References |
1. |
Ang, P. G. P.,
H. D. Landahl, and
E. Bartoli.
Transient and steady state simulation of the renal countercurrent mechanism.
Comput. Biol. Med.
7:
87‐111,
1977.
|
2. |
Atherton, J. C.
Lability of renal papillary tissue composition in the rat.
J. Physiol. (Lond.)
274:
323‐328,
1978.
|
3. |
Atherton, J. C.,
R. Green, and
S. Thomas.
Influence of lysine‐vasopressin dosage on the time course of changes in renal tissue and urinary composition in the conscious rat.
J. Physiol. (Lond.)
213:
291‐309,
1971.
|
4. |
Bankir, L., and
C. de Rouffignac.
Urinary concentrating ability: insights from comparative anatomy.
Am. J. Physiol.
249
(Regulatory Integrative Comp. Physiol. 18):
R643‐R666,
1985.
|
5. |
Barfuss, D. W., and
J. A. Schafer.
Differences in active and passive glucose transport along the proximal nephron.
Am. J. Physiol.
240
(Renal Fluid Electrolyte Physiol. 9):
F322‐F332,
1981.
|
6. |
Bargman, J.,
S. L. Leonard,
E. McNeely,
C. Robertson, and
R. L. Jamison.
Examination of transepithelial exchange of water and solute in the rat renal pelvis.
J. Clin. Invest.
74:
1860‐1870,
1984.
|
7. |
Barrett, G. L., and
J. S. Packer.
Dynamic simulation of the renal medulla.
Med. Biol. Eng. Comput.
21:
324‐332,
1983.
|
8. |
Barrett, G. L.,
J. S. Packer, and
J. M. Davis.
Sodium chloride, water and urea handling in the rat renal medulla: a computer simulation.
Renal Physiol.
9:
223‐240,
1986.
|
9. |
Bassingthwaite, J. B., and
C. A. Goresky.
Modeling in the analysis of solute and water exchange in the microvascularure.
In: Handbook of Physiology. The Cardiovascular System. Microcirculation,
edited by E. M. Renkin and
C. C. Michel.
Bethesda, MD:
Am. Physiol. Soc.,
1984,
sect. 2,
vol. IV,
pt. 1, chap. 13,
p. 549‐626.
|
10. |
Bellman, R. E., and
R. E. Kalaba.
Quasilinearization and Nonlinear Value Boundary Problems.
New York:
Elsevier,
1965.
|
11. |
Berliner, R. W.
Formation of concentrated urine.
In: Renal Physiology: People and Ideas,
edited by R. W. Berliner,
G. Giebisch, and
C. W. Gottschalk.
Washington, DC:
Am. Physiol Soc.,
1987,
p. 247‐276.
|
12. |
Berliner, R. W.,
N. G. Levinsky,
D. G. Davidson, and
M. Eden.
Dilution and concentration of the urine and the action of antidiuretic hormone.
Am. J. Med.
24:
730‐744,
1958.
|
13. |
Bonventre, J. V., and
C. Lechene.
Renal medullary concentrating process: an integrative hypothesis.
Am. J. Physiol.
239
(Renal Fluid Electrolyte Physiol. 8):
F578‐F588,
1980.
|
14. |
Bonventre, J. V.,
R. J. Roman, and
C. Lechene.
Effect of urea concentration of pelvic fluid on renal concentrating ability.
Am. J. Physiol.
239
(Renal Fluid Electrolyte Physiol. 8):
F609‐F618,
1980.
|
15. |
Brodsky, W. A.,
W. S. Rehm, and
W. H. Dennis.
Osmotic gradients across cellular membranes.
Science
124:
221‐222,
1956.
|
16. |
Brodsky, W. A.,
W. S. Rehm,
W. H. Dennis, and
D. G. Miller.
Thermodynamic analysis of the intracellular osmotic gradient hypothesis of active water support.
Science
121:
302‐303,
1955.
|
17. |
Broyden, C. G.
A class of methods for solving nonlinear simultaneous equations.
Math. Comput.
19:
577‐593,
1965.
|
18. |
Burg, M. B.
Thick ascending limb of Henle's loop.
Kidney Int.
22:
454‐464,
1982.
|
19. |
Burg, M. B., and
N. Green.
Function of the thick ascending limb of Henle's loop.
Am. J. Physiol.
224:
659‐668,
1973.
|
20. |
Burg, M. B., and
J. L. Stephenson.
Transport characteristics of the loop of Henle.
In: Physiology of Membrane Disorders,
edited by T. E. Andreoli,
J. F. Hoffman, and
D. D. Fanestil.
New York:
Plenum,
1978,
p. 661‐679.
|
21. |
Burgen, A. S. V.
A theoretical treatment of glucose reabsorption in the kidney.
Can. J. Biochem. Physiol.
34:
466‐474,
1956.
|
22. |
Cage, P. E.,
E. R. Carson, and
K. E. Britton.
A model of the human renal medulla.
Comput. Biomed. Res.
10:
561‐584,
1977.
|
23. |
Capek, K.,
G. Fuchs,
G. Rumrich, and
K. J. Ullrich.
Harnstoffpermeabilität der corticalen Tubulusabschnitte von Ratten in Antidiurese und Wasserdiurese.
Pflugers Arch.
290:
237‐249,
1966.
|
24. |
Caplan, S. R., and
A. Essig.
Bioenergetics and Linear Nonequilibrium Thermodynamics—The Steady State.
London:
Harvard University Press,
1983.
|
25. |
Chandhoke, P. S., and
G. M. Saidel.
Mathematical model of mass transport throughout the kidney: effects of nephron heterogeneity and tubular‐vascular organization.
Ann. Biomed. Eng.
9:
263‐301,
1981.
|
26. |
Chandhoke, P. S.,
G. M. Saidel, and
M. A. Knepper.
Role of inner medullary collecting duct NaCl transport in urinary concentration.
Am. J. Physiol.
249
(Renal Fluid Electrolyte Physiol. 18):
F688‐F697,
1985.
|
27. |
Deen, W. M.,
C. R. Robertson, and
B. M. Brenner.
A model of glomerular ultrafiltration in the rat.
Am. J. Physiol.
223:
1178‐1183,
1972.
|
28. |
Deen, W. M.,
C. R. Robertson, and
B. M. Brenner.
A model of peritubular capillary control of isotonic fluid reabsorption by the renal proximal tubule.
Biophys. J.
13:
340‐358,
1973.
|
29. |
Dennis, J. E., and
R. B. Schnabel.
Numerical Methods for Unconstrained Optimization and Nonlinear Equations.
Englewood Cliffs, NJ:
Prentice Hall Inc.,
1983.
|
30. |
de Rouffignac, C, and
F. Morel.
Micropuncture study of water, electrolytes, and urea movements along the loops of Henle in
Psammomys. J. Clin. Invest.
48:
474‐486,
1969.
|
31. |
Diamond, J. M., and
Bossert, W. H.
Standing‐gradient osmotic flow: a mechanism for coupling of water and solute transport in epithelia.
