Comprehensive Physiology Wiley Online Library

Tubular Transport of Amino Acids and Small Peptides

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 The Intact Kidney
1.1 Plasma Concentrations of Amino Acids
1.2 Normal Excretion of Amino Acids
1.3 Variability of Aminoaciduria
2 Interorgan Transport and Renal Metabolism of Amino Acids
3 The Tubule Level
3.1 Sites of Reabsorption
3.2 Internephron Heterogeneity
3.3 Reabsorption Kinetics
4 Transport Steps at the Membrane Level
4.1 Brush Border
4.2 Basolateral Membrane: Exit and Uptake
4.3 Carrier, Pore, or Enzymatic Cycle?
4.4 Secretion of Amino Acids
5 Specificity of The Reabsorption Mechanisms
5.1 Stereospecificity
5.2 Specificities of the Different Reabsorption Systems
6 Hyperaminoaciduria
7 Renal Handling of Oligopeptides
7.1 Prereabsorptive Hydrolysis in the Tubule Lumen
7.2 Glutathione and Other γ‐Glutamyl Peptides
7.3 Reabsorption of Intact Peptides
Figure 1. Figure 1.

Effect of 10 mmol/liter phenylalanine on peritubular cell membrane potential difference measured with conventional (PDpt) and with sodium‐selective (PDNa,pt) microelectrodes in frog kidney. Differential recording (PDNa,pt–PDpt) is middle trace and allows crude estimate of changes in intracellular sodium activity.

Original recording from Messner et al. 163
Figure 2. Figure 2.

Glutamate formation from glutamine, i.e., ammoniagenesis, catalyzed by hippurate‐activated γ‐glutamyltransferase in lumen of proximal convoluted tubule of rat kidney.

From Silbernagl 250
Figure 3. Figure 3.

Fractions of filtered loads of endogenous glycine, glutamate, and valine found by free‐flow micropuncture along superficial proximal convoluted tubules of rat kidney. [3H]inulin used as volume marker; amino acids measured by column chromatographic ultramicromethod. Distance from glomerulus was determined by latex method. Plasma concentrations (μmol/liter±S.D.) were glycine, 282±47; glutamate, 117±30; valine, 278±43.

From Silbernagl 243
Figure 4. Figure 4.

Sodium dependence and saturability of rat renal tubular L‐ornithine resorption in vivo. Peritubular capillaries perfused continuously with solutions containing radiolabeled L‐ornithine (initial concentration, Co = 2, 5, or 10 mmol/liter); droplet of same solution simultaneously microinjected into lumen of proximal convolution. After 45 s, when net flux approached zero, concentration gradient Δc (given as % of co) was measured. Note that net reabsorption fell to zero in absence of luminal sodium.

Redrawn from Ullrich et al. 287
Figure 5. Figure 5.

Predicted concentration profiles for glutamine (Gln) along rat proximal convolution if plasma concentration (A) and leak permeability (B) are varied alternatively. Endogenous profiles are “0.6” in A and “1xP” in B. Note that late proximal tubular fluid to plasma concentration ratio (TF/P) of glutamine is only elevated significantly if plasma concentration is increased 20‐fold (A). Varied permeability of tubular wall results mainly in changed steady state TF/P in second half of proximal convolution (B).

From Silbernagl 244
Figure 6. Figure 6.

Scheme of amino acid (AA) reabsorption from tubule lumen and of peritubular uptake of amino acids. The luminal carriers a, at least for many neutral and for acidic amino acids, are energized by electrochemical Na+ gradient directed into cell (secondary‐active Na+ cotransport). Na+ gradient is established by Na+,K+‐ATPase localized in peritubular membrane. Amino acid exit at this cell side is probably brought about by carriers that facilitate this passive step b. For some amino acids, cellular uptake by Na+ cotransport has been demonstrated also at peritubular side (carriers c). Types b and c carriers may be identical for the same amino acid. Whether passive leak of amino acids is a paracellular event (d) or a transcellular, carrier‐mediated process (c and a used in “wrong” direction), is controversial (see text).

