Comprehensive Physiology Wiley Online Library

Corticosteroids and the Kidney

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Historical Background
1.1 Role of the Receptor
1.2 Transport and Biochemical Studies: Toad Bladder
1.3 Transport and Biochemical Studies: Mammalian Kidney
2 Renal Corticosteroid Receptor Distribution
3 Mineralocorticoid Action
3.1 Regulation of Na+ Absorption and K+ Secretion: Cortical Collecting Tubule
3.2 Other Target Sites That May Regulate Na+ and/or K+
3.3 Acid Excretion
3.4 Mineralocorticoid Escape
4 Glucocorticoid Action
4.1 GFR/RBF: K+ Excretion
4.2 Metabolism: Gluconeogenesis and Ammoniagenesis
4.3 Acid Excretion
4.4 Calcium Excretion
4.5 Concentration/Dilurion Urine
Figure 1. Figure 1.

Aldosterone‐stimulated short‐circuit current (SCC) in toad bladder. Aldosterone (0.28 μM) or diluent was added to serosal surface of paired bladders obtained from toads soaked 3–5 days in either water or saline. Diminished response in toads soaked for long periods in saline as seen in this study has been noted by others 225.

from Crabbe 35
Figure 2. Figure 2.

Influence of amphotericin B on short‐circuit current (SCC) in toad bladder compared to that of vasopressin. When amphotericin B was added to apical membrane, a rapid rise in SCC occurred that was not augmented by subsequent addition of vasopressin (solid line). Amphotericin B addition after vasopressin, however, enhanced SCC beyond that seen with vasopressin alone.

From Lichenstein and Leaf 157
Figure 3. Figure 3.

Schematic of relative nuclear versus cytoplasmic labeling of [3H]aldosterone and [3H]SC 26304, a spirolactone. After the portal vein and hepatic artery were ligated, adrenalectomized rats were injected IV with either [3H]aldosterone or [3H]SC 26304 and the kidneys removed 2 or 10 min later. Nonspecific binding was determined in rats injected with [3H]steroid and a 100‐fold excess of unlabeled D‐aldosterone. Scale at left is in terms of mol × 10−14/mg protein. The results show that even though cytoplasmic labeling of mineralocorticoid receptors with [3H]SC 26304 exceeds that of [3H]aldosterone, only [3H]aldosterone‐receptor complexes are retained by nuclear chromatin. Furthermore, the absolute amount of [3H]aldosterone retained at 10 min exceeded that at 2 min, despite the fact that cytoplasmic labeling was significantly reduced because of the corresponding fall in plasma levels of [3H]steroid.

Adapted from Marver et al. 172
Figure 4. Figure 4.

Relative specific binding of three corticosteroids along the adrenalectomized rat or rabbit nephron. Binding activity was determined using either in vivo administration of [3H]dexamethasone and subsequent autoradiography of tissue segments, or in vitro binding assays with isolated segments and either [3H]aldosterone or [3H]corticosterone. Aldosterone and dexamethasone studies utilized rabbits; corticosterone studies, rats.

Adapted from the studies of Doucet and Katz 47, Farman et al. 69, Lee et al. 154
Figure 5. Figure 5.

Relationship between steady‐state plasma aldosterone concentration and flux of sodium and potassium in rabbit cortical collecting tubule. Closed circles represent the lumen‐to‐bath 22Na tracer flux; open circles represent net K+ transport determined on luminal samples monitoring perfused and collected K+ concentrations. There was no significant difference in bath‐to‐lumen tracer 22Na flux measured in several groups having both high and low plasma aldosterone levels. Overall average was 1.4 pEq/cm‐s, and group averages ranged from 1.0 to 1.7 pEq/cm‐s.

adapted from the study of Schwartz and Burg 216
Figure 6. Figure 6.

Influence of aldosterone on electrolyte handling by adrenalectomized rat: inhibition of the response by actinomycin D. Animals were adrenalectomized 24 h prior to the study and maintained on 0.035 M NaCl drinking water without food. They were given diluent (control) or aldosterone (1 μg/kg BW loading dose +1 μg/kg/h infusion) ± 300 μg/kg actinomycin D. Some controls received only actinomycin D. Shown at the top are plasma Na+ and K+ concentrations as a function of time following initiation of study. At the bottom is shown either fractional excretion of Na+ (FE Na) or urinary excretion of K+ (UKV).

From Horisberger and Diezi 118
Figure 7. Figure 7.

Influence of aldosterone on CCD Na+,K+‐ATPase activity. Upper panel: Na+,K+‐ATPase activities in mol/kg dry tubule wt/h at 37°C in CCDs obtained from normal (NORM) rabbits are denoted by the solid bar (±SEM). Stippled bars include activities seen in CCDs from adrenalectomized (ADX) rabbits injected at time 0 with diluent or 10 μg/kg BW aldosterone (ALDO) ± the spirolactone SC 26304 (SPIRO), or 100 μg‐kg BW dexamethasone (DEX) and sacrificed at either 1.5 or 3 h. Bottom panel: Na+,K+‐ATPase activities at 3 h postinjection of: (1) diluent (ADX); (2) 10 μg‐kg BW aldosterone (ALDO); or (3) 10μg/kg BW aldosterone + a total of 5 mg/kg BW amiloride (AMIL) given in four split doses, starting at t= −30 min.

Adapted from Petty et al. 195
Figure 8. Figure 8.

Influence of corticosteroid therapy on transepithelial voltage (Vte) and the voltage across the apical (Va) and basolateral (Vb) membrane of the cortical collecting tubule principal cell. Rabbits were treated with DOCA (2 mg/kg/day) or dexamethasone (DEXA) (0.5 mg/kg/day) for the periods shown; indicated parameters were contrasted with control values. Voltages were obtained by cable and equivalent circuit analysis and evaluation of voltage divider ratios following impalement of single cells with microelectrodes. *Indicates significant difference (P <0.05) versus controls.

From Sansom and O'Neil 213
Figure 9. Figure 9.

Apical membrane partial ionic conductances (G) and currents (I) were determined for Na+ and K+ as a function of days of DOCA therapy (2 mg/kg/day). Cells impaled were presumed to be principal cells of rabbit cortical collecting tubule. *Indicates a significant difference (P <0.05) from day 0 values.

From Sansom and O'Neil 213
Figure 10. Figure 10.

Influence of in vitro aldosterone (ALDO) or dexamethasone (DEX) on bicarbonate reabsorption in isolated microperfused OMCDis from adrenalectomized rabbits. Steroids or diluent were added to the bath following a 90‐min preequilibration period. JHCO3 rates are shown for the pre‐ and poststeroid periods.

From Stone et al. 234
Figure 11. Figure 11.

Determinants of SNGFR in normal control hydropenic rats and in hydropenic rats treated with the glucocorticoid methylprednisolone for 4 days. In addition to SNGFR, the following parameters are shown: QA (glomerular plasma flow rate); ΔP (hydraulic pressure difference across the glomerular capillary wall); πA, πE (afferent and efferent arteriolar oncotic pressures; and RA, RE (afferent and efferent arteriolar resistances).

From Baylis and Brenner 15


Figure 1.

Aldosterone‐stimulated short‐circuit current (SCC) in toad bladder. Aldosterone (0.28 μM) or diluent was added to serosal surface of paired bladders obtained from toads soaked 3–5 days in either water or saline. Diminished response in toads soaked for long periods in saline as seen in this study has been noted by others 225.

from Crabbe 35


Figure 2.

Influence of amphotericin B on short‐circuit current (SCC) in toad bladder compared to that of vasopressin. When amphotericin B was added to apical membrane, a rapid rise in SCC occurred that was not augmented by subsequent addition of vasopressin (solid line). Amphotericin B addition after vasopressin, however, enhanced SCC beyond that seen with vasopressin alone.

From Lichenstein and Leaf 157


Figure 3.

Schematic of relative nuclear versus cytoplasmic labeling of [3H]aldosterone and [3H]SC 26304, a spirolactone. After the portal vein and hepatic artery were ligated, adrenalectomized rats were injected IV with either [3H]aldosterone or [3H]SC 26304 and the kidneys removed 2 or 10 min later. Nonspecific binding was determined in rats injected with [3H]steroid and a 100‐fold excess of unlabeled D‐aldosterone. Scale at left is in terms of mol × 10−14/mg protein. The results show that even though cytoplasmic labeling of mineralocorticoid receptors with [3H]SC 26304 exceeds that of [3H]aldosterone, only [3H]aldosterone‐receptor complexes are retained by nuclear chromatin. Furthermore, the absolute amount of [3H]aldosterone retained at 10 min exceeded that at 2 min, despite the fact that cytoplasmic labeling was significantly reduced because of the corresponding fall in plasma levels of [3H]steroid.