J. Gen. Physiol.
50:
2061‐2083,
1967.
|
32. |
Dole, V. P.
Back‐diffusion of urea in the mammalian kidney.
Am. J. Physiol.
139:
504‐513,
1943.
|
33. |
Dongarra, J. J.
Performance of various computers using standard linear equations software in a Fortran environment.
Argonne, IL:
Mathematics and Computer Science Division, Argonne National Laboratory,
Technical Memorandum No. 23,
August 1984.
|
34. |
Du Bois, R.,
A. Verniory, and
M. Abramow.
Computation of the osmotic water permeability of perfused tubule segments.
Kidney Int.
10:
478‐479,
1976.
|
35. |
Eason, G.
The central core model of the renal medulla: an approximate solution.
Math. Biosci.
79:
107‐116,
1986.
|
36. |
Eason, G.
On the metabolic pump in the renal medulla.
Math. Biosci.
84:
155‐158,
1987.
|
37. |
Eason, G.
The central core model of the renal medulla: a particular solution.
Math. Biosci.
85:
1‐12,
1987.
|
38. |
Farahzad, P.
Analysis of the equations of renal network flows.
Math. Biosci.
40:
233‐242,
1978.
|
39. |
Farahzad, P., and
R. P. Tewarson.
An efficient numerical method for solving the differential equations of renal counterflow systems.
Comput. Biol. Med.
8:
57‐64,
1978.
|
40. |
Farahzad, P., and
R. P. Tewarson.
Numerical continuation method for a system of parallel flow tubes.
Comput. Biol. Med.
9:
21‐27,
1979.
|
41. |
Foster, D. M., and
J. A. Jacquez.
Comparison using central core model of renal medulla of the rabbit and rat.
Am. J. Physiol.
234
(Renal Fluid Electrolyte Physiol. 7):
F402‐F414,
1978.
|
42. |
Foster, D.,
A. Jacquez, and
E. Daniels.
Solute concentration in the kidney—II: input‐output studies on a central core model.
Math. Biosci.
32:
337‐360,
1976.
|
43. |
Franck, J., and
J. E. Mayer.
An osmotic diffusion pump.
Arch. Biochem.
14:
297‐313,
1947.
|
44. |
Franke, H.,
W. Niesel, and
H. Röskenbleck.
Differenzierung der Konzentrierungsprozesse des äusseren und des inneren Marks durch Ermittelung der Konzentrationsprofile von Natrium, Kalium und Harnstoff bei unterschiedlichen Funktionszuständen.
Pflugers Arch.
315:
321‐335,
1970.
|
45. |
Friedlander, S. K., and
M. Walser.
Some aspects of flow and diffusion in the proximal tubule of the kidney.
J. Theor. Biol.
8:
87‐96,
1965.
|
46. |
Furukawa, T.,
S. Takasugi,
M. Inoue,
H. Inada,
F. Kajiya, and
H. Abe.
A digital computer model of the renal medullary countercurrent system.
Comput. Biomed. Res.
7:
213‐229,
1974.
|
47. |
Garner, J. B.,
K. S. Crump, and
J. L. Stephenson.
Transient behaviour of the single loop solute cycling model of the renal medulla.
Bull. Math. Biol.
40:
273‐300,
1978.
|
48. |
Garner, J. B., and
R. B. Kellogg.
A one tube flow problem arising in physiology.
Bull. Math. Biol.
42:
295‐304,
1980.
|
49. |
Garner, J. B., and
R. B. Kellogg.
The diffusion‐convection equation with pressure.
J. Math. Anal. Appl.
79:
58‐70,
1981.
|
50. |
Garner, J. B., and
R. B. Kellogg.
Diffusion and convection in a family of tubes.
J. Math. Anal. Appl.
85:
461‐472,
1982.
|
51. |
Garner, J. B.,
R. B. Kellogg, and
J. L. Stephenson.
Mathematical analysis of a model for the renal concentrating mechanism.
Math. Biosci.
65:
125‐150,
1983.
|
52. |
Gertz, K. H.
Transtubuläre Natriumchloridflüsse und Permeabilität für Nichtelektrolyte im proximalen und distalen Konvolut der Rattenniere.
Pflugers Arch.
276:
336‐356,
1963.
|
53. |
Gertz, K. H.,
M. Brandis,
G. Braun‐Schubert, and
J. W. Boylan.
The effect of saline infusion and hemorrhage on glomerular filtration pressure and single nephron filtration rate.
Pflugers Arch.
310:
193‐205,
1969.
|
54. |
Gertz, K. H.,
J. A. Mangos,
G. Braun, and
H. D. Pagel.
On the glomerular tubular balance in the rat kidney.
Pflugers Arch.
285:
360‐372,
1965.
|
55. |
Gertz, K. H.,
B. Schmidt‐Nielsen, and
D. Pagel.
Exchange of water, urea and salt between the mammalian renal papilla and the surrounding urine.
Federation Proc.
25:
327,
1966.
|
56. |
Gottschalk, C. W.
Osmotic concentration and dilution of the urine.
Am. J. Med.
36:
670‐685,
1964.
|
57. |
Gottschalk, C. W.,
W. E. Lassiter,
M. Mylle,
K. J. Ullrich,
B. Schmidt‐Nielsen,
R. O'Dell, and
G. Pehling.
Micropuncture study of composition of loop of Henle fluid in desert rodents.
Am. J. Physiol.
204:
532‐535,
1963.
|
58. |
Gottschalk, C. W., and
M. Mylle.
Micropuncture study of the mammalian urinary concentrating mechanism: evidence for the countercurrent hypothesis.
Am. J. Physiol.
196:
927‐936,
1959.
|
59. |
Greenwald, L.
The significance of renal relative medullary thickness.
Physiol. Zool.
62:
1005‐1014,
1989.
|
60. |
Greenwald, L., and
D. Stetson.
Urine concentration and the length of the renal papilla.
NIPS
3:
46‐49,
1988.
|
61. |
Greger, R.
Ion transport mechanisms in thick ascending limb of Henle's loop of mammalian nephron.
Physiol. Rev.
65:
760‐797,
1985.
|
62. |
Hagstrom, T., and
R. P. Tewarson.
Partioning and parallel algorithms for kidney models.
Math. Mod.
11:
847‐849,
1988.
|
63. |
Hai, M. A., and
S. Thomas.
Influence of prehydration on the changes in renal tissue composition induced by water diuresis in the rat.
J. Physiol. (Land.)
205:
599‐618,
1969.
|
64. |
Handler, J. S., and
J. Orloff.
Antidiuretic hormone.
Annu. Rev. Physiol.
43:
611‐624,
1981.
|
65. |
Hargitay, B., and
W. Kuhn.
Das Multiplikationsprinzip als Grundlage der Harnkonzentrierung in der Niere.
Z. Elektrochem. Angew. Phys. Chem.
55:
539‐558,
1951.
|
66. |
Hearon, J. Z.
The steady state kinetics of some biological systems: IV. Thermodynamic aspects.
