.
 75. Dass, P. D., L. R. Lawson, V. Delaney, and E. Bourke. Effects of inhibition and modulation of gamma‐glutamyltransferase on glutamine and glutamate metabolism in control and acidotic rat proximal tubules. Miner. Electrolyte Metab. 13: 433–441, 1987.
 76. Dass, P. D., R. P. Misra, and T. C. Welbourne. Presence of gamma‐glutamyltransferase in the renal microvascular compartment. Can. J. Biochem. 59: 383–386, 1981.
 77. Dass, P. D., R. P. Misra, and T. C. Welbourne. Renal gamma‐glutamyltranspeptidase: in situ antiluminal localization. J. Histochem. Cytochem. 30: 148–152, 1982.
 78. Dass, P. D., and T. C. Welbourne. Adaptation of gamma‐glutamyltransferase to acidosis. Life Sci. 26: 1985–1990, 1980.
 79. Dass, P. D., and T. C. Welbourne. Evidence for luminal and antiluminal localization of gamma‐glutamyltranspeptidase in rat kidney. Life Sci. 28: 355–360, 1981.
 80. Dass, P. D., and T. C. Welbourne. Gamma glutamyltransferase ammonia production from glutamine: effect of physiological glutathione concentration. Life Sci. 38: 1305–1308, 1986.
 81. Davies, B. H. A., and J. Yudkin. Studies in biochemical adaptation. The origin of urinary ammonia as indicated by the effects of chronic acidosis and alkalosis on same renal enzymes in the rat. Biochem. J. 52: 407–412, 1952.
 82. Davis, J. A., B. Trivedi, M. Abarzua, and J. M. Weinberg. NH4 inhibits tubule cell energy metabolism. Abstr. Am. Soc. Nephrol. 18: 203, 1985.
 83. Dietrich, R., L. Desai, and R. T. Bogusky. Renal ammonia formation from amino acids other than glutamine. Contrib. Nephrol. 47: 197–202, 1985.
 84. Dorhout‐Mees, E. J., M. Machado, E. Slatopolsky, S. Klahr, and N. S. Bricker. The functional adaptation of the diseased kidney. III. Ammonium excretion. J. Clin. Invest. 45: 289–296, 1966.
 85. Dubrovsky, A. H. E., R. C. Nair, M. K. Byers, and D. Z. Levine. Renal net acid excretion in the adrenalectomized rat. Kidney Int. 19: 516–528, 1981.
 86. Evered, D. F., and B. Masola. The oxidation of glutamine and glutamate in relation to anion transport in enterocyte mitochondria. Biochem. J. 218: 449–458, 1984.
 87. Fine, A. Effects of acute metabolic acidosis on renal, gut, liver, and muscle metabolism of glutamine and ammonia in the dog. Kidney Int. 21: 439–444, 1982.
 88. Fine, A. The effects of chronic metabolic acidosis on liver and muscle glutamine metabolism in the dog in vivo. Biochem. J. 202: 271–273, 1982.
 89. Fine, A., F. L. Bennett, and G. A. O. Alleyne. Effects of acute acid‐base alterations on glutamine metabolism and renal ammoniagenesis in the dog. Clin. Sci. Mol. Med. 43: 503–508, 1978.
 90. Finkelstein, F. O., and J. P. Hayslett. Role of medullary structures in the functional adaptation of renal insufficiency. Kidney Int. 6: 419–425, 1974.
 91. Foreman, J. W., R. A. Reynolds, K. Ginkinger, and S. Segal. Effect of acidosis on glutamine transport by isolated rat renal brush‐border and basolateral‐membrane vesicles. Biochem. J. 212: 713–720, 1983.
 92. Fraley, D. S., S. Adler, B. Rankin, N. Curthoys, and B. Zett. Relationship of phosphate‐dependent glutaminase activity to ammonia excretion in potassium deficiency and acidosis. Miner. Electrolyte Metab. 11: 140–149, 1985.
 93. Frielle, T., J. Tong, and N. P. Curthoys. Changes in rat renal glutaminase activity studied in vivo and in primary cultures of proximal convoluted tubular cells. Contrib. Nephrol. 47: 150–156, 1985.
 94. Gabuzda, G. J., and P. W. Hall III. Relation of potassium depletion to renal ammonium metabolism and hepatic coma. Medicine 45: 481–490, 1966.
 95. Garvin, J. L., M. B. Burg, and M. A. Knepper. NH3 and NH4+ transport by rabbit renal proximal straight tubules. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol 21): F232–F239, 1987.
 96. Garvin, J. L., M. B. Burg, and M. A. Knepper. Active NH4+ absorption by thick ascending limb. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F57–F65, 1988.
 97. Garvin, J. L., and M. A. Knepper. Biocarbonate and ammonia transport in isolated perfused rat proximal straight tubules. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F277–F281, 1987.
 98. Gilchrist, M., D. C. Kem, and D. Washburn. The effect of acidosis and alkalosis on in vitro aldosterone production. Metabolism 32: 697–700, 1983.
 99. Godfreys, S., T. Kuhlenschmidt, and N. P. Curthoys. Correlation between activation and dimer formation of rat renal phosphate‐dependent glutaminase. J. Biol. Chem. 252: 1927–1931, 1977.
 100. Golden, M. H. N., P. Jahoor, and A. A. Jackson. Glutamine production rate and its contribution to urinary ammonia in normal man. Clin. Sci. 62: 299–305, 1982.
 101. Goldstein, L. Relation of renal glutaminase‐ω‐amidase activity to ammonia excretion in the rat. Nature 201: 1229–1230, 1964.
 102. Goldstein, L. Actinomycin D inhibition of the adaptation of renal glutamine‐deaminating enzymes in the rat. Nature 205: 1330–1331, 1965.
 103. Goldstein, L. Relation of glutamate to ammonia production in the rat kidney. Am. J. Physiol. 210: 661–666, 1966.
 104. Goldstein, L. Pathways of glutamine deamination and their control in the rat kidney. Am. J. Physiol. 213: 983–989, 1967.
 105. Goldstein, L. Glutamine transport by mitochondria isolated from normal and acidotic rats. Am. J. Physiol. 229: 1027–1033, 1975.
 106. Goldstein, L. Alpha‐ketoglutarate regulation of glutamine transport and deamidation by renal mitochondria. Biochem. Biophys. Res. Commun. 70: 1136–1141, 1976.
 107. Goldstein, L. Renal substrate utilization in normal and acidotic rats. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F351–F357, 1987.
 108. Goldstein, L., J. M. Boylan, and H. Schrock. Adaptation of renal ammonia production in the diabetic ketoacidotic rat. Kidney Int. 17: 57–65, 1980.
 109. Goldstein, L., J. Claiborne, and D. Evans. Rapid communication: ammonia excretion by the gills of two marine teleost fish: the importance of NH4+ permeance. J. Exp. Zool. 219: 395–397, 1982.
 110. Goldstein, L., and S. Harley‐DeWitt. Renal gluconeogenesis and mitochondrial NAD/NADH ratios in nursing and adult rats. Am. J. Physiol. 224: 752–757, 1973.
 111. Goldstein, L., R. J. Solomon, D. F. Perlman, P. M. McLaughlin, and M. A. Taylor. Ketone body effects on glutamine metabolism in isolated kidneys and mitochondria. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F181–F187, 1982.
 112. Good, D. W. Effects of potassium on ammonia transport by medullary thick ascending limb of the rat. J. Clin. Invest. 80: 1358–1365, 1987.
 113. Good, D. W. Active absorption of NH4+ by rat medullary thick ascending limb: inhibition by potassium. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F78–F87, 1988.
 114. Good, D. W., and M. B. Burg. Ammonia production by individual segments of the rat nephron. J. Clin. Invest. 73: 602–610, 1984.
 115. Good, D. W., C. R. Caflisch, and T. D. Du Bose. Trans‐epithelial ammonia concentration gradients in inner medulla of the rat. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F491–F500, 1987.
 116. Good, D. W., and T. D. Dubose, Jr. Ammonia transport by early and late proximal convoluted tubule of the rat. J. Clin. Invest. 79: 684–691, 1987.
 117. Good, D., and M. Knepper. Ammonia transport in the mammalian kidney. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F459–F471, 1985.
 118. Good, D., M. Knepper, and M. Burg. Ammonia and bicarbonate transport by thick ascending limb of rat kidney. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F35–F44, 1984.
 119. Goodman, A. D., R. E. Fuisz, and G. F. Cahill. Renal gluconeogenesis in acidosis, alkalosis and potassium deficiency: its possible role in regulation of renal ammonia production. J. Clin. Invest. 45: 612–619, 1966.
 120. Goodman, A. D., A. L. Steiner, and A. S. Pagliara. Effects of acidosis and alkalosis on 3′,5′‐GMP and 3′,5′‐AMP in renal cortex. Am. J. Physiol. 223: 620–625, 1972.
 121. Goorno, W. E., F. C. Rector, Jr., and D. W. Seldin. Relation of renal gluconeogenesis to ammonia production in the dog and rat. Am. J. Physiol 213: 969–974, 1967.
 122. Gougoux, A., P. Vinay, M. Cardoso, M. Duplain, and G. Lemieux. Immediate adaptation of the dog kidney to acute hypercapnia. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F227–F234, 1982.
