Comprehensive Physiology Wiley Online Library

Molecular Mechanisms of Vasopressin Action in the Kidney

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Localization of Vasopressin Action in the Kidney
1.1 Glomerulus
1.2 Vasa Recta
1.3 Medullary Thick Ascending Limb
1.4 Collecting Duct
1.5 Renal Medullary Interstitium
2 Molecular Mechanisms of Vasopressin Receptor (V2) Activation of Adenylate Cyclase
2.1 General Characteristics of Adenylate Cyclase Activation
2.2 Development of a Model for Vasopressin Receptor Stimulation of Adenylate Cyclase in the Renal Epithelial Membrane
2.3 Modulation of the Vasopressin‐Sensitive Adenylate Cyclase Response
3 Role of Water Channel Recycling and Cytoskeletal Changes in the Hydroosmotic Response to Vasopressin
3.1 Overview
3.2 Cellular and Molecular Events at the Apical Plasma Membrane
3.3 Role of the Cytoskeleton in Vasopressin Action
3.4 Isolation and Identification of the “Water Channel”
3.5 Future Directions
Figure 1. Figure 1.

Vasopressin responsive sites and actions in the mammalian nephron. For each of the major recognized vasopressin responsive sites in mammalian nephron, corresponding functions and most likely receptor subtype specificity are given. An additional function not shown is modulation of renin release.

Figure 2. Figure 2.

ADP‐ribosylation of LLCPK1 membranes, which were incubated with [32P]NAD in the presence of either cholera toxin (CT) or pertussis toxin (PT), and then membrane proteins were separated on SDS‐PAGE and 32P‐labeled proteins identified by autoradiography.

Figure 3. Figure 3.

Radiation inactivation of adenylate cyclase in the basal and activated states. Adenylate cyclase activity was assayed in triplicate at each radiation dose in membrane particulate fractions prepared from radiated cells. Activity at each dose was expressed as fraction of activity in the nonradiated sample. Error bars represent 1 SD. Activating ligands (NaF, NaCl, vasopressin) were added to membrane particulate fractions after radiation. Data at 2 μM vasopressin were fitted to a linear inactivation model. Remaining curves were fitted to models given in ref. 261.

With permission from 261
Figure 4. Figure 4.

Effect of GTP addition on adenylate cyclase activity in LLCPK1 cells: Basal (open circles) and 2 mM lysine‐vasopressin‐stimulated (closed circles) adenylate cyclase activity was measured in LLCPK1 membranes with the addition of each of the concentrations of GTP indicated.

With permission from 213
Figure 5. Figure 5.

Reversal of GTP‐mediated inhibition by pertussis toxin: LLCPK1 cells were preincubated in the absence (open bars) or presence (solid bars) of pertussis toxin (100 ng/ml) for 12 h prior to assay. Adenylate cyclase activity was assayed in the presence of 2 mM lysine vasopressin at each concentration of GTP indicated.

With permission from ref. 213
Figure 6. Figure 6.

Schematic model for vasopressin‐adenylate cyclase. For salient features of the activation model see text. GTP hydrolysis steps have been omitted for simplicity. Symbols α and β, G protein subunits described in the text; subscripts s and i, stimulatory and inhibitory α subunits, respectively; superscripts D and T, GDP‐ and GTP‐bound states of the α subunits, respectively; H, R, and C, hormones, receptor, and catalytic unit, respectively.

With permission from K. L. Skorecki and D. A. Ausiello, Vasopressin receptor‐adenylate cyclase interactions–a model for cyclic AMP metabolism in the kidney, in Vasopressin–Cellular and Integrative Functions, W. Cowley et al., eds. (New York: Raven Press, 1988), pp. 55–65
Figure 7. Figure 7.

Full cyclic‐dissociation model for activation of vasopressin‐sensitive adenylate cyclase. All reactions below horizontal line are part of Gs stimulatory cycle; all reactions above horizontal line are part of Gi inhibitory cycle. Symbols used are similar to those in Figure 6, except that GDP‐ and GTP‐bound states of the α subunits are denoted by subscripts D and T, respectively. In addition, the kinetic (k) and equilibrium (K) constants are enumerated, and the GTP hydrolytic steps are included, showing release of inorganic phosphate (Pi).

With permission from K. L. Skorecki and D. A. Ausiello, Vasopressin receptor‐adenylate cyclase interactions–a model for cyclic AMP metabolism in the kidney, in Vasopressin–Cellular and Integrative Functions, W. Cowley et al., eds. (New York: Raven Press, 1988), pp. 55–65
Figure 8. Figure 8.

Modulation of V2 epithelial response by V1 receptor. Possible pathways for modulation of V2 receptor‐mediated activation of adenylate cyclase by simultaneous occupancy of the V1 receptor are shown. Dashed line indicates the possibilities of the V1 receptor either on the same or a neighboring cell. See text for details. Abbreviations: VP, vasopressin; R, receptor; Gs and Gi, respectively, stimulatory and inhibitory GTP‐binding proteins of adenylate cyclase; Gp, putative GTP‐binding protein involved in phospholipase C activation; C, catalytic unit of adenylate cyclase; PhC, phospholipase C; C‐kinase, protein kinase C; PG, prostaglandin E2.

With permission from B. Margolis et al., Vasopressin action in the kidney–overview and glomerular actions, in Vasopressin–Cellular and Integrative Functions, W. Cowley et al., eds. (New York: Raven Press, 1988), pp. 97–146
Figure 9. Figure 9.

Concentration dependence of enhancement of basal cAMP production by NaCl in LLCPK1 cells. Incubations were carried out as outlined in ref. 211. Data represent cAMP accumulation in cells plus medium. Data points represent mean ± SEM of three‐six experiments. Similar enhancement of hormone‐stimulated cAMP production was observed.

With permission from ref. 211
Figure 10. Figure 10.

A–C show luminal plasma membranes of collecting duct principal cells from Brattleboro rats that had received 1 U of vasopressin tannate in peanut oil subcutaneously for four consecutive days. B and C are freeze‐fracture replicas, whereas A is a thin section. Vasopressin treatment induces appearance of IMP clusters (arrowheads in B) on these membranes, in parallel with an increase in urine osmolality. When vasopressin‐treated kidneys are exposed to filipin before fracture, typical filipin‐sterol complexes are abundant in apical membrane but absent from the IMP clusters (arrowheads in C). This property can be used to identify the IMP clusters in thin sections, because most of the apical membrane is disrupted by filipin (A), whereas regions corresponding to the clusters retain trilaminar membrane structure. In A, two such regions are present (arrowheads) and they correspond to coated pits. In this way, the vasopressin‐induced IMP clusters were identified as being present in coated pits. Bars = 0.5 μm.

With permission from D. A. Ausiello, J. Har‐twig, and D. Brown. Membrane and microfilament organization and vasopressin action in transporting epithelia, in Cell Calcium and the Control of Membrane Transport, vol. 42, L. J. Mandel and D. C. Eaton, eds. (New York: Rockefeller University Press, 1987), pp. 259–275
Figure 11. Figure 11.

Diagram of experimental rationale to examine endocytosis of carboxyfluorescein (CF) by cortical and papillary renal tubular cells from Brattleboro rats in the absence (minus VP) or presence (plus VP) of vasopressin. Cortical tubules constitutively endocytose filtered CF. Two populations of cortical endosomes are shown; at least one population contains vasopressin‐insensitive water channels known to be present in proximal tubule membranes. In the absence of vasopressin, papillary endosomes containing water channels (clear circles with filled ovals) are not actively cycling and thus do not endocytose CF. Some constitutive endocytosis of CF does occur into endosomes (shaded oval vesicles) that demonstrate only diffusional water flow. In the presence of vasopressin, papillary vesicles containing water channels (shaded circles) are cycled, with the endocytic pathway involving coated pits (bars on invaginated vesicle, right lower panel). This results in a population of papillary vesicles containing CF and water channels (studded shaded circles). Characteristics of water permeability in these vesicles are described in Table 3 and in Figures 13 and 14.

Figure 12. Figure 12.

A. Semithin (1 μm) cryostat section of proximal papilla from Sprague‐Dawley rat, fixed by perfusion 15 min after injection of FITC‐dextran into jugular vein. Fluorescent probe has been internalized into endosomes concentrated at apical pole of both principal cells (PC) and intercalated cells (IC) in a collecting duct. There is no specific endosomal labeling of cells lining thin limbs of Henle, nor of capillary endothelial cells. Note that labeling of principal cells is variable. Bar = 10 μm. B. Thin section of a principal cell from a normal Long‐Evans rat injected with 6 mg/ml horseradish peroxidase (HRP) 15 min prior to fixation. Many vesicles loaded with HRP‐diaminobenzidine reaction product are present in the cytoplasm, where they are concentrated below the apical plasma membrane (arrows). Most of the HRP‐labeled endocytotic vesicles are smooth (noncoated) vesicles, consistent with the known rapid decoating of clathrin‐coated vesicles once they detach from the plasma membrane. Although HRP is found within infoldings of the basolateral plasma membrane of this cell (lower right), very few labeled vesicles are located in the cytoplasm of the lower half of the cell. Bar = 0.5 μm.

From Brown et al., Eur. J. Cell Biol., 46: 336–341, 1988, with permission
Figure 13. Figure 13.

Time course of osmotic water transport in endocytic vesicles containing 6‐carboxyfluorescein (6 CF). Brattleboro rats, dehydrated for 12–22 h, were infused with a bolus of 6 CF with and without vasopressin, and sacrificed after 15 min. Kidneys were removed and endosomes prepared from the entire papilla and superficial cortex. Endosomes were mixed with an equal volume of buffer containing 50 mM mannitol, 20 mM sucrose, 5 mM Na phosphate, pH 8.5 to give a 100 mOsm/kg H2O inward sucrose gradient in a Hi‐Tech stopped‐flow apparatus, and vesicle shrinkage was monitored by the quenching of fluorescence emission 257. Each curve is the average of four individual experiments performed at 21°C. The first 100 ms of the upper curves were expanded and are shown in the lower half of the figure; curves were displaced in the y‐direction to demonstrate the parallel time courses for the slow exponential processes. In papillary vesicles plus vasopressin (+ VP), the drop in fluorescence within the initial 100 ms indicates the presence of a fast component that was not present in papillary vesicles without vasopressin (‐VP). Time constants and pre‐exponential factors are summarized in Table 3.

Reproduced from ref. 257
Figure 14. Figure 14.

Arrhenius plot for osmotic water transport in papillary endocytic vesicles. Measurements were performed as described in ref. 257 at varying temperatures. Each point is the mean ±SD for measurements performed in quadruplicate. Data were fitted to single activation energies indicated.

Reproduced from ref. 257


Figure 1.

