References |
1. |
Abbott, W. A.,
R. J. Bridges, and
A. Meister.
Extracellular metabolism of glutathione accounts for its disappearance from the basolateral circulation of the kidney.
J. Biol. Chem.
259:
15393–15400,
1984.
|
2. |
Abderhalden, E., and
A. Hunter.
Weitere Beiträge zur Kenntnis der proteolytischen Fermente der tierischen Organe.
Hoppe Seylers Z. Physiol. Chem.
48:
537–545,
1917.
|
3. |
Anderson, M. E., and
A. Meister.
Transport and direct utilization of gamma‐glutamylcyst(e)ine for glutathione synthesis.
Proc. Natl. Acad. Sci. USA
80:
707–711,
1983.
|
4. |
Bachmann, C.
Treatment of congenital hyperammonemias.
Enzyme
32:
56–64,
1984.
|
5. |
Baerlocher, K. E.,
C. R. Scriver, and
F. Mohyuddin.
Ontogeny of iminoglycine transport in mammalian kidney.
Proc. Natl. Acad. Sci. USA
65:
1009–1016,
1970.
|
6. |
von Baeyer, H.
Glucose transport in the short loop of Henle of the rat kidney.
Pflugers Arch.
359:
317–323,
1975.
|
7. |
Baines, A. D., and
F. Morel.
Absorption of amino acids from proximal tubule fluid.
In: Proc. Fourth Int. Congr. Nephrol., Stockholm,
1969.
p. 293.
|
8. |
Bank, N., and
N. Aynedjian.
Individual nephron function in experimental bilateral pyelonephritis. I. Glomerular filtration rate and proximal tubular sodium, potassium, and water reabsorption.
J. Lab. Clin. Med.
68:
713–727,
1966.
|
9. |
Barfuss, D. W.,
V. Ganapathy, and
F. H. Leibach.
Evidence for active dipeptide transport in isolated proximal straight tubules.
Am. J. Physiol.
255:
F177–F181,
1988.
|
10. |
Barfuss, D. W.,
J. M. Mays, and
J. A. Schafer.
Peritubular uptake and transepithelial transport of glycine in isolated proximal tubules.
Am. J. Physiol.
238
(Renal Fluid Electrolyte Physiol. 7):
F324–F333,
1980.
|
11. |
Barfuss, D. W., and
J. A. Schafer.
Active amino acid absorption by proximal convoluted and proximal straight tubules.
Am. J. Physiol.
236
(Renal Fluid Electrolyte Physiol. 5):
F149–F162,
1979.
|
12. |
Barrett, P. Q., and
P. S. Aronson.
Glucose and alanine inhibition of phosphate transport in renal microvillous membrane vesicles.
Am. J. Physiol.
242
(Renal Fluid Electrolyte Physiol. 11):
F126–F131,
1982.
|
13. |
Bartlett, G. R.
The inhibition of D‐amino acid oxidase by benzoic acid and various monosubstituted benzoic acid derivatives.
J. Am. Chem. Soc.
70:
1010–1011,
1948.
|
14. |
Baverel, G.,
M. Bonnard,
E. D'Armagnac de Castanet, and
M. Pellet.
Lactate and pyruvate metabolism in isolated renal tubules of normal dogs.
Kidney Int.
14:
567–575,
1978.
|
15. |
Benyajati, S., and
W. H. Dantzler.
Renal secretion of amino acids in ophidian reptiles.
Am. J. Physiol.
250
(Regulatory Integrative Comp. Physiol. 19):
R712–R720,
1986.
|
16. |
Bergeron, M.,
L. Dubord, and
C. Hausser.
Membrane permeability as a cause of transport defects in experimental Fanconi syndrome.
J. Clin. Invest.
57:
1181–1189,
1976.
|
17. |
Bergeron, M., and
F. Morel.
Amino acid transport in rat renal tubules.
Am. J. Physiol.
216:
1139–1149,
1969.
|
18. |
Bergeron, M., and
C. R. Scriver.
Pathophysiology of renal hyperaminoacidurias and glucosuria.
In: The Kidney. Physiology and Pathophysiology,
edited by D. W. Seldin and
G. Giebisch.
New York:
Raven,
1985,
p. 1725–1746.
|
19. |
Bergeron, M., and
M. Vadeboncoeur.
Antiluminal transport of L‐arginine and L‐leucine following microinjections in peritubular capillaries of the rat.
Nephron
8:
355–366,
1971.
|
20. |
Beyer, K. H.,
L. D. Wright,
H. R. Skeggs,
H. F. Russo, and
G. H. Shaner.
Renal clearance of essential amino acids: their competition for reabsorption by the renal tubules.
Am. J. Physiol.
151:
202–210,
1947.
|
21. |
Biber, I.,
H. Murer,
G. Stange, and
B. Stieger.
The transport of 35S‐L‐cysteine/cystine and their interaction with the transport of L‐lysine in rat renal proximal tubular brush border vesicles.
J. Physiol. (Lond.)
325:
60P,
1982.
|
22. |
Biber, J.,
B. Stange,
B. Stieger, and
H. Murer.
Transport of L‐cystine by rat renal brush border membrane vesicles.
Pflugers Arch.
396:
335–341,
1983.
|
23. |
Binkley, F.
Metabolism of glutathione.
Nature
4257:
888–889,
1951.
|
24. |
Bishop, J. H. V.,
R. Green, and
S. Thomas.
Glucose transport by short loop of Henle in the rat.
J. Physiol. (Lond.)
320:
127–138,
1981.
|
25. |
Blazer‐Yost, B.,
R. Reynolds, and
S. Segal.
Amino acid content of rat renal cortex and the response to in vitro incubation.
Am. J. Physiol.
236
(Renal Fluid Electrolyte Physiol. 5):
F398–F404,
1979.
|
26. |
Borsook, H., and
W. Dubnoff.
The conversion of citrulline to arginine in kidney.
J. Biol. Chem.
141:
717–738,
1941.
|
27. |
Bourdeau, J. E.,
E. R. Y. Chen, and
F. A. Carone.
Insulin uptake in the renal proximal tubule.
Am. J. Physiol.
225:
1399–1404,
1973.
|
28. |
Braun, W.,
W. Zschaler, and
C. Weiss.
Der Einfluss von Änderungen des Urin‐pH auf die Ausscheidung von Aminosäuren an der isoliert perfundierten Rattenniere.
Naunyn Schmiedebergs Arch. Pharmacol.
256:
397–406,
1967.
|
29. |
Brenner, B. M.,
T. W. Meyer, and
T. H. Hostetter.
Dietary intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerulus sclerosis in aging, renal ablation, and intrinsic renal disease.
N. Engl. J. Med.
307:
652–659,
1982.
|
30. |
Brigham, M. P.,
W. H. Stein, and
S. Moore.
The concentrations of cysteine and cystine in human blood plasma.
J. Clin. Invest.
39:
1633–1638,
1960.
|
31. |
Brodehl, J.,
Postnatal development of tubular amino acid reabsorption.
In: Amino Acid Transport and Uric Acid Transport,
edited by S. Silbernagl,
F. Lang, and
R. Greger.
Stuttgart:
Thieme,
1976,
p. 128–135.
|
32. |
Burch, H. B.,
N. Cambon, and
O. H. Lowry.
Branched‐chain amino acid aminotransferase along the rabbit and rat nephron.
Kidney Int.
28:
114–117,
1985.
|
33. |
Burch, H. B.,
A. W. K. Chan,
T. R. Alvey, and
O. H. Lowry.
Localization of glutamine accumulation and tubular reabsorption in rat nephron.
Kidney Int.
14:
406–413,
1978.
|
34. |
Burch, H. B.,
S. Choi,
W. Z. McCarthy,
P. Y. Wong, and
O. H. Lowry.
The localization of glutamine synthetase within the rat and rabbit nephron.
Biochem. Biophys. Res. Commun.
82:
498–505,
1978.
|
35. |
Burckhardt, G.,
T. Kinne,
G. Stange, and
H. Murer.
The effects of potassium and membrane potential on sodium‐dependent glutamic acid uptake.
Biochim. Biophys. Acta
599:
191–201,
1980.
|
36. |
Busse, D.
Transport of L‐arginine in brush border vesicles derived from rabbit kidney cortex.
Arch. Biochem. Biophys.
191:
551–560,
1978.
|
37. |
Cahill, G. F., Jr.
Protein and amino acid metabolism in man.
Circ. Res.
38:
1109–1114,
1976.
|
38. |
Carone, F. A.,
D. R. Peterson, and
G. Flouret.
Renal tubular processing of small peptide hormones.
J. Lab. Clin. Med.
100:
1–14,
1982.
|
39. |
Carone, F. A.,
D. R. Peterson,
S. Oparil, and
T. N. Pullman.
Renal tubular transport and catabolism of proteins and peptides.
Kidney Int.
16:
271–278,
1979.
|
40. |
Chan, A. W. K.,
H. B. Burch,
T. R. Alvey, and
O. H. Lowry.
A quantitative histochemical approach to renal transport. I. Aspartate and glutamate.