From Silbernagl 248
Figure 7. Figure 7.

Hypothetical scheme of reabsorption of dibasic amino acids (AA+) like lysine+ or arginine+ across the tubule cell. The luminal uptake is passive; it is electrogenic but Na+‐independent 222. (Electroneutral uptake [205b] and electrogenic Na+‐cotransport [199] may exist, too.) Peritubular exit of lysine+ has been found to be accelerated by Na+, and peritubular uptake of Na+ to be accelerated by preloading the cell with lysine+ 176. Thus peritubular exit of dibasic amino acids may be driven by an electroneutral, secondary‐active Na+ antiport mechanism.

from ref. 253
Figure 8. Figure 8.

Scheme of possible mechanism for tubular brush border Na+,K+‐dependent transport of L‐Glu. Stoichiometry of this transport mechanism (drawn here 2:1 for Na+/Glu and 1:1 for K+/Glu) is controversial (see text).

Adapted from Fukuhara and Turner 88
Figure 9. Figure 9.

General molecular structure of L‐α‐amino acids, D‐α‐amino acids, and L‐β‐amino acids. The α‐carbon atom, which is also numbered 2, of α‐amino acids usually possesses four different ligands and is optically active. Therefore, two stereoisomers exist, the L‐form, which is the naturally occurring isomer in higher animals, and the D‐form, often found in bacteria. Glycine (and a few other non‐protein amino acids) do not have two stereoisomers, because the rest R is a second H ligand in this case.

Figure 10. Figure 10.

Uptake of L‐phenylalanine (circles, squares) and D‐phenylalanine (triangles) by isolated renal brush border microvilli vesicles in presences (circles, triangles) and absence (squares) of sodium (100 mmol/liter). Phenylalanine concentration, 2 mmol/liter. Values are given ±S.E. and are expressed as percentages of uptake observed after 20 min. Note that specific uptake of L‐phenylalanine falls to rates equal to nonspecific D‐phenylalanine uptake in absence of Na+.

Adapted from Evers et al. 73
Figure 11. Figure 11.

Molecular structures of neutral amino acids.

Figure 12. Figure 12.

Molecular structures of acidic amino acids L‐aspartate and L‐glutamate and of basic amino acids L‐lysine+ and L‐arginine+.

Figure 13. Figure 13.

The aminothiol acid L‐cysteine is easily oxidized to L‐cystine under aerobic conditions, e.g., in tubule lumen. Reversed reaction often is enzymatically catalyzed and takes place, e.g., in tubule cells. L‐cysteine may also react with –SH groups of other compounds (e.g., glutathione), yielding mixed disulfides.

Figure 14. Figure 14.

Conversion of L‐citrulline to L‐arginine in tubule cell. In contrast to liver, only cytosolic part of urea cycle normally takes place in mammalian kidney, from which arginine is exported to other tissues.

Figure 15. Figure 15.

Scheme of possible causes of hyperaminoaciduria. (a) Prerenal hyperaminoaciduria caused by elevated filtered load. Plasma amino acid concentration and/or GFR are so highly elevated that reabsorption becomes saturated, (b) Reabsorption mechanism (brush border or basolateral carrier; carriers a or b in Fig. 6) has a defect, leading to “classic” or “basolateral” renal hyperaminoaciduria. (c) Filtered load of another amino acid is elevated, inhibiting reabsorption of amino acid originally considered, (d) A certain amino acid originally not considered is not reabsorbed because its transport mechanism is defective. This amino acid may now inhibit reabsorption of amino acid originally considered, although its load is not increased and even its transport site may not be defective, (e) Reabsorption is normal, but backleak in the same or in different tubule sections localized downstream is elevated, leading to abnormally high luminal steady‐state concentration, (f) Main driving force, i.e., electrochemical Na+ gradient, is reduced. Not only most amino acids but also glucose, phosphate, and other Na+‐cotransported compounds, as well as Na+ itself, are hyperexcreted. Such unspecific deterioration (ATP depletion, ATPase inhibition, Na+ leakiness, etc.) of cell function might underlay Fanconi's syndrome.