 123. Gougoux, A., P. Vinay, and M. Duplain. Maleate‐induced stimulation of glutamine metabolism in the intact dog kidney. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F585–F593, 1985.
 124. Gougoux, A., P. Vinay, and M. L. Halperin. Regulation of renal ammoniagenesis in the dog with chronic metabolic acidosis: effect of a glutamine load. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F745–F752, 1985.
 125. Graber, M., H. Bengele, E. Mroz, C. Lechene, and E. Alexander. Acute metabolic acidosis augments collecting duct acidification rate in the rat. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F669–F676, 1981.
 126. Grekin, R. J. Ketoacidosis, hyperosmolar states and lactic acidosis. In: Fluids and Electrolytes, edited by J. P. Kokko and R. L. Tannen. Philadelphia: Saunders, 1986, p. 688–711.
 127. Guder, W. G. Stimulation of renal gluconeogenesis by angiotensin II. Biochim. Biophys. Acta 584: 507–519, 1979.
 128. Guder, W. G. Renal and hepatic nitrogen metabolism in systemic acid base regulation. J. Clin. Chem. Clin. Biochem. 25: 457–466, 1987.
 129. Guder, W. G., and B. D. Ross. Enzyme distribution along the nephron. Kidney Int. 26: 101–111, 1984.
 130. Guder, W. G., and G. Wirthensohn. Metabolism of isolated kidney tubules. Interactions between lactate, glutamine and oleate metabolism. Eur. J. Biochem. 99: 577–584, 1979.
 131. Halperin, M. L., C. B. Chen, S. Cheema‐Dhadli, M. L. West, and R. L. Jungas. Is urea formation regulated primarily by acid‐base balance in vivo? Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F605–F612, 1986.
 132. Halperin, M. L., and R. L. Jungas. Metabolic production and renal disposal of hydrogen ions. Kidney Int. 24: 709–713, 1983.
 133. Halperin, M. L., R. L. Jungas, C. Pichette, and M. B. Goldstein. A quantitative analysis of renal ammoniagenesis and energy balance: a theoretical approach. Can. J. Physiol. Pharmacol. 60: 1431–1435, 1982.
 134. Halperin, M. L., P. Vinay, A. Gougoux, C. Pichette, and R. L. Jungas. Regulation of the maximum rate of renal ammoniagenesis in the acidotic dog. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F607–F615, 1985.
 135. Hamm, L. Ammonia transport in the rabbit medullary collecting tubule. Kidney Int. 29: 367, 1986 (abstr.).
 136. Hamm, L. L., and E. E. Simon. Roles and mechanisms of urinary buffer excretion. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F595–F605, 1987.
 137. Hamm, L., D. Trigg, D. Martin, C. Gillespie, and J. Buerkert. Transport of ammonia in the rabbit cortical collecting tubule. J. Clin. Invest. 75: 478–485, 1985.
 138. Hanson, P. J., and D. S. Parsons. Metabolism and transport of glutamine and glucose in vascularly perfused rat small intestine. Biochem. J. 166: 509–519, 1977.
 139. Hartmann, F., and M. Plauth. Intestinal glutamine metabolism. Metabolism (Suppl 1) 38: 18–24, 1989.
 140. Haussinger, D. Glutamine metabolism in the liver: overview and current concepts. Metabolism (Suppl 1) 38: 14–17, 1989.
 141. Haussinger, D., T. P. M. Akerboom, and H. Sies. The role of pH and the lack of a requirement for hydrogencarbonate in the regulation of hepatic glutamine metabolism. Hoppe Seylers Z. Physiol. Chem. 361: 995–1001, 1980.
 142. Haussinger, D., and W. Gerok. Hepatic urea synthesis and pH regulation. Role of CO2, HCO3, pH and the activity of carbonic anhydrase. Eur. J. Biochem. 152: 381–386, 1985.
 143. Haussinger, D., W. Gerok, and H. Sies. Hepatic role in pH regulation: role of the intercellular glutamine cycle. TIBS 9: 300–302, 1984.
 144. Haussinger, D., W. Gerok, and H. Sies. The effect of urea synthesis on extracellular pH in isolated perfused rat liver. Biochem. J. 236: 261–265, 1986.
 145. Haussinger, D., and H. Seis. Hepatic glutamine metabolism under the influence of the portal ammonia concentration in the perfused rat liver. Eur. J. Biochem. 101: 179–184, 1979.
 146. Heifets, M., M. Carley, M. M. Marrero, C. P. Bastl, and R. G. Narins. Glucocorticoids stimulate renal ammoniagenesis by inhibiting prostaglandins. Abstracts Am. Soc. Nephrol. 21: 298A, 1988.
 147. Heitmann, R. M., and E. N. Bergmann. Glutamine metabolism, interorgan transport, and glucogenicity in the sheep. Am. J. Physiol. 234 (Endocrinol. Metal. Gastrointest. Physiol. 3): E197–E203, 1978.
 148. Heitmann, R. N., and E. N. Bergman. Integration of amino acid metabolism in sheep: effects of fasting and acidosis. Am. J. Physiol. 239 (Endocrinol. Metab. 2): E248–E254, 1980.
 149. Heitmann, R. N., and E. N. Bergman. Transport of amino acids in whole blood and plasma of sheep. Am. J. Physiol. 239 (Endocrinol. Metab. 2): E242–E247, 1980.
 150. Hems, D. A., and J. T. Brosnan. Effects of metabolic acidosis and starvation on the content of intermediary metabolites in rat kidney. Biochem. J. 123: 391–397, 1971.
 151. Jills, A. G., E. L. Reid, and W. D. Kerr. Circulatory transport of L‐glutamine in fasted mammals: cellular sources of urine ammonia. Am. J. Physiol. 223: 1470–1476, 1972.
 152. Hughey, R. P., B. B. Rankin, and N. P. Curthoys. Acute acidosis and renal arteriovenous differences of glutamine in normal and adrenalectomized rats. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F199–F204, 1980.
 153. Hulter, H. N., L. P. Ilnicki, J. A. Harbottle, and A. Sebastian. Impaired renal H+ secretion and NH3 production in mineralocorticoid‐deficient glucocorticoid‐replete dogs. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 5): F283–F294, 1979.
 154. Hulter, H. N., J. H. Licht, R. D. Glynn, and A. Sebastian. Renal Acidosis in mineralocorticoid deficiency is not dependent on NaCl depletion or hyperkalemia. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 5) 283–F294, 1979.
 155. Hulter, H. N., R. D. Toto, L. P. Ilnicki, and A. Sebastian. Chronic hyperkalemic renal tubular acidosis induced by KCl loading. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F255–F264, 1983.
 156. Iacobellis, M., E. Muntwyler, and G. E. Griffin. Enzyme concentration changes in the kidneys of protein and/or potassium‐deficient rats. Am. J. Physiol. 178: 477–482, 1954.
 157. Iacobellis, M., E. Muntmyler, and G. E. Griffin. Kidney glutaminase and carbonic anhydrase activity and tissue electrolyte composition in potassium‐deficient dogs. Am. J. Physiol. 183: 395–400, 1955.
 158. Irias, J. J., and R. E. Greenberg. Relationship of renal gluconeogenesis to control of ammonia production. Am. J. Physiol. 223: 750–755, 1972.
 159. Iynedjian, P. B., F. J. Ballard, and R. W. Hanson. The regulation of phosphoenolypyruvate carboxykinase (GTP) synthesis in rat kidney cortex. The role of acid‐base balance and glucocorticoids. J. Biol. Chem. 250: 5596–5603, 1975.
 160. Iynedjian, P. B., and R. W. Hanson. Messenger RNA for renal phosphoenolpyruvate carboxykinase (GTP). Its translation in a heterologous cell‐free system and its regulation by glucocorticoids and by changes in acid‐base balance. J. Biol. Chem. 252: 8398–8403, 1977.
 161. Jaeger, P., B. Karlmark, and G. Giebisch. Ammonium transport in rat cortical tubule: relationship to potassium metabolism. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F593–F600, 1983.
 162. Janicki, R. H., and L. Goldstein. glutamine synthetase and renal ammonia metabolism. Am. J. Physiol. 216: 1107–1110, 1969.
 163. Jones, E. R., T. R. Beck, S. Kapoor, R. Shay, and R. G. Narins. Prostaglandins inhibit renal ammoniagenesis in the rat. J. Clin. Invest. 74: 992–1002, 1984.
 164. Jones, E. R., B. Becker, and R. G. Narins. The mechanism by which mild acute respiratory acidosis stimulates rat renal ammoniagenesis. Abstr. Am. Soc. Nephrol. 18: 206, 1985.
 165. Jones, E. R., S. Hughes, and C. J. Wolf. Effect of aldosterone on urinary acidification in the salt‐replete rat. Clin. Res. 28: 450, 1980 (abstr.).
 166. Jones, E. R., R. Shay, T. R. Beck, and R. G. Narins. Pathogenesis of prostaglandins inhibition of renal ammonia genesis. Clin. Res. 33: 488A, 1985.
 167. Joseph, S. K., and J. D. McGivan. The effects of ammonium chloride and bicarbonate on the activity of glutaminase in isolated liver mitochondria. Biochem. J. 176: 837–844, 1978.