Am. J. Physiol.
229:
1034–1044,
1975.
|
41. |
Chan, A. W. K.,
S. G. Perry,
H. B. Burch,
S. Fagioli,
T. R. Alvey, and
O. H. Lowry.
Distribution of two aminotransferases and D‐amino acid oxidase within the nephron of young and adult rats.
J. Histochem. Cytochem.
27:
751–755,
1979.
|
42. |
Chan, Y.‐L., and
K. C. Huang.
Renal excretion of D‐tryptophan, 5‐hydroxytryptamine, and 5‐hydroxyindoleacetic acid in rats.
Am. J. Physiol.
224:
140–143,
1973.
|
43. |
Chesney, R. W.,
N. Gusowski, and
A. L. Friedman.
Renal adaptation to altered dietary sulfur amino acid intake occurs at luminal brushborder membrane.
Kidney Int.
24:
588–594,
1983.
|
44. |
Chesney, R. W.,
N. Gusowski,
M. Padilla, and
S. Lippincott.
Effect of amino acid intake on brush‐border membrane uptake of sulfur amino acids.
Am. J. Physiol.
251
(Renal Fluid Electrolyte Physiol. 20):
F125–F131,
1986.
|
45. |
Christensen, H. N.
Interorgan amino acid nutrition.
Physiol. Rev.
62:
1193–1233,
1982.
|
46. |
Christensen, H. N.
Organic ion transport during seven decades.
Biochim. Biophys. Acta
779:
255–269,
1984.
|
47. |
Christensen, H. N.
On the strategy of kinetic discrimination of amino acid transport systems.
J. Membr. Biol.
84:
97–103,
1985.
|
48. |
Christensen, H. N., and
A. M. Cullen.
Synthesis of metabolism‐resistant substrates for the transport system for cationic amino acids; their stimulation of the release of insulin and glucagon, and of the urinary loss of amino acids related to cystinuria.
Biochim. Biophys. Acta
298:
932–950,
1973.
|
49. |
Christensen, H. N., and
J. C. Jones.
Amino acid transport models: renal resorption and resistance to metabolic attack.
J. Biol. Chem.
237:
1203–1206,
1962.
|
50. |
Christophel, W., and
P. Deetjen.
Mikroperfusionsuntersuchungen zum tubulären Transport von Glyzin.
Pflugers Arch.
297:
R52,
1967.
|
51. |
Collander, R.
Die Verteilung organischer Verbindungen zwischen Äther und Wasser.
Acta Chem. Scand. [B]
3:
717–747,
1949.
|
52. |
Craan, A. G., and
M. Bergeron.
Nonparticipation of extracellular glutathione in renal transport of dibasic amino acids.
Can. J. Physiol. Pharmacol.
57:
1168,
1979.
|
53. |
Crampton, R. F., and
D. H. Smyth.
The excretion of enantiomorphs of amino acids.
J. Physiol. (Lond.)
122:
1–10,
1953.
|
54. |
Crane, R. K.
Hypothesis for mechanism of intestinal active transport of sugars.
Federation Proc.
21:
891–895,
1962.
|
55. |
Crawhall, J. C., and
S. Segal.
Dithiothreitol in the study of cysteine transport.
Biochim. Biophys. Acta
121:
215–217,
1966.
|
56. |
Crawhall, J. C., and
S. Segal.
The intracellular ratio of cysteine and cystine in various tissues.
Biochem. J.
105:
891–896,
1967.
|
57. |
Curthoys, N. P., and
R. P. Hughey.
Characterization and physiological function of rat renal γ‐glutamyltranspeptidase.
Enzyme
24:
383–403,
1979.
|
58. |
Curthoys, N. P., and
T. Kuhlenschmidt.
Phosphate‐dependent glutaminase from rat kidney. Partial purification and identity with gamma‐glutamyltranspeptidase.
J. Biol. Chem.
250:
2099–2105,
1975.
|
59. |
Curthoys, N. P., and
O. H. Lowry.
The distribution of glutaminase isoenzymes in the various structures of the nephron in normal, acidotic, and alkalotic rat kidney.
J. Biol. Chem.
248:
162–168,
1973.
|
60. |
Curthoys, N. P., and
R. A. Shapiro.
Effect of inactivation of γ‐glutamyl transpeptidase on rat renal glutamine and glutathione metabolism.
In: Abstr. VIIIth Int. Congr. Nephrology, Athens, 1981,
p. RM‐004,
Athens:
Int. Soc. of Nephrology,
1981.
|
61. |
Cushny, A. R.
The Secretion of the Urine
(1st ed.).
London:
Longmans, Green,
1917.
|
62. |
Dantzler, W. H., and
S. Silbernagl.
Renal tubular reabsorption of taurine, γ‐aminobutyric acid (GABA) and β‐alanine studied by continuous microperfusion.
Pflugers Arch.
367:
123–128,
1976.
|
63. |
Dantzler, W. H., and
S. Silbernagl.
Amino acid transport by juxtamedullary nephrons: distal reabsorption and recycling.
Am. J. Physiol.
255
(Renal Fluid Electrolyte Physiol. 24):
F397–F407,
1988.
|
64. |
Dantzler, W. H., and
S. Silbernagl.
Amino acid transport: microinfusion and micropuncture of Henle's loop and vasa recta.
Am. J. Physiol.
258
(Renal Fluid Electrolyte Physiol. 27):
F504–F513,
1990.
|
65. |
Dass, P. D., and
T. C. Welbourne.
Evidence for luminal and antiluminal localization of γ‐glutamyltranspeptidase in rat kidney.
Life Sci.
28:
355–360,
1981.
|
66. |
Dent, C. E., and
G. A. Rose.
Amino acid metabolism in cystinuria.
Q. J. Med.
20:
205–219,
1951.
|
67. |
Du Vigneaud, V.,
R. H. Sifferd, and
G. W. Irving.
The utilization of L‐carnosine by animals on a histidine‐deficient diet.
J. Biol. Chem.
117:
589–597,
1937.
|
68. |
Duckworth, W. C.
Insulin and glucagon degradation by the kidney. I. Subcellular distribution under different assay conditions.
Biochim. Biophys. Acta
437:
518–530,
1976.
|
69. |
Duckworth, W. C.
Insulin and glucagon degradation by the kidney. II. Characterization of the mechanisms at neutral pH.
Biochim. Biophys. Acta
437:
531–542,
1976.
|
70. |
Eisenbach, G. M.,
M. Weise, and
H. Stolte.
Amino acid reabsorption in the rat nephron. Free flow micropuncture study.
Pflugers Arch.
357:
63,
1975.
|
71. |
Elwyn, D. H.,
W. J. Launder,
H. C. Parikh,
E. M. Wise, Jr.
Roles of plasma and erythrocytes in interorgan transport of amino acids in dogs.
Am. J. Physiol.
222:
1333–1342,
1972.
|
72. |
Endou, H.,
H. Shimada,
C. Koseki,
Y. Yokokura, and
Y. Sakai.
Distribution and possible functions of gamma‐glutamyl‐transpeptidase in the kidney.
Jpn. J. Nephrol.
23:
981–988,
1981.
|
73. |
Evers, J.,
H. Murer, and
R. Kinne.
Phenylalanine uptake in isolated renal brush border vesicles.
Biochim. Biophys. Acta
426:
598–615,
1976.
|
74. |
Featherston, W. R.,
Q. R. Rogers, and
R. A. Freedland.
Relative importance of kidney and liver in synthesis of arginine by the rat.
Am. J. Physiol.
224:
127–129,
1973.
|
75. |
Felig, P.,
J. Wahren, and
L. Räf.
Evidence for interorgan amino‐acid transport by blood cells in humans.
Proc. Natl. Acad. Sci. USA
70:
1775–1779,
1973.
|
76. |
Foreman, J. W.,
S. M. Hwang, and
S. Segal.
Transport interactions of cystine and dibasic amino acids in isolated rat renal tubules.
Metabolism
29:
53,
1980.
|
77. |
Foreman, J. W.,
H. Wald,
R. A. Reynolds, and
S. Segal.
Amino acid uptake by isolated renal brush border membrane vesicles in various buffers.
Biochim. Biophys. Acta
646:
188–192,
1981.
|
78. |
Foulkes, E. C.
Cellular localization of amino acid carriers in renal tubules.
Proc. Soc. Exp. Biol. Med.
139:
1032–1033,
1972.
|
79. |
Foulkes, E. C.
Tubular reabsorption delay of amino acids in the rabbit kidney.
Am. J. Physiol.
149
(Renal Fluid Electrolyte Physiol. 18):
F878–F883,
1985.
|
80. |
Foulkes, E. C., and
T. Gieske.
Specificity and metal sensitivity of renal amino acid transport.
Biochim. Biophys. Acta
318:
439–445,
1973.
|
81. |
Fox, M.,
S. Thier,
L. E. Rosenberg,
W. Kiser, and
S. Segal.
Evidence against a single renal transport defect in cystinuria.