Adapted from Marver et al. 172


Figure 4.

Relative specific binding of three corticosteroids along the adrenalectomized rat or rabbit nephron. Binding activity was determined using either in vivo administration of [3H]dexamethasone and subsequent autoradiography of tissue segments, or in vitro binding assays with isolated segments and either [3H]aldosterone or [3H]corticosterone. Aldosterone and dexamethasone studies utilized rabbits; corticosterone studies, rats.

Adapted from the studies of Doucet and Katz 47, Farman et al. 69, Lee et al. 154


Figure 5.

Relationship between steady‐state plasma aldosterone concentration and flux of sodium and potassium in rabbit cortical collecting tubule. Closed circles represent the lumen‐to‐bath 22Na tracer flux; open circles represent net K+ transport determined on luminal samples monitoring perfused and collected K+ concentrations. There was no significant difference in bath‐to‐lumen tracer 22Na flux measured in several groups having both high and low plasma aldosterone levels. Overall average was 1.4 pEq/cm‐s, and group averages ranged from 1.0 to 1.7 pEq/cm‐s.

adapted from the study of Schwartz and Burg 216


Figure 6.

Influence of aldosterone on electrolyte handling by adrenalectomized rat: inhibition of the response by actinomycin D. Animals were adrenalectomized 24 h prior to the study and maintained on 0.035 M NaCl drinking water without food. They were given diluent (control) or aldosterone (1 μg/kg BW loading dose +1 μg/kg/h infusion) ± 300 μg/kg actinomycin D. Some controls received only actinomycin D. Shown at the top are plasma Na+ and K+ concentrations as a function of time following initiation of study. At the bottom is shown either fractional excretion of Na+ (FE Na) or urinary excretion of K+ (UKV).

From Horisberger and Diezi 118


Figure 7.

Influence of aldosterone on CCD Na+,K+‐ATPase activity. Upper panel: Na+,K+‐ATPase activities in mol/kg dry tubule wt/h at 37°C in CCDs obtained from normal (NORM) rabbits are denoted by the solid bar (±SEM). Stippled bars include activities seen in CCDs from adrenalectomized (ADX) rabbits injected at time 0 with diluent or 10 μg/kg BW aldosterone (ALDO) ± the spirolactone SC 26304 (SPIRO), or 100 μg‐kg BW dexamethasone (DEX) and sacrificed at either 1.5 or 3 h. Bottom panel: Na+,K+‐ATPase activities at 3 h postinjection of: (1) diluent (ADX); (2) 10 μg‐kg BW aldosterone (ALDO); or (3) 10μg/kg BW aldosterone + a total of 5 mg/kg BW amiloride (AMIL) given in four split doses, starting at t= −30 min.

Adapted from Petty et al. 195


Figure 8.

Influence of corticosteroid therapy on transepithelial voltage (Vte) and the voltage across the apical (Va) and basolateral (Vb) membrane of the cortical collecting tubule principal cell. Rabbits were treated with DOCA (2 mg/kg/day) or dexamethasone (DEXA) (0.5 mg/kg/day) for the periods shown; indicated parameters were contrasted with control values. Voltages were obtained by cable and equivalent circuit analysis and evaluation of voltage divider ratios following impalement of single cells with microelectrodes. *Indicates significant difference (P <0.05) versus controls.

From Sansom and O'Neil 213


Figure 9.

Apical membrane partial ionic conductances (G) and currents (I) were determined for Na+ and K+ as a function of days of DOCA therapy (2 mg/kg/day). Cells impaled were presumed to be principal cells of rabbit cortical collecting tubule. *Indicates a significant difference (P <0.05) from day 0 values.

From Sansom and O'Neil 213


Figure 10.

Influence of in vitro aldosterone (ALDO) or dexamethasone (DEX) on bicarbonate reabsorption in isolated microperfused OMCDis from adrenalectomized rabbits. Steroids or diluent were added to the bath following a 90‐min preequilibration period. JHCO3 rates are shown for the pre‐ and poststeroid periods.

From Stone et al. 234


Figure 11.

Determinants of SNGFR in normal control hydropenic rats and in hydropenic rats treated with the glucocorticoid methylprednisolone for 4 days. In addition to SNGFR, the following parameters are shown: QA (glomerular plasma flow rate); ΔP (hydraulic pressure difference across the glomerular capillary wall); πA, πE (afferent and efferent arteriolar oncotic pressures; and RA, RE (afferent and efferent arteriolar resistances).