Vasopressin responsive sites and actions in the mammalian nephron. For each of the major recognized vasopressin responsive sites in mammalian nephron, corresponding functions and most likely receptor subtype specificity are given. An additional function not shown is modulation of renin release.



Figure 2.

ADP‐ribosylation of LLCPK1 membranes, which were incubated with [32P]NAD in the presence of either cholera toxin (CT) or pertussis toxin (PT), and then membrane proteins were separated on SDS‐PAGE and 32P‐labeled proteins identified by autoradiography.



Figure 3.

Radiation inactivation of adenylate cyclase in the basal and activated states. Adenylate cyclase activity was assayed in triplicate at each radiation dose in membrane particulate fractions prepared from radiated cells. Activity at each dose was expressed as fraction of activity in the nonradiated sample. Error bars represent 1 SD. Activating ligands (NaF, NaCl, vasopressin) were added to membrane particulate fractions after radiation. Data at 2 μM vasopressin were fitted to a linear inactivation model. Remaining curves were fitted to models given in ref. 261.

With permission from 261


Figure 4.

Effect of GTP addition on adenylate cyclase activity in LLCPK1 cells: Basal (open circles) and 2 mM lysine‐vasopressin‐stimulated (closed circles) adenylate cyclase activity was measured in LLCPK1 membranes with the addition of each of the concentrations of GTP indicated.

With permission from 213


Figure 5.

Reversal of GTP‐mediated inhibition by pertussis toxin: LLCPK1 cells were preincubated in the absence (open bars) or presence (solid bars) of pertussis toxin (100 ng/ml) for 12 h prior to assay. Adenylate cyclase activity was assayed in the presence of 2 mM lysine vasopressin at each concentration of GTP indicated.

With permission from ref. 213


Figure 6.

Schematic model for vasopressin‐adenylate cyclase. For salient features of the activation model see text. GTP hydrolysis steps have been omitted for simplicity. Symbols α and β, G protein subunits described in the text; subscripts s and i, stimulatory and inhibitory α subunits, respectively; superscripts D and T, GDP‐ and GTP‐bound states of the α subunits, respectively; H, R, and C, hormones, receptor, and catalytic unit, respectively.

With permission from K. L. Skorecki and D. A. Ausiello, Vasopressin receptor‐adenylate cyclase interactions–a model for cyclic AMP metabolism in the kidney, in Vasopressin–Cellular and Integrative Functions, W. Cowley et al., eds. (New York: Raven Press, 1988), pp. 55–65


Figure 7.

Full cyclic‐dissociation model for activation of vasopressin‐sensitive adenylate cyclase. All reactions below horizontal line are part of Gs stimulatory cycle; all reactions above horizontal line are part of Gi inhibitory cycle. Symbols used are similar to those in Figure 6, except that GDP‐ and GTP‐bound states of the α subunits are denoted by subscripts D and T, respectively. In addition, the kinetic (k) and equilibrium (K) constants are enumerated, and the GTP hydrolytic steps are included, showing release of inorganic phosphate (Pi).

With permission from K. L. Skorecki and D. A. Ausiello, Vasopressin receptor‐adenylate cyclase interactions–a model for cyclic AMP metabolism in the kidney, in Vasopressin–Cellular and Integrative Functions, W. Cowley et al., eds. (New York: Raven Press, 1988), pp. 55–65


Figure 8.

Modulation of V2 epithelial response by V1 receptor. Possible pathways for modulation of V2 receptor‐mediated activation of adenylate cyclase by simultaneous occupancy of the V1 receptor are shown. Dashed line indicates the possibilities of the V1 receptor either on the same or a neighboring cell. See text for details. Abbreviations: VP, vasopressin; R, receptor; Gs and Gi, respectively, stimulatory and inhibitory GTP‐binding proteins of adenylate cyclase; Gp, putative GTP‐binding protein involved in phospholipase C activation; C, catalytic unit of adenylate cyclase; PhC, phospholipase C; C‐kinase, protein kinase C; PG, prostaglandin E2.

With permission from B. Margolis et al., Vasopressin action in the kidney–overview and glomerular actions, in Vasopressin–Cellular and Integrative Functions, W. Cowley et al., eds. (New York: Raven Press, 1988), pp. 97–146


Figure 9.

Concentration dependence of enhancement of basal cAMP production by NaCl in LLCPK1 cells. Incubations were carried out as outlined in ref. 211. Data represent cAMP accumulation in cells plus medium. Data points represent mean ± SEM of three‐six experiments. Similar enhancement of hormone‐stimulated cAMP production was observed.

With permission from ref. 211


Figure 10.

A–C show luminal plasma membranes of collecting duct principal cells from Brattleboro rats that had received 1 U of vasopressin tannate in peanut oil subcutaneously for four consecutive days. B and C are freeze‐fracture replicas, whereas A is a thin section. Vasopressin treatment induces appearance of IMP clusters (arrowheads in B) on these membranes, in parallel with an increase in urine osmolality. When vasopressin‐treated kidneys are exposed to filipin before fracture, typical filipin‐sterol complexes are abundant in apical membrane but absent from the IMP clusters (arrowheads in C). This property can be used to identify the IMP clusters in thin sections, because most of the apical membrane is disrupted by filipin (A), whereas regions corresponding to the clusters retain trilaminar membrane structure. In A, two such regions are present (arrowheads) and they correspond to coated pits. In this way, the vasopressin‐induced IMP clusters were identified as being present in coated pits. Bars = 0.5 μm.

With permission from D. A. Ausiello, J. Har‐twig, and D. Brown. Membrane and microfilament organization and vasopressin action in transporting epithelia, in Cell Calcium and the Control of Membrane Transport, vol. 42, L. J. Mandel and D. C. Eaton, eds. (New York: Rockefeller University Press, 1987), pp. 259–275


Figure 11.

Diagram of experimental rationale to examine endocytosis of carboxyfluorescein (CF) by cortical and papillary renal tubular cells from Brattleboro rats in the absence (minus VP) or presence (plus VP) of vasopressin. Cortical tubules constitutively endocytose filtered CF. Two populations of cortical endosomes are shown; at least one population contains vasopressin‐insensitive water channels known to be present in proximal tubule membranes. In the absence of vasopressin, papillary endosomes containing water channels (clear circles with filled ovals) are not actively cycling and thus do not endocytose CF. Some constitutive endocytosis of CF does occur into endosomes (shaded oval vesicles) that demonstrate only diffusional water flow. In the presence of vasopressin, papillary vesicles containing water channels (shaded circles) are cycled, with the endocytic pathway involving coated pits (bars on invaginated vesicle, right lower panel). This results in a population of papillary vesicles containing CF and water channels (studded shaded circles). Characteristics of water permeability in these vesicles are described in Table 3 and in Figures 13 and 14.



Figure 12.

A. Semithin (1 μm) cryostat section of proximal papilla from Sprague‐Dawley rat, fixed by perfusion 15 min after injection of FITC‐dextran into jugular vein. Fluorescent probe has been internalized into endosomes concentrated at apical pole of both principal cells (PC) and intercalated cells (IC) in a collecting duct. There is no specific endosomal labeling of cells lining thin limbs of Henle, nor of capillary endothelial cells. Note that labeling of principal cells is variable. Bar = 10 μm. B. Thin section of a principal cell from a normal Long‐Evans rat injected with 6 mg/ml horseradish peroxidase (HRP) 15 min prior to fixation. Many vesicles loaded with HRP‐diaminobenzidine reaction product are present in the cytoplasm, where they are concentrated below the apical plasma membrane (arrows). Most of the HRP‐labeled endocytotic vesicles are smooth (noncoated) vesicles, consistent with the known rapid decoating of clathrin‐coated vesicles once they detach from the plasma membrane. Although HRP is found within infoldings of the basolateral plasma membrane of this cell (lower right), very few labeled vesicles are located in the cytoplasm of the lower half of the cell. Bar = 0.5 μm.

From Brown et al., Eur. J. Cell Biol., 46: 336–341, 1988, with permission


Figure 13.

Time course of osmotic water transport in endocytic vesicles containing 6‐carboxyfluorescein (6 CF). Brattleboro rats, dehydrated for 12–22 h, were infused with a bolus of 6 CF with and without vasopressin, and sacrificed after 15 min. Kidneys were removed and endosomes prepared from the entire papilla and superficial cortex. Endosomes were mixed with an equal volume of buffer containing 50 mM mannitol, 20 mM sucrose, 5 mM Na phosphate, pH 8.5 to give a 100 mOsm/kg H2O inward sucrose gradient in a Hi‐Tech stopped‐flow apparatus, and vesicle shrinkage was monitored by the quenching of fluorescence emission 257. Each curve is the average of four individual experiments performed at 21°C. The first 100 ms of the upper curves were expanded and are shown in the lower half of the figure; curves were displaced in the y‐direction to demonstrate the parallel time courses for the slow exponential processes. In papillary vesicles plus vasopressin (+ VP), the drop in fluorescence within the initial 100 ms indicates the presence of a fast component that was not present in papillary vesicles without vasopressin (‐VP). Time constants and pre‐exponential factors are summarized in Table 3.

Reproduced from ref. 257


Figure 14.

Arrhenius plot for osmotic water transport in papillary endocytic vesicles. Measurements were performed as described in ref. 257 at varying temperatures. Each point is the mean ±SD for measurements performed in quadruplicate. Data were fitted to single activation energies indicated.