N. Engl. J. Med.
270:
556–561,
1964.
|
82. |
Fox, M.,
S. Thier,
L. E. Rosenberg, and
S. Segal.
Ionic requirements for amino acid transport in the rat kidney cortex slices. I. Influence of extracellular ions.
Biochim. Biophys. Acta
79:
167–176,
1964.
|
83. |
Friedman, A.,
P. W. Albright, and
R. W. Chesney.
Dietary adaptation of taurine transport by rat renal epithelium.
Life Sci.
29:
2415–2419,
1981.
|
84. |
Frömter, E.,
Electrical aspects of tubular transport of organic substances.
In: Renal Transport of Organic Substances,
edited by R. Greger,
F. Lang, and
S. Silbernagl.
Berlin:
Springer,
1981,
p. 30–44.
|
85. |
Frimpter, G. W.,
M. Horwith,
E. Furth,
R. E. Fellows, and
D. D. Thompson.
Inulin and endogenous amino acid renal clearance in cystinuria: evidence for tubular secretion.
J. Clin. Invest.
42:
281–288,
1962.
|
86. |
Frömter, E.
Electrophysiological analysis of rat renal sugar and amino acid transport. I. Basic phenomena.
Pflugers Arch.
393:
179–189,
1982.
|
87. |
Fukuda, S., and
J. D. Kopple.
Evidence that the dog kidney is an endogenous source of histidine.
Am. J. Physiol.
237
(Endocrinol. Metab. 6):
E1–E5,
1979.
|
88. |
Fukuhara, Y., and
J. R. Turner.
Cation dependence of renal outer cortical brush border membrane L‐glutamate transport.
Am. J. Physiol.
248
(Renal Fluid Electrolyte Physiol. 17):
F869–F875,
1985.
|
89. |
Galicek, J.,
F. Seow, and
J. M. Lingard.
The effect of chronic acid/base disturbances on renal amino acid clearances in the rat.
Aust. J. Exp. Biol. Med. Sci.
59:
383–391,
1981.
|
90. |
Ganapathy, V., and
F. H. Leibach.
Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush‐border membrane vesicles from the rabbit.
J. Biol. Chem.
258:
14189–14192,
1983.
|
91. |
Ganapathy, V., and
F. H. Leibach.
Carrier‐mediated reabsorption of small peptides in renal proximal tubule.
Am. J. Physiol.
251
(Renal Fluid Electrolyte Physiol. 20):
F945–F953,
1986.
|
92. |
Ganapathy, V.,
J. Mendicino, and
F. H. Leibach.
Evidence for a dipeptide transport system in renal brush border membranes from rabbit.
Biochim. Biophys. Acta
642:
381–391,
1981.
|
93. |
Ganapathy, V.,
J. Mendicino,
D. H. Pashley, and
F. H. Leibach.
Carrier‐mediated transport of glycyl‐L‐proline in renal brush border vesicles.
Biochem. Biophys. Res. Commun.
97:
1133–1139,
1980.
|
94. |
Gekle, M.,
M. Grimme, and
S. Silbernagl.
Peritubular transport, tubular metabolism and transcellular secretion of L‐citrulline in the isolated kidney of the frog (Xenopus laevis).
Kidney Int.
36:
311,
1989.
|
95. |
Gekle, M., and
S. Silbernagl.
On leaking into the lumen amino acids cross the tubule cells. Secretion of L‐citrulline in the isolated perfused non‐filtering kidney of the African clawed toad (Xenopus laevis).
Pflugers Arch.
(in press),
1991.
|
96. |
Gekle, M., and
S. Silbernagl.
Baso‐lateral uptake and tubular metabolism of L‐citrulline in the isolated perfused nonfiltering kidney of the African clawed toad (Xenopus laevis).
Pflugers Arch.
(in press),
1991.
|
97. |
Gingery, R., and
R. W. Chesney.
The influence of hypotaurine on taurine transport in isolated renal cortex tubules.
Proc. Soc. Exp. Biol. Med.
164:
18,
1980.
|
98. |
Goldman, H., and
C. R. Scriver.
A transport system in mammalian kidney with preference for β‐amino compounds.
Pediatr. Res.
1:
212–213,
1967.
|
99. |
Goldstein, L.,
Ammonia production and excretion in the mammalian kidney.
In: Kidney and Urinary Tract Physiology II,
edited by K. Thurau.
Baltimore:
University Park Press,
1976,
vol. 11,
p. 283–316.
|
100. |
Griffith, O. W.
The role of glutathione turnover in the apparent renal secretion of cystine.
J. Biol. Chem.
256:
12263–12268,
1981.
|
101. |
Griffith, O. W., and
A. Meister.
Glutathione: interorgan translocation, turnover, and metabolism.
Proc. Natl. Acad. Sci. USA
76:
5606,
1979.
|
102. |
Griffith, O. W., and
A. Meister.
Excretion of cysteine and γ‐glutamylcysteine moieties in human and experimental animal γ‐glutamyltranspeptidase deficiency.
Proc. Natl. Acad. Sci. USA
77:
3384–3387,
1980.
|
103. |
Guder, W. G., and
G. Wirthenson.
Renal turnover of substrates.
In: Renal Transport of Organic Substances,
edited by R. Greger,
F. Lang, and
S. Silbernagl.
Berlin:
Springer,
1981,
p. 66–77.
|
104. |
Günther, R., and
S. Silbernagl.
Renal handling of L‐histidine studied by continuous microperfusion and free flow micropuncture in the rat.
Pflugers Arch.
389:
137–142,
1981.
|
105. |
Günther, R.,
S. Silbernagl, and
P. Deetjen.
Maleic acid induced aminoaciduria studied by free flow micropuncture and continuous microperfusion.
Pflugers Arch.
382:
109–114,
1979.
|
106. |
Häberle, D.,
A. Wahlländer, and
H. Sies.
Assessment of the kidney function in maintenance of plasma glutathione concentration and redox state in anaesthetized rats.
FEBS Lett.
108:
335–340,
1979.
|
107. |
Hammerman, M. R.
Na+‐independent L‐arginine transport in rabbit renal brush border membrane vesicles.
Biochim. Biophys. Acta
685:
71–77,
1982.
|
108. |
Hammerman, M. R., and
B. Sacktor.
Transport of β‐alanine in renal brush border membrane vesicles.
Biochim. Biophys. Acta
509:
338–347,
1978.
|
109. |
Hammerman, M. R., and
B. Sacktor.
Na+‐dependent transport of glycine in renal brush border membrane vesicles. Evidence for a single specific transport system.
Biochim. Biophys. Acta
686:
189–196,
1982.
|
110. |
Hanson, H. T., and
E. L. Smith.
Carnosinase: an enzyme of swine kidney.
J. Biol. Chem.
179:
789–801,
1949.
|
111. |
Harms, E.,
N. Gochman, and
J. A. Schneider.
Lysosomal pool of free amino acids.
Biochem. Biophys. Res. Commun.
99:
830–836,
1981.
|
112. |
Harris, H., and
A. G. Searle.
Urinary amino acids in mice of different genotypes.
Ann. Eugen. (Lond.)
17:
165–167,
1952.
|
113. |
Heinle, H.,
A. Wendel, and
U. Schmidt.
The activities of the key enzymes of the γ‐glutamyl cycle in microdissected segments of the rat nephron.
FEBS Lett.
73:
220–224,
1977.
|
114. |
Heinz, E.,
D. L. Sommerfeld, and
R. K. H. Kinne.
Electrogenicity of sodium/L‐glutamate cotransport in rabbit renal brush‐border membranes: a reevaluation.
Biochim. Biophys. Acta
937:
300–308,
1988.
|
115. |
Helbig, I.,
B. Pohl, and
D. Busse.
Interconversion of cysteine and cystine by subcellular fractions of rabbit kidney cortical tubules.
Pflugers Arch.
400:
R24,
1984.
|
116. |
Heuner, A.,
J. S. Schwegler, and
S. Silbernagl.
Renal tubular transport of glutathione in rat kidney.
Pflugers Arch.
414:
551–557,
1989.
|
117. |
Heuner, A.,
W. Dekant,
J. S. Schwegler, and
S. Silbernagl.
Localization and capacity of the lest step of mercapturic acid biosynthesis and the reabsorption and acetylation of cysteine S‐conjugates in the rat kidney.
Pflugers Arch.
417:
523–527,
1991.
|
118. |
Hilden, S. A., and
B. Sacktor.
L‐arginine uptake into renal brush border membrane vesicles.
Arch. Biochem. Biophys.
210:
289–297,
1981.
|
119. |
Hopfer, U.
Transport in isolated plasma membranes.
Am. J. Physiol.
234
(Renal Fluid Electrolyte Physiol. 3):
F89–F96,
1978.
|
120. |
Hoshi, T.,
K. Sudo, and
Y. Suzuki.
Characteristics of changes in the intracellular potential associated with transport of neutral, dibasic and acidic amino acids in triturus proximal tubule.