Bull Math. Biophys.
12:
85‐106,
1950.
|
67. |
Heinz, E.
Electrical Potentials in Biological Membrane Transport.
New York:
Springer‐Verlag,
1981.
|
68. |
Homer, L. D., and
P. K. Weathersby.
Transient solutions of equations for countercurrent capillary exchange.
Am. J. Physiol.
245
(Regulatory Integrative Comp. Physiol. 14):
R534‐R540,
1983.
|
69. |
Horster, M. F.,
A. Gilg, and
P. Lory.
Determinants of axial osmotic gradients in the differentiating countercurrent system.
Am. J. Physiol.
246
(Renal Fluid Electrolyte Physiol. 15):
F124‐F132,
1984.
|
70. |
Hubbard, B. E.
Computing transient solutions for certain renal counterflow systems.
In: Proc. Summer Comput. Simulation Conf., Washington, DC, 1976.
Lajolla, CA:
Simulation Councils, Inc.,
1976.
|
71. |
Huss, R. E., and
J. L. Stephenson.
A mathematical model of proximal tubule absorption.
J. Membr. Biol.
47:
377‐399,
1979.
|
72. |
Imai, M.
Function of the thin ascending limb of Henle of rats and hamsters perfused in vitro.
Am. J. Physiol.
232
(Renal Fluid Electrolyte Physiol. 1):
F201‐F209,
1977.
|
73. |
Imai, M.
Functional heterogeneity of the descending limbs of Henle's loop. II. Interspecies differences among rabbits, rats, and hamsters.
Pflugers Arch.
402:
393‐401,
1984.
|
74. |
Imai, M.,
M. Hayashi, and
M. Araki.
Functional heterogeneity of the descending limbs of Henle's loop. I. Internephron heterogeneity in the hamster kidney.
Pflugers Arch.
402:
385‐392,
1984.
|
75. |
Imai, M., and
J. P. Kokko.
Sodium chloride, urea, and water transport in the thin ascending limb of Henle: generation of osmotic gradients by passive diffusion of solutes.
J. Clin. Invest.
53:
393‐402,
1974.
|
76. |
Imai, M.,
J. Taniguchi, and
K. Tabei.
Function of thin loops of Henle.
Kidney Int.
31:
565‐579,
1987.
|
77. |
Jacquez, J. A.
Compartmental Analysis in Biology and Medicine
(2nd ed).
Ann Arbor:
The University of Michigan Press,
1985.
|
78. |
Jacquez, J. A.,
B. Carnahan, and
P. Abbrecht.
A model of the renal cortex and medulla.
Math. Biosci.
1:
227‐261,
1967.
|
79. |
Jacquez, J. A.,
D. Foster, and
E. Daniels.
Solute concentration in the kidney—I. A model of the renal medulla and its limit cases.
Math. Biosci.
32:
307‐335,
1976.
|
80. |
Jamison, R. L.
Micropuncture study of segments of thin loop of Henle in the rat.
Am. J. Physiol.
215:
236‐242,
1968.
|
81. |
Jamison, R. L.
Short and long loop nephrons.
Kidney Int.
31:
597‐605,
1987.
|
82. |
Jamison, R. L.,
C. M. Bennett, and
R. W. Berliner.
Countercurrent multiplication by the thin loops of Henle.
Am. J. Physiol.
212:
357‐366,
1967.
|
83. |
Jamison, R. L., and
W. Kriz.
Urinary Concentrating Mechanism: Structure and Function.
New York:
Oxford University Press,
1982.
|
84. |
Jamison, R. L.,
F. B. Lacy,
J. P. Pennell, and
V. M. Sanjana.
Potassium secretion by the descending limb or pars recta of the juxtamedullary nephron in vivo.
Kidney Int.
9:
323‐332,
1976.
|
85. |
Jamison, R. L.,
J. Work, and
J. A. Schafer.
New pathways for potassium transport in the kidney.
Am. J. Physiol.
242
(Renal Fluid Electrolyte Physiol. 11):
F297‐F312,
1982.
|
86. |
Johnson, A. M., and
K. S. Crump.
Transient solution of a solute cycling model of the renal medulla by using Laplace transforms.
In: Proc. Summer Comput. Simulation Conf., Washington, DC, 1976.
Lajolla, CA:
Simulation Councils, Inc.,
1976,
p 460‐463.
|
87. |
Johnston, P. A.,
C. A. Battilana,
F. B. Lacy, and
R. L. Jamison.
Evidence for a concentration gradient favoring outward movement of sodium from the thin loop of Henle.
J. Clin. Invest.
59:
234‐240,
1977.
|
88. |
Kaimal, R.,
B. Kellogg, and
J. L. Stephenson.
A mathematical model for the transport of PAH analogues in the kidney.
Math. Biosci.
69:
103‐129,
1984.
|
89. |
Katchalsky, A., and
P. F. Curran.
Nonequilibrium Thermodynamics in Biophysics.
Cambridge, MA:
Harvard University Press,
1965.
|
90. |
Kawamura, S., and
J. P. Kokko.
Urea secretion by the straight segment of the proximal tubule.
J. Clin. Invest.
58:
604‐612,
1976.
|
91. |
Kedem, O., and
A. Katchalsky.
Thermodynamic analysis of the permeability of biological membranes to non‐electrolytes.
Biochim. Biophys. Acta
27:
229‐246,
1958.
|
92. |
Kedem, O., and
A. Katchalsky.
A physical interpretation of the phenomenological coefficients of membrane permeability.
J. Gen. Physiol
45:
143‐179,
1961.
|
93. |
Kellogg, R. B.
Osmotic Flow in a Tube with Stagnant Points.
College Park, MD:
University of Maryland,
1975,
Tech. Note BN‐818, IFDAM.
|
94. |
Kellogg, R. B.
A priori bounds for renal network flows.
In: Proc. Summer Comput. Simulation Conf., Washington, DC, 1976.
Lajolla, CA:
Simulation Councils, Inc.,
1976,
p. 456‐459.
|
95. |
Kellogg, R. B.
Uniqueness in the Schauder fixed point theorem.
Proc. Am. Math. Soc.
60:
207‐210,
1976.
|
96. |
Kellogg, R. B.
Difference approximation for a singular perturbation problem with turning points.
In: Analytical and Numerical Approaches to Asymptotic Problems in Analysis,
edited by S. Axelsson,
L. S. Frank and
A. van der Sluis.
Amsterdam:
North Holland,
1981,
p. 133‐139.
|
97. |
Kellogg, R. B.
Some singular pertubation problems in renal models.
J. Math. Anal. Appl.
128:
214‐240,
1987.
|
98. |
Kelman, R. B.
A theoretical note on exponential flow in the proximal part of the mammalian nephron.
Bull. Math. Biophys.
24:
303‐317,
1962.
|
99. |
Kelman, R. B.
Mathematical analysis of sodium reabsorption in proximal part of nephron in presence of nonreabsorbed solute.