Adapted from Silbernagl 248
Figure 16. Figure 16.

Degradation of L‐alanyl‐L‐valine in lumen of microperfused proximal convolutions of rat kidney in vivo. Despite extremely high initial concentration of dipeptide perfused into lumen at 0 mm (5 mmol/liter), the free constituent amino acids alanine and valine are formed so rapidly (1 mm perfusion distance = 1 s contact time) that their reabsorption is virtually completed still within physiological contact time in proximal tubule. Perfusion rate was 20 nl/min.

S. Silbernagl, unpublished data
Figure 17. Figure 17.

Hydrolysis of glutathione in lumen of proximal tubule catalyzed by brush border γ‐glutamyltransferase (γ‐GT), and, as second step, by brush border aminopeptidase and cysteinyl‐glycinase. Glutathione can be reabsorbed only in form of free constituent amino acids.

Figure 18. Figure 18.

Two mechanisms of tubular reabsorption of oligopeptides. Top: Luminal hydrolysis of peptides by brush border enzymes with subsequent reabsorption of free constituent amino acids. Bottom: H+ gradient–driven transport of intact dipeptides, which subsequently are hydrolyzed within the cell (e.g., carnosine) or might reach peritubular interstitium as intact molecules (e.g., glycyl‐sarcosine).

From Silbernagl 249


Figure 1.

Effect of 10 mmol/liter phenylalanine on peritubular cell membrane potential difference measured with conventional (PDpt) and with sodium‐selective (PDNa,pt) microelectrodes in frog kidney. Differential recording (PDNa,pt–PDpt) is middle trace and allows crude estimate of changes in intracellular sodium activity.

Original recording from Messner et al. 163


Figure 2.

Glutamate formation from glutamine, i.e., ammoniagenesis, catalyzed by hippurate‐activated γ‐glutamyltransferase in lumen of proximal convoluted tubule of rat kidney.

From Silbernagl 250


Figure 3.

Fractions of filtered loads of endogenous glycine, glutamate, and valine found by free‐flow micropuncture along superficial proximal convoluted tubules of rat kidney. [3H]inulin used as volume marker; amino acids measured by column chromatographic ultramicromethod. Distance from glomerulus was determined by latex method. Plasma concentrations (μmol/liter±S.D.) were glycine, 282±47; glutamate, 117±30; valine, 278±43.

From Silbernagl 243


Figure 4.

Sodium dependence and saturability of rat renal tubular L‐ornithine resorption in vivo. Peritubular capillaries perfused continuously with solutions containing radiolabeled L‐ornithine (initial concentration, Co = 2, 5, or 10 mmol/liter); droplet of same solution simultaneously microinjected into lumen of proximal convolution. After 45 s, when net flux approached zero, concentration gradient Δc (given as % of co) was measured. Note that net reabsorption fell to zero in absence of luminal sodium.

Redrawn from Ullrich et al. 287


Figure 5.

Predicted concentration profiles for glutamine (Gln) along rat proximal convolution if plasma concentration (A) and leak permeability (B) are varied alternatively. Endogenous profiles are “0.6” in A and “1xP” in B. Note that late proximal tubular fluid to plasma concentration ratio (TF/P) of glutamine is only elevated significantly if plasma concentration is increased 20‐fold (A). Varied permeability of tubular wall results mainly in changed steady state TF/P in second half of proximal convolution (B).

From Silbernagl 244


Figure 6.