Reproduced from ref. 257
References
 1. Abdel‐Latif, A. A. Calcium‐mobilizing receptors, polyphosphoinositides, and the generation of second messengers. Pharmacol. Rev. 38: 227–272, 1986.
 2. Abramow, M., R. Beauwens, and E. Cogan. Cellular events in vasopressin action Kidney Int. 32: S56–66, 1987.
 3. Ando, Y., H. R. Jacobson, and M. D. Breyer. Phorbol myristate acetate, dioctanoylglycerol, and phosphatidic acid inhibit the hydroosmotic effect of vasopressin on rabbit cortical collecting tubule. J. Clin. Invest. 80: 590–593, 1987.
 4. Ando, Y., H. R. Jacobson, and M. D. Breyer. Phorbol ester and A23187 have additive but mechanistically separate effects on vasopressin action in rabbit collecting tubule. J. Clin. Invest. 81: 1578–1584, 1988.
 5. Ando, Y., H. R. Jacobson, and M. D. Breyer. Both branches of phosphatidylinositol breakdown cascade inhibit vasopressin action in cortical collecting tubule. In: Vasopressin: Cellular and Integrative Functions, edited by A. J. Cowley, J.‐F. Liard, and D. A. Ausiello. New York: Raven Press, 1988, p. 127–136.
 6. Andrews, C. E., and B. M. Brenner. Relative contributions of arginine vasopressin and angiotensin II to maintenance of systemic arterial pressure in the anaesthetized water‐deprived rat. Circ. Res. 48: 254–258, 1981.
 7. Ardaillou, N., J. Hagege, M.‐P. Nivez, R. Ardaillou, and D. Schlondorff. Vasoconstrictor‐evoked prostaglandin synthesis in cultured human mesangial cells. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F240–F246, 1985.
 8. Ausiello, D. A. A role for calmodulin in the activation of adenylate cyclase by vasopressin. In: Membranes in Growth and Development. New York: Alan R. Liss, Inc., 1982, p. 543–550.
 9. Ausiello, D. A., H. L. Corwin, and J. H. Hartwig: Identification of actin‐binding protein and villin in toad bladder epithelia. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F101–F104, 1984.
 10. Ausiello, D. A., and D. Hall. Regulation of vasopressin‐sensitive adenylate cyclase by calmodulin. J. Biol. Chem. 256: 9796–9798, 1981.
 11. Ausiello, D. A., J. I. Kreisberg, C. Roy, and M. Karnov‐sky. Contraction of cultured rat glomerular cells of apparent mesangial origin after stimulation with angiotensin II and arginine vasopressin. J. Clin. Invest. 65: 754–760, 1980.
 12. Ausiello, D. A., and J. Orloff. Regulation of water and electrolyte movement by vasopressin and cyclic nucleotides. In: Handbook of Experimental Pharmacology, edited by J. A. Nathanson and J. W. Kebabian. Berlin: Springer‐Verlag, vol. 58, 1982, p. 271–303.
 13. Ausiello, D. A., K. L. Skorecki, A. S. Verkman, and J. V. Bonventre. Vasopressin signalling in kidney cells. Kidney Int. 31: 521–529, 1987.
 14. Ausiello, D. A., A. S. Verkman, and K. L. Skorecki. Va‐sopressin‐sensitive adenylate cyclase: subunit interactions assessed by target analysis and computer modelling. Kidney Int. 32 (Suppl. 23): S43–S50, 1987.
 15. Battle, D. C., A. B. Von Riotte, M. Gaviria, and M. Grupp. Amelioration of polyuria by amiloride in patients receiving long‐term lithium therapy. N. Engl. J. Med. 312: 408–414, 1985.
 16. Bauer, S., and K. H. Jakobs. Phorbol ester treatment impairs hormone–but not stable GTP analog‐induced inhibition of adenylate cyclase. FEBS. Lett. 198: 43–46, 1986.
 17. Beck, T. R., A. Hassid, and M. J. Dunn. The effect of arginine vasopressin and its analogs on the synthesis of prostaglandin E2 by rat renal medullary interstitial cells in culture. J. Pharmacol. Exp. Ther. 215: 15–19, 1980.
 18. Bell, J. D., and L. L. Brunton. Enhancement of adenylate cyclase activity in S49 lymphoma cells by phorbol esters. Withdrawal of GTP‐dependent inhibition. J. Biol. Chem. 261: 12036–12041, 1986.
 19. Bender, J. C., L. G. Wolf, and E. J. Neer. Interaction of forskolin with resolved adenylate cyclase components. Adv. Cyclic Nucleotide Protein Phosphorylation Res. 17: 101–109, 1984.
 20. Benovic, J. L., L. J. Pike, R. A. Cerione, C. Staniszewski, T. Yoshimasa, J. Codina, M. G. Caron, and R. J. Lefkowitz. Phosphorylation of the mammalian β‐adrenergic receptor by cyclic AMP‐dependent protein kinase: regulation of the rate of receptor phosphorylation and dephosphorylation by agonist occupancy and effects on coupling of the receptor to the stimulatory guanine nucleotide regulatory protein. J. Biol. Chem. 260: 7094–7101, 1985.
 21. Benovi, J. L., R. H. Strasser, M. G. Caron, and R. J. Lefkowitz. β‐Adrenergic receptor kinase: identification of a novel protein kinase which phosphorylates the agonist‐occupied form of the receptor. Proc. Natl. Acad. Sci. USA 83: 2797–2801, 1986.
 22. Berl, T. Cellular calcium uptake in the action of prostaglandins on renal water excretion. Kidney Int. 19: 15–23, 1981.
 23. Berl, T., G. A. Aisenbrey, and S. L. Linas. Renal concentrating defect in the hypokalemic rat is prostaglandin independent. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F37–F41, 1980.
 24. Bichara, M., O. Mercier, P. Houllier, M. Paillard, and F. Leviel. Effects of antidiuretic hormone on urinary acidification and on tubular handling of bicarbonate in the rat. J. Clin. Invest. 80: 621–630, 1987.
 25. Bichet, D. G., M. Razi, M. Lonergan, M. G. Arthus, V. Papukna, C. Kortas, and J. N. Barjon. Hemodynamic and coagulation responses to I‐desamino[8‐d‐arginine] vasopressin in patients with congenital nephrogenic diabetes insipidus. N. Engl. J. Med. 318: 881–887, 1988.
 26. Bigay, J., P. Deterre, C. Pfister, and M. Chabre. Fluo‐roaluminates activate transducin‐GDP by mimicking the γ‐phosphate of GTP in its binding site. FEBS Lett. 191: 181–185, 1985.
 27. Birnbaumer, L., J. Codina, R. Mattera, A. Yatani, N. Scherer, M. J. Toro, and A. M. Brown. Signal transduction by G proteins. Kidney Int. 32: S14–S37, 1987.
 28. Birnbaumer, L., and R. Iyengar. Coupling of receptors to adenylate cyclases. In: Handbook of Experimental Pharmacology, edited by J. A. Nathanson and J. W. Kebabian. Berlin: Springer‐Verlag, vol. 58 1982, p. 153–158.
 29. Bokoch, G. The presence of free G protein β/γ subunits in human neutrophils results in suppression of adenylate cyclase activity. J. Biol. Chem. 262: 589–594, 1987.
 30. Bone, E. A., P. Fretten, S. Palmer, C. J. Kirk, and R. H. Michell. Rapid accumulation of inositol phosphates in isolated rat superior cervical sympathetic ganglia exposed to V1‐ vasopressin and muscarinic cholinergic stimuli. Biochem. J. 221: 258–261, 1984.
 31. Bonventre, J. V., K. L. Skorecki, J. I. Kreisberg, and J. Y. Cheung. Vasopressin increases cytosolic free calcium concentration in glomerular mesangial cells. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F94–102, 1986.
 32. Brandt, D. R., and E. M. Ross. GTPase activity of the stimulatory GTP‐binding regulatory protein of adenylate cyclase. J. Biol. Chem. 260: 266–272, 1985.
 33. Brown, D. Membrane recycling and epithelial cell function. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F1–F12, 1989.
 34. Brown, D., A. Grosso, and R. C. DeSousa. Correlation between water flow and intramembrane particle aggregates in toad epidermis. Am. J. Physiol. 245 (Cell Physiol. 14): C334–C342, 1983.
 35. Brown, D., and R. Montesano. Stretch induces granule exocytosis in toad urinary bladder. Cell Biol. Int. Rep. 5: 275–285, 1981.
 36. Brown, D., and L. Orci. Vasopressin stimulates formation of coated pits in rat kidney collecting ducts. Nature 302: 253–255, 1983.
 37. Brown, D., G. I. Shields, H. Valtin, J. F. Morris, and L. Orci. Lack of intramembranous particle clusters in collecting ducts of mice with nephrogenic diabetes insipidus. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F582–F589, 1985.
 38. Brown, D., P. Weyer, and L. Orci. Vasopressin stimulates endocytosis in kidney collecting duct principal cells. Eur. J. Cell. Biol. 46: 336–340, 1988.
 39. Brown, M. S., and J. L. Goldstein: A receptor‐mediated pathway for cholesterol homeostasis. Science 232: 34–47, 1986.
 40. Bunag, R. D., I. H. Page, and J. W. McCubbin. Inhibition of renin release by vasopressin and angiotensin. Cardiovasc. Res. 1: 67–73, 1967.
 41. Burch, R. M., and P. V. Halushka. Vasopressin stimulates prostaglandin and thromboxane synthesis in toad bladder epithelial cells. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F593–F597, 1982.
 42. Burch, R. M., and P. V. Halushka. 45Ca fluxes in isolated toad bladder epithelial cells: effects of agents which alter water or sodium transport. J. Pharmacol. Exp. Ther. 204: 108–117, 1983.
 43. Burch, R. M., and P. V. Halushka. ADH or theophylline‐induced changes in intracellular free and membrane‐bound calcium. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F939–F945, 1984.
 44. Burg, M. Role of aldose reductase and sorbitol in maintaining the medullary intracellular milieu. Kidney Int. 33: 635–641, 1988.
 45. Burnatowska‐Hledin, M. A., and W. S. Spielman. Vasopressin increases cytosolic free calcium in LLC‐PK1 cells through a V1 receptor. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F328–F332, 1987.
 46. Burnatowska‐Hledin, M. A., and W. S. Spielman. Vasopressin V1 receptors on the principal cells of the rabbit cortical collecting tubule. J. Clin. Invest. 83: 84–89, 1989.
 47. Carney, S., B. Rayson, and T. Morgan. A study in vitro of the concentrating defect associated with hypokalemia and hypercalcemia. Pflugers Arch. 336: 11–17, 1976.
 48. Carvounis, G., C. P. Carvounis, and L. A. Arbeit. Independent action of prostaglandins and kinins on vasopressin‐stimulated water flow. Kidney Int. 27: 512–516, 1985.