From Baylis and Brenner 15
References
 1. Al‐Awqati, Q., L. H. Norby, A. Mueller, and P. R. Steinmetz. Characteristics of stimulation of H transport by aldosterone in turtle urinary bladder. J. Clin. Invest. 58: 351–358, 1976.
 2. Allen, G. G., and L. J. Barratt. Effect of aldosterone on the transepithelial PD of the rat distal tubule. Kidney Int. 19: 678–686, 1981.
 3. Altura, B. M. Role of glucocorticoids in local regulation of blood flow. Am. J. Physiol. 211: 1393–1397, 1966.
 4. Amer, M. S., G. R. McKinney, and A. Akcasu. Effect of glycyrrhetinic acid on the cyclic nucleotide system of the rat stomach. Biochem. Pharmacol. 23: 3085–3092, 1974.
 5. Armanini, D., I. Karbowiak, Z. Krozowski, J. W. Funder, and W. R. Adam. The mechanism of the mineralocorticoid action of carbenoxolone. Endocrinology 111: 1683–1686, 1982.
 6. Arriza, J. L., R. B. Simerly, L. W. Swanson, and R. M. Evans. The neuronal mineralocorticoid receptor as a mediator of glucocorticoid response. Neuron 1: 887–900, 1988.
 7. Arrizi, J. L., C. Weinberger, G. Cerelli, T. M. Glaser, B. L. Handelin, D. E. Housman, and R. M. Evans. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 237: 268–275, 1987.
 8. Asher, C., and H. Garty. Aldosterone increases the apical Na permeability of toad bladder by two different mechanisms. Proc. Natl. Acad. Sci. USA 85: 7413–7417, 1988.
 9. Ausiello, D. A., K. L. Skorecki, A. S. Verkman, and J. V. Bonventre. Vasopressin signaling in kidney cells. Kidney Int. 31: 521–529, 1987.
 10. Ballard, P. L., Delivery and transport of glucocorticoids to target cells. In: Glucocorticoid Hormone Action, edited by J. D. Baxter and G. G. Rousseau. Heidelberg: Springer‐Verlag, 1979, pp. 25–48.
 11. Ballard, P. L., J. D. Baxter, S. J. Higgins, G. G. Rousseau, and G. M. Tomkins. General presence of glucocorticoid receptors in mammalian tissue. Endocrinology 94: 998–1002, 1974.
 12. Ballerman, B. J., K. D. Bloch, J. G. Seidman, and B. M. Brenner. ANP transcription, secretion and glomerular receptor activity during mineralocorticoid escape in the rat. J. Clin. Invest. 78: 840–843, 1986.
 13. Barlet‐Bas, C., C. Khadouri, S. Marsy, and A. Doucet. Sodium‐independent in vitro induction of NaK ATPase by aldosterone in renal target cells: permissive effect of T3. Proc. Natl. Acad. Sci. USA 85: 1707–1711, 1988.
 14. Baum, M., and R. D. Toto. Lack of a direct effect of atrial natriuretic factor in the rabbit proximal tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F66–F69, 1986.
 15. Baylis, C., and B. M. Brenner. Mechanism of the glucocorticoid‐induced increase in GFR. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F166–F170, 1978.
 16. Beasley, D., and R. L. Malvin. Atrial extracts increase GFR in vivo. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F24–F30, 1985.
 17. Bentley, P. J. The effects of vasopressin on the SCC across the wall of the isolated bladder of the toad, Bufo marinus. Endocrinology 21: 161–170, 1960.
 18. Bidet, M., J. Merot, M. Tauc, and P. Poujeol. Na‐H exchanger in proximal cells isolated from kidney. II. Short term regulation by glucocorticoids. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F945–F951, 1987.
 19. Blot‐Chabaud, M., F. Wanstok, J.‐P. Bonvalet, and N. Farman. Cell sodium‐induced recruitment of NaK‐ATPase pumps in rabbit cortical collecting tubules is aldosterone‐dependent. J. Biol. Chem. 265: 11676–11681, 1990.
 20. Bonting, S. L., and M. R. Canady. NaK activated ATPase and Na+ transport in toad bladder. Am. J. Physiol. 207: 1005–1009, 1964.
 21. Boross, M., J. Kinsella, L. Cheng, and B. Sacktor. Glucocorticoids and metabolic acidosis‐induced renal transport of inorganic phosphate, Ca, and NH4. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F827–F833, 1986.
 22. Bowman, E. J., A. Siebens, and K. Altendorf. Bafilomycins: a class of inhibitors of membrane ATPase from microorganisms, animal cells, and plants. Proc. Natl. Acad. Sci. USA 81: 7972–7976, 1988.
 23. Boykin, J., A. DeTorrente, A. Erickson, G. Robertson, and R. W. Schrier. Role of plasma ADH in impaired water excretion of glucocorticoid deficiency. J. Clin. Invest. 62: 738–744, 1978.
 24. Brown, D., S. Hirsch, and S. Gluck. Localization of a proton‐pumping ATPase in rat kidney. J. Clin. Invest. 82: 2114–2126, 1988.
 25. Buckalew, V. M., and C. D. Lancaster, Jr. The association of a humoral Na transport inhibitory activity with renal escape from chronic mineralocorticoid administration in the dog. Clin. Sci. 42: 69–78, 1972.
 26. Burch, H. B., R. G. Narins, C. Chu, S. Fagioli, S. Choi, W. McCarthy, and O. H. Lowry. Distribution along the rat nephron of three enzymes of gluconeogenesis in acidosis and starvation. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F246–F253, 1978.
 27. Burnett, J. C., J. A. Haas, and M. S. Larson. Renal interstitial pressure in mineralocorticoid escape. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F396–F399, 1985.
 28. Campen, T. J., D. A. Vaughn, and D. D. Fanestil. Mineralo‐and glucocorticoid effects on renal excretion of electrolytes. Pflugers Arch. 399: 93–101, 1983.
 29. Cannon, C., J. van Adelsburg, S. Kelley, and Q. Al‐Awqati. Carbon‐dioxide‐induced exocytotic insertion of H+ pumps in turtle bladder luminal membrane: Role of cell pH and calcium. Nature 314: 443–445, 1985.
 30. Chao, H. M., P. H. Choo, and B. S. McEwen. Glucocorticoid and mineralocorticoid receptor mRNA expression in rat brain. Neuroendocrinology 50: 365–371, 1989.
 31. Charney, A. N., P. Silva, A. Besarab, and F. H. Epstein. Separate effects of aldosterone, DOCA and methylprednisolone on renal NaK ATPase. Am. J. Physiol. 227: 345–350, 1974.
 32. Chignell, C. F., and E. Titus. Effect of adrenal steroids on a Na+ and K+ requiring ATPase from rat kidney. J. Biol. Chem. 241: 5083–5089, 1966.
 33. Clarke, A. P., R. A. Cleghorn, J. K. W. Ferguson, and J. L. A. Fowler. Factors concerned in the circulatory failure of adrenal insufficiency. J. Clin. Invest. 26: 359–368, 1947.
 34. Conlon, W., T. G. Duplinsky, G. Giebisch, D. Gordon, F. Granges, G. Kirk, and C. S. Wilcox. A micropuncture study of distal tubular fluid acidification in the rat during saline infusion. J. Physiol. 307: 72–73P, 1980.
 35. Crabbæ, J. Stimulation of active sodium transport by the isolated toad bladder with aldosterone in vitro. J. Clin. Invest. 40: 2103–2110, 1961.
 36. Crabbæ, J., and P. Deweer. Action of aldosterone and vasopressin on the active transport of sodium by the isolated toad bladder. J. Physiol. (Lond.). 180: 560–568, 1965.
 37. Curthoys, N. P., and O. H. Lowry. The distribution of glutamine isoenzymes in the various structures of the nephron in normal, acidotic and alkalotic rat kidney. J. Biol. Chem. 248: 162–168, 1973.
 38. Cuthbert, A. W., and W. K. Shum. Effects of vasopressin and aldosterone on amiloride binding in toad bladder epithelial cells. Proc. R. Soc. Lond. [Biol.] 189: 543–575, 1975.
 39. Daniel, J. Y., F. Leboulenger, H. Vaudry, H. H. Floch, and I. Assenmacher. Interrelations between binding affinity and metabolic clearance rate for the main corticosteroids in the rabbit. J. Steroid Biochem. 16: 379–384, 1982.
 40. De Bermudez, L., and J. P. Hayslett. Effect of methylprednisolone on renal function and the zonal distribution of blood flow in the rat. Circ. Res. 31: 44–52, 1972.
 41. DeLorenzo, R. J., K. G. Walton, P. F. Curran, and P. Greengard. Regulation of phosphorylation of a specific protein in toad‐bladder membrane by ADH and cAMP, and its possible relationship to membrane permeability changes. Proc. Natl. Acad. Sci. USA 70: 880–884, 1973.
 42. Deweer, P., and J. Crabbæ. The role of nucleic acids in the sodium‐retaining action of aldosterone. Biochim. Biophys. Acta 155: 280–289, 1968.
 43. Dibona, D. R., M. M. Civan, and A. Leaf. The cellular specificity of the effect of vasopressin on toad urinary bladder. J. Membr. Biol. 1: 79–91, 1969.
 44. Dickstein, G. M., J. F. Woodson, N. E. Lamb, C. E. Rose, M. J. Peach, and R. M. Carey. Escape from the sodium‐retaining action of intrarenal angiotensins II and III in the conscious dog. Endocrinology 117: 2160–2169, 1985.
 45. Dietl, P., D. Good, and B. Stanton. Adrenal corticosteroid action on the thick ascending limb. Semin. Nephrol. 10: 350–374, 1990.