 168. Julian, B., J. H. Galla, G. P. Guthrie, Jr., and T. A. Kotchen. Renin and aldosterone responses to short‐term NaCl or NaHCO3 loading in man. J. Lab. Clin. Med. 100: 261–268, 1982.
 169. Kalra, J., and J. T. Brosnan. Localization of phosphate‐independent glutaminase in the brush border of rat kidney cortex. Can. J. Biochem. 52: 762–766, 1974.
 170. Kalra, J., and J. T. Brosnan. The subcellular localization of glutaminase isoenzymes in rat kidney cortex. J. Biol. Chem. 249: 3255–3260, 1974.
 171. Kamm, D. E. Dissociation of urine pH and NH3 excretion during KC1 and NaCl loading. Abstr. Am. Soc. Nephrol. 5: 36, 1971.
 172. Kamm, D. E. Effect of oral and intravenous K+ on urine H+. Abstr. Am. Soc. Nephrol. 6: 56, 1973.
 173. Kamm, D. E., and R. R. Asher. Relation between glucose and ammonia production in renal cortical slices. Am. J. Physiol. 218: 1161–1165, 1970.
 174. Kamm, D. E., R. E. Fuisz, A. D. Goodman, and G. F. Cahill, Jr. Acid‐base alterations and renal gluconeogenesis: effect of pH, bicarbonate concentration, and PCO2 J. Clin. Invest. 46: 1172–1177, 1967.
 175. Kamm, D. E., and G. L. Strope. The effects of acidosis and alkalosis on the metabolism of glutamine and glutamate in renal cortex slices. J. Clin. Invest. 51: 1251–1263, 1972.
 176. Kamm, D. E., and G. L. Strope. Glutamine and glutamate metabolism in renal cortex from potassium‐depleted rats. Am. J. Physiol. 224: 1241–1248, 1973.
 177. Katunuma, N., I. Tomino, and H. Nishino. Glutaminase isozymes in rat kidney. Biochem. Biophys. Res. Commun. 22: 321–328, 1966.
 178. Kikeri, D., A. Sun, M. L. Zeidel, and S. C. Hebert. Cell membranes impermeable to NH3. Nature 339: 478–480, 1989.
 179. King, P. A., L. Goldstein, and E. A. Newsholme. Glutamine synthetase activity of muscle in acidosis. Biochem. J. 216: 523–525, 1983.
 180. Kinsella, J., and P. Aronson. Interaction of NH4+ and Li+ with the renal microvillus membrane Na+‐H+ exchanger. Am. J. Physiol. 241 (Cell Physiol. 10): C220–C226, 1981.
 181. Klahr, S., T. Nawar, and A. C. Schoolwerth. Effects of catecholamines on ammoniagenesis and gluconeogenesis by renal cortex in vitro. Biochim. Biophys. Acta 304: 161–168, 1973.
 182. Kleiner, D. The transport of NH3 and NH4+ across biological membranes. Biochim. Biophys. Acta. 639: 41–52, 1981.
 183. Knepper, M., D. Good, and M. Burg. Mechanism of ammonia secretion by cortical collecting ducts of rabbits. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F729–F738, 1984.
 184. Knepper, M., D. Good, and M. Burg. Ammonia and bicarbonate transport by rat cortical collecting ducts perfused in vitro. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F870–F877, 1985.
 185. Knepper, M. A., R. Packer, and D. W. Good. Ammonium transport in the kidney. Physiol. Rev. 69: 179–249, 1989.
 186. Kopyt, N., and R. G. Narins. Stimulation by acidosis of a new ammoniagenic pathway. Clin. Res. 23: 367, 1975 (abstr.).
 187. Kopyt, N., R. Narins, A. Whereat, and A. Relman. Regulation of mitochondria transport of malate by pH. A possible control of ammoniagenesis. Clin. Res. 22: 535, 1974 (abstr.).
 188. Kornandakieti, C., and R. L. Tannen. H+ transport by the aldosterone‐deficient rat distal nephron. Kidney Int. 25: 629–635, 1984.
 189. Kovacevic, Z. The pathway of glutamine and glutamate oxidation in isolated mitochondria from mammalian cells. Biochem. J. 125: 757–763, 1971.
 190. Kovacevic, Z. Distribution of glutaminase isoenzymes in kidney cells. Biochim. Biophys. Acta 334: 199–207, 1974.
 191. Kovecevic, Z. Possible mechanisms of the efflux of glutamate from kidney mitochondria generated by the activity of mitochondrial glutaminase. Biochim. Biophys. Acta 396: 325–334, 1975.
 192. Kovacevic, Z. Importance of the flux of phosphate across the inner membrane of kidney mitochondria for the activation of glutaminase and the transport of glutamine. Biochim. Biophys. Acta 430: 399–412, 1976.
 193. Kovacevic, Z., and K. Bajin. Kinetics of glutamine efflux from rat liver mitochondria loaded with the 14C‐labelled substrate. Biochim. Biophys. Acta 687: 291–295, 1982.
 194. Kovacevic, Z., and K. Bajin. Loading of mitochondria with 14C glutamine and study of the kinetics of its efflux from the organelles. Contrib. Nephrol. 31: 111–114, 1982.
 195. Kovacevic, Z., M. Breberina, M. Pavlovic, and K. Bajin. Molecular form and kinetic properties of phosphate‐dependent glutaminase in the mitochondria isolated from the kidneys of normal and acidotic rats. Biochim. Biophys. Acta 567: 216–224, 1979.
 196. Kovacevic, Z., and J. D. McGivan. Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol. Rev. 63: 547–605, 1983.
 197. Kovacevic, Z., J. D. McGivan, and J. B. Chappell. Conditions for activity of glutaminase in kidney mitochondria. Biochem. J. 118: 265–274, 1970.
 198. Krebs, H. A. The role of chemical equilibria in organ function. Adv. Enzyme Regul. 14: 449–472, 1976.
 199. Krebs, H. A., D. A. H. Bennett, P. De Gasquet, T. Gascoyne, and Y. Yoshida. Renal gluconeogenesis. The effect of diet on the gluconeogenic capacity of rat‐kidney‐cortex slices. Biochem. J. 86: 22–27, 1963.
 200. Kuhlenschmidt, T., and N. P. Curthoys. Subcellular localization of rat kidney phosphate independent glutaminase. Arch. Biochem. Biophys. 167: 519–524, 1975.
 201. Kunin, A. S., and R. L. Tannen. Regulation of glutamine metabolism by renal cortical mitochondria. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F55–F62, 1979.
 202. Kunin, A. s., and R. L. Tannen. Effect of pH on metabolism of the glutamine carbon skeleton by renal cortical mitochondria. Int. J. Biochem. 12: 151–155, 1980.
 203. Kurokawa, K., and S. G. Massry. Evidence for stimulation of renal gluconeogenesis by catecholamines. J. Clin. Invest. 52: 961–964, 1973.
 204. Kurokawa, K., and H. Rasmussen. Ionic control of renal gluconeogenesis. III. The effects of changes in pH, PCO2, and bicarbonate concentrations. Biochim. Biophys. Acta 313: 42–58, 1973.
 205. Kurtz, I. and R. S. Balaban. Ammonium as a substrate for Na+‐K+‐ATPase in rabbit proximal tubules. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F497–F502, 1986.
 206. Kurtz, I., R. Star, R. S. Balaban, J. L. Garvin, and M. A. Knepper. Spontaneous luminal disequilibrium pH in S3 proximal tubules. Role in ammonia and bicarbonate transport. J. Clin. Invest. 78: 989–996, 1986.
 207. Kvamme, E. Regulation of pig kidney phosphate‐activate glutaminase. Contrib. Nephrol. 31: 60–70, 1982.
 208. Kvamme, E., and B. E. Olson. Evidence for two species of mammalian phosphate‐activated glutaminase having different regulatory properties. FEBS Lett. 107: 33–36, 1979.
 209. Lancaster, G., F. Mohyuddin, C. R. Scriver, and D. T. Whelan. The gamma‐aminobutyrate pathway in mammalian kidney cortex. Biochim. Biophys. Acta 297: 229–240, 1973.
 210. Lanctin, H., J. T. Brosnan, and B. D. Ross. Glutamine synthesis in the perfused rat kidney and in isolated rat cortical tubules: regulation of pH. Clin. Sci. 69: 701–707, 1985.
 211. La Noue, K. F., and A. C. Schoolwerth. Metabolite transport in mitochondria. Annu. Rev. Biochem. 48: 871–922, 1979.
 212. Lau, K. Phosphate disorders. In: Fluids and Electrolytes, edited by J. P. Kokko and R. L. Tannen. Philadelphia: Saunders, 1986, p. 398–471.
 213. Lemieux, G., G. Baverel, P. Vinay, and A. Gougoux. Effect of fluoroacetate on the inhibitory action of ketone bodies and fatty acids on renal ammoniagenesis. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F7–F13, 1979.
 214. Lemieux, G., G. Baverel, P. Vinay, and P. Wadoux. Glutamine synthetase and glutamyltransferase in the kidney of man, dog and rat. Am. J. Physiol. 231: 1068–1073, 1976.