 49. Cassel, D., and T. Pfeuffer. Mechanism of cholera toxin action: covalent modifications of the guanyl nucleotide‐binding protein of the adenylate cyclase system. Proc. Natl. Acad. Sci. USA 75: 2669–2673, 1978.
 50. Chevalier, J., J. Bourguet, and J. S. Hugon. Membrane associated particles: distribution in frog urinary bladder epithelium at rest and after oxytocin treatment. Cell Tissue Res. 152: 129–140, 1974.
 51. Cristensen, S., E. Kusano, A. N. K. Yusufi, N. Muray‐Ama, and T. P. Dousa. Pathogenesis of nephrogenic diabetes insipidus due to chronic administration of lithium in rats. J. Clin. Invest. 75: 1869–1879, 1985.
 52. Codina, J., J. D. Hildebrandt, L. Birnbaumer, and R. D. Sekura. Effects of guanine nucleotides and Mg on human erythrocyte Ni and N59 the regulatory components of adenylyl cyclase. J. Biol. Chem. 259: 11408–11418, 1984.
 53. Codina, J., J. D. Hildebrandt, R. D. Sekura, M. Birnbaumer, J. Bryan, C. R. Manclark, R. Iyengar, and L. Birn‐Baumer. Ns and Ni, the stimulatory and inhibitory regulatory components of adenylyl cyclases. Purification of the human erythrocyte proteins without the use of activating regulatory ligands. J. Biol. Chem. 259: 5871–5886, 1984.
 54. Codina, J., D. Stengel, S. L. C. Woo, and L. Birnbaumer. Beta‐subunits of the human liver Gs/Gi signal‐transducing proteins and those of bovine retinal rod cell transduein are identical. FEBS Let. 207: 187–192, 1986.
 55. Cogan, E., M. Svoboda, and M. Abramow. Mechanisms of lithium‐vasopressin interaction in rabbit cortical collecting tubule. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F1080–F1087, 1987.
 56. Coleman, R. A., H. W. Harris, Jr., and J. B. Wade. Visualization of endocytosed markers in freeze‐fracture studies of toad urinary bladder. J. Histochem. Cytochem. 35: 1405–1414, 1987.
 57. Cooper, D. M. F., R. Jagus, R. L. Somers, and M. Rodbell. Cholera toxin modifies diverse GTP‐modulated regulatory proteins. Biochem. Biophys. Res. Commun. 101: 1179–1185, 1981.
 58. Cowley, A. W. Vasopressin and cardiovascular regulation. In: Cardiovascular Physiology. IV, edited by A. C. Guyton and J. E. Hall. Baltimore: University Park Press, 1982, 189–242.
 59. Crause, P., R. Boer, and F. Fahrenholz. Determination of the functional molecular size of vasopressin isoreceptors. Fed. Eur. Biochem. Soc. 175: 383–386, 1984.
 60. Craven, P. A., R. Briggs, and F. R. DeRubertis. Calcium‐dependent action of osmolality on adenosine 3′,5′‐monophosphate accumulation in rat renal inner medulla. J. Clin. Invest. 65: 529–542, 1980.
 61. Creba, J. A., C. P. Downes, P. T. Hawkins, G. Brewster, R. H. Michell, and C. J. Kirk. Rapid breakdown of phos‐phatidylinositol 4‐phosphate and phosphatidylinositol 4,5‐bisphosphate in rat hepatocytes stimulated by vasopressin and other Ca2+‐mobilising hormones. Biochem. J. 212: 733–747, 1983.
 62. Culpepper, R. M., and T. E. Andreoli. Interactions among prostaglandin E2, antidiuretic hormone, and cyclic adenosine monophosphate in modulating CI− absorption in single mouse medullary thick ascending limbs of Henle. J. Clin. Invest. 71: 1588–1601, 1983.
 63. Culpepper, R. M., and T. E. Andreoli. PGE2, forskolin, and cholera toxin interactions in modulating NaCl transport in mouse mTALH. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F784–F792, 1984.
 64. Culpepper, R. M., W. Smith, J. Codina, and L. Birnbaumer. Guanine nucleotide regulatory proteins in pars recta and thick ascending limb of rabbit and mouse kidney. Kidney Int. 29: 33, 1986 (abstr).
 65. Currie, M. G., B. B. Davis, and P. Needleman. Localization of exaggerated prostaglandin synthesis associated with renal damage. Prostaglandins 22: 933–944, 1981.
 66. Daly, J. W. Adenosine receptors: targets for future drugs. J. Med. Chem. 25: 197–207, 1982.
 67. Darfler, F. J., L. C. Mahan, A. M. Koachman, and P. A. Insel. Stimulation by forskolin of intact S49 lymphoma cells involves the nucleotide regulatory protein of adenylate cyclase. J. Biol. Chem. 257: 11901–11907, 1982.
 68. Dassouli, H., J. Chevalier, and P. Ripoche. 76kD and 14kD polypeptides, two major components released from amphibian urinary bladder. Purification and characterization. Eur. J. Cell Biol. 49: 180–188, 1989.
 69. DeRubertis, F. R., and P. A. Craven. Effects of osmolality and oxygen availability on soluble cyclic AMP‐dependent protein kinase of the rat renal inner medulla. J. Clin. Invest. 62: 1210–1221, 1978.
 70. Diamond, J. M., B. E. Ehrlich, S. G. Morawski, C. A. Santa Ana, and J. S. Fordtran. Lithium absorption in tight and leaky segments of intestine. J. Membr. Biol. 72: 153–159, 1983.
 71. Dibona, D. R. Cytoplasmic involvement in ADH‐mediated osmosis across toad urinary bladder. Am. J. Physiol. 245 (Cell Physiol. 14): C297–C307, 1983.
 72. Dillingham, M. A., and R. J. Anderson. Purinergic regulation of basal and arginine vasopressin‐stimulated hydraulic conductivity in rabbit cortical collecting tubule. J. Membr. Biol. 88: 277–281, 1985.
 73. Dillingham, M., B. S. Dixon, and R. J. Anderson. Calcium modulates vasopressin effect in rabbit cortical collecting tubule. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F115–F121, 1987.
 74. Dillingham, M. A., J. K. Kim, M. F. Horster, and R. J. Anderson. Site of prostaglandin E2 inhibition of vasopressin effect in rabbit cortical collecting tubule. Proc. Int. Congr. Nephrol. Los Angeles, 1984, p. 448A (abstr.).
 75. Dohlman, H. G., M. G. Caron, and R. J. Lefkowitz. Structure and function of the β2‐adrenergic receptor‐homology with rhodopsin. Kidney Int. 32: S2–S7, 1987.
 76. Dousa, T. P. Interaction of lithium with vasopressin‐sensitive cyclic AMP system of human renal medulla. Endocrinology 95: 1359–1366, 1974.
 77. Dunn, M. J., R. S. Staley, and M. Harrison. Characterization of prostaglandin production in tissue culture of rat renal medullary cells. Prostaglandins 12: 37–49, 1976.
 78. Ebstein, R. P., M. Hermoni, and R. H. Belmaker. The effect of lithium on noradrenaline‐induced cyclic AMP accumulation in rat brain: inhibition after chronic treatment and absence of supersensitivity. J. Pharmacol. Exp. Ther. 213: 161–166, 1980.
 79. Edwards, R. M., B. A. Jackson, and T. P. Dousa. ADH‐sensitive cAMP system in papillary collecting duct: effect of osmolality and PGE2. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F311–F318, 1981.
 80. Edwards, R. M., W. Trizna, and L. B. Kinter. Renal microvascular effects of vasopressin and vasopressin antagonists. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F274–F278, 1989.
 81. Exton, J. H. Role of calcium and phosphoinositides in the actions of certain hormones and neurotransmitters. J. Clin. Invest. 75: 1753–1757, 1985.
 82. Fischbarg, J., K. Kuang, J. Hirsch, S. Lecuona, L. Rogozinski, S. C. Silverstein, and J. Loike. Evidence that the glucose transporter serves as a water channel in J774 macrophages. Proc. Natl. Acad. Sci. USA 86: 8397–8401, 1989.
 83. Fischbarg, J., K. Kuang, J. C. Vera, S. Arant, S. C. Silverstein, J. Loike, and O. M. Rosen. Glucose transporters serve as water channels. Proc. Natl. Acad. Sci. USA 87: 3244–3247, 1990.
 84. Floras, J. S., P. E. Aylward, B. N. Gupta, A. L. Mark, and F. M. Abboud. Modulation of cardiovascular reflexes by arginine vasopressin. Can. J. Physiol. Pharmacol. 65: 1717–1723, 1987.
 85. Fong, H. K. W., J. B. Hurley, R. S. Hopkins, R. Miake‐Lye, M. S. Johnson, R. F. Doolittle, and M. I. Simon. Repetitive segmental structure of the transducin beta subunit: homology with the CDC4 gene and identification of related mRNAs. Proc. Natl. Acad. Sci. USA 83: 2162–2166, 1986.
 86. Franki, N., G. Ding, N. Quintana, and R. M. Hays. Evidence that the heads of ADH‐sensitive aggrephores are clathrin‐coated vesicles: implications for aggrephore structure and function. Tissue Cell 18: 803–807, 1986.
 87. Friedlander, G., and C. Amiel. Somatostatin and alpha 2‐adrenergic agonists selectively inhibit vasopressin‐induced cyclic AMP accumulation in MDCK cells. FEBS Let. 198: 38–42, 1986.
 88. Garcia‐Perez, A., and W. L. Smith. Apical‐basolateral membrane asymmetry in canine cortical collecting tubule cells. J. Clin. Invest. 74: 63–74, 1984.
 89. Gill, D. M., and R. Meren. ADP‐ribosylation of membrane proteins catalyzed by cholera toxin: basis of the activation of adenylate cyclase. Proc. Natl. Acad. Sci. USA 75: 3050–3054, 1978.
 90. Gilman, A. G. Guanine nucleotide‐binding regulatory proteins and dual control of adenylate cyclase. J. Clin. Invest. 73: 1–4, 1984.
 91. Goldberg, H., P. Clayman, and K. L. Skorecki. Mechanism of inhibition by lithium of vasopressin sensitive adenylate cyclase in the renal epithelial cell line, LLCPK1. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F995–F1002, 1988.
 92. Goldfarb, S. Effects of calcium on ADH action in the cortical collecting tubule perfused in vitro. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F481–F486, 1982.
 93. Goldring, S. R., J. M. Dayer, D. A. Ausiello, and S. M. Krane. A cell strain cultured from porcine kidney increases cyclic AMP content upon exposure to calcitonin or vasopressin. Biochem. Biophys. Res. Commun. 83: 434–440, 1978.
 94. Grantham, J. J., and J. Orloff. Effect of prostaglandin E1 on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3′,5′‐monophosphate, and theophylline. J. Clin. Invest. 47: 1154–1161, 1968.