Scheme of amino acid (AA) reabsorption from tubule lumen and of peritubular uptake of amino acids. The luminal carriers a, at least for many neutral and for acidic amino acids, are energized by electrochemical Na+ gradient directed into cell (secondary‐active Na+ cotransport). Na+ gradient is established by Na+,K+‐ATPase localized in peritubular membrane. Amino acid exit at this cell side is probably brought about by carriers that facilitate this passive step b. For some amino acids, cellular uptake by Na+ cotransport has been demonstrated also at peritubular side (carriers c). Types b and c carriers may be identical for the same amino acid. Whether passive leak of amino acids is a paracellular event (d) or a transcellular, carrier‐mediated process (c and a used in “wrong” direction), is controversial (see text).

From Silbernagl 248


Figure 7.

Hypothetical scheme of reabsorption of dibasic amino acids (AA+) like lysine+ or arginine+ across the tubule cell. The luminal uptake is passive; it is electrogenic but Na+‐independent 222. (Electroneutral uptake [205b] and electrogenic Na+‐cotransport [199] may exist, too.) Peritubular exit of lysine+ has been found to be accelerated by Na+, and peritubular uptake of Na+ to be accelerated by preloading the cell with lysine+ 176. Thus peritubular exit of dibasic amino acids may be driven by an electroneutral, secondary‐active Na+ antiport mechanism.

from ref. 253


Figure 8.

Scheme of possible mechanism for tubular brush border Na+,K+‐dependent transport of L‐Glu. Stoichiometry of this transport mechanism (drawn here 2:1 for Na+/Glu and 1:1 for K+/Glu) is controversial (see text).

Adapted from Fukuhara and Turner 88


Figure 9.

General molecular structure of L‐α‐amino acids, D‐α‐amino acids, and L‐β‐amino acids. The α‐carbon atom, which is also numbered 2, of α‐amino acids usually possesses four different ligands and is optically active. Therefore, two stereoisomers exist, the L‐form, which is the naturally occurring isomer in higher animals, and the D‐form, often found in bacteria. Glycine (and a few other non‐protein amino acids) do not have two stereoisomers, because the rest R is a second H ligand in this case.



Figure 10.

Uptake of L‐phenylalanine (circles, squares) and D‐phenylalanine (triangles) by isolated renal brush border microvilli vesicles in presences (circles, triangles) and absence (squares) of sodium (100 mmol/liter). Phenylalanine concentration, 2 mmol/liter. Values are given ±S.E. and are expressed as percentages of uptake observed after 20 min. Note that specific uptake of L‐phenylalanine falls to rates equal to nonspecific D‐phenylalanine uptake in absence of Na+.

Adapted from Evers et al. 73


Figure 11.

Molecular structures of neutral amino acids.



Figure 12.

Molecular structures of acidic amino acids L‐aspartate and L‐glutamate and of basic amino acids L‐lysine+ and L‐arginine+.



Figure 13.

The aminothiol acid L‐cysteine is easily oxidized to L‐cystine under aerobic conditions, e.g., in tubule lumen. Reversed reaction often is enzymatically catalyzed and takes place, e.g., in tubule cells. L‐cysteine may also react with –SH groups of other compounds (e.g., glutathione), yielding mixed disulfides.



Figure 14.

Conversion of L‐citrulline to L‐arginine in tubule cell. In contrast to liver, only cytosolic part of urea cycle normally takes place in mammalian kidney, from which arginine is exported to other tissues.



Figure 15.