Biochim. Biophys. Acta
448:
492–504,
1976.
|
121. |
Hsu, B. Y. L.,
S. M. Corcoran,
C. M. Marshall, and
S. Segal.
The effect on amino acid transport of trypsin treatment of rat renal brush border membranes.
Biochim. Biophys. Acta
689:
181–193,
1982.
|
122. |
Hughey, R. P.,
B. B. Rankin,
J. S. Elce, and
N. P. Curthoys.
Specificity of a particulate rat renal peptidase and its localization along with other enzymes of mercapturic acid synthesis.
Arch. Biochem. Biophys.
186:
211–217,
1978.
|
123. |
Inoue, M., and
Y. Morino.
Direct evidence for the role of the membrane potential in glutathione transport by renal brush‐border membranes.
J. Biol. Chem.
260:
326–331,
1985.
|
124. |
Inoue, M.,
K. Okajima, and
Y. Morino.
Renal transtubular transport of mercapturic acid in vivo.
Biochim. Biophys. Acta
641:
122–128,
1981.
|
125. |
Jepson, J. B.,
Hartnup disease.
In: The Metabolic Basis of Inherited Disease,
edited by J. B. Stanbury,
J. B. Wyngaarden, and
D. S. Frederickson.
New York:
McGraw‐Hill,
1978,
p. 1563–1577.
|
126. |
Jessen, H.,
H. Vorum,
K. E. Jorgensen, and
M. I. Sheikh.
Characteristics of D‐alanine transport by luminal membrane vesicles from pars convoluta and pars recta of rabbit proximal tubule.
Biochim. Biophys. Acta
942:
262–270,
1988.
|
127. |
Jonas, A. J.,
M. L. Smith,
W. S. Allison,
P. K. Laikind,
A. A. Greene, and
J. A. Schneider.
Proton‐translocating ATPase and lysosomal cystine transport.
J. Biol. Chem.
258:
11727–11730,
1983.
|
128. |
Jones, D. P.,
P. Moldeus,
A. H. Stead,
K. Ormstad,
H. Joernvall, and
S. Orrenius.
Metabolism of glutathione and a glutathione conjugate by isolated kidney cells.
J. Biol. Chem.
254:
2787–2792,
1979.
|
129. |
Katz, A. L., and
D. S. Emmanouel.
Metabolism of polypeptide hormones by the normal kidney and in uremia.
Nephron
22:
69–80,
1978.
|
130. |
Kenny, A. J., and
S. Maroux.
Topology of microvillar membrane hydrolases of kidney and intestine.
Physiol. Rev.
62:
91–128,
1982.
|
131. |
Kettner, A., and
S. Silbernagl.
Renal handling of citrulline.
In: Kidney Metabolism and Function,
edited by R. Dzurik,
B. Lichardus, and
W. Guder.
Dordrecht:
Martinus Nijhoff,
1985,
p. 51–60.
|
132. |
King, P. A.,
K. W. Beyenbach, and
L. Goldstein.
Taurine transport by isolated flounder renal tubules.
J. Exp. Zool.
223:
103–114,
1982.
|
133. |
King, P. A.,
R. Kinne, and
L. Goldstein.
Taurine transport by brush border membrane vesicles isolated from the flounder kidney.
J. Comp. Physiol.
155:
185–193,
1985.
|
134. |
Kirk, E.
Studies on the amino acid clearance.
Acta Med. Scand.
89:
450–453,
1936.
|
135. |
Klein, R. A.,
M. J. Moore, and
M. W. Smith.
Selective diffusion of neutral amino acids across lipid bilayers.
Biochim. Biophys. Acta
233:
420–433,
1971.
|
136. |
Koepsell, H.,
K. Korn,
D. Ferguson,
H. Menuhr,
D. Ollig, and
W. Haase.
Reconstruction and partial purification of several Na+ cotransport systems from renal brush‐border membranes. Properties of the L‐glutamate transporter in proteoliposomes.
J. Biol. Chem.
259:
6548–6558,
1984.
|
137. |
Konno, R.,
Y. Nagata,
A. Niwa, and
Y. Yasumara.
Spontaneous excretion of D‐alanine in urine in mutant mice lacking D‐amino‐acid oxidase.
Biochem. J.
261:
285–287,
1989.
|
138. |
Kragh‐Hansen, U., and
M. I. Sheikh.
Serine uptake by luminal and basolateral membrane vesicles from rabbit kidney.
J. Physiol (Lond.)
354:
55–67,
1984.
|
139. |
Kugler, P.
Localization of aminopeptidase A (angiotensinase A) in the rat and mouse kidney.
Histochemistry
72:
269–278,
1981.
|
140. |
Kuwahara, M.,
S. Sasaki,
T. Shigai, and
J. Takeuchi.
Glutamine transport in the rabbit proximal straight tubule: effect of acute acid pH.
Kidney Int.
30:
340–347,
1986.
|
141. |
Lang, F.,
G. Messner, and
W. Rehwald.
Electrophysiology of sodium‐coupled transport in proximal renal tubules.
Am. J. Physiol.
250
(Renal Fluid Electrolyte Physiol. 19):
F953–F962,
1986.
|
142. |
Lash, L. H., and
D. P. Jones.
Transport of glutathione by renal basal–lateral membrane vesicles.
Biochem. Biophys. Res. Commun.
112:
55–60,
1983.
|
143. |
Lash, L. H., and
D. P. Jones.
Renal glutathione transport. Characteristics of the sodium‐dependent system in the basolateral membrane.
J. Biol. Chem.
23:
14508–14514,
1984.
|
144. |
Lash, L. H., and
D. P. Jones.
Distribution of oxidized and reduced forms of glutathione and cysteine in rat plasma.
Arch. Biochem. Biophys.
240:
583–592,
1985.
|
145. |
Lee, K. E., and
R. A. Summerill.
Phosphate reabsorption in the conscious dog following amino acid administration.
J. Physiol. (Lond.)
320:
43P,
1981.
|
146. |
Lee, K. E., and
R. A. Summerill.
Glomerular filtration rate following administration of individual amino acids in conscious dogs.
Q. J. Exp. Physiol.
67:
459–465,
1982.
|
147. |
Lee, S. H., and
J. B. Pritchard.
Proton‐coupled L‐lysine uptake by renal brush border membrane vesicles from mullet.
J. Membr. Biol.
75:
171–178,
1983.
|
148. |
Lemieux, G.,
G. Baverel,
P. Vinay, and
P. Wadoux.
Glutamine synthetase and glutamyltransferase in the kidney of man, dog, and rat.
Am. J. Physiol.
231:
1068–1073,
1976.
|
149. |
Linder, G., and
E. C. Foulkes.
Kinetics of renal reabsorption and its inhibition by metals in the intact rat kidney.
Environ. Res.
36:
241–247,
1985.
|
150. |
Lindheimer, M. D.,
A. Reinharz,
A. Grandchamp, and
M. B. Vallotton.
Fate of arginine vasopressin (AVP) perfused into nephron of Wistar (W) and Brattleboro (DI) rats.
Clin. Res.
25:
595A,
1977.
|
151. |
Lingard, J. M.
Recent advances in amino acid transport in the kidney.
In: Proc. IUPS, XXIXth Congr. Sydney, (Ed.: D. F. Davey) 1983.
p. 442,
Sydney,
1983.
|
152. |
Lingard, J. M.,
D. I. Cook, and
J. A. Young.
A mathematical analysis of the role of passive diffusion in the renal reabsorption of amino acids and other organic compounds under free flow conditions.
Aust. J. Exp. Biol. Med. Sci.
56:
395–408,
1978.
|
153. |
Lingard, J. M.,
A. Z. Györy, and
J. A. Young.
Microperfusion study of the kinetics of reabsorption of cycloleucine in early and late segments of the proximal convolution of the rat nephron.
Proc. Aust. Physiol. Pharmacol. Soc.
5:
223–225,
1974.
|
154. |
Lingard, J. M.,
A. Z. Györy, and
J. A. Young.
Inhomogeneity of cycloleucine reabsorption in the proximal convolution of rat kidney.
Pflugers Arch.
357:
51–61,
1975.
|
155. |
Lingard, J. M.,
G. Rumrich, and
J. A. Young.
Kinetics of L‐histidine transport in the proximal convolution of the rat nephron studied using the stationary microperfusion technique.
Pflugers Arch.
342:
13–28,
1973.
|
156. |
Lingard, J. M.,
B. Turner,
D. B. Williams, and
J. A. Young.
Endogenous amino acid clearance by the rat kidney.
Aust. J. Exp. Biol. Med. Sci.
52:
687–695,
1974.
|
157. |
Maak, T.,
C. H. Park, and
M. J. F. Camargo.
Renal filtration, transport and metabolism of proteins.
In: The Kidney: Physiology and Pathophysiology,
edited by D. W. Seldin and
G. Giebisch.
New York:
Raven,
1985,
p. 1773–1804.
|
158. |
Maunsbach, A. B.,
Cellular mechanisms of tubular protein transport.