 95. Greger, R., and H. Velazquez. The cortical thick ascending limb and early distal convoluted tubule in the urinary concentrating mechanism. Kidney Int. 31: 590–596, 1987.
 96. Grinstein, S., A. Rothstein, B. Sarkadi, and E. W. Gelfand. Responses of lymphocytes to anisotonic media‐volume regulating behaviour. Am. J. Physiol. 246 (Cell Physiol 15): C204–C215, 1984.
 97. Guillon, G., P. O. Couraud, D. Butlen, B. Cantau, and S. Jard. Size of vasopressin receptors from rat liver and kidney. Eur. J. Biochem. 111: 287–294, 1980.
 98. Gullner, H. G., A. K. Graf, J. R. Gill, and M. D. Mitchell. Hypokalemia stimulates prostacyclin synthesis in the rat. Clin. Sci. 65: 43–46, 1983.
 99. Hagler, A. T., D. J. Osguthorpe, P. Dauber‐Osguthorpe, and J. C. Hempel. Dynamics and conformational energetics of a peptide hormone: vasopressin. Science 227: 1309–1315, 1985.
 100. Handler, J. S. Antidiuretic hormone moves membranes. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F375–F382, 1988.
 101. Harmanci, M. D., P. Stern, W. A. Kachadorian, H. Valtin, and V. A. Discala. Antidiuretic hormone‐induced intramem‐branous alterations in mammalian collecting duct. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F440–F443, 1978.
 102. Harmanci, M. C., P. Stern, W. A. Kachadorian, H. Valtin, and V. A. Discala. Vasopressin and collecting duct intramem‐branous particle clusters: a dose response relationship. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F560–F564, 1980.
 103. Harris, H. W., Jr., H. E. Murphy, M. C. Willingham, and J. S. Handler. Isolation and characterization of specialized regions of toad urinary bladder apical plasma membrane involved in the water permeability response to antidiuretic hormone. J. Membr. Biol. 96: 175–186, 1987.
 104. Harris, H. W., Jr., J. B. Wade, and J. S. Handler. Transepithelial water flow regulates apical membrane retrieval in antidiuretic hormone‐stimulated toad urinary bladder. J. Clin. Invest. 78: 703–712, 1986.
 105. Harris, H. W., Jr., J. B. Wade, and J. S. Handler. Identification of specific apical membrane polypeptides associated with the antidiuretic hormone‐elicited permeability increase in the toad urinary bladder. Proc. Natl. Acad. Sci. USA 85: 1942–1946, 1988.
 106. Hartwig, J. H., D. A. Ausiello, and D. Brown. Vasopressin‐induced changes in the three‐dimensional structure of toad bladder apical surface. Am. J. Physiol. 253 (Cell Physiol. 22): C707–C720, 1987.
 107. Hays, R. M. Alteration of luminal membrane structure by antidiuretic hormone. Am. J. Physiol. 245 (Cell Physiol. 14): C289–C296, 1983.
 108. Hays, R. M., J. Sasaki, S. M. Tilles, L. Meiteles, and N. Frankl. Morphological aspects of the cellular action of antidiuretic hormone. In: Vasopressin, edited by R. W. Schrier. New York: Raven Press, 1985, p. 79–87.
 109. Hebert, S., W. B. Reeves, D. A. Molony, and T. E. Andreoli. The medullary thick limb: function and modulation of the single‐effect multiplier. Kidney Int. 31: 580–588, 1987.
 110. Heyworth, C. M., S. P. Wilson, D. J. Gawler, and M. D. Houslay. The phorbol ester TPA prevents the expression of both glucagon desensitization and the glucagon‐mediated block of insulin stimulation of the peripheral plasma membrane cyclic AMP phosphodiesterase in rat hepatocytes. FEBS Lett. 187: 196–200, 1985.
 111. Higashijima, T., K. M. Ferguson, and P. C. Sternweis. Regulation of hormone‐sensitive GTP‐dependent regulatory proteins by chloride. J. Biol. Chem. 262: 3597–3602, 1987.
 112. Hildebrandt, J. D., and L. Birnbaumer. Inhibitory regulation of adenylyl cyclase in the absence of stimulatory regulation. J. Biol. Chem. 13: 141–147, 1983.
 113. Hildebrandt, J. D., J. Codina, W. Rosenthal, L. Birnbaumer, E. J. Neer, A. Yamazaki, and M. W. Bitensky. Characterization by two‐dimensional peptide mapping of the subunit composition of the regulatory Ns and Ni proteins of adenylyl cyclase, and transducin, the guanine nucleotide binding protein of retinal rod outer segments. J. Biol. Chem. 260: 14867–14872, 1985.
 114. Hirsch, A. T., V. J. Dzau, J. A. Majzoub, and M. A. Creager. Vasopressin‐mediated forearm vasodilation in normal humans. Evidence for a vascular vasopressin receptor. J. Clin. Invest. 84: 418–426, 1989.
 115. Hochman, S., and Y. Gutman. ADH antagonism and ADH independent action in rats with diabetes insipidus. Eur. J. Pharmacol. 28: 100–107, 1974.
 116. Humbert, F., R. Montesano, A. Grosso, R. C. DeSousa, and L. Orci. Particle aggregates in plasma and intracellular membranes of toad bladder granular cell. Experientia 33: 1364–1367, 1977.
 117. Hurley, J. B., H. K. W. Fong, D. B. Teplow, W. J. Dreyer, and M. I. Simon. Isolation and characterization of a cDNA clone for the gamma subunit of bovine retinal transducin. Proc. Natl. Acad. Sci. USA 81: 6948–6952, 1984.
 118. Ichikawa, I., and B. M. Brenner. Evidence for glomerular actions of ADH and dibutyryl cyclic AMP in the rat. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F102–F117, 1977.
 119. Imbert, M., D. Chabardes, and F. Morel. Hormone‐sensitive adenylate‐cyclase in isolated rabbit glomeruli. Mol. Cell Endocrinol. 1: 295–304, 1974.
 120. Itoh, H., T. Kozasa, S. Nagata, S. Nakamura, T. Katada, M. Ui, S. Iwai, E. Ohtsuka, H. Kawasaki, K. Suzuki, and Y. Kaziro. Molecular cloning and sequence determination of cDNAs for the alpha subunits of the guanine nucleotide‐binding proteins Gs, Gi, and Go from rat brain. Proc. Natl. Acad. Sci. USA 83: 3776–3780, 1986.
 121. Jackson, B. A., R. M. Edwards, and T. P. Dousa. Vasopressin‐prostaglandin interactions in isolated tubules from rat outer medulla. J. Lab. Clin. Med. 96: 119–128, 1980.
 122. Jakobs, K. H., S. Bauer, and Y. Watanabe. Modulation of adenylate cyclase of human platelets by phorbol ester. Impairment of the hormone‐sensitive inhibitory pathway. Eur. J. Biochem. 151: 425–430, 1985.
 123. Jakobs, K. H., and M. Minuth. Sodium regulation of hormone sensitive adenylate cyclase. J. Recept. Res. 4: 443–458, 1984.
 124. Jard, S., C. Barberis, G. Guillon, P. Petit, and R. Gaillard. Potentiation by vasopressin of CRF and β‐adrenergic agonist‐induced responses: studies on the adenohypophysis and superior cervical ganglion. In: Vasopressin: Cellular and Integrative Functions, edited by Allen W. Cowley, Jr., Jean‐François Liard, and Dennis A. Ausiello. New York: Raven, 1988, p. 11–18.
 125. Johnston, C. I. Vasopressin in circulatory control and hypertension. J. Hypertension 3: 557–569, 1985.
 126. Jurnak, F. Structure of the GDP domain of EF‐Tu and location of the amino acids homologous to ras oncogene proteins. Science 230: 32–36, 1985.
 127. Kachadorian, W. A., S. J. Ellis, and J. Muller. Membrane structural and functional responses to vasopressin in toad bladder. J. Member. Biol. 30: 381–401, 1977.
 128. Kachadorian, W. A., S. J. Ellis, and J. Muller. Possible roles for microtubules and microfilaments in ADH action on toad urinary bladder. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F14–F20, 1979.
 129. Kachadorian, W. A., S. D. Levine, J. B. Wade, V. A. Discala, and R. M. Hays. Relationship of aggregated intramembranous particles to water permeability in vasopressin‐treated toad urinary bladder. J. Clin. Invest. 59: 576–581, 1977.
 130. Kachadorian, W. A., J. B. Wade, and V. A. Discala. Vasopressin: induced structural changes in toad bladder luminal membrane. Science 190: 67–69, 1975.
 131. Kassis, S., T. Zaremba, J. Patel, and P. H. Fishman. Phorbol esters and β‐adrenergic agonists mediate desensitization of adenylate cyclase in rat glioma C6 cells by distinct mechanisms. J. Biol. Chem. 260: 8911–8917, 1985.
 132. Katada, T., A. G. Gilman, Y. Watanabe, S. Bauer, and K. H. Jakobs. Protein kinase C phosphorylates the inhibitory guanine‐nucleotide‐binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur. J. Biochem. 151: 431–437, 1985.
 133. Kikkawa, U., and Y. Nishizuka. The role of protein kinase C in transmembrane signalling. Annu. Rev. Cell. Biol. 2: 149–178, 1986.
 134. Kirk, C. J., R. H. Michell, and D. A. Hems. Phosphatidyl‐inositol metabolism in rat hepatocytes stimulated by vasopressin. Biochem. J. 194: 155–165, 1981.
 135. Kirk, K. L., J. A. Schafer, and D. R. Dibona. Quantitative analysis of the structural events associated with antidiuretic hormone‐induced volume reabsorption in the rabbit cortical collecting tubule. J. Membr. Biol. 79: 65–74, 1984.
 136. Kirschenbaum, M. A., A. G. Lowe, W. Trizna, and L. G. Fine. Regulation of vasopressin action by prostaglandins. Evidence for prostaglandin synthesis in the rabbit cortical collecting tubule. J. Clin. Invest. 70: 1193–1204, 1982.
 137. Knepel, W., L. Homolka, W. Vlaskovska, and D. Nutto. In vitro adrenocorticotropin/β‐endorphin‐releasing activity of vasopressin analogs is related neither to pressor nor to antidiuretic activity. Endocrinology 114: 1797–1804, 1984.
 138. Kreisberg, J. I. Contractile properties of the glomerular mesangium. Federation Proc. 42: 3053–3057, 1983.
 139. Kreisberg, J. L., M. J. Karnovsky, and L. Levine. Prostaglandin production by homogenous cultures of rat glomerular epithelial and mesangial cells. Kidney Int. 22: 355–359, 1982.
 140. Kremer, S., D. Troyer, J. I. Kreisberg, and K. L. Skorecki. Interaction of atrial natriuretic peptide‐stimulated guanylate cyclase and vasopressin‐stimulated calcium signalling pathways in the glomerular mesangial cell. Arch. Biochem. Biophys. 260: 763–770, 1988.