 46. Doucet, A., A. Hus‐Citharel, and F. Morel. In vitro stimulation of NaK ATPase in rat thick ascending limb by dexamethasone. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F851–F857, 1986.
 47. Doucet, A., and A. I. Katz. Short‐term effect of aldosterone on NaK ATPase in single nephron segments. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F273–F278, 1981.
 48. Doucet, A., and A. I. Katz. Mineralocorticoid receptors along the nephron: 3H aldosterone binding in rabbit tubules. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F605–F611, 1981.
 49. Douglas, J. G. Corticosteroids decrease glomerular angiotensin receptors. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F453–F457, 1987.
 50. DBose, T. C, and C. R. Caflish. Effect of selective aldosterone deficiency on acidification in nephron segments of the rat inner medulla. J. Clin. Invest. 82: 1624–1632, 1988.
 51. Dubrovsky, A. H. E., R. C. Nair, M. K. Byers, and D. Z. Levine. Renal net acid excretion in the adrenalectomized rat. Kidney Int. 19: 516–528, 1981.
 52. Duncan, R. L., W. M. Grogan, L. B. Kramer, and C. O. Watlington. Corticosterone's metabolite is an agonist for Na reabsorption in A6 cells. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F736–F748, 1988.
 53. Duplinsky, T. G., G. Giebisch, D. Gordon, F. Granges, G. Kirk, and C. S. Wilcox. Renal acid elimination by anesthetized rats during saline infusion and mineralocorticoid administration. J. Physiol. 305: 45–46P, 1980.
 54. Durasin, I., A. Frick, and M. Neuweg. Glucocorticoid‐induced inhibition of the reabsorption of inorganic phosphate in the proximal tubule in the absence of PTH. Renal Physiol. (Basel) 7: 115–123, 1984.
 55. Dusing, R., R. Wilke, A. Korber, D. Klingmuller, and H. J. Kramer. Inner medullary osmolality and sodium concentration are decreased in rats during escape from DOCA‐induced salt retention. Clin. Sci. 60: 467–469, 1981.
 56. Edelman, I. S., Aldosterone and sodium transport. In: Functions of the Adrenal Cortex, edited by K. W. McKerns. New York: Appleton‐Century‐Crofts, 1968, pp. 79–133.
 57. Edelman, I. S., R. Bogoroch, and G. A. Porter. On the mechanism of action of aldosterone on Na transport: the role of protein synthesis. Proc. Natl. Acad. Sci. USA 50: 1169–1177, 1963.
 58. Ellison, D. H., H. Velazquez, and F. S. Wright. Adaptation of the distal convoluted tubule of the rat. Structural and functional effects of dietary salt and chronic diuretic infusion. J. Clin. Invest. 83: 113–126, 1989.
 59. El Mernissi, G., D. Chabardes, A. Doucet, A. Hus‐Citharel, M. Imbert‐Teboul, F. Lebouffant, M. Montegut, S. Siaume, and F. Morel. Changes in tubular basolateral membrane markers after chronic DOCA treatment. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F100–F109, 1983.
 60. El Mernissi, G., and A. Doucet. Short‐term effect of aldosterone on renal Na transport and tubular NaK ATPase in the rat. Pflugers Arch. 399: 139–146, 1983.
 61. El Mernissi, G., and A. Doucet. Short‐term effects of aldosterone and dexamethasone on NaK ATPase along the rabbit nephron. Pflugers Arch. 399: 147–151, 1983.
 62. El Mernissi, G., and A. Doucet. Specific activity of NaK ATPase after adrenalectomy and hormone replacement along the rabbit nephron. Pflugers Arch. 402: 258–263, 1984.
 63. Erman, A., A. Hassid, P. G. Baer, and A. Nasjletti. Treatment with dexamethasone increases glomerular prostaglandin synthesis in rats. J. Pharmacol. Exp. Ther. 239: 296–301, 1986.
 64. Fanestil, D. D., and I. S. Edelman. Characteristics of the renal nuclear receptors for aldosterone. Proc. Natl. Acad. Sci. USA 56: 872–879, 1966.
 65. Fanestil, D. D., T. S. Herman, G. M. Fimognari, and I. S. Edelman. Oxidative metabolism and aldosterone regulation of Na transport. In: Regulatory Functions of Biological Membranes, edited by J. Jarnefelt. Amsterdam: Elsevier Press, 1968, pp. 177–194.
 66. Farman, N., and J. P. Bonvalet. Aldosterone binding in isolated tubules. III. Autoradiography along the rat nephron. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F606–F614, 1983.
 67. Farman, N., M. Kusch, and I. S. Edelman. Aldosterone receptor occupancy and Na transport in the urinary bladder of Bufo marinus. Am J. Physiol. 235 (Cell Physiol. 4): C90–C96, 1978.
 68. Farman, N., A. Vandewalle, and J. P. Bonvalet. Aldosterone binding in isolated tubules. II. An autoradiographic study of concentration dependency in the rabbit nephron. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F69–F77, 1982
 69. Farman, N., A. Vandewalle, and J. P. Bonvalet. Autoradiographic determination of dexamethasone binding sites along the rabbit nephron. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F325–F334, 1983.
 70. Feldman, D. Glucocorticoid receptors and regulation of PEPCK activity in rat kidney and adipose tissue. Am. J. Physiol. 233 (Endocrinol. Metab. Gastrointest. Physiol. 2): E147–E151, 1977.
 71. Feldman, D., J. W. Funder, and I. S. Edelman. Evidence for a new class of corticosterone receptors in the rat kidney. Endocrinology 92: 1429–1441, 1973.
 72. Feldman, D., D. S. Loose, and S. Y. Tan. Nonsteroidal antiinflammatory drugs cause sodium and water retention in the rat. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F490–F496, 1978.
 73. Field, M. J., B. A. Stanton, and G. H. Giebisch. Differential effects of aldosterone, dexamethasone, and hyperkalemia on distal tubular potassium secretion in the rat kidney. J. Clin. Invest. 74: 1792–1802, 1984.
 74. Fimognari, G. M., D. D. Fanestil, and I. S. Edelman. Induction of RNA and protein synthesis in the action of aldosterone in the rat. Am. J. Physiol. 213: 954–962, 1967.
 75. Fimognari, G. M., G. A. Porter, and I. S. Edelman. The role of tricarboxylic acid cycle in the action of aldosterone on transport. Biochim. Biophys. Acta 135: 89–99, 1967.
 76. Fisher, K. A., L. G. Welt, and J. P. Hayslett. Dissociation of NaK ATPase specific activity and net reabsorption of sodium. Am. J. Physiol. 228: 1745–1749, 1975.
 77. Frazier, H. S., E. F. Dempsey, and A. Leaf. Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin. J. Gen. Physiol. 45: 529–543, 1962.
 78. Frieberg, J. M., J. Kinsella, and B. Sacktor. Glucocorticoids increase the Na/H exchanger and decrease the Na gradient‐dependent Pi uptake systems in renal BBMVs. Proc. Natl. Acad. Sci. USA 79: 4932–4936, 1982.
 79. Funder, J. W. Corticosteroid receptors and renal 11β‐hydroxysteroid dehydrogenase activity. Semin. Nephrol. 10: 311–319, 1990.
 80. Funder, J. W., D. Feldman, and I. S. Edelman. Specific aldosterone binding in the rat kidney and parotid. J. Steroid Biochem. 3: 209–218, 1972.
 81. Funder, J. W., P. T. Pearce, R. Smith, and A. I. Smith. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science 242: 583–585, 1988.
 82. Gardner, D. G., B. J. Gertz, C. F. Deschepper, and D. Y. Kim. Gene for the rat atrial natriuretic peptide is regulated by glucocorticoids in vitro. J. Clin. Invest. 82: 1275–1281, 1988.
 83. Garg, L. C., and N. Narang. Effects of aldosterone on NEM‐sensitive ATPase in rabbit nephron segments. Kidney Int. 34: 13–17, 1988.
 84. Garty, H., and C. Asher. Ca‐induced down‐regulation of Na channels in toad bladder epithelium. J. Biol. Chem. 261: 7400–7406, 1986.
 85. Garty, H., and I. S. Edelman. Amiloride‐sensitive trypsini‐zation of apical Na channels. J. Gen. Physiol. 81: 785–803, 1983.
 86. Garty, H., I. S. Edelman, and B. Lindemann. Metabolic regulation of apical sodium permeability in toad urinary bladder in the presence and absence of aldosterone. J. Membr. Biol. 74: 15–24, 1983.
 87. Gering, K., M. Girardet, C. Bron, J‐P. Kraehenbuhl, and B. C. Rossier. Hormonal regulation of NaK ATPase biosynthesis in the toad bladder. J. Biol. Chem. 257: 10338–10343, 1982.
 88. Gluck, S., and Q. Al‐Awqati. An electrogenic proton‐translocating adenosine triphosphatase from bovine kidney medulla. J. Clin. Invest. 73: 1704–1710, 1984.
 89. Gluck, S., C. Cannon, and Q. Al‐Awqati. Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane. Proc. Natl. Acad. Sci. USA 79: 4327–4331, 1982.