Scheme of possible causes of hyperaminoaciduria. (a) Prerenal hyperaminoaciduria caused by elevated filtered load. Plasma amino acid concentration and/or GFR are so highly elevated that reabsorption becomes saturated, (b) Reabsorption mechanism (brush border or basolateral carrier; carriers a or b in Fig. 6) has a defect, leading to “classic” or “basolateral” renal hyperaminoaciduria. (c) Filtered load of another amino acid is elevated, inhibiting reabsorption of amino acid originally considered, (d) A certain amino acid originally not considered is not reabsorbed because its transport mechanism is defective. This amino acid may now inhibit reabsorption of amino acid originally considered, although its load is not increased and even its transport site may not be defective, (e) Reabsorption is normal, but backleak in the same or in different tubule sections localized downstream is elevated, leading to abnormally high luminal steady‐state concentration, (f) Main driving force, i.e., electrochemical Na+ gradient, is reduced. Not only most amino acids but also glucose, phosphate, and other Na+‐cotransported compounds, as well as Na+ itself, are hyperexcreted. Such unspecific deterioration (ATP depletion, ATPase inhibition, Na+ leakiness, etc.) of cell function might underlay Fanconi's syndrome.

Adapted from Silbernagl 248


Figure 16.

Degradation of L‐alanyl‐L‐valine in lumen of microperfused proximal convolutions of rat kidney in vivo. Despite extremely high initial concentration of dipeptide perfused into lumen at 0 mm (5 mmol/liter), the free constituent amino acids alanine and valine are formed so rapidly (1 mm perfusion distance = 1 s contact time) that their reabsorption is virtually completed still within physiological contact time in proximal tubule. Perfusion rate was 20 nl/min.

S. Silbernagl, unpublished data


Figure 17.

Hydrolysis of glutathione in lumen of proximal tubule catalyzed by brush border γ‐glutamyltransferase (γ‐GT), and, as second step, by brush border aminopeptidase and cysteinyl‐glycinase. Glutathione can be reabsorbed only in form of free constituent amino acids.



Figure 18.

Two mechanisms of tubular reabsorption of oligopeptides. Top: Luminal hydrolysis of peptides by brush border enzymes with subsequent reabsorption of free constituent amino acids. Bottom: H+ gradient–driven transport of intact dipeptides, which subsequently are hydrolyzed within the cell (e.g., carnosine) or might reach peritubular interstitium as intact molecules (e.g., glycyl‐sarcosine).