 141. Krupinski, J., F. Coussen, H. A. Bakalyar, W.‐J. Tank, P. G. Feinstein, K. Orth, C. Slaughter, R. R. Reed, and A. G. Gilman. Adenylyl cyclase amino acid sequence: possible channel‐ or transporter‐like structure. Science 244: 1558–1564, 1989.
 142. Kusano, E., N. Murayama, J. L. Werness, S. Christensen, S. Homma, A. N. K. Yusufi, and T. P. Dousa. Effects of calcium on the vasopressin‐sensitive cAMP metabolism in medullary tubules. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F956–F966, 1985.
 143. LeBlanc, G. The mechanism of lithium accumulation in the isolated frog skin epithelium. Pflugers Arch. 337: 1–18, 1972.
 144. Lencer, W. I., D. Brown, D. A. Ausiello, and A. S. Verkman. Endocytosis of water channels in rat kidney: cell specificity and correlation with in vivo antidiuresis. Am. J. Physiol. 259 (Cell Physiol. 28): C920–C932, 1990.
 145. Lencer, W. I., A. S. Verkman, A. Arnaout, D. A. Ausiello, and D. Brown. Endocytic vesicles from renal papilla which retrieve the vasopressin‐sensitive water channel do not contain a functional H+ ATPase. J. Cell. Biol. 111: 379–390, 1990.
 146. Lencer, W. I., P. Weyer, A. S. Verkman, D. A. Ausiello, and D. Brown. FITC‐dextran as a probe for endosome function and localization in the kidney. Am. J. Physiol. 258 (Cell Physiol. 29): C309–C317, 1990.
 147. Levitzki, A. β‐adrenergic receptors and their mode of coupling to adenylate cyclase. Physiol. Rev. 66: 819–854, 1986.
 148. Liard, J. F. Vasopressin in cardiovascular control: role of circulating vasopressin. Clin. Sci. 67: 473–81, 1984.
 149. Litosch, I., S.‐H. Lin, and J. N. Fain. Rapid changes in hepatocyte phosphoinositides induced by vasopressin. J. Biol. Chem. 258: 13727–13732, 1983.
 150. Macara, I. G. Oncogenes, ions and phospholipids. Am. J. Physiol. 248 (Cell Physiol. 17): C3–C11, 1985.
 151. Manning, M., and W. H. Sawyer. Development of selective agonists and antagonists of vasopressin and oxytocin. In: Vasopressin, edited by Robert W. Schrier. New York: Raven, 1985, p. 131–144.
 152. Margolis, B., J. V. Bonventre, S. Kremer, J. Kudlow, and K. L. Skorecki. Epidermal growth factor is synergistic with phorbol esters and vasopressin in stimulating arachidonate release and prostaglandin production in renal glomerular mesangial cells. Biochem. J. 249: 587–592, 1988.
 153. Masters, S. B., R. M. Stroud, and H. R. Bourne. Family of G protein α‐chains: Amphipatic analysis and predicted structure of functional domains. Protein Eng. 1: 47–54, 1986.
 154. Masur, S. K., S. Cooper, and M. S. Rubin. Effect of an osmotic gradient on antidiuretic‐hormone–induced endocytosis and hydroosmosis in the toad urinary bladder. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F370–F379, 1984.
 155. Masur, S. K., and S. Massardo. ADH and phorbol ester increase immunolabeling of the toad bladder apical membrane by antibodies made to granules. J. Membr. Biol. 96: 193–198, 1987.
 156. Mattera, R., J. Codina, A. Crozat, V. Kidd, S. C. L. Woo, and L. Birnbaumer. Identification by molecular cloning of two forms of the α subunit of the human liver stimulatory (Gs) regulatory component of adenylyl cyclase. FEBS Lett. 206: 36–42, 1986.
 157. Michell, R. H., C. J. Kirk, and M. M. Billah. Hormonal stimulation of phosphatidylinositol breakdown with particular reference to the hepatic effects of vasopressin. Biochem. Soc. Trans. 7: 861–865, 1979.
 158. Mills, J. W., and D. J. Skiest. Role of cyclic AMP and the cytoskeleton in volume control in MDCK cells. Mol. Physiol. 8: 247–262, 1985.
 159. Morgan, T., B. Rayson, and D. Haberle. The effects of sodium chloride, urea and mannitol on the permeability in vitro of rat papillary collecting ducts to THO, 14C‐urea, and 22Na. Clin. Exp. Pharmacol. Physiol. 4: 565–574, 1977.
 160. Mrk, A., and A. Geisler. Effects of lithium on calmodulin‐stimulated adenylate cyclase activity in cortical membranes from rat brain. Pharmacol. Toxicol. 60: 17–23, 1987.
 161. Muirhead, E. E., G. Germain, B. E. Leach, J. A. Pitcock, P. Stephenson, B. Brooks, W. L. Brosius, E. G. Daniels, and J. W. Hinman. Production of renomedullary prostaglandins by renomedullary interstitial cells grown in tissue culture. Circ. Res. 30/31 (Suppl II): 1615–1725, 1972.
 162. Muller, J., and W. A. Kachadorian. Aggregate‐carrying membranes during ADH stimulation and washout in toad urinary bladder. Am. J. Physiol. 247 (Cell Physiol. 16): C90–C98, 1984.
 163. Muller, J., W. A. Kachadorian, and V. A. Discala. Evidence that ADH‐stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells. J. Cell. Biol. 85: 83–95, 1980.
 164. Nadler, S. P., S. C. Hebert, and B. M. Brenner. PGE2, forskolin, and cholera toxin interactions in rabbit cortical collecting tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F127–F135, 1986.
 165. Nambi, P., J. R. Peters, D. R. Sibley, and R. J. Lefkowitz. Desensitization of the turkey erythrocyte β‐adrenergic receptor in a cell‐free system: evidence that multiple protein kinases can phosphorylate and desensitize the receptor. J. Biol. Chem. 260: 2165–2171, 1985.
 166. Nishizuka, Y. Turnover of inositol phospholipids and signal transduction. Science 225: 1365–1370, 1984.
 167. Northrup, J. K., M. D. Smigel, P. C. Sternweis, and A. G. Gilman. The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution of the activated 45,000‐dalton (alpha) subunit. J. Biol. Chem. 258: 11369–11376, 1983.
 168. Nukada, T., T. Tanabe, H. Takahashi, M. Noda, T. Hirose, S. Inayama, and S. Numa. Primary structure of the alpha‐subunit of bovine adenylate cyclase‐stimulating G‐protein deduced from the cDNA sequence. FEBS Lett. 195: 220–224, 1986.
 169. Perisic, O., and J. A. Taugh. Protease activated kinase II as the potential mediator of insulin‐stimulated phosphorylation of ribosomal protein S6. J. Biol. Chem. 258: 9589–9592, 1983.
 170. Peterson, M. J., and I. S. Edelman. Calcium inhibition of the action of vasopressin on the urinary bladder of the toad. J. Clin. Invest. 43: 583–593, 1964.
 171. Pfeilschifter, J., A. Kurtz, and C. Bauer. Activation of phospholipase C and prostaglandin synthesis by [arginine] vasopressin in cultures. Biochem. J. 223: 855–859, 1984.
 172. Pfeuffer, E., R.‐M. Dreher, H. Metzger, and T. Pfeuffer. Catalytic unit of adenylate cyclase: purification and identification by affinity crosslinking. Proc. Natl. Acad. Sci. USA 82: 3086–3090, 1985.
 173. Rasmussen, H. The calcium messenger system. N. Engl. J. Med. 314: 1164–1170, 1986.
 174. Raymond, K. H., K. K. Davidson, and T. D. McKinney. In vivo and in vitro studies of urinary concentrating ability in potassium‐depleted rabbits. J. Clin. Invest. 76: 561–566, 1985.
 175. Raymond, K. H., and M. D. Lifschitz. Effects of prostaglandin on renal salt and water excretion. Am. J. Med. 80 (Suppl 1A): 22–33, 1986.
 176. Reif, M. C., S. L. Troutman, and J. A. Schafer. Sustained response to vasopressin in isolated rat cortical collecting tubule. Kidney Int. 26: 725–732, 1984.
 177. Reif, M. C., S. L. Troutman, and J. A. Schafer. Sodium transport by rat cortical collecting tubule. J. Clin. Invest. 77: 1291–1298, 1986.
 178. Ribeiro‐Neto, F., R. Mattera, D. Grenet, R. D. Sekura, L. Birnbaumer, and J. B. Field. Adenosine diphosphate ribosylation of G‐proteins by pertussis and cholera toxin in isolated membranes. Different requirements for and effects of guanine nucleotides and Mg2+. Mol. Endocrinol. 1: 472–481, 1987.
 179. Robishaw, J. D., D. W. Russell, B. A. Harris, M. D. Smigel, and A. G. Gilman. Deduced primary structure of the alpha subunit of the GTP‐binding stimulatory protein of adenylate cyclase. Proc. Natl. Acad. Sci. USA 83: 1251–1255, 1986.
 180. Roy, C., and D. A. Ausiello. Regulation of vasopressin binding to intact cells. Ann. N.Y. Acad. Sci. 372: 92–105, 1981.
 181. Roy, C., D. Hall, and D. A. Ausiello. Characterization of (8‐lysine) vasopressin binding sites on a pig kidney cell line (LLC‐PK1). Evidence for hormone‐induced receptor transition. J. Biol. Chem. 256: 3415–3422, 1981.
 182. Roy, C., D. Hall, M. Karish, and D. A. Ausiello. Relationship of (8‐lysine) vasopressin receptor transition to receptor functional properties in a pig kidney cell line (LLC‐PK1). J. Biol. Chem. 256: 3423–3427, 1981.
 183. Roy, C., N. C. Le Bars, and S. Jard. Vasopressin‐sensitive kidney adenylate cyclase‐differential effects of monovalent ions on stimulation by fluoride, vasopressin and guanylyl 5′‐imidodiphosphate. Eur. J. Biochem. 78: 325–332, 1977.
 184. Rozengurt, E. Early signals in the mitogenic response. Science 234: 161–166, 1986.
 185. Rozengurt, E. Stimulation of Na influx, Na‐K pump activity and DNA synthesis in quiescent cultured cells. Adv. Enzyme Regul. 19: 61–85, 1981.
 186. Rutecki, G. W., J. W. Cox, G. W. Robertson, L. L. Francisco, and T. F. Ferris. Urinary concentrating ability and antidiuretic hormone responsiveness in the potassium‐depleted dog. J. Lab. Clin. Med. 100: 53–60, 1980.
 187. Sakai, T., and W. Kriz. The structural relationship between mesangial cells and basement membrane of the renal glomerulus. Anat. Embryol. 176: 373–386, 1987.
 188. Salomon, Y., M. Lapidot, and E. Ezra. The mechanism of gonadotropin induced desensitization of rat ovarian adenylate cyclase in the cell free state and the role of GTP in this process. Ann. Endocrinol. (Paris) 45: 327–334, 1984.
 189. Sands, J. M., H. Nonoguchi, and M. A. Knepper. Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): 823–832, 1987.