In: Kidney and Urinary Tract Physiology II,
vol. 11,
edited by K. Thurau.
Baltimore:
University Park Press,
1976.
145–168.
|
159. |
McIntyre, T., and
N. P. Curthoys.
Renal catabolism of glutathione. Characterization of a particulate rat renal dipeptidase that catalyzes the hydrolysis of cysteinglycine.
J. Biol. Chem.
257:
11915–11921,
1982.
|
160. |
McIntyre, T. M., and
N. P. Curthoys.
The interorgan metabolism of glutathione.
Int. J. Biochem.
12:
545–551,
1980.
|
161. |
Meister, A.
Biochemistry of Amino Acids
(2nd ed.).
New York:
Academic,
1965.
vols. I, II.
|
162. |
Melancon, S. B.,
L. Dallaire,
B. Lemieux,
P. Robitaille and
M. Potier.
Dicarboxylic aminoaciduria: an inborn error of amino acid conservation.
J. Pediatr.
91:
422–427,
1977.
|
163. |
Messner, G.,
A. Koller, and
F. Lang.
The effect of phenylalanine on intracellular pH and sodium activity in proximal convoluted tubule cells from frog kidney.
Pflugers Arch.
404:
145–149,
1985.
|
164. |
Messner, G.,
H. Oberleithner, and
F. Lang.
The effect of phenylalanine on the electrical properties of proximal tubule cells in the frog kidney.
Pflugers Arch.
404:
138–144,
1985.
|
165. |
Milne, M. D.
Pharmacology of amino acids.
Clin. Pharmacol. Ther.
9:
484–516,
1968.
|
166. |
Miyamoto, Y.,
V. Ganapathy, and
F. H. Leibach.
Proton gradient–coupled uphill transport of glycylsarcosine in rabbit renal brush‐border membrane vesicles.
Biochim. Biophys. Acta
132:
946–953,
1985.
|
167. |
Mohyuddin, F., and
C. R. Scriver.
Amino acid transport in mammalian kidney: multiple systems for imino acids and glycine in rat kidney.
Am. J. Physiol.
219:
1–8,
1970.
|
168. |
Morrow, G. III,
L. A. Barness, and
M. L. Efron.
Citrullinemia with defective urea production.
Pediatrics
40:
565–574,
1967.
|
169. |
Mudge, G. H.,
M. W. Gemborys, and
G. G. Duggin.
Covalent binding of metabolites of acetaminophen to kidney protein and depletion of renal glutathione.
J. Pharmacol. Exp. Ther.
206:
218–226,
1978.
|
170. |
Mueller, W. A.,
G. R. Faloona, and
R. H. Unger.
Hyperglucagonemia in diabetic ketoacidosis. Its prevalence and significance.
Am. J. Med.
54:
52–57,
1973.
|
171. |
Murer, H.,
G. Burckhardt, and
B. Stieger.
Cellular mechanisms in proximal tubular transport; advantages and disadvantages of studies with vesicles.
In: Proc. IUPS, XXIXth Congr., Sydney,
edited by D. F. Davey.
p. 443,
Sydney,
1983.
|
172. |
Murer, H.,
A. Leopolder,
R. Kinne, and
G. Burckhardt.
Recent observation on the proximal tubular transport of acidic and basic amino acids by rat renal proximal tubular brush border vesicles.
Int. J. Biochem.
12:
223–228,
1980.
|
173. |
Nadvornikova, H.,
O. Schück,
J. Maly,
J. Pechar,
P. Dobersky, and
D. Tomkova.
Renal clearance of amino acids in patients with severe chronic renal failure.
Nephron
20:
83–89,
1978.
|
174. |
Nelson, P. J.,
G. E. Dean,
P. S. Aronson, and
G. Rudnick.
Hydrogen ion cotransport by the renal brush border glutamate transporter.
Biochemistry
22:
5459–5464,
1983.
|
175. |
Nonoguchi, H.,
S. Uchida,
T. Shiigai, and
H. Endou.
Effect of chronic metabolic acidosis on ammonia production from L‐glutamine in microdissected rat nephron segments.
Pflugers Arch.
403:
229–235,
1985.
|
176. |
Nunokawa, T., and
T. Hoshi.
Electrophysiological study of L‐lysine transport across Triturus proximal tubule: evidence for Na+‐independent entry and Na+‐independent exit.
Renal Physiol. Biochem.
13:
295–305,
1990.
|
177. |
Nutzenadel, W., and
C. R. Scriver.
Uptake and metabolism of β‐alanine and L‐carnosine by rat tissue in vitro: role in nutrition.
Am. J. Physiol.
230:
643–651,
1976.
|
178. |
Oken, D. E., and
M. Weise.
Micropuncture studies of the transport of individual amino acids by the Necturus proximal tubule.
Kidney Int.
13:
445–451,
1978.
|
179. |
Oparil, S.,
F. A. Carone,
T. N. Pullman, and
S. Nakamura.
Inhibition of proximal tubular hydrolysis and reabsorption of bradykinin by peptides.
Am. J. Physiol.
231:
743–748,
1976.
|
180. |
Orlowski, M., and
A. Meister.
The gamma‐glutamyl cycle: a possible transport system for amino acids.
Proc. Natl. Acad. Sci. USA
67:
1248–1255,
1970.
|
181. |
Orlowski, M., and
S. Wilk.
Metabolism of gamma‐glutamyl amino acids and peptides in mouse liver and kidney in vivo.
Eur. J. Biochem.
71:
549–555,
1976.
|
182. |
Orlowski, M., and
S. Wilk.
Kidney as a site of uptake and metabolism of gamma‐glutamyl compounds.
In: Current Problems in Clinical Biochemistry,
edited by W. G. Guder and
U. Schmidt.
Bern:
Huber,
1977,
vol. 8,
p. 66–72.
|
183. |
Oxender, D. L., and
H. N. Christensen.
Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell.
J. Biol. Chem.
238:
3686–3699,
1963.
|
184. |
Oyanagi, K.,
H. Sogawa,
R. Minami,
T. Nakao,
K. Karube, and
S. Tsugawa.
A new transport interaction of dibasic amino acids and citrulline in human kidney.
Tohoku J. Exp. Med.
134:
55–58,
1981.
|
185. |
Perez, G.,
M. Epstein,
B. Reitberg,
C. Horton, and
R. Loutzenhiser.
Uptake and release of amino acids by normal and remnant kidneys: studies in the isolated perfused rat kidney.
Am. J. Clin. Nutr.
33:
1373–1377,
1980.
|
186. |
Peterson, D. R.,
F. A. Carone,
S. Oparil, and
E. I. Christensen.
Differences between renal tubular processing of glucagon and insulin.
Am. J. Physiol.
242
(Renal Fluid Electrolyte Physiol. 11):
F112–F118,
1982.
|
187. |
Peterson, D. R.,
E. A. Green,
S. Oparil, and
T. Hjelle.
Transport and hydrolysis of glucagon in the proximal nephron.
Am. J. Physiol.
251
(Renal Fluid Electrolyte Physiol. 20):
F460–F467,
1986.
|
188. |
Peterson, D. R.,
S. Oparil,
G. Fluoret, and
F. A. Carone.
Handling of angiotensin II and oxytocin by renal tubular segments perfused in vitro.
Am. J. Physiol.
232
(Renal Fluid Electrolyte Physiol. 1):
F319–F324,
1977.
|
189. |
Peterson, J.,
J. Kitaji,
W. C. Duckworth, and
R. Rabkin.
Fate of [125I]insulin removed from the peritubular circulation of isolated perfused rat kidney.
Am. J. Physiol.
243
(Renal Fluid Electrolyte Physiol. 12):
F126–F132,
1982.
|
190. |
Pfaundler, M.
Über ein Verfahren zur Bestimmung des Amino‐säurenstickstoffs im Harne.
Hoppe Seylers Z. Physiol. Chem.
30:
75–89,
1900.
|
191. |
Pilkington, L. A.,
T. K. Young, and
R. F. Pitts.
Properties of renal luminal and antiluminal transport of plasma glutamine.
Nephron
7:
51–60,
1970.
|
192. |
Pitts, R. F.
A renal reabsorptive mechanism in the dog common to glycine and creatine.
Am. J. Physiol.
140:
156–167,
1943.
|
193. |
Powell, G. F.,
M. A. Rasco, and
R. M. Maniscalco.
A prolidase deficiency in man with iminopeptiduria.
Metabolism
23:
505–513,
1974.
|
194. |
Pullman, T. N.,
S. Oparil, and
F. A. Carone.
Fate of labeled angiotensin II microinfused into individual nephrons in the rat.
Am. J. Physiol.
228:
747–751,
1975.
|
195. |
Rabkin, R., and
J. Kitaji.
Renal metabolism of peptide hormones.
Miner. Electrolyte Metab.
9:
212–226,
1983.
|
196. |
Rajantie, J.,
O. Simell, and
J. Perheentupa.
Lysinuric protein intolerance. Basolateral transport defect in renal tubuli.