 215. Lemieux, G., J. Berkofsky, and C. Lemieux. Renal tissue metabolism in the rat during chronic metabolic alkalosis. Importance of glycolysis. Can. J. Physiol. Pharmacol. 64: 1419–1426, 1986.
 216. Lemieux, G., A. Kiss, C. Lemieux, R. J. Ibanez, and M. R. Aranda. Renal tubular biochemistry during acute and chronic metabolic alkalosis in the dog. Kidney Int. 27: 908–918, 1985.
 217. Lemieux, G., C. Pichette, P. Vinay, and A. Gougoux. Cellular mechanisms of the antiammoniagenic effect of ketone bodies in the dog. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F420–F426, 1980.
 218. Lemieux, G., P. Vinay, G. Baverel, R. Briere, and A. Gougoux. Relationship between lactate and glutamine metabolism in vitro by the kidney: differences between dog and rat and importance of alanine synthesis in the dog. Kidney Int. 16: 451–458, 1979.
 219. Lemieux, G., P. Vinay, and P. Cartier. Renal hemodynamics and ammoniagenesis. Characteristics of the antiluminal site for glutamine extraction. J. Clin. Invest. 53: 884–894, 1974.
 220. Lemieux, G., P. Vinay, P. Robitaille, G. E. Plante, Y. Lussier, and P. Martin. The effect of ketone bodies on renal ammoniagenesis. J. Clin. Invest. 50: 1781–1791, 1971.
 221. Lenzen, C., S. Soboll, H. Sies, and D. Haussinger. pH control of hepatic glutamine degradation: role of transport. Eur. J. Biochem. 166: 483–488, 1987.
 222. Lombardo, S. V., A. Risquez, M. McCarthy, and H. G. Preuss. Evidence for activation of renal glutamate dehydrogenase pathway in intact acidotic dogs. Kidney Int. 19: 540–552, 1981.
 223. Lowry, M., D. E. Hall, and J. T. Brosnan. Serine synthesis in rat kidney: studies with perfused kidney and cortical tubules. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F649–F658, 1986.
 224. Lowry, M., D. E. Hall, and J. T. Brosnan. Renal glycine cleavage enzyme complex: increased activity in metabolic acidosis. Biochem. J. 231: 477–480, 1985.
 225. Lowry, M., B. Hall, D. E. Hall, and J. T. Brosnan. Pathways of serine synthesis in the rat kidney. Contrib. Nephrol. 47: 203–208, 1985.
 226. Lowry, M., D. E. Hall, M. S. Hall, and J. T. Brosnan. Renal metabolism of amino acids in vivo: studies on serine and glycine fluxes. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F304–F309, 1987.
 227. Lowry, M., and B. D. Ross. Activation of oxoglutarate dehydrogenase in the kidney in response to acute acidosis. Biochem. J. 190: 771–780, 1980.
 228. Lueck, J. D., and L. L. Miller. The effect of perfusate pH on glutamine metabolism in the isolated perfused rat liver. J. Biol. Chem. 254: 5491–5497, 1970.
 229. Lupianez, J. A., P. Hortelano, F. Sanchez‐Medina, A. Sanchez‐Pogo, N. McFarlane‐Anderson, J. Burnswell, and G. A. O. Alleyne. The mechanism of the increase in renal ammoniagenesis in the rat with acute metabolic acidosis. FEBS Lett. 128: 361–363, 1981.
 230. Lyon, M. L., and R. F. Pitts. Species differences in renal glutamine synthesis in vivo. Am. J. Physiol. 216: 117–122, 1969.
 231. Maclean, A. J., and J. P. Hayslett. Adaptive change in ammonia excretion in renal insufficiency. Kidney Int. 17: 595–606, 1980.
 232. Maher, T., M. Schambelan, I. Kurtz, H. N. Hulter, J. W. Jones, and A. Sebastian. Amelioration of metabolic acidosis by dietary potassium restriction in hyperkalemic patients with chronic renal insufficiency. J. Lab. Clin. Med. 103: 432–445, 1984.
 233. Manillier, C., P. Vinay, L. Lalonde, and A. Gougoux. ATP turnover and renal response of dog tubules to pH changes in vitro. Am. J. Physiol., 251 (Renal Fluid Electrolyte Physiol. 20): F919–F932, 1986.
 234. Marliss, E. B., T. T. Aoki, T. Pozetsky, A. S. Most, and G. F. Cahill, Jr. Muscle and splanchnic glutamine and glutamate metabolism in postabsorptive and starved man. J. Clin. Invest. 50: 814–817, 1971.
 235. May, R. C., R. A. Kelley, and W. E. Mitch. Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoid‐dependent mechanism. J. Clin. Invest. 77: 614–621, 1986.
 236. McFarlane‐Anderson, N., F. L. Bennett, and G. A. O. Alleyne. Ammonia production by the small intestine of the rat. Biochim. Biophys. Acta 437: 238–243, 1976.
 237. McGivan, J. D., J. H. Lacey, and S. K. Joseph. Localization and some properties of phosphate‐dependent glutaminase in disrupted liver mitochondria. Biochem. J. 192: 537–542, 1980.
 238. Mellas, J., and M. R. Hammerman. Phorbol ester‐induced alkalinization of canine renal proximal tubular cells. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F451–F459, 1986.
 239. Miller, S. P., Y. C. Awasthi, and S. S. Srivastava. Studies of human kidney gamma‐glutamyl transpeptidase. Purification and structural, kinetic, and immunological properties. J. Biol. Chem. 251: 2271–2278, 1976.
 240. Monson, J. P., R. M. Henderson, J. A. Smith, R. A. Iles, M. Faus‐Dader, N. D. Carter, R. Heath, H. Metcalfe, and R. D. Cohen. The mechanism of inhibition of ureogenesis by acidosis. Biosci. Rep. 4: 819–825, 1984.
 241. Morehouse, R. F., and N. P. Curthoys. Properties of rat renal phosphate‐dependent glutaminase coupled to sepharose. Biochem. J. 193: 709–716, 1981.
 242. Muntwyler, E., M. Iacobellis, and G. E. Griffin. Kidney glutaminase and carbonic anhydrase activities and renal electrolyte excretion in rats. Am. J. Physiol. 184: 83–90, 1956.
 243. Nagami, G. T. Luminal secretion of ammonia in the mouse proximal tubule perfused in vitro. J. Clin Invest 81: 159–164, 1988.
 244. Nagami, G. T. Effect of bath and luminal potassium concentration on ammonia production and secretion by mouse proximal tubules perfused in vitro. J. Clin. Invest. 86: 32–39, 1990.
 245. Nagami, G. T. Effect of angiotensin II on ammonia production by isolated perfused mouse proximal tubules. Abstracts Am. Soc. Nephrol. 21: 312A, 1988.
 246. Nagami, G. T. Effect of angiotensin II on net ammonia secretion by isolated perfused mouse proximal tubules. Abstracts Am. Soc. Nephrol. 22: 355A, 1989.
 247. Nagami, G., and K. Kurokawa. Regulation of ammonia production by mouse proximal tubules perfused in vitro. J. Clin. Invest. 75: 844–849, 1985.
 248. Nagami, G. T., S. M. Sonu, and K. Kurokawa. Ammonia production by mouse proximal tubules perfused in vitro. Effect of metabolic acidosis. J. Clin. Invest. 78: 124–129, 1986.
 249. Nagata, N., and H. Rasmussen. Renal gluconeogenesis: effects of Ca2+ and H+. Biochim. Biophys. Acta 215: 1–16, 1970.
 250. Narins, R. G., M. Emmett, J. Rascoff, E. R. Jones, and A. S. Relman. Effects of acute acid‐base changes on in vivo total ammonia synthesis in the rat. Contrib. Nephrol. 31: 47–52, 1982.
 251. Narins, R. G., and A. S. Relman. Acute effect of acidosis on ammoniagenic pathways in the kidney of the intact rat. Am. J. Physiol. 227: 946–949, 1974.
 252. Nath, K. A., M. K. Hostetter, and T. H. Hostetter. Pathophysiology of chronic tubulo‐interstitial disease in rats. Interactions of dietary acid load, ammonia and complement component C3. J. Clin. Invest. 97: 667–675, 1985.
 253. Nimmo, G. A., and K. F. Tipton. Kinetic comparisons between soluble and membrane‐bound glutaminase preparations from pig brain. Eur. J. Biochem. 117: 57–64, 1981.
 254. Nimmo, G. A., and K. F. Tipton. Time‐dependent activation and inactivation of pig brain glutaminase. Biochem. Pharmacol. 30: 1635–1641, 1981.
 255. Nissim, I., and B. States. Ammoniagenesis by cultured human renal cortical epithelia: study with 15N. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F187–F196, 1989.
 256. Nissim, I., B. States, M. Yudkoff, and S. Segal. Characterization of amino acid metabolism by cultured rat kidney cells: study with 15N glutamine. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F1243–F1252, 1987.
 257. Nissim, I., M. Yudkoff, and S. Segal. Metabolism of glutamine and glutamate by rat renal tubules. Study with 15N and gas chromatography‐mass spectrometry. J. Biol. Chem. 260: 13955–13967, 1985.