J. Theor. Biol.
8:
22‐26,
1965.
|
100. |
Kelman, R. B.,
D. J. Marsh and
H. C. Howard.
Nonmonotonicity of solutions of linear differential equations occurring in the theory of urine formation.
SIAM Rev.
8:
463‐478,
1966.
|
101. |
Kien, G. A., and
E. Koushanpour.
Digital computer simulation of the nephron: the action of osmotic diuretics.
J. Pharmacol. Exp. Ther.
163:
198‐209,
1968.
|
102. |
Kill, F.
The mechanism of concentration of urine: an alternative to the countercurrent multiplier hypothesis.
J. Oslo City Hosp.
10:
261‐264,
1960.
|
103. |
Kill, F., and
K. Aukland.
The role of urea in the renal concentration mechanism.
Scand.J. Clin. Lab. Invest.
12:
290‐299,
1960.
|
104. |
Kislyakov, Y. Y., and
Y. Y. Bagrov.
Mathematical modeling of the process of glomerular filtration.
Biofizika
18:
897‐901,
1973.
|
105. |
Knepper, M. A.
Measurement of osmolality in kidney slices using vapor pressure osmometry.
Kidney Int.
21:
653‐655,
1982.
|
106. |
Knepper, M. A.
Urea transport in isolated thick ascending limbs and collecting ducts from rats.
Am. J. Physiol.
245
(Renal Fluid Electrolyte Physiol. 14):
F634‐F639,
1983.
|
107. |
Knepper, M. A.
Urea transport in nephron segments from medullary rays of rabbits.
Am. J. Physiol.
244
(Renal Fluid Electrolyte Physiol. 13):
F622‐F627,
1983.
|
108. |
Knepper, M., and
M. Burg.
Organization of nephron function.
Am. J. Physiol.
244
(Renal Fluid Electrolyte Physiol. 13):
F579‐F589,
1983.
|
109. |
Knepper, M. A.,
R. A. Danielson,
G. M. Saidel, and
R. S. Post.
Quantitative analysis of renal medullary anatomy in rats and rabbits.
Kidney Int.
12:
313‐323,
1977.
|
110. |
Knepper, M. A.,
J. M. Sands, and
C.‐L. Chou.
Independence of urea and water transport in rat inner medullary collecting duct.
Am. J. Physiol.
256
(Renal Fluid Electrolyte Physiol. 25):
F610‐F621,
1989.
|
111. |
Knepper, M. A., and
J. L. Stephenson.
Urinary concentrating and diluting processes.
In: Physiology of Membrane Disorders
(2nd ed.),
edited by T. E. Andreoli,
J. F. Hoffman,
D. D. Fanestil, and
S. G. Schultz.
New York:
Plenum,
1986,
p. 713‐726.
|
112. |
Kokko, J. P.
Sodium chloride and water transport in the descending limb of Henle.
J. Clin. Invest.
49:
1838‐1846,
1970.
|
113. |
Kokko, J. P.
Urea transport in the proximal tubule and the descending limb of Henle.
J. Clin. Invest.
51:
1999‐2008,
1972.
|
114. |
Kokko, J. P.
Transport characteristics of the thin limbs of Henle.
Kidney Int.
22:
449‐453,
1982.
|
115. |
Kokko, J. P., and
F. C. Rector, Jr.
Countercurrent multiplication system without active transport in inner medulla.
Kidney Int.
2:
214‐223,
1972.
|
116. |
Koushanpour, E.,
R. R. Tarica, and
W. F. Stevens.
Mathematical simulation of normal nephron function in rat and man.
J. Theoret. Biol.
31:
177‐214,
1971.
|
117. |
Kriz, W.
Structural organization of the renal medullary counterflow system.
Federation Proc.
42:
2379‐2385,
1983.
|
118. |
Kriz, W., and
B. Kaissling.
Structural organization of the mammalian kidney.
In: The Kidney,
edited by D. W. Seldin and
G. Giebisch.
New York:
Raven,
1985,
vol. 1,
p. 265‐306.
|
119. |
Kriz, W., and
A. F. Lever.
Renal countercurrent mechanisms: structure and function.
Am. Heart J.
78:
101‐118,
1969.
|
120. |
Kuhn, W., and
A. Ramel.
Aktiver Salztransport als möglicher (und wahrscheinlicher) Einzeleffekt bei der Harnkonzentrierung in der Niere.
Helv. Chim. Acta
42:
628‐660,
1959.
|
121. |
Kuhn, W., and
A. Ramel.
Zweierlei Gleichgewichtspotentiale an ionendurchlässigen, Ionen‐intra‐nichtpermutierenden Membranen (Ruhe‐ und Aktionspotential).
Helv. Chim. Acta
42:
293‐305,
1959.
|
122. |
Kuhn, W., and
K. Ryffel.
Herstellung konzentrierter Lösungen aus verdünnten durch blosse Membranwirkung. Ein Modellversuch zur Funktion der Niere.
Hoppe‐Seylers Z. Physiol. Chem.
276:
145‐178,
1942.
|
123. |
Lassiter, W. E.,
C. W. Gottschalk, and
M. Mylle.
Micropuncture study of net transtubular movement of water and urea in nondiuretic mammalian kidney.
Am. J. Physiol.
200:
1139‐1146,
1961.
|
124. |
Layton, H. E.
Distribution of Henle's loops may enhance urine concentrating capability.
Biophys. J.
49:
1033‐1040,
1986.
|
125. |
Layton, H. E.
Concentrating urine in the inner medulla of the kidney.
Comments Theor. Biol.
1:
179‐196,
1989.
|
126. |
Layton, H. E.
Urea transport in a distributed loop model of the urine concentrating mechanism.
Am. J. Physiol.
258
(Renal Fluid Electrolyte Physiol. 27):
F1110‐F1124,
1990.
|
127. |
Lemley, K. V., and
W. Kriz.
Cycles and separations: the histotopography of the urinary concentrating process.
Kidney Int.
31:
538‐548,
1987.
|
128. |
Lever, A. F.
The vasa recta and countercurrent multiplication.
Acta Med. Scand.
178
(Suppl. 434):
1‐43,
1965.
|
129. |
Lin, C. C., and
L. A. Segel.
Mathematics Applied to Deterministic Problems in the Natural Sciences.
New York:
Macmillan,
1974,
p. 244‐276.
|
130. |
Lory, P.
Numerical solution of a kidney model by multiple shooting.
Math. Biosci.
50:
117‐128,
1980.
|
131. |
Lory, P.
Effectiveness of a salt transport cascade in the renal medulla: computer simulations.
Am. J. Physiol.
252
(Renal Fluid Electrolyte Physiol. 21):
F1095‐F1102,
1987.
|
132. |
Lory, P.,
A. Gilg, and
M. Horster.
Renal countercurrent system: role of collecting duct convergence and pelvic urea predicted from a mathematical model.
J. Math. Biol.
16:
281‐304,
1983.
|
133. |
Macey, R. I.
Pressure flow patterns in a cylinder with reabsorbing walls.
Bull. Math. Biophys.
25:
1‐9,
1963.
|
134. |
Marsh, D. J.