J. Clin. Invest.
67:
1078–1082,
1981.
|
197. |
Rankin, B. B., and
N. P. Curthoys.
Evidence for the renal paratubular transport of glutathione.
FEBS Lett.
147:
193–196,
1982.
|
198. |
Rankin, B. B.,
W. Wells, and
N. P. Curthoys.
Rat renal tubular transport and metabolism of plasma [35S]glutathione.
Am. J. Physiol.
249
(Renal Fluid Electrolyte Physiol. 18):
F198–F204,
1985.
|
199. |
Reed, D. J., and
P. W. Beatty.
Biosynthesis and regulation of glutathione in toxic processes.
In: Reviews in Biochemical Toxicology 2,
edited by E. Hodgson,
J. R. Bond, and
R. M. Philpott.
Amsterdam:
Elsevier/North Holland,
1980,
p. 230.
|
200. |
Reynolds, R. A.,
H. Wald, and
S. Segal.
Glutamine uptake by rat renal basolateral membrane.
Biosci. Rep.
2:
883–890,
1982.
|
201. |
Rocha, A.,
M. Marcondes, and
G. Malnic.
Micropuncture study in rats with experimental glomerulonephritis.
Kidney Int.
33:
14–23,
1973.
|
202. |
Roesinger, B.,
A. Schiller, and
R. Taugner.
A freeze‐fracture study of tight junctions in the pars convoluta and pars recta of the renal proximal tubule.
Cell Tissue Res.
186:
121–133,
1978.
|
203. |
Roigaard‐Petersen, H., and
M. I. Sheikh.
Renal transport of neutral amino acids. Demonstration of Na+‐independent and Na+‐dependent electrogenic uptake of L‐proline, hydroxy‐L‐proline and 5‐oxo‐L‐proline by luminal‐membrane vesicles.
Biochem. J.
220:
25–33,
1984.
|
204. |
Rosenhagen, M., and
S. Segal.
Stereospecificity of amino acid uptake by rat and human kidney cortex slices.
Am. J. Physiol.
227:
843–847,
1974.
|
205. |
Ross, B. D., and
W. G. Guder.
Heterogeneity and compartmentation in the kidney.
In: Metabolic Compartmentation,
edited by H. Sies.
New York:
Academic,
1982,
p. 363–409.
|
206. |
Rozen, R., and
C. R. Scriver.
Renal transport of taurine adapts to perturbed taurine homeostasis.
Proc. Natl. Acad. Sci. USA
79:
2101–2105,
1982.
|
207. |
Rozen, R.,
H. S. Tenenhouse, and
C. R. Scriver.
Taurine transport in renal brush border membrane vesicles.
Biochem. J.
180:
245–248,
1979.
|
208. |
Ruszkowski, M.,
C. Arasimowicz,
J. Knapowski,
J. Steffen, and
K. Weiss.
Renal reabsorption of amino acids.
Am. J. Physiol.
203:
891–896,
1962.
|
209. |
Sacktor, B.,
Transport in membrane vesicles isolated from the mammalian kidney and intestine.
In: Current Topics in Bioenergetics,
edited by R. Sanadi.
New York:
Academic,
1977,
vol. 6,
39–81.
|
210. |
Sacktor, B.,
Mechanism and specificities of amino acid transport in proximal tubule luminal membrane vesicles.
In Renal Function,
edited by G. Giebisch and
E. D. Purcell.
New York:
Josiah Macy Jr. Foundation,
1978,
p. 221–229.
|
211. |
Sacktor, B.
Electrogenic and electroneutral Na+ gradient–dependent transport systems in the renal brush border membrane vesicle.
Curr. Top. Membr. Transp.
13:
291–300,
1980.
|
212. |
Sacktor, B.,
I. L. Rosenbloom,
C. T. Liang, and
L. Cheng.
Sodium gradient– and sodium plus potassium gradient–dependent L‐glutamate uptake in renal basolateral membrane vesicles.
J. Membr. Biol.
60:
63–71,
1981.
|
213. |
Sacktor, B., and
E. G. Schneider.
The singular effect of an internal K+ gradient (Ki+ > Ko+) on the Na+ gradient (Nao+ > Nai+)–dependent transport of L‐glutamate in renal brush border membrane vesicles.
Int. J. Biochem.
12:
229–234,
1980.
|
214. |
Samarzija, I., and
E. Frömter.
Electrophysiological analysis of rat renal sugar and amino acid transport. III. Neutral amino acids.
Pflugers Arch.
393:
199–209,
1982.
|
215. |
Samarzija, I., and
E. Frömter.
Electrophysiological analysis of rat renal sugar and amino acid transport. IV: Basic amino acids.
Pflugers Arch.
393:
210–214,
1982.
|
216. |
Samarzija, I., and
E. Frömter.
Electrophysiological analysis of rat renal sugar and amino acid transport. V. Acidic amino acids.
Pflugers Arch.
393:
215–221,
1982.
|
217. |
Samarzija, I.,
B. T. Hinton, and
E. Frömter.
Electrophysiological analysis of rat renal sugar and amino acid transport. II. Dependence on various transport parameters and inhibitors.
Pflugers Arch.
393:
190–197,
1982.
|
218. |
Schafer, J. A., and
D. W. Barfuss.
Membrane mechanisms for transepithelial amino acid absorption and secretion.
Am. J. Physiol.
238
(Renal Fluid Electrolyte Physiol. 7):
F335–F346,
1980.
|
219. |
Schafer, J. A., and
M. L. Watkins.
Transport of L‐cystine in isolated perfused proximal straight tubules.
Pflugers Arch.
401:
143–151,
1984.
|
220. |
Schneider, E. G., and
B. Sacktor.
Sodium gradient–dependent L‐glutamate transport in renal brushborder membrane vesicles. Effect of an intravesicular > extravesicular potassium gradient.
J. Biol. Chem.
255:
7645–7649,
1980.
|
221. |
Schneider, E. G., and
B. Sacktor.
Sodium gradient‐dependent L‐glutamate transport in renal brushborder membrane vesicles. Evidence for an electroneutral mechanism.
J. Biol. Chem.
255:
7650–7656,
1980.
|
222. |
Schwegler, J. S.,
A. Heuner, and
S. Silbernagl.
Electrogenic transport of neutral and dibasic amino acids in a cultured opossum kidney cell line (OK).
Pflugers Arch.
414:
543–550,
1989.
|
223. |
Schwegler, J. S.,
E. Schömig,
A. Heuner, and
S. Silbernagl.
Development of high‐capacity, low‐affinity L‐arginine transport in a proximal tubular cell line during differentiation.
In: Amino Acids: Chemistry, Biology and Medicine,
edited by G. Lubec and
G. A. Rosenthal.
Leiden:
Escom Science Publ.,
1990,
pp. 1017–1028.
|
224. |
Schoolwerth, A. C., and
N. F. LaNoue.
Transport of metabolic substrates in renal mitochondria.
Annu. Rev. Physiol.
47:
143–171,
1985.
|
225. |
Schröck, H.,
R. P. Forster, and
L. Goldstein.
Renal handling of taurine in marine fish.
Am. J. Physiol.
24
(Regulatory Integrative Comp. Physiol. 11):
R64–R69,
1982.
|
226. |
Schulman, J. J. D.,
S. I. Goodman,
J. W. Mace,
A. D. Patrick,
F. Tietze, and
E. J. Butler.
Glutathionuria: inborn error of metabolism due to tissue deficiency of gamma‐glutamyl transferase.
Biochem. Biophys. Res. Commun.
65:
68–74,
1975.
|
227. |
Schwab, S., and
R. Hammerman.
Na+ gradient–dependent glycine uptake in basolateral membrane vesicles from the dog kidney.
Am. J. Physiol.
249
(Renal Fluid Electrolyte Physiol. 18):
F338–F345,
1985.
|
228. |
Scott, D. M., and
J. A. Pateman.
The acidic amino acid transport system of the baby hamster kidney cell line BHK21‐C13.
Biochim. Biophys. Acta
508:
379–388,
1978.
|
229. |
Scott, R. D., and
N. P. Curthoys.
Renal clearance of glutathione measured in rats pretreated with inhibitors of glutathione metabolism.
Am. J. Physiol.
252:
F877–F882,
1987.
|
230. |
Scriver, C. R.,
M. F. Arthus, and
M. Bergeron.
Neonatal iminoglycinuria—evidence that the prolinuria originates in selective deficiency of transport activity in the proximal nephron.
Pediatr. Res.
16:
684–687,
1982.
|
231. |
Scriver, C. R., and
M. Bergeron.
Amino acid transport in kidney. The use of mutation to dissect membrane and trans‐epithelial transport.
In: Heritable Disorders of Amino Acid Metabolism,
edited by W. L. Nyhan.
New York:
Wiley,
1974,
p. 515–592.
|
232. |
Scriver, C. R.,
R. W. Chesney, and
R. R. McInnes.
Genetic aspects of renal tubular transport: diversity and topology of carriers.