 258. Nissim, I., M. Yudkoff, and S. Segal. Effect of 5‐amino‐4‐imidazolecarboxamide riboside on renal ammoniagenesis. J. Biol. Chem. 261: 6509–6514, 1986.
 259. Nissim, I., M. Yudkoff, and S. Segal. Nitrogen sources for renal ammoniagenesis: study with 15N amino acid. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F995–F1002, 1986.
 260. Nonogucki, H., Y. Takehara, and H. Endou. Intra and inter‐nephron heterogeneity of ammoniagenesis in rats: effects of chronic metabolic acidosis and potassium depletion. Pflugers Arch. 407: 245–251, 1986.
 261. Nonoguchi, H., S. Uchida, T. Shiigai, and H. Endou. Effect of chronic metabolic acidosis on ammonia production from L‐glutamine in microdissected rat nephron segments. Pflugers Arch. 403: 229–235, 1985.
 262. Oliver, J., and E. Bourke. Adaptations in urea ammonium excretion in metabolic acidosis in the rat: a reinterpretation. Clin. Sci. Mol. Med. 48: 515–520, 1975.
 263. Oliver, J., A. M. Koelz, J. Costello, and E. Bourke. Acid‐base induced alterations in glutamine metabolism and ureogenesis in perfused muscle and liver of the rat. Eur. J. Clin. Invest. 7: 445–449, 1977.
 264. Orloff, J. and R. W. Berliner. The mechanism of the excretion of ammonia in the dog. J. Clin. Invest. 35: 223–235, 1956.
 265. Owen, E. E., and R. R. Robinson. Amino acid extraction and ammonia metabolism by the human kidney during the prolonged administration of ammonium chloride. J. Clin. Invest. 42: 263–276, 1963.
 266. Pagliara, A. S., and A. D. Goodman. Relation of renal cortical gluconeogenesis glutamate content and production of ammonia. J. Clin. Invest. 49: 1967–1974, 1967.
 267. Pagliara, A. S., and A. D. Goodman. Effect of adenosine 3′,5′‐monophosphate on production of glucose and ammonia by renal cortex. J. Clin. Invest. 48: 1408–1412, 1969.
 268. Pagliara, A. S., and A. D. Goodman. Relation of renal cortical gluconeogenesis, glutamate content, and production of ammonia. J. Clin. Invest. 49: 1967–1974, 1970.
 269. Parry, D. M., and J. T. Brosnan. Glutamine metabolism in the kidney during induction of, and recovery from, metabolic acidosis in the rat. Biochem. J. 174: 387–396, 1978.
 270. Parry, D. M., B. Hall, and J. T. Brosnan. Renal metabolite concentration aand the activities of glutaminase and glutamate dehydrogenase during recovery from metabolic acidosis in the rat. Can. J. Biochem. 59: 871–876, 1981.
 271. Perez, G. O., D. C. Kem, J. R. Oster, and C. A. Vaamonde. Effect of acute metabolic acidosis on the renin‐aldosterone system. J. Lab. Clin. Med. 96: 371–378, 1980.
 272. Perez, G. O., J. R. Oster, F. H. Katz, and C. A. Vaamonde. The effect of acute metabolic acidosis on plasma Cortisol, renin activity, and aldosterone. Horm. Res. 11: 12–21, 1979.
 273. Perez, G. O., J. R. Oster, C. A. Vaamonde, and F. H. Katz. Effect of NH4Cl on plasma aldosterone, Cortisol and renin activity in supine man. J. Clin. Endocrinol. Metab. 45: 762–767, 1977.
 274. Phenix, P., and T. C. Welbourne. Renal glutaminases: Diamox inhibition of glutamyltransferase. Am. J. Physiol. 228: 1269–1275, 1975.
 275. Phromphetcharat, V., A. Jackson, P. D. Dass, and T. C. Welbourne. Ammonia partitioning between glutamine and urea: interorgan participation in metabolic acidosis. Kidney Int. 20: 598–605, 1981.
 276. Pilkington, L. A., and D. J. O'Donovan. Metabolism of glutamine in cortex slices from dog kidney during acid‐base alterations. Am. J. Physiol. 220: 1634–1639, 1971.
 277. Pilkington, L. A., T. K. Young, and R. F. Pitts. Properties of renal luminal and antiluminal transport of plasma glutamine. Nephron 7: 51–60, 1970.
 278. Pinkus, L. M., and H. G. Windmueller. Phosphate dependent glutaminase of small intestine: localization and role in intestinal glutamine metabolism. Arch. Biochem. Biophys. 182: 506–517, 1977.
 279. Pitts, R. F. metabolism of amino acids by the perfused rat kidney. Am. J. Physiol. 220: 862–867, 1971.
 280. Pitts, R. F. Production and excretion of ammonia in relation to acid‐base regulation. In: Handbook of Physiology. Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington, D.C.: Am. Physiol. Soc, 1973, sect. 8, p. 455–496.
 281. Pitts, R. F., J. De Haas, and J. Klein. Relation of renal amino and amide nitrogen extraction to ammonia production. Am. J. Physiol. 204: 187–191, 1963.
 282. Pitts, R. F., L. A. Pilkington, M. B. MacLeod, and E. Leal‐Pinto. Metabolism of glutamine by the intact functioning kidney of the dog. Studies in metabolic acidosis and alkalosis. J. Clin. Invest. 51: 557–565, 1972.
 283. Polak, A., G. D. Haynie, R. M. Hays, and W. B. Schwartz. Effects of chronic hypercapnia on electrolyte and acid‐base equilibrium. I. Adaptation. J. Clin. Invest. 40: 1223–1237, 1961.
 284. Pollak, V. E., H. Mattenheimer, H. De Bruin, and K. J. Weinman. Experimental metabolic acidosis: the enzymatic basis of ammonia production by the dog kidney. J. Clin. Invest. 44: 169–181, 1965.
 285. Preuss, H. G. Pyridine nucleotides in renal ammonia metabolism. J. Lab. Clin. Med. 72: 370–382, 1968.
 286. Preuss, H. G. Renal glutamate metabolism in acute metabolic acidosis. Nephron 6: 235–246, 1969.
 287. Preuss, H. G. Ammonia production from glutamine and glutamate in isolated dog renal tubules. Am. J. Physiol. 220: 54–58, 1972.
 288. Preuss, H. G., K. Baird, and S. T. Eastman. The regulation of renal ammoniagenesis in the rat by extracellular factors. II. Ammoniagenesis by rat kidney slices incubating in normal acidotic sera. Metabolism 27: 1539–1647, 1978.
 289. Preuss, H. G., S. T. Eastman, O. Vavatsi‐Manos, K. Baird, and D. M. Roxe. The regulation of renal ammoniagenesis in the rat by extracellular factors. L. The combined effects of acidosis and physiologic fuels. Metabolism 27: 1626–1638, 1978.
 290. Preuss, H. G., O. Vavatsi‐Manos, S. T. Eastman, and D. S. Gaydos. Correlation between glutamate deamination and glutamine deamidation in rat kidney mitochondria. Nephron 27: 244–253, 1981.
 291. Preuss, H. G., O. Vavatsi‐Manos, and L. L. Vertuno. Effects of glutamine deamination on glutamine deamidation in rat kidney slices. J. Clin. Invest. 52: 755–764, 1973.
 292. Preuss, H. G., and F. R. Weiss. Rate‐limiting factor in rat kidney slice ammoniagenesis. Am. J. Physiol. 221: 458–464, 1971.
 293. Quintanilla, A., A. Molteni, C. Huang, and F. del‐Greco. Effect of acid‐base changes on renin, aldosterone and Cortisol secretion. Physiologist 21: 95, 1978, (abstr.).
 294. Radke, K. J., E. G. Schneider, R. E. Taylor, Jr., and R. E. Kramer. Effect of hydrogen ion concentration on corticosteroid secretion. Am. J. Physiol. 250 (Endocrinol. Metab. 13): E259–E264, 1986.
 295. Rasmussen, H., and N. Nagata. Renal gluconeogenesis: effects of parathyroid hormone and dibutyryl 3′,5′‐AMP. Biochim. Biophys. Acta 215: 17–18, 1970.
 296. Rector, F. C., Jr., and J. Orloff. The effect of the administration of sodium bicarbonate and ammonium chloride on the excretion and production of ammonia. The absence of alterations in the activity of renal ammonia‐producing enzymes in the dog. J. Clin. Invest. 38: 366–372, 1959.
 297. Relman, A. S., and R. G. Narins. The control of ammonia production in the rat. Med. Clin. North Am. 59: 583–593, 1975.
 298. Relman, A. S., and S. Yablon. The regulation of ammonia production in the rat. Curr. Probl. Clin. Biochem. 8: 198, 1977 (abstr.).
 299. Risquez, A., D. S. Gaydos, and H. G. Preuss. Effects of alpha‐oxoglutarate concentrations on canine slice ammoniagenesis. Renal Physiol. 6: 218–225, 1983.
 300. Robinson, B. H., J. Oei, S. Cheema‐Dhadli, and M. L. Halperin. Regulation of citrate transport and pyruvate dehydrogenase in rat kidney cortex mitochondria by bicarbonate. J. Biol. Chem. 252: 5661–5665, 1977.