Solute and water flows in thin limbs of Henle's loop in the hamster kidney.
Am. J. Physiol.
218:
824‐831,
1970.
|
135. |
Marsh, D. J.
Osmotic concentration and dilution of the urine.
In: The Kidney 3: Morphology, Biochemistry, Physiology,
edited by C. Rouiller and
A. Muller.
New York:
Academic,
1971,
p. 71‐126.
|
136. |
Marsh, D. J.
Computer simulation of renal countercurrent systems.
Federation Proc.
42:
2398‐2404,
1983.
|
137. |
Marsh, D. J.,
R. B. Kelman, and
H. C. Howard.
The theory of urine formation in water diuresis with implications for antidiuresis.
Bull. Math. Biophys.
29:
67‐89,
1967.
|
138. |
Marsh, D. J., and
L. A. Segel.
Analysis of countercurrent diffusion exchange in blood vessels of the renal medulla.
Am. J. Physiol.
221:
817‐828,
1971.
|
139. |
Marumo, F.,
Y. Yoshikawa, and
S. Koshikawa.
A study on the concentration mechanism of the renal medulla by mathematical model.
Jpn. Circ. J.
31:
1309‐1317,
1967.
|
140. |
Mejia, R.
CONKUB: a conversational path‐follower for systems of nonlinear equations.
J. Comput. Physics.
63:
67‐84,
1986.
|
141. |
Mejia, R.,
R. B. Kellogg, and
J. L. Stephenson.
Comparison of numerical methods for renal network flows.
J. Comput. Physics
23:
53‐62,
1977.
|
142. |
Mejia, R.,
J. M. Sands,
J. L. Stephenson, and
M. A. Knepper.
Renal actions of atrial natriuretic factor: a mathematical modeling study.
Am. J. Physiol.
257
(Renal Fluid Electrolyte Physiol. 26):
F1146‐F1157,
1989.
|
143. |
Mejia, R., and
J. L. Stephenson.
Numerical solution of a central core model of the renal medulla.
In: Proc. Comput. Simulation Conf., Montreal, 1973.
Lajolla, CA:
Simulation Councils, Inc.,
1973,
vol. 2,
p. 806‐810.
|
144. |
Mejia, R., and
J. L. Stephenson.
Numerical solution of multinephron kidney equations.
J. Comput. Physics.
32:
235‐246,
1979.
|
145. |
Mejia, R., and
J. L. Stephenson.
Solution of a multinephron, multisolute model of the mammalian kidney by Newton and continuation methods.
Math. Biosci.
68:
279‐298,
1984.
|
146. |
Mejia, R.,
J. L. Stephenson, and
R. J. LeVeque.
A test problem for kidney models.
Math. Biosci.
50:
129‐131,
1980.
|
147. |
Moore, L. C., and
D. J. Marsh.
How descending limb of Henle's loop permeability affects hypertonic urine formation.
Am. J. Physiol.
239
(Renal Fluid Electrolyte Physiol. 8):
F57‐F71,
1980.
|
148. |
Moore, L. C.,
D. J. Marsh, and
R. E. Kalaba.
A simulation study of the mode of osmotic equilibration by limbs of Henle's loop in the kidney medulla.
In: Proc. Summer Computer Simulation Conf., Washington, DC, 1976.
Lajolla, CA:
Simulation Councils, Inc.,
1976,
p. 515‐517.
|
149. |
Moore, L. C.,
D. J. Marsh, and
C. M. Martin.
Loop of Henle during the water‐to‐antidiuresis transition in Brattleboro rats.
Am. J. Physiol.
239
(Renal Fluid Electrolyte Physiol. 8):
F72‐F83,
1980.
|
150. |
Morel, F., and
C. de Rouffignac.
Micropuncture study of urea medullary recycling in desert rodents.
In: Proc. Int. Congr. Urea and the Kidney, Sarasota, FL, 1968.
Amsterdam:
Excerpta Med.,
1968,
p. 401‐413.
(Int. Congr. Ser. 195.)
|
151. |
Morel, F.,
M. Imbert‐Teboul, and
D. Chabardes.
Distribution of hormone‐dependent adenylate cyclase in the nephron and its physiological significance.
Annu. Rev. Physiol.
43:
569‐581,
1981.
|
152. |
Niesel, W., and
H. Röskenbleck.
Die Bedeutung der Stromgeschwindigkeiten in den (Gefäss‐systemen der Niere und der Schwimmblase für die Aufrechterhaltung von Konzentrationsgradienten.
Pflugers Arch.
277:
302‐315,
1963.
|
153. |
Niesel, W., and
H. Röskenbleck.
Möglichkeiten der Konzentrierung von Stoffen in biologischen Gegenstromsystemen.
Pflugers Arch.
276:
555‐567,
1963.
|
154. |
Niesel, W., and
H. Röskenbleck.
Konzentrierung von Lösungen unterschiedlicher Zusammensetzung durch alleinige Gegenstromdiffusion und Gegenstromosmose als möglicher Mechanismus der Harnkonzentrierung.
Pflugers Arch.
283:
230‐241,
1965.
|
155. |
Niesel, W.,
H. Röskenbleck,
P. Hanke,
N. Specht, and
L. Heuer.
Die gegenseitige Beeinflussung von Harnstoff, NaCl, KCI und Harnfluss bei der Bildung eines maximal konzentrierten Harns.
Pflugers Arch.
315:
308‐320,
1970.
|
156. |
Ortega, J. M., and
W. C. Rheinboldt.
Iterative Solution of Nonlinear Equations in Several Variables.
New York:
Academic,
1970.
|
157. |
Packer, J. S., and
J. E. Packer.
An analogue‐computer simulation of the facultative water‐reabsorption process in the human kidney—a vascular role for a.d.h.
Med. Biol. Eng.
11:
310‐318,
1973.
|
158. |
Packer, J. S., and
J. E. Packer.
Recycling of urea in the rat kidney: a dynamic self regulating analogue computer simulation.
Med. Biol. Eng.
12:
633‐646,
1974.
|
159. |
Packer, J. S., and
J. E. Packer.
Medullary sodium depletion during diuresis—a digital computer simulation.
Med. Biol. Eng. Comput.
15:
134‐139,
1977.
|
160. |
Palatt, P. J.
Hydrodynamic effects in a capillary, counter‐current system.
Proc. Summer Computer Simulation Conf., Washington, DC, 1976.
LaJolla, CA:
Simulation Councils, Inc.,
1976,
p. 464‐467.
|
161. |
Palatt, P. J., and
G. M. Saidel.
An analysis of countercurrent exchange with emphasis on renal function.
Bull Math. Biol.
35:
275‐286,
1973.
|
162. |
Palatt, P. J., and
G. M. Saidel.
Countercurrent exchange in the inner renal medulla: vasa recta‐descending limb system.
Bull Math. Biol.
35:
431‐447,
1973.
|
163. |
Palatt, P. J.,
G. M. Saidel, and
M. Macklin.
Transport processes in the renal cortex.