Kidney Int.
9:
149–171,
1976.
|
233. |
Scriver, C. R.,
S. Pueschel, and
E. Davies.
Hyper‐β‐alaninemia associated with β‐aminoaciduria and β‐aminobutyric aciduria, somnolence and seizures.
N. Engl. J. Med.
274:
635–645,
1966.
|
234. |
Scriver, C. R., and
O. H. Wilson.
Amino acid transport: evidence for genetic control of two types in human kidney.
Science
155:
1428–1430,
1967.
|
235. |
Segal, S.,
L. Schwartzman,
A. Blair, and
D. Bertoli.
Dibasic amino acid transport in rat kidney cortex slices.
Biochim. Biophys. Acta
135:
127–135,
1967.
|
236. |
Segal, S., and
S. O. Thier.
Renal handling of amino acids.
In: Handbook of Physiology. Vol. 8, Renal Physiology,
edited by J. Orloff and
R. W. Berliner.
Washington, DC:
Am. Physiol. Soc.,
1973,
p. 653–676.
|
237. |
Sereni, F.,
H. McNamara,
M. Shibuya,
N. Kretchmer, and
H. L. Barnett.
Concentration in plasma and rate of urinary excretion of amino acids in premature infants.
Pediatrics
15:
575–585,
1955.
|
238. |
Shannon, J. A.,
N. Jolliffe, and
H. W. Smith.
The excretion of urine in the dog. IV. The effect of maintenance diet, feeding, etc., upon the quantity of glomerular filtrate.
Am. J. Physiol.
101:
625–638,
1932.
|
239. |
Shapiro, R., and
P. Curthoys.
Differential effect of AT‐125 on rat renal glutaminase activities.
FEBS Lett.
133:
131–134,
1981.
|
240. |
Sigrist‐Nelson, K.,
H. Murer, and
U. Hopfer.
Active alanine transport in isolated brushborder membranes.
J. Biol. Chem.
250:
5674–5680,
1975.
|
241. |
Silbernagl, S.
The renal handling of amino acids and oligopeptides.
Physiol. Rev.
68:
911–1007,
1988.
|
242. |
Silbernagl, S.
The role of brushborder peptidases for renal tubular reabsorption of oligo‐peptides.
Pflugers Arch.
365:
R14,
1976.
|
243. |
Silbernagl, S.
Renal transport of amino acids.
Klin. Wochenschr.
57:
1009–1019,
1979.
|
244. |
Silbernagl, S.
Tubular reabsorption of L‐glutamine studied by free flow micropuncture and microperfusion of rat kidney.
Int. J. Biochem.
12:
9–16,
1980.
|
245. |
Silbernagl, S.,
Renal transport of amino acids and oligopeptides.
In: Renal Transport of Organic Substances,
edited by R. Greger,
F. Lang, and
S. Silbernagl.
Berlin:
Springer,
1981,
p. 93–117.
|
246. |
Silbernagl, S.
Kinetics and localization of tubular resorption of “acidic” amino acids. A microperfusion and free flow micropuncture study in rat kidney.
Pflugers Arch.
396:
218–224,
1983.
|
247. |
Silbernagl, S.
The fate of glutathione (GSH) in the tubule lumen. An in vivo microperfusion study in rat kidney.
In: Abstr. IXth Int. Congr. Nephrol., Los Angeles, 1984.
p. 433A,
Intern. Soc. of Nephrology, Los Angeles,
1984.
|
248. |
Silbernagl, S.,
Amino acids and oligopeptides.
In: The Kidney: Physiology and Pathophysiology,
edited by D. W. Seldin and
G. Giebisch.
New York:
Raven,
1985,
p. 1677–1701.
|
249. |
Silbernagl, S.
Tubular reabsorption of amino acids and oligopeptides.
NIPS
1:
167–171,
1986.
|
250. |
Silbernagl, S.
Ammoniagenesis catalyzed by hippurateactivated γ‐glutamyltransferase in the lumen of the proximal tubule.
Pflugers Arch.
407:
S72–S79,
1986.
|
251. |
Silbernagl, S.,
Renal transport and metabolism of carnosine in the rat.
In: Molecular Nephrology. Biochem. Aspects of Kidney Function
(Ed.: Z. Kovačević,
W. G. Guder)
Berlin:
Walter de Gruyter,
1987,
p. 21–26.
|
252. |
Silbernagl, S.,
Renal transport of amino acids and oligopeptides.
In: Proteinuria,
edited by M. Weise,
Contr. Nephrol.
vol. 24,
Basel:
Karger,
1981,
pp. 18–29.
|
253. |
Silbernagl, S.,
Amino acids and oligopeptides.
In: The Kidney: Physiology and Pathophysiology,
edited by D. W. Seldin and
G. Giebisch,
2nd edition.
New York:
Raven,
1991.
|
254. |
Silbernagl, S.,
N. P. Curthoys, and
R. Shapiro.
The role of renal tubular brushborder enzymes in metabolism and absorption of glutathione and cysteinyl‐glycine.
In: Biochemistry of Kidney Functions,
edited by F. Morel.
Amsterdam:
Elsevier,
1982,
p. 429–437.
|
255. |
Silbernagl, S.,
N. P. Curthoys, and
R. Shapiro.
Are γ‐glutamyl dipeptides reabsorbed as such? A microperfusion study in rat kidney.
Pflugers Arch.
402:
R4,
1984.
|
256. |
Silbernagl, S.,
W. H. Dantzler, and
K. Völker.
Resorption of alanine in short and long loop of Henle of rat kidney in vivo.
Pflugers Arch.
413
(Suppl. 1):
R15,
1988.
|
257. |
Silbernagl, S., and
P. Deetjen.
L‐arginine transport in rat proximal tubules. Microperfusion studies on reabsorption kinetics.
Pflugers Arch.
336:
79–86,
1972.
|
258. |
Silbernagl, S., and
P. Deetjen.
Molecular specificity of the L‐arginine reabsorption mechanism. Microperfusion studies in the proximal tubule of rat kidney.
Pflugers Arch.
340:
325–334,
1973.
|
259. |
Silbernagl, S.,
E. C. Foulkes, and
P. Deetjen.
Renal transport of amino acids.
Rev. Physiol. Biochem. Pharmacol.
74:
105–167,
1975.
|
260. |
Silbernagl, S.,
V. Ganapathy, and
F. H. Leibach.
H+‐gradient–driven dipeptide reabsorption in the proximal tubule of rat kidney. Studies in vivo and in vitro.
Am. J. Physiol.
253
(Renal Fluid Electrolyte Physiol. 22):
F448–F457,
1987.
|
261. |
Silbernagl, S.,
M. Gekle,
K. Völker,
E. Braun, and
W. H. Dantzler.
Pump, leak and metabolism: postproximal handling of amino acids in the kidney.
In: Nephrology
(Proceedings of the XIth International Congress of Nephrology, Tokyo)
Tokyo:
Springer,
1991.
|
262. |
Silbernagl, S., and
A. Heuner.
Renal transport and metabolism of mercapturic acids and their precursors.
Toxicol. Lett.
53:
45–51,
1990.
|
263. |
Silbernagl, S.,
J. Joost,
E. Jarosch, and
H. Völkl.
Characteristics of renal tubular reabsorption of “acidic” amino acids.
Kidney Int.
20:
165,
1981.
|
264. |
Silbernagl, S.,
W. Pfaller, and
P. Deetjen.
Molecular specificity of tubular amino acid reabsorption.
In: Current Problems in Clinical Biochemistry,
edited by U. Schmidt et al.
Bern:
Huber,
1976,
vol. 6,
p. 403–415.
|
265. |
Silbernagl, S.,
W. Pfaller,
H. Heinle, and
A. Wendel.
Topology and function of renal gamma‐glutamyltranspeptidase (E.C.2.3.2.2.).
In: Functions of Glutathione in Liver and Kidney,
edited by H. Sies and
H. Wendel.
Berlin:
Springer,
1978,
p. 60–69.
|
266. |
Silbernagl, S., and
D. Scheller.
Formation and excretion of NH3/NH4+. New aspects of an old problem.
Klin. Wochenschr.
64:
862–870,
1986.
|
267. |
Silbernagl, S., and
H. Völkl.
Amino acid reabsorption in the proximal tubule of rat kidney: stereospecificity and passive diffusion studied by continuous microperfusion.
Pflugers Arch.
367:
221–227,
1977.
|
268. |
Silbernagl, S., and
H. Völkl.
Molecular specificity of the tubular reabsorption of “acidic” amino acids. A continuous microperfusion study in rat kidney in vivo.
Pflugers Arch.
396:
225–230,
1983.
|
269. |
Silverman, M.,
P. Vinay,
L. Shinobu,
A. Gougoux, and
G. Lemieux.
Luminal and antiluminal transport of glutamine in dog kidney. Effect of metabolic acidosis.
Kidney Int.