 90. Gonzalez‐Campoy, J. M., J. C. Romero, and F. G. Knox. Escape from the sodium‐retaining effects of mineralocorticoids: role of ANF and intrarenal hormone systems. Kidney Int. 32: 767–777, 1989.
 91. Goodman, A. D., R. E. Fuisz, and G. F. Cahill. Renal gluconeogenesis in acidosis, alkalosis, and K deficiency: its possible role in regulation of renal ammonia production. J. Clin. Invest. 45: 612–619, 1966.
 92. Goodman, D. B. P., J. E. Allen, and H. Rasmussen. On the mechanism of action of aldosterone. Proc. Natl. Acad. Sci. USA 64: 330–337, 1969.
 93. Goodman, D. B. P., J. E. Allen, and H. Rasmussen. Studies on the mechanism of action of aldosterone: hormone‐induced changes in lipid metabolism. Biochemistry. 10: 3825–3831, 1971.
 94. Goodman, D. B. P., P. M. Wong, and H. Rasmussen. Aldosterone‐induced membrane phospholipid fatty acid metabolism in the toad urinary bladder. Biochemistry 14: 2803–2809, 1975.
 95. Goppelt‐Struebe, M., D. Wolter, and K. Resch. Glucocorticoids inhibit prostaglandin synthesis not only at the level of phospholipase A2 but also at the level of cyclooxygenase/PGE isomerase. Br. J. Pharmacol. 98: 1287–1295, 1989.
 96. Granger, J. P., J. C. Burnett, Jr., J. C. Romero, T. J. Opgenorth, J. Salazar, and M. Joyce. Elevated levels of ANP during aldosterone escape. Am. J. Physiol. 252 (Regulatory Integration Comp. Physiol. 21): R878–R882, 1987.
 97. Granger, J. P., J. A. Haas, D. Pawlowska, and F. G. Knox. Effect of direct increases in renal interstitial hydrostatic pressure on Na excretion. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F527–F532, 1988.
 98. Green, H. H., A. R. Harrington, and H. Valtin. On the role of ADH in the inhibition of acute water diuresis in adrenal insufficiency and the effects of gluco‐ and mineralocorticoids in reversing the inhibition. J. Clin. Invest. 49: 1724–1736, 1970.
 99. Gross, J. B., M. Imai, and J. P. Kokko. A functional comparison of the cortical collecting tubule and the distal convoluted tubule. J. Clin. Invest. 55: 1284–1294, 1975.
 100. Gross, J. B., and J. P. Kokko. Effects of aldosterone and K‐sparing diuretics on electrical potential differences across the distal nephron. J. Clin. Invest. 59: 82–89, 1977.
 101. Grossman, E. B., and S. C. Hebert. Modulation of NaK ATPase activity in the mouse medullary thick ascending limb of Henle. J. Clin. Invest. 81: 885–892, 1988.
 102. Grunfeld, J‐P, L. Eloy, A. Araujo, and F. Russo‐Marie. Effects of gluco‐ and antiglucocorticoids on renal and aortic prostaglandin synthesis. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F810–F816, 1986.
 103. Haack, D., J. Mohring, B. Mohring, M. Petri, and E. Hackenthal. Comparative study on development of corticosterone and DOCA hypertension in rats. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F403–F411, 1977.
 104. Hmmes, G. G., and C.‐W. Wu. Kinetics of allosteric enzymes. In: Annu. Rev. Biophys. Bioeng., edited by L. J. Mullins, W. A. Hagins, L. Stryer, and C. Newton. Palo Alto: Annual Reviews, Inc., 1974, vol. 3, pp. 1–33.
 105. Handler, J. S., A. S. Preston, F. M. Matsumura, J. P. Johnson, and C. O. Watlington. The effect of adrenal steroid hormones on epithelia formed in culture by A6 cells. Ann. N.Y. Acad. Sci. 372: 442–454, 1981.
 106. Harrington, J. T., H. N. Hulter, J. J. Cohen, and N. E. Madias. Mineralocorticoid‐stimulated renal acidification: the critical role of dietary Na. Kidney Int. 30: 43–48, 1986.
 107. Harrison, H. E., and H. C. Harrison. Transfer of 45Ca across intestinal wall in vitro in relation to action of vitamin D and cortisol. Am. J. Physiol. 199: 265–271, 1960.
 108. Hayhurst, R. A., and R. G. O'Neil. Time‐dependent actions of aldosterone and amiloride on NaK ATPase of cortical collecting duct. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F689–F696, 1988.
 109. Helman, S. I., and R. O'Neil. Model of active transepithelial Na and K transport of renal collecting tubules. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F559–F571, 1977.
 110. Hendler, E. D., J. Torretti, L. Kupor, and F. H. Epstein. Effects of adrenalectomy and hormone replacement on NaK ATPase in renal tissue. Am. J. Physiol. 222: 754–760, 1972.
 111. Herman, T. S., G. M. Fimognari, and I. S. Edelman. Studies on renal aldosterone binding sites. J. Biol. Chem. 243: 3849–3856, 1968.
 112. Hierholzer, K., and H. Stolte. The proximal and distal tubular action of adrenal steroids on Na reabsorption. Nephron 6: 188–204, 1969.
 113. Hierholzer, K., M. Wiederholt, H. Holzgreve, G. Giebisch, R. M. Klose, and E. E. Windhager. Micropuncture study of renal transtubular concentration gradients of sodium and potassium in adrenalectomized rats. Pflugers Arch. 285: 193–210, 1965.
 114. Higashihara, E., N. W. Carter, L. Pucacco, and J. P. Kokko. Aldosterone effects on papillary collecting duct pH profile of the rat. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F725–F731, 1984.
 115. Hill, J. H., N. Cortas, and M. Walser. Aldosterone action and NaK activated ATPase in toad bladder. J. Clin. Invest. 52: 185–189, 1973.
 116. Hirata, F., D. Schiffmann, K. Venkatasubramanian, D. Solomon, and J. Axelrod. A phospholipase A2 inhibitory protein in rabbit neutrophils induced by glucocorticoids. Proc. Natl. Acad. Sci. USA 77: 2533–2536, 1980.
 117. Holthofer, H., B. A. Schulte, G. Pasternack, G. H. Siegel, and S. S. Spicer. Three distinct cell populations in rat kidney collecting duct. Am. J. Physiol. 253 (Cell Physiol. 22): C323–C328, 1982.
 118. Horisberger, J‐D., and J. Diezi. Inhibition of aldosterone‐induced antinatriuresis and kaliuresis by actinomycin D. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F201–F204, 1984.
 119. Howard, M. J., M. D. Mullen, and P. A. Insel. Amiloride interacts with renal α‐ and β‐adrenergic receptors. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F21–F25, 1987.
 120. Hoyer, G. A., D. Tsiekiras, H. Siebe, and K. Hierholzer. Corticosterone metabolism in isolated rat kidney in vitro. Pflugers Arch. 400: 377–380, 1984.
 121. Hulter, H. N., L. P. Ilnicki, J. A. Harbottle, and A. Sebastian. Impaired renal H secretion and NH3 production in mineralocorticoid‐deficient, glucocorticoid replete dogs. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F136–F146, 1977.
 122. Hulter, H. N., J. H. Light, and A. Sebastian. K. deprivation potentiates the renal acid excretory effect of mineralocorticoid: obliteration by amiloride. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F48–F57, 1979.
 123. Hulter, H. N., J. F. Sigala, and A. Sebastian. K, deprivation potentiates the renal alkalosis‐producing effect of mineralocorticoid. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F298–F309, 1978.
 124. Hunter, M., A. G. Lopes, E. L. Boulpaep, and G. H. Giebisch. Single channel recordings of Ca‐activated K channels in the apical membrane of rabbit cortical collecting tubules. Proc. Natl. Acad. Sci. USA 81: 4237–4239, 1984.
 125. Hutchinson, J. H., and G. A. Porter. The effect of temperature and substrate concentration of the kinetics of (6‐3H) uridine incorporation into RNA of toad bladder epithelial cells: the role of aldosterone. Biochem. Biophys. Acta 281: 55–68, 1972.
 126. Imai, M. The connecting tubule: A functional subdivision of the rabbit distal nephron segments. Kidney Int. 15: 346–356, 1979.
 127. Iynedjian, P. B., and M. M. Jacot. Glucocorticoid‐dependent induction of mRNA coding for PEPCK in rat kidney. Eur. J. Biochem. 111: 89–98, 1980.
 128. Jobin, M., and F. Perrin. Evaluation of three constants involved in the binding of corticosterone to plasma proteins in the rat. Can. J. Biochem. 52: 101–105, 1974.
 129. Joels, M., and E. R. De Kloet. Mineralocorticoid receptor‐mediated changes in membrane properties of rat CA1 pyramidal neurons in vitro. Proc. Natl. Acad. Sci. USA 87: 4495–4498, 1990.
 130. Johnson, J. P., and S. W. Green. Aldosterone stimulates Na transport without affecting citrate synthase activity in cultured cells. Biochim. Biophys. Acta 647: 293–296, 1981.
 131. Jorgensen, P. L. Regulation of the Na+ K+ activated ATP hydrolyzing enzyme system in rat kidney. I. The effect of adrenalectomy and the supply of sodium on the enzyme system. Biochim. Biophys. Acta 151: 212–224, 1968.