J. Theor. Biol.
29:
251‐274,
1970.
|
164. |
Pallone, T. L.,
Y. Yagil, and
R. L. Jamison.
Effect of small‐solute gradients on transcapillary fluid movement in renal inner medulla.
Am. J. Physiol.
257
(Renal Fluid Electrolyte Physiol. 26):
F547‐F553,
1989.
|
165. |
Pennell, J. P.,
F. B. Lacy, and
R. L. Jamison.
An in vivo study of the concentrating process in the descending limb of Henle's loop.
Kidney Int
5:
337‐347,
1974.
|
166. |
Pennell, J. P.,
V. Sanjana,
N. R. Frey, and
R. L. Jamison.
The effect of urea infusion on the urinary concentrating mechanism in protein‐depleted rats.
J. Clin. Invest.
55:
399‐409,
1975.
|
167. |
Persson, E.
Water permeability in rat distal tubules.
Acta Physiol. Scand.
78:
364‐375,
1970.
|
168. |
Pinter, G. G., and
J. L. Shohet.
Origin of sodium concentration profile in the renal medulla.
Nature
200:
955‐958,
1963.
|
169. |
Rocha, A. S.,
J. P. Kokko.
Sodium chloride and water transport in the medullary thick ascending limb of Henle: evidence for active chloride transport.
J. Clin. Invest.
52:
612‐623,
1973.
|
170. |
Röcha, A. S., and
L. H. Kudo.
Water, urea, sodium, chloride, and potassium transport in the in vitro isolated perfused papillary collecting duct.
Kidney Int.
22:
485‐491,
1982.
|
171. |
Röskenbleck, H., and
W. Niesel.
Gekoppelte Gegenstrom‐systeme als Modell de konzentrierenden Niere.
Pflugers Arch.
277:
316‐324,
1963.
|
172. |
Saidel, G. M.,
P. S. Chandhoke, and
M. A. Knepper.
Spatially discrete models of counter‐current mass transport for application to the kidney.
Math. Comput. Simul.
20:
259‐270,
1978.
|
173. |
Salane, D. E., and
R. P. Tewarson.
A unified derivation of symmetric quasi‐Newton update formulas.
J. Inst. Math. Applic.
25:
29‐36,
1980.
|
174. |
Sands, J. M., and
M. A. Knepper.
Urea permeability of mammalian inner medullary collecting duct system and papillary surface epithelium.
J. Clin. Invest.
79:
138‐147,
1987.
|
175. |
Sanjana, V. M.,
P. A. Johnston,
C. R. Robertson, and
R. L. Jamison.
An examination of transcapillary water flux in renal inner medulla.
Am. J. Physiol.
231:
313‐318,
1976.
|
176. |
Sanjana, V. M.,
C. R. Robertson, and
R. L. Jamison.
Water extraction from the inner medullary collecting tubule system: a role for urea.
Kidney Int.
10:
139‐146,
1976.
|
177. |
Sasaki, S., and
M. Imai.
Effects of vasopressin on water and NaCl transport across the in vitro perfused medullary thick ascending limb of Henle's loop of mouse, rat, and rabbit kidneys.
Pflugers Arch.
383:
215‐221,
1980.
|
178. |
Schafer, J. A.,
C. S. Patlak, and
T. E. Andreoli.
Osmosis in cortical collecting tubules: a theoretical and experimental analysis of the osmotic transient phenomenon.
J. Gen. Physiol.
64:
201‐227,
1974.
|
179. |
Schmidt‐Nielsen, B., and
R. O'Dell.
Structure and concentrating mechanism in the mammalian kidney.
Am. J. Physiol.
200:
1119‐1124,
1961.
|
180. |
Scholander, P. F.
Secretion of gases against high pressures in the swim‐bladder of deep sea fishes. II. The rete mirabile.
Biol. Bull.
107:
260‐277,
1954.
|
181. |
Scholander, P. F.
The wonderful net.
Sci. Am.
196:
96‐107,
1957.
|
182. |
Scholander, P. F., and
J. Krog.
Countercurrent heat exchange and vascular bundles in sloths.
J. Appl. Physiol.
10:
405‐411,
1957.
|
183. |
Schutz, W., and
J. Schermann.
Pelvic urine composition as a determinant of inner medullary solute concentration and urine osmolarity.
Pflugers Arch.
334:
154‐166,
1972.
|
184. |
Segel, L. A.
Standing‐gradient flows driven by active solute transport.
J. Theor. Biol.
29:
233‐250,
1970.
|
185. |
Shohet, J. L., and
G. G. Pinter.
Derivation of the partial differential equations utilized in a model describing the Na concentration profile in the renal medulla.
Nature
204:
689‐690,
1964.
|
186. |
Smith, S. W.
The Kidney: Structure and Function in Health and Disease.
New York:
Oxford University Press,
1951.
|
187. |
Sonnenberg, H.
Medullary collecting‐duct function in antidiuretic and in salt‐ or water‐diuretic rats.
Am. J. Physiol.
226:
501‐506,
1974.
|
188. |
Staverman, A. J.
The theory of measurement of osmotic pressure.
Rec. Trav. Chim. Paysbas
70:
344‐352,
1951.
|
189. |
Staverman, A. J.
Non‐equilibrium thermodynamics of membrane processes.
Trans. Faraday Soc.
48:
176‐185,
1952.
|
190. |
Stephenson, J. L.
Ability of counterflow systems to concentrate.
Nature
206:
1215‐1219,
1965.
|
191. |
Stephenson, J. L.
Concentration in renal counterflow systems.
Biophys. J.
6:
539‐551,
1966.
|
192. |
Stephenson, J. L.
Consistency of equations for solute and water movement in the renal medulla.
Biophys. J.
11:
277a,
1971.
|
193. |
Stephenson, J. L.
Concentration of urine in a central core model of the renal counterflow system.
Kidney Int.
2:
85‐94,
1972.
|
194. |
Stephenson, J. L.
Concentrating engines and the kidney. I. Central core model of the renal medulla.
Biophys. J.
13:
512‐545,
1973.
|
195. |
Stephenson, J. L.
Concentrating engines and the kidney. II. Multisolute central core systems.
Biophys. J.
13:
546‐567,
1973.
|
196. |
Stephenson, J. L.
The mathematical theory of renal function.
In: Engineering Principles in Physiology,
edited by J. H. V. Brown and
D. S. Gann.
New York:
Academic,
1973,
vol. 2,
p. 283‐320.
|
197. |
Stephenson, J. L.
Transient behavior of the single loop solute cycling countercurrent multiplier.
Bull. Math. Biol.
35:
183‐194,
1973.
|
198. |
Stephenson, J. L.
Free‐energy balance in renal counterflow systems.
Math. Biosci.
21:
299‐310,
1974.
|
199. |
Stephenson, J. L.
Concentrating engines and the kidney. III. Canonical mass balance equation for multinephron models of the renal medulla.
Biophys. J.
16:
1273‐1286,
1976.
|
200. |
Stephenson, J. L.