20:
359–365,
1981.
|
270. |
Slatopolsky, E.,
I. O. Elkan,
C. Weerts, and
N. S. Bricker.
Studies on characteristics of the control system governing sodium excretion in uremic man.
J. Clin. Invest.
47:
521–530,
1968.
|
271. |
Stahl, P., and
A. L. Schwartz.
Receptor‐mediated endocytosis.
J. Clin. Invest.
77:
657–662,
1986.
|
272. |
Stanbury, J. B.,
J. B. Wyngaarden, and
D. S. Fredrickson (eds.).,
The Metabolic Basis of Inherited Disease.
New York:
McGraw‐Hill,
1978.
|
273. |
Stephenson, S. L., and
A. J. Kenny.
Hydrolysis of neuropeptide by pig kidney microvillar peptidases: the key role of endopeptidase‐24.11.
In: Molecular Nephrology. Biochem. Aspects of Kidney Function.
Berlin:
New York:
Walter de Gruyter,
1987,
p. 3–11.
|
274. |
Stetler‐Stevenson, M. A.,
G. Flouret, and
S. Nakamura.
In vivo metabolism of tritiated LHRH by the whole kidney and individual tubules of rats.
Am. J. Physiol.
244
(Renal Fluid Electrolyte Physiol. 13):
F628–F632,
1983.
|
275. |
Stieger, B.,
G. Stange,
J. Biber, and
H. Murer.
Transport of L‐lysine by rat renal brush border membrane vesicles.
Pflugers Arch.
397:
106–113,
1983.
|
276. |
Sudo, J.
Distribution of peptidases in the metabolization of peptide hormones, particularly angiotensin II, along the isolated single nephron of rat.
Folia Pharmacol. Jpn.
78:
27,
1981.
|
277. |
Takuwa, N.,
T. Shimada,
H. Matsumoto, and
T. Hoshi.
Proton‐coupled transport of glycyl‐glycine in rabbit renal brush‐border membrane vesicles.
Biochim. Biophys. Acta
814:
186–190,
1985.
|
278. |
Talor, Z.,
D. S. Emmanouel, and
A. I. Katz.
Insulin binding and degradation by luminal and basolateral membranes from rabbit kidney.
J. Clin. Invest.
69:
1136–1146,
1982.
|
279. |
Talor, Z.,
D. S. Emmanouel, and
A. I. Katz.
Glucagon degradation by luminal and basolateral tubular membranes.
Am. J. Physiol.
244
(Renal Fluid Electrolyte Physiol. 13):
F297–F303,
1983.
|
280. |
Tannen, R.
Ammonia metabolism.
Am. J. Physiol.
235
(Renal Fluid Electrolyte Physiol. 4):
F265–F277,
1978.
|
281. |
Tate, S. S., and
A. Meister.
Interaction of gamma‐glutamyltranspeptidase with amino acids, dipeptides, and derivatives and analogs of glutathione.
J. Biol. Chem.
249:
7593–7602,
1974.
|
282. |
Teijema, H. L.,
H. H. van Gelderen,
M. A. H. Giesberts,
M. L. Serena, and
L. de Angelo.
Dicarboxylic aminoaciduria: an inborn error of glutamate and aspartate transport with metabolic implications, in combination with a hyperprolinemia.
Metabolism
23:
115–123,
1974.
|
283. |
Thoene, J. G.,
R. G. Oshima,
D. G. Ritchie, and
J. A. Schneider.
Cystinotic fibroblasts accumulate cystine from intracellular protein degradation.
Proc. Natl. Acad. Sci. USA
74:
4505–4507,
1977.
|
284. |
Thompson, G. A., and
A. Meister.
Modulation of γ‐glutamyl transpeptidase activities by hippurate and related compounds.
J. Biol. Chem.
255:
2109–2113,
1980.
|
285. |
Ullrich, K. J.
Sugar, amino acid, and Na+ cotransport in the proximal tubule.
Annu. Rev. Physiol.
41:
181–195,
1979.
|
286. |
Ullrich, K. J.,
Driving forces for the transport of organic solutes.
In: Renal Transport of Organic Substances,
edited by R. Greger,
F. Lang, and
S. Silbernagl.
Berlin:
Springer,
1981,
p. 17–29.
|
287. |
Ullrich, K. J.,
G. Rumrich, and
S. Klöss.
Sodium dependence of the amino acid transport in the proximal convolution of the rat kidney.
Pflugers Arch.
351:
49–60,
1974.
|
288. |
Ullrich, K. J.,
G. Rumrich, and
S. Klöss.
Specificity and sodium dependence of the active sugar transport in the proximal convolution of the rabbit kidney.
Pflugers Arch.
351:
35–48,
1974.
|
289. |
Umezawa, H.,
M. Ishizuka,
T. Aoyagi, and
T. Takeuchi.
Enhancement of delayed type hypersensitivity by bestatin, an inhibitor of aminopeptidase B and leucine aminopeptidase.
J. Antibiot. (Tokyo)
29:
857,
1976.
|
290. |
Völkl, H.,
J. Geibel,
S. Silbernagl, and
F. Lang.
Intraluminal conversion of cysteine to cystine in the proximal straight tubule of the mouse kidney.
Pflugers Arch.
402:
R5,
1984.
|
291. |
Völkl, H., and
S. Silbernagl.
Molecular specificity of tubular reabsorption of L‐proline. A microperfusion study in rat kidney.
Pflugers Arch.
387:
253–259,
1980.
|
292. |
Völkl, H., and
S. Silbernagl.
Mutual inhibition of L‐cystine/L‐cysteine and other neutral amino acids during tubular reabsorption. A microperfusion study in rat kidney.
Pflugers Arch.
395:
190–195,
1982.
|
293. |
Völkl, H., and
S. Silbernagl.
Reexamination of the interplay between dibasic amino acids and L‐cystine/L‐cysteine during tubular reabsorption.
Pflugers Arch.
395:
196–200,
1982.
|
294. |
Völkl, H.,
S. Silbernagl, and
P. Deetjen.
Kinetics of L‐proline reabsorption in rat kidney studied by continuous microperfusion.
Pflugers Arch.
382:
115–121,
1979.
|
295. |
Webber, W. A.
Characteristics of acidic amino acid transport in mammalian kidney.
Can. J. Biochem. Physiol.
41:
131–137,
1963.
|
296. |
Weise, M., and
E. Oken.
Amino acid gradients across the brushborder of Necturus proximal tubule.
In: Abstr. VIIth Int. Congr. Nephrol., Montreal, 1978.
p. M5,
Intern. Soc. of Nephrology, Montreal,
1978.
|
297. |
Welbourne, T. C.
Ammonia production and pathways of glutamine metabolism in the isolated perfused rat kidney.
Am. J. Physiol.
226:
544–548,
1974.
|
298. |
Wendel, A., and
P. Cikryt.
The level and half‐life of glutathione in human plasma.
FEBS Lett.
120:
209–211,
1980.
|
299. |
Wendel, A.,
R. Hahn, and
W. Guder.
On the role of γ‐glutamyltransferase in renal tubular amino acid reabsorption.
In: Current Problems in Clinical Biochemistry,
edited by U. Schmidt.
Bern:
Huber,
1976,
vol. 6,
426–436.
|
300. |
Williams, W. M., and
K. C. Huang.
In vitro and in vivo renal tubular transport of tryptophan derivatives.
Am. J. Physiol.
219:
1468–1475,
1970.
|
301. |
Windmueller, H. G., and
A. E. Spaeth.
Source and fate of circulating citrulline.
Am. J. Physiol.
241
(Endocrinol. Metab. 4):
E437–E480,
1981.
|
302. |
Windus, D. W.,
D. E. Cohn,
S. Klahr, and
M. R. Hammerman.
Glutamine transport in renal basolateral vesicles from dogs with metabolic acidosis.
Am. J. Physiol.
246
(Renal Fluid Electrolyte Physiol. 15):
F78–F86,
1984.
|
303. |
Windus, D. W.,
S. Klahr, and
M. R. Hammerman.
Glutamine transport in basolateral vesicles from dogs with acute respiratory acidosis.
Am. J. Physiol.
247
(Renal Fluid Electrolyte Physiol. 16):
F403–F407,
1984.
|
304. |
Wollaston, W. H.
On cystic oxide: a new species of urinary calcules.
Trans. R. Soc. Edinb.
100:
223,
1810.
|
305. |
Wright, H. R.,
H. F. Russo,
H. R. Skeggs,
E. A. Patch, and
K. H. Beyer.
The renal clearance of essential acids: arginine, histidine, lysine, methionine.
Am. J. Physiol.
149:
130–134,
1947.
|
306. |
Yamamoto, H.,
T. Aikawa,
H. Matsutaka,
T. Okuda, and
E. Ishikawa.
Interorganal relationships of amino acid metabolism in fed rats.
Am. J. Physiol.
226:
1428–1433,
1974.
|
307. |
Young, J. A., and
B. S. Freedman.
Renal tubular transport of amino acids.
Clin. Chem.
17:
245–266,
1971.
|