 132. Jorgensen, P. L. Regulation of the (Na+K)‐activated ATP hydrolyzing enzyme system in rat kidney. II. The effect of aldosterone on the activity in kidneys of adrenalectomized rats. Biochim. Biophys. Acta 192: 326–334, 1969.
 133. Jorgensen, P. L. The role of aldosterone in the regulation of NaK ATPase in rat kidney. J. Steroid Biochem. 3: 181–191, 1972.
 134. Kaissling, B., and M. Le Hir. Distal tubular segments of the rabbit kidney after adaptation to altered Na and K intake. I. Structural changes. Cell Tissue Res. 224: 493–504, 1982.
 135. Katz, A. I., and F. H. Epstein. The role of sodium‐potassium activated ATPase in the reabsorption of sodium by the kidney. J. Clin. Invest. 46: 1999–2011, 1967.
 136. Kaunitz, J. D., R. D. Gunther, and G. Sachs. Characterization of an electrogenic ATP and chloride‐dependent proton translocating pump from rat renal medulla. J. Biol. Chem. 260: 11567–11573, 1985.
 137. Khadouri, C., S. Marsy, C. Barlet‐Bas, and A. Doucet. Short term effect of aldosterone on NEM‐sensitive ATPase in rat collecting duct. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F177–F181, 1989.
 138. Kiberd, R. A., T. S. Larson, C. R. Robertson, and R. L. Jamison. Effect of atrial natriuretic peptide on vasa recta blood flow in the rat. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F1112–F1117, 1987.
 139. Kinne, R., and R. Kirsten. Der einfluss von aldosterone auf die aktivitat mitochondrialer und cytoplasmatischer enzyme in der rattenniere. Pflugers Arch. 300: 244–254, 1968.
 140. Kinsella, J., T. Cujdik, and B. Sacktor. Na‐H exchange activity in renal BBMVs in response to metabolic acidosis: The role of glucocorticoids. Proc. Natl. Acad. Sci. USA 81: 630–634, 1984.
 141. Kirsten, E., R. Kirsten, A. Leaf, and G. W. G. Sharp. Increased activity of enzymes of the TCA cycle in response to aldosterone in the toad bladder. Pflugers Arch. 300: 213–225, 1968.
 142. Kirsten, E., R. Kirsten, and G. W. G. Sharp. Effects of sodium transport stimulating substances on enzyme activities in the toad bladder. Pflugers Arch. 316: 26–33, 1970.
 143. Kleeman, C. R., J. Levi, and O. Better. Kidney and adrenocortical hormones. Nephron 15: 261–278, 1975.
 144. Kleyman, T. R., E. J. Cragoe, and J. P. Kraehenbuhl. The cellular pool of Na channels in the amphibian cell line A6 is not altered by mineralocorticoids. J. Biol. Chem. 264: 11995–12000, 1989.
 145. Knox, F. G., J. C. Burnett, Jr., D. E. Kohan, W. S. Spielman, and J. C. Strand. Escape from the Na‐retaining effects of mineralocorticoids. Kidney Int. 17: 263–276, 1980.
 146. Koeppen, B. M., and S. I. Helman. Acidification of luminal fluid by the rabbit cortical collecting tubule perfused in vitro. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F521–F531, 1982.
 147. Kohan, D. E., and F. G. Knox. Localization of the nephron sites responsible for mineralocorticoid escape in rats. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F149–F153, 1980.
 148. Kornandakieti, C., and R. L. Tannen. H transport by the aldosterone‐deficient rat distal nephron. Kidney Int. 25: 629–635, 1984.
 149. Koseki, C., Y. Hayashi, S. Torikai, M. Furuya, N. Ohnuma, and M. Imai. Localization of binding sites for a rat atrial natriuretic peptide in rat kidney. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F210–F216, 1986.
 150. Kusch, M., N. Farman, and I. S. Edelman. Binding of aldosterone to cytoplasmic and nuclear receptors of the urinary bladder epithelium of Bufo marinus. Am. J. Physiol. 235 (Cell Physiol.4): C82–C89, 1978.
 151. Lan, M. C., B. Graham, F. C. Bartter, and J. D. Baxter. Binding of steroids to mineralocorticoid receptors: implications for in vivo occupancy by glucocorticoids. J. Clin. Endocrinol. Metab. 54: 332–342, 1982.
 152. Laski, M. E., and N. A. Kurtzman. Characterization of acidification in the cortical and medullary collecting tubule of the rabbit. J. Clin. Invest. 72: 2050–2059, 1983.
 153. Law, P. Y., and I. S. Edelman. Induction of citrate synthase by aldosterone in the rat kidney. J. Mol. Biol. 41: 41–64, 1978.
 154. Lee, S. M. K., M. A. Chekal, and A. I. Katz. Corticosterone binding sites along the rat nephron. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F504–F509, 1983.
 155. Lefer, A. M., R. L. Verrier, and W. W. Carson. Cardiac performance in experimental adrenal insufficiency. Circ. Res. 22: 817–827, 1968.
 156. Le Hir, M., B. Kaissling, and U. C. Dubach. Analysis of distal segments in the rabbit kidney tubule after adaptation to altered Na and K intake. II. Changes in NaK ATPase activity. Cell Tissue Res. 224: 493–504, 1982.
 157. Lichtenstein, N. S., and A. Leaf. Effect of amphotericin B on the permeability of the toad bladder. J. Clin. Invest. 44: 1328–1342, 1965.
 158. Lien, E. L., D. B. P. Goodman, and H. Rasmussen. Effects of inhibitors on protein and RNA synthesis on aldosterone‐stimulated changes in phospholipid fatty acid metabolism in the toad urinary bladder. Biochim. Biophys. Acta 421: 210–217, 1974.
 159. Lien, E. L., D. B. P. Goodman, and H. Rasmussen. Effects of an acety1‐coenzyme A carboxylase inhibition and a sodium‐sparing diuretic on aldosterone‐stimulated sodium transport, lipid synthesis, and phospholipid fatty acid composition in the toad urinary bladder. Biochemistry 14: 2749–2754, 1975.
 160. Lifschitz, M., R. Schrier, and I. Edelman. Effect of actinomycin D on aldosterone‐mediated changes in electrolyte excretion. Am. J. Physiol. 224: 376–380, 1973.
 161. Liu, A. Y.‐C., and P. Greengard. Aldosterone‐induced increase in protein phosphatase activity of toad bladder. Proc. Natl. Acad. Sci. USA 71: 3869–3873, 1974.
 162. Loeb, R. F. Chemical changes in the blood in Addison's disease. Science 76: 421–422, 1932.
 163. Ludens, J., and Fanestil, D. Aldosterone stimulation of acidification of urine by isolated urinary bladder of the Columbian toad. Am. J. Physiol. 226: 1321–1326, 1974.
 164. Luft, F. C., R. B. Sterzel, R. E. Lang, E. M. Trabold, R. Veelken, H. Ruskoaho, Y. Gao, D. Ganten, and T. Unger. Atrial natriuretic factor determinations and chronic sodium homeostasis. Kidney Int. 29: 1004–1010, 1986.
 165. Lynch, R. E., E. G. Schnieder, L. R. Willis, and F. G. Knox. Absence of mineralocorticoid‐dependent sodium reabsorption in dog proximal tubule. Am. J. Physiol. 223: 40–45, 1972.
 166. Madsen, K. M., and C. C. Tisher. Structural‐functional relationships along the distal nephron. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F1–F15, 1986.
 167. Marver, D., Aldosterone action in target epithelia. In: Vitamins and Hormones, edited by P. Munson. New York: Academic Press, 1981, vol. 38, pp. 55–117.
 168. Marver, D. Assessment of mineralocorticoid activity in the rabbit colon. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F437–F446, 1984.
 169. Marver, D., The mineralocorticoid receptor. In: Biochemical Actions of Hormones, edited by G. Litwack. New York: Academic Press, 1985, vol. 12, pp. 385–431.
 170. Marver, D., D. Goodman, and I. S. Edelman. Relationships between renal cytoplasmic and nuclear aldosterone‐receptors. Kidney Int. 1: 210–223, 1972.
 171. Marver, D., and K. J. Petty. Acute aldosterone‐dependent increases in rabbit cortical collecting tubule citrate synthase activity are not sensitive to amiloride. Kidney Int. 21: 282, 1982 (abstr.).
 172. Marver, D., J. Stewart, J. W. Funder, D. Feldman, and I. S. Edelman. Renal aldosterone receptors: studies with 3H aldosterone and the anti‐mineralocorticoid 3H spirolactone SC 26304. Proc. Natl. Acad. Sci. USA 71: 1431–1435, 1974.
 173. Menard, R. H., B. Stripp, and J. R. Gillette. Spironolactone and testicular cytochrome P450: decreased testosterone for mation in several species and changes in hepatic drug metabolism. Endocrinology 94: 1628–1636, 1974.
 174. Mills, J. N., S. Thomas, and K. S. Williamson. The acute effect of hydrocortisone, DOC and aldosterone upon the excretion of sodium, potassium and acid by human kidney. J. Physiol. (Lond.) 151: 312–331, 1960.
 175. Moguilewsky, M., and D. Philibert. RU 38486: Potent antiglucocorticoid activity correlated with strong binding to the cytosolic glucocorticoid receptor followed by an impaired activation. J. Steroid Biochem. 20: 271–276, 1984.