 301. Rodriguez‐Nichols, F., E. Laughrey, and R. L. Tannen. Response of renal NH3 production to chronic respiratory acidosis. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F896–F903, 1984.
 302. Rogers, S. A., I. E. Karl, and M. R. Hammerman. Growth hormone directly stimulates gluconeogenesis in canine renal proximal tubule. Am. J. Physiol. 257 (Endocrinol. Metab. 20): E751–E756, 1989.
 303. Roobol, A., and G. A. O. Alleyne. Regulation of renal gluconeogenesis by calcium ions, hormones and adenosine 3′:5′‐cyclic monophosphate. Biochem. J. 134: 157–165, 1973.
 304. Roobol, A., and G. A. O. Alleyne. Control of renal cortex ammoniagenesis and its relationship to renal cortex gluconeogenesis. Biochim. Biophys. Acta 362: 83–91, 1974.
 305. Ross, B. D. Effect of inhibition of gluconeogenesis on ammonia production in the perfused rat kidney. Clin. Sci. Mol. Med. 50: 493–498, 1976.
 306. Ross, B. D., and S. Bullock. The metabolic fate of glutamine nitrogen in the perfused rat kidney. Biochem. J. 170: 177–179, 1978.
 307. Ross, B. D., and W. G. Guder. Heterogeneity and compartmentation in the kidney. In Metabolic Compartmentation, edited by H. Sies. New York: Academic, 1982, p. 363–409.
 308. Ross, B. D., and R. L. Tannen. Effect of decrease in bicarbonate concentration on metabolism of the isolated perfused rat kidney. Clin. Sci. 57: 103–111, 1979.
 309. Rowsell, E. V., and M. M. Al‐Naama. Glycine metabolism in rat kidney cortex slices. Biochem. J. 204: 313–321, 1982.
 310. Roxe, D. M., G. E. Schreiner, and H. G. Preuss. Regulation of renal gluconeogenesis and ammoniagenesis by physiologic fuels. Am. J. Physiol. 225: 908–911, 1973.
 311. Sahai, A., M. Goyal, and R. L. Tannen. PGF1a inhibits the ammoniagenic response to a low pH in LLC‐PK1 cells. Clin. Res. 35: 597A, 1988.
 312. Sajo, I., M. Goldstein, H. Sonnenberg, B. Stinebaugh, D. Wilson, and M. Halperin. Sites of ammonia addition to tubular fluid in rats with chronic metabolic acidosis. Kidney Int. 20: 353–358, 1981.
 313. Sartorius, O. W., D. Calhoon, and R. F. Pitts. The capacity of the adrenalectomized rat to secrete hydrogen and ammonium ions. Endocrinology 51: 444–450, 1952.
 314. Sastrasinh, S., and M. Sastrasinh. Glutamine transport in submitochondrial particles. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F1050–F1058, 1989.
 315. Sastrasinh, S., and M. Sastrasinh. Renal mitochondrial glutamine metabolism during K+ depletion. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F667–F673, 1986.
 316. Sastrasinh, S., and M. Sastrasinh. Effect of acivicin on glutamine transport by rat renal brush border membrane vesicles. J. Lab Clin. Med. 108: 301–308, 1986.
 317. Sastrasinh, S., and R. L. Tannen. Mechanism by which enhanced ammonia production reduces urinary potassium excretion. Kidney Int. 20: 326–331, 1981.
 318. Sastrasinh, S., and R. L. Tannen. Effect of potassium on renal NH3 production. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F383–F391, 1983.
 319. Scaduto, R. C., and E. J. Davis. Serine synthesis by the perfused rat kidney. Federation Proc. 41: 880, 1982 (abstr.).
 320. Scaduto, R. C., and E. J. Davis. The involvement of pyruvate cycling in the metabolism of aspartate and glycerate by the perfused rat kidney. Biochem. J. 237: 691–698, 1986.
 321. Scaduto, R. C., and A. C. Schoolwerth. Effect of bicarbonate on glutamine and glutamate metabolism by rat kidney cortex mitochondria. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F573–F581, 1985.
 322. Schambelan, M., and A. Sebastian. Adrenocortical hormone response to metabolic acidosis in normal man. Clin. Res. 25: 301, 1977 (abstr.).
 323. Schoolwerth, A. C., and K. F. La Noue. The role of microcompartmentation in the regulation of glutamate metabolism by rat kidney mitochondria. J. Biol. Chem. 255: 3403–3411, 1980.
 324. Schoolwerth, A. C., and K. F. La Noue. Control of ammoniagenesis by alpha ketoglutarate in rat kidney mitochondria. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F399–F408, 1983.
 325. Schoolwerth, A. C., B. L. Nazar, and K. F. Lanoue. Glutamate dehydrogenase activation and ammonia formation by rat kidney mitochondria. J. Biol. Chem. 253: 6177–6183, 1978.
 326. Schoolwerth, A. C., R. S. Sandler, P. M. Hoffman, and S. Klahr. Effects of nephron reduction and dietary protein content on renal ammoniagenesis in the rat. Kidney Int. 7: 397–404, 1975.
 327. Schrock, H., C. M. Cho, and L. Goldstein. Glutamine release from hindlimb and uptake by kidney in the acutely acidotic rat. Biochem. J. 188: 557–560, 1980.
 328. Schrock, H., and L. Goldstein. Interorgan relationships for glutamine metabolism in normal and acidotic rats. Am. J. Physiol. 240 (Endocrinol. Metab. 3): E519–E525, 1981.
 329. Schwartz, J., and M. Tripolone. Characteristics of NH4+ and NH3 transport across the isolated turtle urinary bladder. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F210–F216, 1983.
 330. Schwartz, W. B., N. C. Brackett, and J. J. Cohen. The response of extracellular hydrogen ion concentration to graded degrees of chronic hypercapnia: the physiologic limits of the defense of pH. J. Clin. Invest. 44: 291–301, 1965.
 331. Sebastian, A., M. Schambelan, S. Lindenfeld, and R. C. Morris, Jr. Amelioration of metabolic acidosis with fluorocortisone therapy in hyporeninemic hypoaldosteronism. N. Engl. J. Med. 297: 576–583, 1977.
 332. Seyama, S., T. Saeki, and N. Katunuma. Comparison of properties and inducibility of glutamate dehydrogenases in rat kidney and liver. J. Biochem. 73: 39–45, 1973.
 333. Shalhoub, R., W. Weber, S. Glabman, M. Canessa‐Fischer, J. Klein, J. De Haas, and R. F. Pitts. Extraction of amino acids from and their addition to renal blood plasma. Am. J. Physiol. 204: 181–186, 1963.
 334. Shapiro, R. A., and N. P. Curthoys. Differential effect of AT‐125 on rat renal glutaminase activities. FEBS Lett. 133: 131–134, 1981.
 335. Silbernagl, S. Tubular reabsorption of L‐glutamine studied by free‐flow micropuncture and microperfusion of rat kidney. Int. J. Biochem. 12: 9–16, 1980.
 336. Silverman, M., P. Vinay, L. Shinobu, A. Gougoux, and G. Lemieux. Luminal and antiluminal transport of glutamine in dog kidney: effect of metabolic acidosis. Kidney Int. 20: 359–365, 1981.
 337. Simon, E. E., B. Fry, K. Hering‐Smith, and L. Hamm. Ammonia loss from rat proximal tubule in vivo: effects of luminal pH and flow rate. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F861–F867, 1988.
 338. Simon, E. E., and L. L. Hamm. Ammonia entry along rat proximal tubule in vivo: effects of luminal pH and flow rate. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F760–F766, 1987.
 339. Simon, E., D. Martin, and J. Buerkert. Handling of ammonium by the renal proximal tubule during acute metabolic acidosis. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F680–F686, 1983.
 340. Simon, E., D. Martin, and J. Buerkert. Contribution of individual superficial nephron segments to ammonium handling in chronic metabolic acidosis in the rat. J. Clin. Invest. 76: 855–864, 1985.
 341. Simon, E. E., C. Merli, J. Herndon, E. J. Cragoe, Jr., and L. L. Hamm. Determinants of ammonia entry along the rat proximal tubule during chronic metabolic acidosis. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F1104–F1110, 1989.
 342. Simpson, D. P. Modulation of glutamine transport and metabolism in mitochondria from dog renal cortex: influence of pH and bicarbonate. J. Biol. Chem. 255: 7123–7128, 1980.
 343. Simpson, D. P. Mitochondrial transport functions and renal metabolism. Kidney Int. 23: 785–793, 1983.
 344. Simpson, D. P., and W. Adams. Glutamine transport and metabolism by mitochondria from dog renal cortex: general properties and response to acidosis and alkalosis. J. Biol. Chem. 250: 8148–8158, 1975.
 345. Simpson, D. P., and S. R. Hager. pH and bicarbonate effects on mitochondria anion accumulation. Proposed mechanism for changes in renal metabolite levels in acute acid‐base disturbances. J. Clin. Invest. 63: 704–712, 1979.
 346. Simpson, D. P., and J. Hecker. Glutamine distribution in mitochondria from normal and acidotic rat kidneys. Kidney Int. 21: 774–779, 1982.
 347. Sleeper, R. S., P. Belanger, G. Lemieux, and H. G. Preuss. Effects of in vitro potassium on ammoniagenesis in rat and canine kidney tissue. Kidney Int. 21: 345–353, 1982.