Analysis of the transient behavior of kidney models.
Bull. Math. Biol.
40:
211‐221,
1978.
|
201. |
Stephenson, J. L.
Countercurrent transport in the kidney.
Annu. Rev. Biophys. Bioeng.
7:
315‐339,
1978.
|
202. |
Stephenson, J. L.
Case studies in renal and epithelial physiology.
In: Mathematical Aspects of Physiology. Lectures in Applied Mathematics,
edited by F. C. Hoppensteadt.
Providence, RI:
American Mathematical Society,
1981,
vol. 19,
p. 171‐212.
|
203. |
Stephenson, J. L.
Concentrating engines and the kidney. IV. Mass balance in a single stage of a multistage model of the renal medulla.
Math. Biosci.
55:
265‐278,
1981.
|
204. |
Stephenson, J. L.
Renal concentrating mechanisms: introduction.
Federation Proc.
42:
2377‐2378,
1983.
|
205. |
Stephenson, J. L.
Renal concentrating mechanism: fundamental theoretical concepts.
Federation Proc.
42:
2386‐2391,
1983.
|
206. |
Stephenson, J. L.
Models of the urinary concentrating mechanism.
Kidney Int.
31:
648‐661,
1987.
|
207. |
Stephenson, J. L., and
R. W. Berliner.
Renal concentrating mechanism: summary.
Federation Proc.
42:
2405,
1983.
|
208. |
Stephenson, J. L., and
J. F. Jen.
Do osmolytes help to drive countercurrent multiplication in thin limbs of Henle's loops?
Kidney Int.
37:
572,
1990.
|
209. |
Stephenson, J. L.,
J. F. Jen,
H. Wang, and
R. P. Tewarson.
Convective uphill transport of NaCl from ascending limb of Henle's loop.
J. Am. Soc. Nephrol.
2:
727,
1991.
|
210. |
Stephenson, J. L.,
R. Mejia, and
R. P. Tewarson.
Model of solute and water movement in the kidney.
Proc. Natl. Acad. Sci. USA
73:
252‐256,
1976.
|
211. |
Stephenson, J. L.,
R. P. Tewarson, and
R. Mejia.
Quantitative analysis of mass and energy balance in non‐ideal models of the renal counterflow system.
Proc. Natl. Acad. Sci. USA
71:
1618‐1622,
1974.
|
212. |
Stephenson, J. L.,
Y. Zhang,
A. Eftekhari, and
R. Tewarson.
Electrolyte transport in a central core model of the renal medulla.
Am. J. Physiol.
253
(Renal Fluid Electrolyte Physiol. 22):
F982‐F997,
1987.
|
213. |
Stephenson, J. L.,
Y. Zhang, and
R. Tewarson.
Electrolyte, urea, and water transport in a two‐nephron central core model of the renal medulla.
Am. J. Physiol.
257
(Renal Fluid Electrolyte Physiol. 26):
F399‐F413,
1989.
|
214. |
Stewart, J.
Urea handling by the renal countercurrent system: insights from computer simulation.
Pflugers Arch.
356:
133‐151,
1975.
|
215. |
Stewart, J.,
M. E. Luggen,
H. Valtin.
A computer model of the renal countercurrent system.
Kidney Int.
2:
253‐263,
1972.
|
216. |
Stewart, J., and
H. Valtin.
Computer simulation of osmotic gradient without active transport in renal inner medulla.
Kidney Int.
2:
264‐270,
1972.
|
217. |
Tabei, K., and
M. Imai.
K+ transport in upper portion of descending limbs of long‐loop nephron from hamster.
Am. J. Physiol.
252
(Renal Fluid Electrolyte Physiol. 21):
F387‐F392,
1987.
|
218. |
Taniguchi, J.,
K. Tabei, and
M. Imai.
Profiles of water and solute transport along long‐loop descending limb: analysis by mathematical model.
Am. J. Physiol.
252
(Renal Fluid Electrolyte Physiol. 21):
F393‐F402,
1987.
|
219. |
Tewarson, R. P.
Sparse matrix methods and mathematical models of the renal concentrating mechanism.
Proc. Summer Comput. Simulation Conf., Washington, DC, 1976.
LaJolla, CA:
Simulation Councils, Inc.,
1976,
p. 500‐501.
|
220. |
Tewarson, R. P.
Use of smoothing and damping techniques in the solution of nonlinear equations.
SIAM Rev.
19:
35‐45,
1977.
|
221. |
Tewarson, R. P.
A unified derivation of quasi‐Newton methods for solving non‐sparse and sparse nonlinear equations.
Computing
21:
113‐125,
1979.
|
222. |
Tewarson, R. P.
On the use of Simpson's rule in renal models.
Math Biosci.
55:
1‐5,
1981.
|
223. |
Tewarson, R. P.
A seventh‐order numerical method for solving boundary value nonlinear ordinary differential equations.
Int. J. Num. Methods Eng.
18:
1313‐1319,
1982.
|
224. |
Tewarson, R. P.
On the solution of sparse non‐linear equations and some applications.
In: Sparsity and Applications,
edited by D. J. Evans.
Cambridge:
Cambridge University Press,
1984,
p. 137‐152.
|
225. |
Tewarson, R. P.
A review of computational techniques in flow network models.
Mausam
36:
441‐446,
1985.
|
226. |
Tewarson, R. P., and
P. Farahzad.
On the numerical solution of differential equations for renal counterflow systems.
Comput. Biomed. Res.
11:
381‐391,
1978.
|
227. |
Tewarson, R. P., and
S. Gupta.
A sparse matrix method for renal models.
Math. Biosci.
61:
191‐203,
1982.
|
228. |
Tewarson, R. P., and
N. S. Huslak.
An adaptive implementation of interpolation methods for boundary value ordinary differential equations.
BIT
23:
382‐387,
1983.
|
229. |
Tewarson, R. P.,
S. Kim, and
J. L. Stephenson.
Using quasi‐Newton methods for kidney modeling equations.
Appl. Math. Lett.
3:
93‐96,
1989.
|
230. |
Tewarson, R. P.,
A. Kydes,
J. L. Stephenson, and
R. Mejia.
Use of sparse matrix techniques in numerical solution of differential equations for renal counterflow systems.
Comput. Biomed. Res.
9:
507‐520,
1976.
|
231. |
Tewarson, R. P., and
J. L. Stephenson.
Using quasi‐Newton methods for kidney modeling equations.
Presented as part of an Invited Paper at the Seventh International Conference on Computer and Mathematical Modeling, August 2‐5, 1989,
Chicago, II.
|
232. |
Tewarson, R. P.,
J. L. Stephenson,
M. Garcia, and
Y. Zhang.
On the solution of equations for renal counterflow models.
Comput. Biol. Med.
15:
287‐295,
1985.
|
233. |
Tewarson, R. P.,
J. L. Stephenson, and
L. L. Juang.
A note on solution of large sparse systems of nonlinear equations.
J. Math. Anal. Appl.
63:
439‐445,
1978.
|
234. |
Tewarson, R. P., and
Y. Zhang.
Solution of two‐point boundary value problems using splines.