 176. Mujais, S. K. Effects of aldosterone on rat collecting tubule NEM‐sensitive adenosine triphosphatase. J. Lab. Clin. Med. 109: 34–39, 1987.
 177. Mujais, S. K., M. A. Chekai, W. J. Jones, J. P. Hayslett, and A. I. Katz. Regulation of renal NaK ATPase in the rat. J. Clin. Invest. 73: 13–19, 1984.
 178. Mujais, S. K., M. A. Chekal, S‐M. K. Lee, and A. I. Katz. Relationship between adrenal steroids and renal NaK ATPase. Effect of short‐term hormone administration on the rat cortical collecting tubule. Pflugers Arch. 402: 48–51, 1984.
 179. Murayama, Y., A. Suzuki, M. Tadokoro, and F. Sakai. Microperfusion of Henle's loop in the kidney of the adrenalectomized rat. Jpn. J. Pharmacol. 18: 518–519, 1968.
 180. Nonoguchi, H., M. A. Knepper, and V. C. Manganiello. Effects of ANF on cGMP and cAMP accumulation in microdissected nephron segments from rats. J. Clin. Invest. 79: 500–507, 1987.
 181. Nonoguchi, H., J. M. Sands, and M. A. Knepper. ANF inhibits NaCl and fluid absorption in cortical collecting duct of rat kidney. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F179–F186, 1989.
 182. Noronha‐Blob, L., and B. Sacktor. Inhibition by glucocorticoids of phosphate transport in primary cultured renal cells. J. Biol. Chem. 261: 2164–2169, 1986.
 183. Oberleithner, H., U. Kersting, S. Silbernagl, W. Steigner, and U. Vogel. Fusion of cultured dog kidney (MDCK) cells: II. Relationship between cell pH and K conductance in response to aldosterone. J. Membr. Biol. 111: 49–56, 1989.
 184. O'Brian, C. A., N. E. Ward, and V. G. Vogel. Inhibition of protein kinase C by 12‐O‐tetradecanoylphorbol‐13‐acetate antagonist glycyrrhetic acid. Cancer Lett. 49: 9–12, 1990.
 185. O'Neil, R. G. Aldosterone regulation of sodium and potassium transport in the cortical collecting duct. Semin. Nephrol. 10: 365–374, 1990.
 186. O'Neil, R. G., and R. A. Hayhurst. Functional differentiation of cell types of cortical collecting duct. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F449–F453, 1985.
 187. O'Neil, R. G., and R. A. Hayhurst. Sodium‐dependent modulation of the renal NaK ATPase: Influence of mineralocorticoids on the cortical collecting tubule. J. Membr. Biol. 85: 169–179, 1985.
 188. O'Neil, R. G., and S. I. Helman. Transport characteristics of renal collecting tubules: influences of DOCA and diet. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F544–F558, 1977.
 189. Palmer, L. G. Apical membrane K conductance in the toad urinary bladder. J. Membr. Biol. 92: 217–226, 1986.
 190. Palmer, L. G., and I. S. Edelman. Control of apical sodium permeability in the toad urinary bladder by aldosterone. Ann. N. Y. Acad. Sci. 372: 1–14, 1981.
 191. Palmer, L. G., J. H.‐Y. Li, B. Lindemann, and I. S. Edelman. Aldosterone control of the density of sodium channels in the toad urinary bladder. J. Membr. Biol. 64: 91–102, 1982.
 192. Park, C. S., and I. S. Edelman. Effect of aldosterone on abundance and phosphorylation kinetics of NaK ATPase in toad urinary bladder. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F517–F525, 1984.
 193. Patel, P. D., T. G. Sherman, D. J. Goldman, and S. J. Watson. Molecular cloning of a mineralocorticoid (Type I) receptor complementary DNA from rat hippocampus. Mol. Endocrinol. 3: 1877–1885, 1989.
 194. Pawlowska, D., J. A. Haas, J. P. Granger, J. C. Romero, and F. G. Knox. Prostaglandin blockade blunts the natriuresis of elevated renal interstitial hydrostatic pressure. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F507–F511, 1988.
 195. Petty, K. J., J. P. Kokko, and D. Marver. Regulation of rabbit CCT NaK ATPase activity by aldosterone. J. Clin. Invest. 68: 1514–1521, 1981.
 196. Porter, G. A., R. Bogoroch, and I. S. Edelman. On the mechanisms of action of aldosterone on sodium transport: the role of RNA synthesis. Proc. Natl. Acad. Sci. USA 52: 1326–1333, 1964.
 197. Porter, G. A., and I. S. Edelman. The action of aldosterone and related corticosteroids on sodium transport across the toad bladder. J. Clin. Invest. 43: 611–620, 1964.
 198. Poujeol, P., and A. Vandewalle. Phosphate uptake by proximal cells isolated from rabbit kidney: role of dexamethasone. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F74–F83, 1985.
 199. Pressley, L., and J. W. Funder. Glucocorticoid and mineralocorticoid receptors in gut mucosa. Endocrinology 97: 588–596, 1975.
 200. Ragan, D., J. W. Ferrebee, P. Phyfe, D. W. Atchley, and R. F. Loeb. A syndrome of polydipsia and polyuria induced in normal animals by DOCA. Am. J. Physiol. 131: 73–78, 1940.
 201. Rajerison, R., J. Marchetti, C. Roy, J. Bockaert, and S. Jard. The vasopressin‐sensitive adenylate cyclase in rat kidney. J. Biol. Chem. 249: 6390–6400, 1974.
 202. Rane, S., and A. Aperia. Ontogeny of NaK ATPase activity in thick ascending limb and of concentrating capacity. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F723–F728, 1985.
 203. Reidenberg, M. M., E. A. Ohler, R. W. Sevy, and C. Harakal. Hemodynamic changes in adrenalectomized dogs. Endocrinology 72: 918–923, 1963.
 204. Reul, J. M. H. M., P. T. Pearce, J. W. Funder, and Z. S. Krozowski. Type I and Type II corticosteroid receptor gene expression in the rat: effect of adrenalectomy and dexamethasone administration. Mol. Endocrinol. 3: 1674–1680, 1989.
 205. Romero, J. C., F. G. Knox, T. J. Opgenorth, J. P. Granger, and J. A. Keiser. Contribution of sympathetic neural reflexes to mineralocorticoid escape. Federation Proc. 44: 2382–2387, 1985.
 206. Rossier, B. C., P. A. Wilce, and I. S. Edelman. Kinetics of RNA labeling in toad bladder epithelium: effects of aldosterone and related steroids. Proc. Natl. Acad. Sci. USA 71: 3101–3105, 1974.
 207. Rousseau, G. G., and J. D. Baxter. Glucocorticoid receptors. In: Glucocorticoid Hormone Action, edited by J. D. Baxter and G. G. Rousseau. Heidelberg: Springer‐Verlag, 1979, pp. 49–78.
 208. Rundle, S. E., J. W. Funder, V. Lakshmi, and C. Monder. The intrarenal localization of mineralocorticoid receptors and 11β‐dehydrogenase: immunocytochemical studies. Endocrinology 125: 1700–1704, 1989.
 209. Russo‐Marie, F. Glucocorticoid control of eicosanoid synthesis. Semin. Nephrol. 10: 421–429, 1990.
 210. Sakauye, C., and D. Feldman. Agonist and anti‐mineralocorticoid activities of spirolactones. Am. J. Physiol. 231: 93–97, 1976.
 211. Sansom, S., A. Agulian, S. Muto, V. Illig, and G. Giebisch. K activity of CCD principal cells from normal and DOCA‐treated rabbits. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F136–F142, 1989.
 212. Sansom, S., S. Muto, and G. Giebisch. Na‐dependent effects of DOCA on cellular transport properties of CCDs from ADX rabbits. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F753–F759, 1987.
 213. Sansom, S. C., and R. G. O'Neil. Mineralocorticoid regulation of apical cell membrane Na and K transport of cortical collecting duct. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F858–F868, 1985.
 214. Sariban‐Sohraby, S., M. B. Burg, W. P. Wiesmann, P. I. Chiang, and J. P. Johnson. Methylation increases sodium transport into A6 apical membrane vesicles: possible mode of aldosterone action. Science 225: 745–756, 1984.
 215. Sartorius, O. W., D. Calhoon, and R. F. Pitts. Studies on the interrelationships of the adrenal cortex and renal ammonium excretion in the rat. Endocrinology 52: 256–265, 1953.
 216. Schwartz, G. J., and M. B. Burg. Mineralocorticoid effects on cation transport by cortical collecting tubules in vitro. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F576–F585, 1978.
 217. Schwartz, M. J., and J. P. Kokko. Urinary concentrating defect of adrenal insufficiency: permissive role of adrenal steroid on the hydroosmotic response across the rabbit CCT. J. Clin. Invest. 66: 234–242, 1980.
 218. Seldin, D. W., J. G. Welt, and J. Cort. The effect of pituitary and adrenal hormones on the metabolism and excretion of K+. J. Clin. Invest. 30: 673, 1951 (abstrt.).
 219. Seldin, D. W., L. G. Welt, and H. J. Cort. The role of Na salts and adrenal steroids in the production of hypokalemic alkalosis. Yale J. Biol. Med. 29: 540–558, 1956.
 220. Sharp, G. W. G., C. L. Komack, and A. Leaf. Studies on the binding of aldosterone in the toad bladder. J. Clin. Invest. 45: 450–459, 1966.