 190. Sato, M., and M. J. Dunn. Interactions of vasopressin, prostaglandins, and cAMP in rat renal papillary collecting tubule cells in culture. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F423–F433, 1984.
 191. Sawyer, W. H., P. K. T. Pang, J. Seto, and E. McEnroe. Vasopressin analogs that antagonize antidiuretic responses by rats to the antidiuretic hormone. Science 212: 49–51, 1981.
 192. Scharschmidt, L. A., and M. J. Dunn. Prostaglandin synthesis by rat glomerular mesangial cells in culture: effects of angiotensin II and arginine vasopressin. J. Clin. Invest. 71: 1756–1764, 1983.
 193. Scharschmidt, L. A., E. Lianos, and M. J. Dunn. Arachidonate metabolites and the control of glomerular function. Federation Proc. 42: 3058–3063, 1983.
 194. Schimmer, B. P., J. Tsao, R. Borenstein, and L. Endrenyi. Forskolin‐resistant Y1 mutants harbor defects associated with the guanyl nucleotide‐binding regulatory protein, Gs. J. Biol. Chem. 262: 15521–15526, 1987.
 195. Schlondorff, D. Renal prostaglandin synthesis. Sites of production and specific actions of prostaglandins. Am. J. Med. 81 (Suppl. 2B): 1–11, 1986.
 196. Schlondorff, D. The glomerular mesangial cell: an expanding role for a specialized pericyte. FASEB J. 1: 272–281, 1987.
 197. Schlondorff, D., and R. Ardaillou. Prostaglandin and other arachidonic and metabolites in the kidney. Kidney Int. 29: 108–119, 1986.
 198. Schlondorff, D., C. P. Carvounis, M. Jacoby, J. A. Satriano, and S. D. Levine. Multiple sites for interaction of prostaglandin and vasopressin in toad urinary bladder. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F625–F631, 1981.
 199. Schlondorff, D., S. DeCandido, and J. A. Satriano. Angiotensin II stimulates phospholipases C and A2 in cultured rat mesangial cells. Am. J. Physiol. 253 (Cell Physiol. 22): C113–C120, 1987.
 200. Schlondorff, D., and S. D. Levine. Inhibition of vasopressin‐stimulated water flow in toad bladder by phorbol myristate acetate, dioctanoylglycerol, and RHC‐80267. Evidence for modulation of action of vasopressin by protein kinase C. J. Clin. Invest. 76: 1071–1078, 1985.
 201. Schlondorff, D., and J. A. Satriano. Interactions of vasopressin, cAMP, and prostaglandins in toad urinary bladder. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F454–F458, 1985.
 202. Schlondorff, D., J. A. Satriano, and G. J. Schwartz. Synthesis of prostaglandin E2 in different segments of isolated collecting tubules from adult and neonatal rabbits. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F134–F144, 1985.
 203. Schou, M., A. Amdisen, K. Thomsen, P. Vestergaard, O. Hetmar, E. T. Mellerup, P. Plenge, and O. J. Rafaelsen. Lithium treatment regimen and renal water handling: the significance of dosage pattern and tablet type examined through comparison of results from two clinics with different treatment regimens. Psychopharmacology 77: 387–390, 1982.
 204. Schuster, V., J. P. Kokko, and H. R. Jacobson. Interactions of lysyl‐bradykinin and antidiuretic hormone in the rabbit cortical collecting tubule. J. Clin. Invest. 73: 1659–1667, 1984.
 205. Shade, R. E., and L. Share. Vasopressin release during non‐hypotensive hemorrhage and angiotensin II infusion. Am. J. Physiol. 278: 149–154, 1975.
 206. Sibley, D. R., P. Nambi, J. R. Peters, and R. J. Lefkowitz. Phorbol diesters promote β‐adrenergic receptor phosphorylation and adenylate cyclase desensitization in duck erythrocytes. Biochem. Biophys. Res. Commun. 121: 973–979, 1984.
 207. Sibley, D. R., J. R. Peters, P. Nambi, M. G. Caron, and R. J. Lefkowitz. Desensitization of turkey erythrocyte adenylate cyclase: beta‐adrenergic receptor phosphorylation is correlated with attenuation of adenylate cyclase activity. J. Biol. Chem. 259: 9742–9749, 1984.
 208. Sibley, D. R., R. H. Strasser, K. Daniel, and R. J. Lefkowitz. Desensitization of adenylate cyclase: the role of β‐adrenergic receptor phosphorylation and dephosphorylation. FASEB J. 45: (4) 798A, 1986.
 209. Singer, I. Lithium and the kidney. Kidney Int. 19: 374–387, 1981.
 210. Skala, G., C. W. Smith, C. J. Taylor, and J. H. Ludens. A conformationally constrained vasopressin analog with antidiuretic antagonistic activity. Science 226: 443–445, 1984.
 211. Skorecki, K. L., B. J. Ballermann, and B. M. Brenner. Hormonal regulation of glomerular function. In: Endocrinology, edited by F. Labrie and L. Proulx. Amsterdam: Elsevier, 1984, p. 669–676.
 212. Skorecki, K. L., J. M. Conte, and D. A. Ausiello. Effects of hypertonicity on cAMP production in cultured renal epithelial cells (LLC‐PK1). Miner. Electrolyte Metab. 13: 165–172, 1987.
 213. Skorecki, K. L., A. S. Verkman, and D. A. Ausiello. Crosstalk between stimulatory and inhibitory GTP‐binding proteins–role in activation and desensitization of the adenylate cyclase response to vasopressin. Biochemistry 26: 639–645, 1987.
 214. Skorecki, K. L., A. S. Verkman, and D. A. Ausiello. Vasopressin adenylate cyclase interactions: a target analysis approach. In: Target‐Size Analysis of Membrane Proteins, edited by J. C. Venter and C. Y. Jung. New York: Alan R. Liss, Inc., 1987, p. 107–122.
 215. Skorecki, K. L., A. S. Verkman, C. Y. Jung, and D. A. Ausiello. Evidence for vasopressin activation of adenylate cyclase by subunit dissociation. Am. J. Physiol. 260 (Cell Physiol. 28): C115–C123, 1986.
 216. Smigel, M. D. Purification of the catalyst of adenylate cyclase. J. Biol. Chem. 261: 1976–1982, 1986.
 217. Solomon, A. K., B. Chasan, J. A. Dix, M. F. Lukacovic, M. R. Toon, and A. S. Verkman. The aqueous pore in the red cell membrane: band 3 as a channel for anions, cations, non‐electrolytes, and water. Ann. N. Y. Acad. Sci. 414: 97–124, 1983.
 218. Sonnenberg, W. K., and W. L. Smith. Regulation of cyclic AMP metabolism in rabbit cortical collecting tubule cells by prostaglandins. J. Biol. Chem. 263: 6155, 1988.
 219. Spiegel, A. M. Signal transduction by guanine nucleotide binding proteins. Mol. Cell. Endocrinol. 49: 1–16, 1987.
 220. Star, R. A., H. Nonoguchi, R. B. Balaban, and M. A. Knepper. Calcium and cyclic AMP as second messengers for vasopressin in rat inner medullary collecting duct. Kidney Int. 33: 286, 1988 (abstr.).
 221. Stassen, F., G. Heckman, D. B. Schmidt, M. T. Papadopoulos, P. Nambi, H. Sarau, N. Aiyar, M. Gellai, and L. Kinter. Oxytocin induces a transient increase in cytosolic free [Ca2+] in renal tubular epithelial cells: evidence for oxytocin receptors in LLC‐PK1 cells. Mol. Pharmacol. 33: 218–224, 1988.
 222. Sternweis, P. C. The purified alpha subunits of G0 and G1 from bovine brain require beta‐gamma for association with phospholipid vesicles. J. Biol. Chem. 261: 631–637, 1986.
 223. Stoff, J. S., R. M. Rosa, and F. H. Epstein. The concentrating defect of acute potassium depletion in man is independent of renal prostaglandin. Kidney Int. 16: 874A, 1979.
 224. Strange, K., M. C. Willingham, J. S. Handler, and H. W. Harris, Jr. Apical membrane endocytosis via coated pits is stimulated by removal of antidiuretic hormone from isolated, perfused rabbit cortical collecting tubule. J. Membr. Biol. 103: 17–28, 1988.
 225. Strulovici, B., R. A. Cerione, B. F. Kilpatrick, M. G. Caron, and R. J. Lefkowitz. Direct demonstration of impaired functionality of a purified desensitized β‐adrenergic receptor in a reconstituted system. Science 225: 837–840, 1984.
 226. Sugimoto, K., T. Nukada, T. Tanabe, H. Takahashi, M. Noda, N. Minamino, K. Kangawa, H. Matsuo, T. Hirose, S. Inayama, and S. Numa. Primary structure of the beta‐subunit of bovine transducin deduced from the cDNA sequence. FEBS Lett. 191: 235–240, 1985.
 227. Suki, W. N., J. Abramowitz, R. Mattera, J. Codina, and L. Birnbaumer. The human genome encodes at least three non‐allelic G‐proteins with α‐type subunits. FEBS Lett. 220: 187–192, 1987.
 228. Sullivan, K. A., Y.‐C. Liao, A. B. Alborzi, Beiderman, F.‐H., S. B. Masters, A. D. Levinson, and H. R. Bourne. Inhibitory and stimulatory G proteins of adenylate cyclase: cDNA and amino acid sequences of the alpha chains. Proc. Natl. Acad. Sci. USA 83: 6687–6691, 1986.
 229. Suzuki, S., A. Takeshita, T. Imaizumi, Y. Hirooka, M. Yoshida, S. Ando, and M. Nakamura. Biphasic forearm vascular responses to intra‐arterial arginine vasopressin. J. Clin. Invest. 84: 427–434, 1989.
 230. Takaichi, K., S. Uchida, and K. Kurokawa. High Ca2+ inhibits AVP‐dependent cAMP production in thick ascending limbs of Henle. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F770–F776, 1986.
 231. Taylor, A. Role of microtubules and microfilaments in the action of vasopressin. In Disturbances in Body Fluid Osmolality, edited by T. E. Andreoli, J. J. Grantham, and F. C. Rector. Washington: American Physiological Society, 1977 97–124.
 232. Teitelbaum, I., M. Anger, J. Mansour, and T. Berl. Impaired vasopressin stimulated cAMP formation by increased cellular calcium: evidence for a G1 mediated mechanism. Kidney Int. 29: 425, 1986 (abstr.).
 233. Teitelbaum, I., and T. Berl. Effects of calcium on vasopressin‐mediated cyclic adenosine monophosphate formation in cultured rat inner medullary collecting tubule cells. Evidence for the role of intracellular calcium. J. Clin. Invest. 77: 1574–1583, 1986.
 234. Teitelbaum, I., A. Wolf, and T. Berl. Control of prostaglandin E2 synthesis in cultured rat inner medullary collecting tubule cells: the role of calcium. Miner. Electrolyte Metab. 12: 308–313, 1986.