Int. J. Num. Methods Eng.
23:
707‐710,
1986.
|
235. |
Tewarson, R. P., and
Y. Zhang.
Sparse quasi‐Newton LDU updates.
Int. J. Num. Methods Eng.
24:
1093‐1100,
1987.
|
236. |
Ullrich, K. J.
Permeability characteristics of the mammalian nephron. With Appendix: Sauer, F. Nonequilibrium thermodynamics of kidney tubule transport.
In: Handbook of Physiology, Renal Physiology,
edited by J. Orloff,
R. W. Berliner.
Washington, DC:
Am. Physiol. Soc.,
1973,
Sect. 8, Ch. 12,
p. 377‐414.
|
237. |
Ullrich, K. J.,
K. H. Jarausch, and
W. Overbeck.
Verteilung von Na, K, Ca, Mg, CI, PO4 und Harnstoffin Rinde und Mark der Hundeniere bei Verschiedenen Funktionszustanden.
Ber. Ges. Physiol.
180:
131‐132,
1956.
|
238. |
Ullrich, K. J.,
K. Kramer, and
J. Boylan.
Present knowledge of the counter‐current system in the mammalian kidney.
In: Heart, Kidney and Electrolytes,
edited by C. K. Friedberg.
New York:
Grune & Stratton,
1962,
p. 1‐37.
|
239. |
Ullrich, K. J.,
B. Schmidt‐Nielsen,
R. O'Dell,
G. Pehling,
C. W. Gottschalk,
W. E. Lassiter, and
M. Mylle.
Micropuncture study of composition of proximal and distal tubular fluid in rat kidney.
Am. J. Physiol.
204:
527‐531,
1963.
|
240. |
Walser, M.
Mathematical aspects of renal function: the dependence of solute reabsorption on water reabsorprion, and the mechanism of osmotic natriuresis.
J. Theor. Biol.
10:
307‐326,
1966.
|
241. |
Weinstein, A. M.
Thermodynamic relations in a system of parallel flow tubes.
Math. Biosci.
36:
1‐14,
1977.
|
242. |
Weinstein, A. M.
Nonequilibrium thermodynamic model of the rat proximal tubule epithelium.
Biophys. J.
44:
153‐170,
1983.
|
243. |
Weinstein, A. M.
An equation for flow in the renal proximal tubule.
Bull. Math. Biol.
48:
29‐57,
1986.
|
244. |
Weinstein, A. M.
A mathematical model of the rat proximal tubule.
Am. J. Physiol.
250
(Renal Fluid Electrolyte Physiol. 19):
F860‐F873,
1986.
|
245. |
Weinstein, A. M.
Osmotic diuresis in a mathematical model of the rat proximal tubule.
Am. J. Physiol.
250
(Renal Fluid Electrolyte Physiol. 19):
F874‐F884,
1986.
|
246. |
Weinstein, A. M., and
J. L. Stephenson.
Electrolyte transport across a simple epithelium: steady‐state and transient analysis.
Biophys. J.
27:
165‐186,
1979.
|
247. |
Weinstein, A. M.,
J. L. Stephenson, and
K. R. Spring.
The coupled transport of water.
In: Membrane Transport, New Comprehensive Biochemistry,
edited by S. L. Bonting and
J. J. H. H. M. de Pont.
Amsterdam:
Elsevier/North‐Holland Biomedical Press,
1981,
vol. 2,
p. 311‐351.
|
248. |
Wesson, L. G., Jr.
A theoretical analysis of urea excretion by the mammalian kidney.
Am. J. Physiol.
179:
364‐371,
1954.
|
249. |
Wexler, A. S.
Automatic evaluation of derivatives.
Appl. Math Comput.
24:
19‐46,
1987.
|
250. |
Wexler, A. S.
Solution of nonlinear boundary value problems coupled to a system of algebraic equations using quasilinearization.
Nonlinear Anal. Theory Methods Appl.
11:
691‐696,
1987.
|
251. |
Wexler, A. S.,
R. E. Kalaba, and
D. J. Marsh.
Automatic derivative evaluation in solving boundary value problems: the renal medulla.
Am. J. Physiol.
251
(Renal Fluid Electrolyte Physiol. 20):
F358‐F378,
1986.
|
252. |
Wexler, A. S.,
R. E. Kalaba, and
D. J. Marsh.
Passive, one‐dimensional countercurrent models do not simulate hypertonic urine formation.
Am. J. Physiol.
253
(Renal Fluid Electrolyte Physiol. 22):
F1020‐F1030,
1987.
|
253. |
Wexler, A. S.,
R. E. Kalaba, and
D. J. Marsh.
Three‐dimensional anatomy and renal concentrating mechanism. I. Modeling results.
Am. J. Physiol.
260
(Renal Fluid Electrolyte Physiol. 29):
F368‐F383,
1991.
|
254. |
Wexler, A. S.,
R. E. Kalaba, and
D. J. Marsh.
Three‐dimensional anatomy and renal concentrating mechanism. II. Sensitivity results.
Am. J. Physiol.
260
(Renal Fluid Electrolyte Physiol. 29):
F384‐F394,
1991.
|
255. |
Wirz, V. H.
Der osmotische Druck des Blutes in der Nierenpapille.
Helv. Physiol. Pharmacol. Acta
11:
20‐29,
1953.
|
256. |
Wirz, V. H.
Druckmessung in Kapillaren und Tubuli der Niere durch Mikropunktion.
Helv. Physiol. Pharmacol. Acta
13:
42‐49,
1955.
|
257. |
Wirz, V. H.
Der osmotische Druck in den corticalen Tubuli der Rattenniere.
Helv. Physiol. Pharmacol.
14:
353‐362,
1956.
|
258. |
Wirz, H.
The location of antidiuretic action in the mammalian kidney.
In: The Neurohypophysis,
edited by H. Heller.
New York:
Academic,
1957,
p. 157‐169.
|
259. |
Wirz, H., and
R. Dirix.
Urinary concentration and dilution.
In: Handbook of Physiology, Renal Physiology,
edited by J. Orloff and
R. W. Berliner.
Washington, DC:
Am. Physiol. Soc.,
Sect. 8, Chap. 13,
1973,
p. 415‐430.
|
260. |
Wirz, H.,
B. Hrgitay, and
W. Kuhn.
Lokalisation des Konzentrierungsprozesses in der Niere durch direkte Kryoskopie.
Helv. Physiol. Pharmacol. Acta
9:
196‐207,
1951.
|
261. |
Yancey, P. H., and
M. Burg.
Distribution of major organic osmolytes in rabbit kidneys in diuresis and antidiuresis.
Am. J. Physiol.
257
(Renal Fluid Electrolyte Physiol. 26):
F602‐F607,
1989.
|
262. |
Zhang, Y., and
R. P. Tewarson.
Least change updates to Cholesky factor subject to the nonlinear quasi‐Newton condition.
IMAA J. Num. Anal.
7:
509‐521,
1987.
|