 221. Sharp, G. W. G., and A. Leaf. The central role of pyruvate in the stimulation of sodium transport by aldosterone. Proc. Natl. Acad. Sci. USA 52: 1114–1121, 1964.
 222. Sharp, G. W. G., and A. Leaf. Metabolic requirements for active sodium transport stimulated by aldosterone. J. Biol. Chem. 240: 4816–4821, 1965.
 223. Sharp, G. W. G., and A. Leaf. Mechanism of action of aldosterone. Physiol. Rev. 46: 593–633, 1966.
 224. Sigler, M. H., J. N. Forrest, and J. R. Elkington. Renal concentrating ability in the adrenalectomized rat. Clin. Sci. 28: 29–37, 1965.
 225. Snart, R. S., and J. F. Wheldrake. Effects of saline exposure on the response of toad bladder (Bufo marinus) to aldosterone. Biochim. Biophys. Acta 631: 104–111, 1980.
 226. Sonnenberg, J., W. A. Cupples, A. J. DeBold, and A. T. Veress. Intrarenal localization of the natriuretic effect of cardiac atrial extract. Can. J. Physiol. Pharmacol. 60: 1149–1152, 1982.
 227. Stanton, B. A. Regulation by adrenal corticosteroids of Na and K transport in loop of Henle and distal tubule of rat kidney. J. Clin. Invest. 78: 1612–1620, 1986.
 228. Stanton, B., A. Janzen, G. Klein‐Robbenhaar, R. De‐Fronzo, G. Giebisch, and J. Wade. Ultrastructure of rat initial collecting tubule. Effect of adrenal corticosteroid treatment. J. Clin. Invest. 75: 1327–1334, 1985.
 229. Star, R. A., M. B. Burg, and M. A. Knepper. Bicarbonate secretion and chloride absorption by rabbit cortical collecting ducts. J. Clin. Invest. 76: 1123–1130, 1985.
 230. Stetson, D. L., and P. R. Steinmetz. The α and β types of carbonic anhydrase‐rich cells in turtle bladder. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F553–F565, 1985.
 231. Stewart, P. M., J. E. T. Corrie, C. H. L. Shackleton, and C. R. W. Edwards. Syndrome of apparent mineralocorticoid excess. A defect in the cortisol‐cortisone shuttle. J. Clin. Invest. 82: 340–349, 1988.
 232. Stokes, J. B. Effect of PGE2 on chloride transport across the rabbit TALH. Selective inhibition of the medullary portion. J. Clin. Invest. 64: 495–502, 1979.
 233. Stokes, J. B., and J. P. Kokko. Inhibition of Na transport by PGE2 across the isolated, perfused rabbit collecting tubule. J. Clin. Invest. 59: 1099–1104, 1977.
 234. Stone, D., D. Seldin, J. Kokko, and H. Jacobson. Mineralocorticoid modulation of rabbit medullary collecting duct acidification. J. Clin. Invest. 72: 77–83, 1983.
 235. Strum, J. M., D. Feldman, B. Taggart, D. Marver, and I. S. Edelman. Autoradiographic localization of corticosterone receptors (Type III) to the collecting tubule of the rat kidney. Endocrinology 97: 505–516, 1975.
 236. Swingle, W. W., E. Collins, G. Barlow, and E. J. Fedor. Bioassay and physiological effects of cortisone on adrenalectomized dogs. Am. J. Physiol. 169: 270–277, 1952.
 237. Tannen, R. L., and J. McGill. Influence of potassium on renal ammonia production. Am. J. Physiol. 231: 1178–1184, 1976.
 238. Taylor, A., and E. E. Windhager. Possible role of cytosolic Ca and Na/Ca exchange in regulation of transepithelial Na transport. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F505–F512, 1979.
 239. Ulmann, A., J. Menard, and P. Corvol. Binding of glycyr‐rhetinic acid to kidney mineralocorticoid and glucocorticoid receptors. Endocrinology 97: 46–51, 1975.
 240. Ussing, H. H., and K. Zerahn. Active transport of sodium as the source of electric current in the short‐circuited isolated frog skin. Acta Physiol. Scand. 23: 110–127, 1951.
 241. Van de Stolpe, A., and R. L. Jamison. Micropuncture study of the effect of ANP on the papillary collecting duct in the rat. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F477–F483, 1988.
 242. Vandewalle, A., G. Wirthesohn, H. G. Hendrich, and W. G. Guder. Distribution of hexokinase and PEPCK along the rabbit nephron. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F492–F500, 1981.
 243. Verrey, F., J. P. Kraehenbuhl, and B. C. Rossier. Aldosterone induces a rapid increase in the rate of Na, K‐ATPase gene transcription in cultured kidney cells. Mol. Endocrinol. 3: 1369–1376, 1989.
 244. Verrey, F., E. Schaerer, P. Zoerkler, M. P. Paccolat, K. Geering, J. P. Kraehenbuhl, and B. C. Rossier. Regulation by aldosterone of NaK ATPase mRNAs, protein synthesis and sodium transport in cultured kidney cells J. Cell Biol. 104: 1231–1237, 1987.
 245. Wade, J. B., R. G. O'Neil, J. L. Prejor, and E. L. Boulpaep. Modulation of cell membrane area in renal collecting tubules by corticosteroid hormones. J. Cell Biol. 81: 439–445, 1979.
 246. Wade, J. B., B. A. Stanton, M. J. Field, M. Kashgarian, and G. Giebisch. Morphological and physiological responses to aldosterone: time course and sodium dependence. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F88–F94, 1990.
 247. Wang, W., R. M. Henderson, J. Geibel, S. White, and G. Giebisch. Mechanism of aldosterone‐induced increase of K conductance in early distal renal tubule cells of the frog. J. Membr. Biol. 111: 277–289, 1989.
 248. Welbourne, T. C. Influence of adrenal glands on pathways of renal glutamine utilization and ammonia production. Am. J. Physiol. 226: 555–559, 1974.
 249. Welbourne, T. C. Acidosis activation of the pituitary‐adrenal‐renal glutaminase I axis. Endocrinology 99: 1071–1079, 1976.
 250. Welbourne, T. C. Glucocorticoid control of ammoniagenesis in the proximal tubule. Semin. Nephrol. 10: 339–349, 1990.
 251. Welbourne, T. C., and D. Francoeur. Influence of aldosterone on renal ammonia production. Am. J. Physiol. 233 (Endocrinol. Metab. Gastrointest. Physiol. 2): E56–E60, 1977.
 252. Welbourne, T. C., G. Givens, and S. Joshi. Renal ammon‐iagenic response to chronic acid loading: role of glucocorticoids. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F134–F138, 1988.
 253. Westenfelder, A., G. J. Arevalo, R. L. Baranowski, N. E. Kurtzman, and A. I. Katz. Relationship between mineralocorticoids and renal NaK ATPase: sodium reabsorption. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 6): F593–F599, 1977.
 254. Westphal, U. Steroid‐Protein Interactions II. Berlin: Springer‐Verlag, 1986, pp. 83–84.
 255. Wiesmann, W. P., J. P. Johnson, G. A. Miura, and P. K. Chiang. Aldosterone‐stimulated trans‐methylations are linked to sodium transport. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F43–F47, 1985.
 256. Wilce, P. A., B. C. Rossier, and I. S. Edelman. Actions of aldosterone on rRNA and Na transport in the toad bladder. Biochemistry 15: 4286–4291, 1976.
 257. Wilcox, C. S., D. A. Cemerikic, and G. Giebisch. Differential effects of acute mineralo‐ and glucocorticoid administration on renal acid elimination. Kidney Int. 21: 546–556, 1982.
 258. Wingo, C. S., J. P. Kokko, and H. R. Jacobson. Effects of in vitro aldosterone on the rabbit cortical collecting tubule. Kidney Int. 28: 51–57, 1985.
 259. Work, J., and R. L. Jamison. Effect of adrenalectomy on transport in the rat medullary thick ascending limb. J. Clin. Invest. 80: 1160–1164, 1987.
 260. Yingst, D. R., Modulation of the Na, K‐ATPase by Ca and intracellular proteins. In: Annual Review of Physiology, edited by R. M. Berne and J. F. Hoffman. Palo Alto: Annual Reviews, Inc., 1988, vol. 50, pp. 291–303.
 261. Yorio, T., and P. J. Bentley. Phospholipase A and the mechanism of action of aldosterone. Nature 271: 79–81, 1978.
 262. Yoshida, M., S. Ueda, H. Soejima, K. Tsuruta, and K. Inegami. Effects of PGE2 and I2 on renal cortical and medullary blood flow in rabbits. Arch Int. Pharmacodyn. Ther. 282: 108–117, 1986.
 263. Yoshimura, H., M. Fujimoto, and J. Sugimoto. Study on mechanism of acid and ammonia excretion by kidney after acid load. Jpn. J. Physiol. 12: 143–160, 1962.
 264. Zipser, R. D., P. Zia, R. A. Stone, and R. Horton. The prostaglandin and kallikrein‐kinin systems in mineralocorticoid escape. J. Clin. Endocrinol. Metab. 47: 996–1001, 1978.
 265. Zusman, R. M., and H. R. Keiser. Regulation of PGE2 synthesis by ang II, K, osmolality and dexamethasone. Kidney Int. 17: 277–283, 1980.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Diana Marver. Corticosteroids and the Kidney. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 1543-1576. First published in print 1992. doi: 10.1002/cphy.cp080232