 348. Sonnenberg, H., S. Cheema‐Dhadli, M. Goldstein, B. Stinebaugh, D. Wilson, and M. Halperin. Ammonia addition into the medullary collecting duct of the rat. Kidney Int. 19: 281–287, 1981.
 349. Spater, H. W., M. S. Poruchynsky, N. Quintana, M. Inoue, and A. B. Novikoff. Immunocytochemical localization of gamma‐glutamyl transferase in rat kidney with protein A‐horseradish peroxidase. Proc. Natl. Acad. Sci. USA 79: 3547–3550, 1982.
 350. Squires, E. J., D. E. Hall, and J. T. Brosnan. Arteriovenous differences for amino acids and lactate across kidneys of normal and acidotic rats. Biochem. J. 160: 125–128, 1976.
 351. Star, R. A., M. B. Burg, and M. A. Knepper. Luminal disequilibrium pH and ammonia transport in outer medullary collecting duct. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F1148–F1157, 1987.
 352. Star, R. A., I. Kurtz, R. Mejia, M. B. Burg, and M. A. Knepper. Disequilibrium pH and ammonia transport in isolated perfused cortical collecting ducts. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F1232–F1242, 1987.
 353. Stern, L., K. Backman, and J. Hayslett. Effect of cortical‐medullary gradient for ammonia on urinary excretion of ammonia. Kidney Int. 27: 652–661, 1985.
 354. Stoff, J. S., R. Epstein, R. Narins, and S. Relman. Recent advances in renal tubular biochemistry. Annu. Rev. Physiol. 38: 46–68, 1976.
 355. Strzelecki, T., J. Rogulski, and S. Angielski. The purine nucleotide cycle and ammonia formation from glutamine by rat kidney slices. Biochem. J. 212: 705–711, 1983.
 356. Strzelecki, T., and A. C. Schoolwerth. Alpha ketoglutarate modulation of glutamine metabolism by rat renal mitochondria. Biochem. Biophys. Res. Commun. 102: 588–593, 1981.
 357. Szylman, P., O. S. Better, C. Chaimowitz, and A. Rosler. Role of hyperkalemia in the metabolic acidosis of isolated hypoaldosteronism. N. Engl. J. Med. 294: 361–365, 1976.
 358. Tamura, K., and H. Endou. Contribution of purine nucleotide cycle to intranephron ammoniagenesis in rats. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F1122–F1127, 1988.
 359. Tannen, R. L. The relationship between urine pH and acid excretion–the influence of urine flow rate. J. Lab. Clin. Med. 74: 757–769, 1969.
 360. Tannen, R. L. The effect of uncomplicated potassium depletion on urine acidification. J. Clin. Invest. 49: 813–827, 1970.
 361. Tannen, R. L. Relationship of renal ammonia production and potassium homeostasis. Kidney Int. 11: 453–465, 1977.
 362. Tannen, R. L. Ammonia metabolism. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F265–F277, 1978.
 363. Tannen, R. L., and M. Goyal. Response of ammoniagenesis to acute alkolosis. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F827–F836, 1984.
 364. Tannen, R. L., and M. Goyal. Urinary inhibitor of the ammoniagenic response to acute acidosis is a prostaglandin. J. Lab. Clin. Med. 108: 277–285, 1986.
 365. Tannen, R. L., and A. S. Kunin. Effect of pH on ammonia production by renal mitochondria. Am. J. Physiol. 231: 1631–1637, 1976.
 366. Tannen, R. L., and A. S. Kunin. Effect of potassium on ammoniagenesis by renal mitochondria. Am. J. Physiol. 231: 44–51, 1976.
 367. Tannen, R. L., and A. S. Kunin. Effect of pH on metabolism of alpha‐ketoglutarate by renal cortical mitochondria. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F120–F126, 1981.
 368. Tannen, R. L., and A. S. Kunin. The influence of pyruvate on ammonia metabolism by renal cortical mitochondria. Kidney Int. 22: 280–285, 1982.
 369. Tannen, R. L., and J. McGill. The influence of potassium on renal ammonia production. Am. J. Physiol. 231: 1178–1184, 1976.
 370. Tannen, R., I. Nissim, and A. Sahai. Pathways of acute pH regulation of ammoniagenesis in LLC‐PK1 cells: study with 15N glutamine. J. Am. Soc. Nephrol. 1: 708, 1990.
 371. Tannen, R. L., and B. D. Ross. Ammoniagenesis by the isolated perfused rat kidney: the critical role of urinary acidification. Clin. Sci. 56: 353–364, 1979.
 372. Tannen, R. L., and B. D. Ross. The impact of acetazolamide on renal ammoniagenesis and gluconeogenesis. J. Lab. Clin. Med. 102: 536–542, 1983.
 373. Tannen, R. L., and S. Sastrasinh. Response of ammonia metabolism to acute acidosis. Kidney Int. 25: 1–10, 1984.
 374. Tannen, R. L., and T. Terrien. Potassium‐sparing effect of enhanced renal ammonia production. Am. J. Physiol. 228: 699–705, 1975.
 375. Tannen, R. L., E. Wedell, and R. Moore. Renal adaptation to a high potassium intake: the role of hydrogen ion. J. Clin. Invest. 52: 2089–2101, 1973.
 376. Tate, S. S., and A. Meister. Stimulation of the hydrolytic activity and decrease of the transpeptidase activity of gamma‐glutamyl transpeptidase by maleate; identity of a rat kidney maleate‐stimulated glutaminase and gamma‐glutamyl transpeptidase. Proc. Natl. Acad. Sci. USA 71: 3329–3333, 1974.
 377. Tate, S. S., and A. Meister. Identity of maleate‐stimulated glutaminase with glutamyl transpeptidase in rat kidney. J. Biol. Chem. 250: 4619–4627, 1975.
 378. Tate, S. S., and M. E. Ross. Human kidney gamma‐glutamyl transpeptidase. Catalytic properties, subunit structure, and localization of the gamma glutamyl binding site on the light subunit. J. Biol. Chem. 252: 6042–6045, 1977.
 379. Terao, N., and R. L. Tannen. Stimulation of ammoniagenesis by acute acidosis: evidence for a urinary inhibitor. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F445–F451, 1980.
 380. Thompson, A., and A. Meister. Modulation of gamma‐glutamyl transpeptidase activities by hippurate and related compounds. J. Biol. Chem. 255: 2109–2113, 1980.
 381. Tizianello, A., G. De Ferrari, G. Garibotto, and G. Gurreri. Effects of chronic renal insufficiency and metabolic acidosis on glutamine metabolism in man. Clin. Sci. Mol. Med. 55: 391–397, 1978.
 382. Tizianello, A., G. De Ferrari, G. Garibotto, G. Gurreri, and C. Robaudo. Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J. Clin. Invest. 65: 1162–1173, 1980.
 383. Tizianello, A., G. De Ferrari, G. Garibotto, C. Robaudo, N. Acquarone, and G. M. Ghiggeri. Renal ammoniagenesis in an early stage of metabolic acidosis in man. J. Clin. Invest. 69: 240–250, 1982.
 384. Tollins, J. P., M. K. Hostetter, and T. H. Hostetter. Hypokalemic nephropathy in the rat: Role of ammonia in chronic tubular injury. J. Clin. Invest. 79: 1447–1458, 1987.
 385. Tornheim, K., and L. M. Lowenstein. Effect of acidosis and uninephrectomy on isozymes of adenylosuccinate synthetase in rat kidney. Biochim. Biophys. Acta 757: 137–139, 1983.
 386. Tornheim, K., H. Pang, and C. E. Costello. The purine nucleotide cycle and ammoniagenesis in rat kidney tubules. J. Biol. Chem. 261: 10157–10162, 1986.
 387. Trivedi, B., and R. L. Tannen. effect of respiratory acidosis on intracellular pH of the proximal tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F1039–F1045, 1986.
 388. Tullson, P., and L. Goldstein. Acidosis stimulation of renal alpha ketoglutarate oxidation: possible mediation by Ca2+. FEBS Lett. 150: 197–200, 1982.
 389. Van Slyke, D. D., R. A. Phillips, P. B. Hamilton, R. M. Archibald, P. H. Futcher, and A. Miller. Glutamine as source material of urinary ammonia. J. Biol. Chem. 150: 481–483, 1943.
 390. Vavatsi‐Manos, O., and H. G. Preuss. The effects of high calcium concentrations on renal ammoniagenesis by rat kidney slices. Nephron 17: 474–482, 1976.
 391. Vavatsi‐Manos, O., D. M. Roxe, G. E. Schreiner, and H. G. Preuss. Gamma‐aminobutyric acid shunt in renal ammoniagenesis. Am. J. Physiol. 224: 154–157, 1973.
 392. Verhoeven, A. J., J. F. Van Iwaarden, S. K. Joseph, and A. J. Meijer. Control of rat‐liver glutaminase by ammonia and pH. Eur. J. Biochem. 133: 241–244, 1983.
 393. Vinay, P., E. Allignet, C. Pichette, M. Watford, G. Lemieux, and A. Gougoux. Changes in renal metabolic profile and ammoniagenesis during acute and chronic metabolic acidosis in dog and rat. Kidney Int. 17: 312–325, 1980.