 235. Thomas, A. P., J. S. Marks, K. E. Coll, and J. R. Williamson. Quantitation and early kinetics of inositol lipid changes induced by vasopressin in isolated and cultured hepatocytes. J. Biol. Chem. 258: 5716–5725, 1983.
 236. Thomasson, D. L., T. V. Zenser, and B. B. Davis. Cortical interstitial cell interactions induce sensitivity of hydronephrotic kidney to bradykinin. Kidney Int. 33: 71–76, 1988.
 237. Thorens, B., Z.‐Q. Cheng, D. Brown, and H. F. Lodish. Liver glucose transporter: a basolateral protein in hepatocytes and intestine and kidney epithelial cells. Am. J. Physiol. 259 (Cell. Physiol. 28): C279–C285, 1990.
 238. Thorens, B., H. F. Lodish, and D. Brown. Differential localization of two glucose transporter isoforms in rat kidney. Am. J. Physiol. 259 (Cell Physiol. 28): C286–C294, 1990.
 239. Tomita, K., J. J. Pisano, M. B. Burg, and M. A. Knepper. Effects of vasopressin and bradykinin on anion transport by the rat cortical collecting duct. J. Clin. Invest. 77: 136–141, 1986.
 240. Torikai, S., and K. Kurokawa. Distribution of prostaglandin E2‐sensitive adenylate cyclase along the rat nephron. Prostaglandins 21: 421–438, 1981.
 241. Torikai, S., and K. Kurokawa. Effect of PGE2 on vasopressin‐dependent cell cAMP in isolated single nephron segments. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F58–F66, 1983.
 242. Tribollet, E., C. Barberis, J.‐J. Dreifuss, and S. Jard. Autoradiographic localization of vasopressin and oxytocin binding sites in rat kidney. Kidney Int. 33: 959–965, 1988.
 243. Trinh‐Trang‐Tan, M.‐M., N. Bouby, W. Kriz, and L. Bankir. Functional adaptation of thick ascending limb and internephron heterogeneity to urine concentration. Kidney Int. 31: 549–555, 1987.
 244. Troyer, D. A., J. I. Kreisberg, D. W. Schwertz, and M. A. Venkatachalam. Effects of vasopressin on phosphoinositides and prostaglandin production in cultured mesangial cells. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F139–F147, 1985.
 245. Troyer, D. A., D. W. Schwertz, J. I. Kreisberg, and M. A. Venkatachalam. Inositol phospholipid metabolism in the kidney. Annu. Rev. Physiol. 48: 51–71, 1986.
 246. Uglesity, A., J. I. Kreisberg, and L. Levine. Stimulation of arachidonic acid metabolism in rat kidney mesangial cells by bradykinin, antidiuretic hormone and their analogues. Prostaglandins Leukotrienes Med. 10: 83–93, 1983.
 247. Valenti, G., V. Casavola, J. Bourguet, and M. Svelto. Isolation of frog urinary bladder plasma membranes with polycation‐coated beads. Biol. Cell. 66: 85–89, 1989.
 248. Valtin, H. The discovery of the Brattleboro rat, recommended nomenclature, and the question of proper controls. Ann. N.Y. Acad. Sci. 394: 1–9, 1982.
 249. Van Dop, C., D. Medynski, K. Sullivan, A. M. Wu, B‐K. Fung, and H. R. Bourne. Partial cDNA sequence of the gamma subunit of transducin. Biochem. Biophys. Res. Commun. 124: 250–255, 1984.
 250. Van Dop, C., M. Tsubokawa, H. R. Bourne, and J. Ramachandran. Amino acid sequence of retinal transducin at the site ADP‐ribosylated by cholera toxin. J. Biol. Chem. 259: 696–699, 1984.
 251. Van Dop, C., G. Yamanaka, F. Steinberg, R. D. Sekura, C. R. Manclar, L. Stryer, and H. R. Bourne. ADP‐ribosylation of transducin by pertussis toxin blocks the light‐stimulated hydrolysis of GTP and cGMP in retinal photoreceptors. J. Biol. Chem. 259: 23–26, 1984.
 252. Vander, A. J. Inhibition of renin release in the dog by vasopressin and vasotocin. Circ. Res. 23: 605–609, 1968.
 253. Venkatachalam, M. A., and J. I. Kreisberg. Agonist‐induced isotonic contraction of cultured mesangial cells after multiple passage. Am. J. Physiol. 249 (Cell Physiol. 18): C48–C55, 1985.
 254. Verbavatz, J. M., G. Calamita, J. S. Hugon, and J. Bourguet. Isolation of large sheets of apical material from frog urinary bladder epithelial cells by freeze‐fracture. Biol. Cell. 66: 91–97, 1989.
 255. Verkman, A. S. Mechanisms and regulation of water permeability in renal epithelia. Am. J. Physiol. 257 (Cell Physiol. 26): C837–C850, 1989.
 256. Verkman, A. S., D. A. Ausiello, C. Y. Jung, and K. L. Skorecki. Mechanisms of nonhormonal activation of adenylate cyclase based on target analysis. Biochemistry 25: 4566–4572, 1986.
 257. Verkman, A. S., W. I. Lencer, D. Brown, and D. A. Ausiello. Endosomes from kidney collecting tubule cells contain the vasopressin‐sensitive water channel. Nature 333: 268–269, 1988.
 258. Verkman, A. S., and S. K. Masur. Very low osmotic water permeability and membrane fluidity in isolated toad bladder granules. J. Membr. Biol. 104: 241–251, 1988.
 259. Verkman, A. S., K. L. Skorecki, and D. A. Ausiello. Radiation inactivation of oligomeric enzyme systems: theoretical considerations. Proc. Natl. Acad. Sci. USA 81: 150–154, 1984.
 260. Verkman, A. S., K. L. Skorecki, and D. A. Ausiello. A unique model for adenylate cyclase activation based on target analysis. In: Target‐Size Analysis of Membrane Proteins, edited by J. C. Venter and C. Y. Jung. New York: Alan R. Liss, Inc., 1986, p. 97–106.
 261. Verkman, A. S., K. L. Skorecki, and D. A. Ausiello. Radiation inactivation of multimeric enzymes: application to subunit interactions of adenylate cyclase. Am. J. Physiol. 250 (Cell Physiol. 19): C103–C114, 1986.
 262. Verkman, A. S., P. Weyer, D. Brown, and D. A. Ausiello. Functional water channels are present in clathrin coated vesicles from bovine kidney but not from brain. J. Biol. Chem. 264: 20608–20613, 1989.
 263. Wade, J. B., D. L. Stetson, and S. A. Lewis. ADH action: evidence for a membrane shuttle mechanism. Ann. N.Y. Acad. Sci. 372: 106–117, 1981.
 264. Walter, R., J. Rudinger, and I. L. Schwartz. Chemistry and structure‐activity relations of the antidiuretic hormones. Am. J. Med. 42: 653–677, 1967.
 265. Wang, Y.‐C., G. N. Pandey, J. Mendels, and A. Fraser. Effect of lithium on prostaglandin F1‐stimulated adenylate cyclase activity of human platelets. Biochem. Pharmacol. 23: 845–855, 1974.
 266. Watanabe, T., K. Umegaki, and W. L. Smith. Association of a solubilized prostaglandin E2 receptor from renal medulla with a pertussis toxin‐reactive guanine‐nucleotide regulatory protein. J. Biol. Chem. 261: 13430–13439, 1986.
 267. West, R. E., Jr., J. Moss, M. Vaughan, T. Liu, and T.‐Y. Liu. Pertussis toxin‐catalyzed ADP‐ribosylation of transducin. Cysteine 347 is the ADP‐ribose acceptor site. J. Biol. Chem. 260: 11428–11430, 1985.
 268. Williamson, J. R. Role of inositol lipid breakdown in the generation of intracellular signals. Hypertension 8: 140–156, 1986.
 269. Williamson, J. R., C. A. Hansen, and A. Verhoeven. Mechanism of action of vasopressin as a calcium mobilizing hormone. In: Vasopressin: Cellular and Integrative Actions, edited by A. W. Cowley, J.‐F. Liard, and D. A. Ausiello. New York: Raven Press, 1988, p. 33–46.
 270. Wilson, P. D., B. S. Dixon, M. A. Dillingham, J. A. Garcia‐Sainz, and R. J. Anderson. Pertussis toxin prevents homologous desensitization of adenylate cyclase in cultured renal epithelial cells. J. Biol. Chem. 261: 1503–1506, 1986.
 271. Wolff, J., S. C. Berens, and A. B. Jones. Inhibition of thyrotrophin‐stimulated adenyl cyclase activity of beef thyroid membranes by low concentration of lithium ion. Biochem. Biophys. Res. Commun. 39: 77–82, 1970.
 272. Wuthrich, R. P., and M. B. Vallotton. Prostaglandin E2 and cyclic AMP response to vasopressin in renal medullary tubular cells. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F499–F505, 1986.
 273. Yatani, A., J. Codina, A. M. Brown, and L. Birnbaumer. Direct activation of mammalian atrial muscarinic K channels by a human erythrocyte pertussis toxin‐sensitive G protein, Gk. Science 235: 207–211, 1986.
 274. Yatsunami, K., B. V. Pandya, D. D. Oprian, and H. G. Khorana. cDNA‐derived amino acid sequence of the gamma subunit of GTPase from bovine rod outer segments. Proc. Natl. Acad. Sci. USA. 82: 1936–1940, 1985.
 275. Yorio, T., E. Quist, and R. A. Masaracchia. Calcium phospholipid dependent protein kinase and its relationship to antidiuretic hormone in toad urinary bladder epithelium. Biochem. Biophys. Res. Commun. 133: 717–723, 1985.
 276. Yoshimasa, T., D. R. Sibley, M. Bouvier, R. J. Lefkowitz, and M. G. Caron. Cross‐talk between cellular signalling pathways suggested by phorbol‐ester‐induced adenylate cyclase phosphorylation. Nature 327: 67–70, 1987.
 277. Zhang, R., S. L. Alper, B. Thorens, and A. S. Verkman. Evidence from oocyte expression that the erythrocyte water channel is not band 3 or the glucose transporter. Submitted for publication 1991.
 278. Zhang, R., K. Logee, and A. S. Verkman. Expression of mRNA coding for kidney and red cell water channels in Xenopus oocytes. J. Biol. Chem. 265: 15375–15378.
 279. Zimmerhackl, B., C. R. Robertson, and R. L. Jamison. Effect of arginine vasopressin on renal medullary blood flow: a videomicroscopic study in the rat. J. Clin. Invest. 76: 770–778, 1985.
 280. Zusman, R. M., and H. R. Keiser. Prostaglandin biosynthesis by rabbit renomedullary interstitial cells in tissue culture. Stimulation by angiotensin II, bradykinin and arginine vasopressin. J. Clin. Invest. 60: 215–223, 1977.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Karl L. Skorecki, Dennis Brown, Louis Ercolani, Dennis A. Ausiello. Molecular Mechanisms of Vasopressin Action in the Kidney. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 1185-1218. First published in print 1992. doi: 10.1002/cphy.cp080226