 394. Vinay, P., F. Coutlee, P. Martel, G. Lemieux, and A. Gougoux. Effect of phosphoenolpyruvate carboxykinase inhibition on renal metabolism of glutamine: in vivo studies in the dog and rat. Can. J. Biochem. 58: 103–111, 1980.
 395. Vinay, P., N. Khoury, M. Soowamber, and A. Gougoux. Renal extraction of glutamine from plasma and whole blood: studies in dogs and rats. Can. J. Physiol. Pharmacol. 63: 886–892, 1985.
 396. Vinay, P., G. Lemieux, P. Cartier, M. Ahmad, and G. Baverel. Effect of fatty acids on renal ammoniagenesis in in vivo and in vitro studies. Am. J. Physiol. 231: 880–887, 1976.
 397. Vinay, P., G. Lemieux, A. Gougoux, and M. Halperin. Regulation of glutamine metabolism in dog kidney in vivo. Kidney Int. 29: 68–79, 1986.
 398. Vinay, P., G. Lemieux, A. Gougoux, and C. Lemieux. Response of the rat and dog kidney to H+ concentration in vitro–a comparative study with slices and tubules. Int. J. Biochem. 12: 89–98, 1980.
 399. Vinay, P., J. P. Mapes, and H. A. Krebs. Fate of glutamine carbon in renal metabolism. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F123–F129, 1978.
 400. Walser, M. Roles of urea production, ammonium excretion, and amino acid oxidation in acid‐base balance. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F181, 1986.
 401. Wang, M., and K. Kurokawa. Renal gluconeogenesis: axial and internephron heterogeneity and the effect of parathyroid hormone. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F59–F66, 1984.
 402. Watford, M., P. Lund, and H. A. Krebs. Isolation and metabolic characteristics of rat and chicken enterocytes. Biochem. J. 178: 589–596, 1979.
 403. Watford, M., E. M. Smith, and E. J. Erbelding. The regulation of phosphate‐activated glutaminase activity and glutamine metabolism in the streptozotocin‐diabetic rat. Biochem. J. 224: 207–214, 1984.
 404. Watford, M., P. Vinay, G. Lemieux, and A. Gougoux. Inhibition of renal gluconeogenesis and phosphoenolpyruvate carboxykinase activity by 3‐mercaptopicolinic acid: studies in rat, guinea pig, dog, rabbit and man. Can. J. Biochem. 58: 440–445, 1980.
 405. Watford, M., P. Vinay, G. Lemieux, and A. Gougoux. The regulation of glucose and pyruvate formation from glutamine and citric‐acid cycle intermediates in the kidney cortex of rats, dogs, rabbits, and guinea pigs. Biochem. J. 188: 741–748, 1980.
 406. Welbourne, T. C. Influence of chronic acidosis on plasma glutamine and urea production in the nephrectomized rat. Am. J. Physiol. 224: 796–802, 1973.
 407. Welbourne, T. C. Ammonia production and pathways of glutamine metabolism in the isolated perfused rat kidney. Am. J. Physiol. 226: 544–548, 1974.
 408. Welbourne, T. C. Influence of adrenal glands on pathways of renal glutamine utilization and ammonia production. Am. J. Physiol. 226: 555–559, 1974.
 409. Welbourne, T. C. Acidosis activation of the pituitary‐adrenal‐renal glutaminase I axis. Endocrinology 99: 1071–1079, 1976.
 410. Welbourne, T. C. Glutaminase‐gammaglutamyltransferase: subcellular localization and ammonia production. Proc. Soc. Exp. Biol. Med. 159: 294–297, 1978.
 411. Welbourne, T. C. Ammonia production and glutamine incorporation into glutathione in the functioning rat kidney. Can. J. Biochem. 57: 233–237, 1979.
 412. Welbourne, T. C. Interorgan glutamine flow in metabolic acidosis. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F1069–F1076, 1987.
 413. Welbourne, T. C. Hormonal and Na+ effect on renal glutamine uptake. Am. J. Physiol. 256 Renal Fluid Electrolyte Physiol.: F1027–F1033, 1989.
 414. Welbourne, T. C., and S. Balagura‐Baruch. Renal metabolism of glutamine in dogs during infusion of alpha‐ketoglutaric acid. Am. J. Physiol. 223: 663–666, 1972.
 415. Welbourne, T. C., D. Childress, and G. Givens. Renal regulation of interorgan glutamine flow in metabolic acidosis. Am. J. Physiol. 251 (Regulatory Integrative Comp. Physiol. 20): R858–R866, 1986.
 416. Welbourne, T. C., and P. D. Dass. Mechanisms of the acidosis induced adaptation in renal gamma‐glutamyl‐transferase. Life Sci. 28: 1219–1224, 1981.
 417. Welbourne, T. C., and P. D. Dass. Role of hippurate in acidosis induced adaptation in renal gamma‐glutamyl‐transferase. Life Sci. 29: 253–258, 1981.
 418. Welbourne, T. C., and P. D. Dass. Function of renal gamma‐glutamyltransferase: significance of glutathione and glutamine interactions. Life Sci. 30: 793–801, 1982.
 419. Welbourne, T. C., and P. D. Dass. Gamma glutamyltransferase contribution to renal ammoniagenesis in vivo. Pflugers Arch. 411: 573–578, 1988.
 420. Welbourne, T. C., P. D. Dass, and R. L. Smith. Renal glutamine utilization: glycylglycine stimulation of gamma‐glutamyltransferase. Can. J. Biochem. 58: 614–619, 1980.
 421. Welbourne, T. C., and D. Francoeur. Influence of aldosterone on renal ammonia production. Am. J. Physiol. 233 (Endocrinol. Metab. Gastrointest. Physiol. 2): E56–E60, 1977.
 422. Welbourne, T. C., G. Givens, and S. Joshi. Renal ammoniagenic response to chronic acid loading: role of glucocorticoids. Am. J. Physiol. 254: F134–F138, 1988.
 423. Welbourne, T. C., P. Phenix, C. Thornley‐Brown, and C. J. Welbourne. Triamcinolone activation of renal ammonia production. Proc. Soc. Exp. Biol. Med. 153: 539–542, 1976.
 424. Welbourne, T. C., V. Phromphetcharat, G. Givens, and S. Joshi. Regulation of interorganal glutamine flow in metabolic acidosis. Am. J. Physiol. 250 (Endocrinol. Metab. 13): E457–E463, 1986.
 425. Welbourne, T. C., M. Weber, and N. Bank. The effect of glutamine administration on urinary ammonium excretion in normal subjects and patients with renal disease. J. Clin. Invest. 51: 1852–1860, 1972.
 426. Wilcox, C., F. Granges, G. Kirk, D. Gordon, and G. Giebisch. Effects of saline infusion on titratable acid generation and ammonia secretion. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F506–F519, 1984.
 427. Wilson, J. D., and D. W. Seldin. Effect of adrenalectomy on production and excretion of ammonia by the kidneys. Am. J. Physiol. 188: 524–528, 1957.
 428. Windmueller, H. G., and A. E. Spaeth. Uptake and metabolism of plasma glutamine by the small intestine. J. Biol. Chem. 249: 5070–5079, 1974.
 429. Windmueller, H. G., and A. E. Spaeth. Identification of ketone bodies and glutamine as the major respiratory fuels in vivo for postabsorptive rat small intestine. J. Biol. Chem. 253: 69–76, 1978.
 430. Windus, D., D. E. Cohn, S. Klahr, and M. R. Hammerman. Glutamine transport in renal basolateral vesicles from dogs with metabolic acidosis. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F78–F86, 1984.
 431. Windus, D., S. Klahr, and M. R. Hammerman. Glutamine transport in basolateral vesicles from dogs with acute respiratory acidosis. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F403–F407, 1984.
 432. Woeber, K. A., E. L. Reid, I. Kiem, and A. G. Hills. Diffusion of gases out of the distal nephron segment in man. I. NH3. J. Clin. Invest. 42: 1689–1704, 1963.
 433. Yablon, S., and A. S. Relman. Excretion and total renal production of ammonia in K+‐depleted rats. Clin. Res. 25: 452, 1977 (abstr.).
 434. Yablon, S. B., and A. S. Relman. Glutamine as a regulator of renal ammonia production in the rat. Kidney Int. 12: 546, 1977.
 435. Yamamoto, H., T. Aikawa, H. Matsutaka, T. Okuda, and E. Ishikawa. Interorganal relationships of amino acid metabolism in fed rats. Am. J. Physiol. 226: 1428–1433, 1974.
 436. Yu, H. L., R. Glammarco, M. B. Goldstein, B. J. Stinebaugh, and M. L. Halperin. Stimulation of ammonia production and excretion in the rabbit by inorganic phosphate. J. Clin. Invest. 58: 557–564, 1976.
 437. Zipp, T., and R. L. Tannen. Influence of phosphoenolpyruvate carboxy kinase inhibition on the response of NH3 production to acute acidosis. J. Lab. Clin. Med. 102: 198–204, 1983.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Richard L. Tannen. Renal Ammonia Production and Excretion. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 1017-1059. First published in print 1992. doi: 10.1002/cphy.cp080123