From Silbernagl 249
References
 1. Abbott, W. A., R. J. Bridges, and A. Meister. Extracellular metabolism of glutathione accounts for its disappearance from the basolateral circulation of the kidney. J. Biol. Chem. 259: 15393–15400, 1984.
 2. Abderhalden, E., and A. Hunter. Weitere Beiträge zur Kenntnis der proteolytischen Fermente der tierischen Organe. Hoppe Seylers Z. Physiol. Chem. 48: 537–545, 1917.
 3. Anderson, M. E., and A. Meister. Transport and direct utilization of gamma‐glutamylcyst(e)ine for glutathione synthesis. Proc. Natl. Acad. Sci. USA 80: 707–711, 1983.
 4. Bachmann, C. Treatment of congenital hyperammonemias. Enzyme 32: 56–64, 1984.
 5. Baerlocher, K. E., C. R. Scriver, and F. Mohyuddin. Ontogeny of iminoglycine transport in mammalian kidney. Proc. Natl. Acad. Sci. USA 65: 1009–1016, 1970.
 6. von Baeyer, H. Glucose transport in the short loop of Henle of the rat kidney. Pflugers Arch. 359: 317–323, 1975.
 7. Baines, A. D., and F. Morel. Absorption of amino acids from proximal tubule fluid. In: Proc. Fourth Int. Congr. Nephrol., Stockholm, 1969. p. 293.
 8. Bank, N., and N. Aynedjian. Individual nephron function in experimental bilateral pyelonephritis. I. Glomerular filtration rate and proximal tubular sodium, potassium, and water reabsorption. J. Lab. Clin. Med. 68: 713–727, 1966.
 9. Barfuss, D. W., V. Ganapathy, and F. H. Leibach. Evidence for active dipeptide transport in isolated proximal straight tubules. Am. J. Physiol. 255: F177–F181, 1988.
 10. Barfuss, D. W., J. M. Mays, and J. A. Schafer. Peritubular uptake and transepithelial transport of glycine in isolated proximal tubules. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F324–F333, 1980.
 11. Barfuss, D. W., and J. A. Schafer. Active amino acid absorption by proximal convoluted and proximal straight tubules. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F149–F162, 1979.
 12. Barrett, P. Q., and P. S. Aronson. Glucose and alanine inhibition of phosphate transport in renal microvillous membrane vesicles. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F126–F131, 1982.
 13. Bartlett, G. R. The inhibition of D‐amino acid oxidase by benzoic acid and various monosubstituted benzoic acid derivatives. J. Am. Chem. Soc. 70: 1010–1011, 1948.
 14. Baverel, G., M. Bonnard, E. D'Armagnac de Castanet, and M. Pellet. Lactate and pyruvate metabolism in isolated renal tubules of normal dogs. Kidney Int. 14: 567–575, 1978.
 15. Benyajati, S., and W. H. Dantzler. Renal secretion of amino acids in ophidian reptiles. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 19): R712–R720, 1986.
 16. Bergeron, M., L. Dubord, and C. Hausser. Membrane permeability as a cause of transport defects in experimental Fanconi syndrome. J. Clin. Invest. 57: 1181–1189, 1976.
 17. Bergeron, M., and F. Morel. Amino acid transport in rat renal tubules. Am. J. Physiol. 216: 1139–1149, 1969.
 18. Bergeron, M., and C. R. Scriver. Pathophysiology of renal hyperaminoacidurias and glucosuria. In: The Kidney. Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, p. 1725–1746.
 19. Bergeron, M., and M. Vadeboncoeur. Antiluminal transport of L‐arginine and L‐leucine following microinjections in peritubular capillaries of the rat. Nephron 8: 355–366, 1971.
 20. Beyer, K. H., L. D. Wright, H. R. Skeggs, H. F. Russo, and G. H. Shaner. Renal clearance of essential amino acids: their competition for reabsorption by the renal tubules. Am. J. Physiol. 151: 202–210, 1947.
 21. Biber, I., H. Murer, G. Stange, and B. Stieger. The transport of 35S‐L‐cysteine/cystine and their interaction with the transport of L‐lysine in rat renal proximal tubular brush border vesicles. J. Physiol. (Lond.) 325: 60P, 1982.
 22. Biber, J., B. Stange, B. Stieger, and H. Murer. Transport of L‐cystine by rat renal brush border membrane vesicles. Pflugers Arch. 396: 335–341, 1983.
 23. Binkley, F. Metabolism of glutathione. Nature 4257: 888–889, 1951.
 24. Bishop, J. H. V., R. Green, and S. Thomas. Glucose transport by short loop of Henle in the rat. J. Physiol. (Lond.) 320: 127–138, 1981.
 25. Blazer‐Yost, B., R. Reynolds, and S. Segal. Amino acid content of rat renal cortex and the response to in vitro incubation. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F398–F404, 1979.
 26. Borsook, H., and W. Dubnoff. The conversion of citrulline to arginine in kidney. J. Biol. Chem. 141: 717–738, 1941.
 27. Bourdeau, J. E., E. R. Y. Chen, and F. A. Carone. Insulin uptake in the renal proximal tubule. Am. J. Physiol. 225: 1399–1404, 1973.
 28. Braun, W., W. Zschaler, and C. Weiss. Der Einfluss von Änderungen des Urin‐pH auf die Ausscheidung von Aminosäuren an der isoliert perfundierten Rattenniere. Naunyn Schmiedebergs Arch. Pharmacol. 256: 397–406, 1967.
 29. Brenner, B. M., T. W. Meyer, and T. H. Hostetter. Dietary intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerulus sclerosis in aging, renal ablation, and intrinsic renal disease. N. Engl. J. Med. 307: 652–659, 1982.
 30. Brigham, M. P., W. H. Stein, and S. Moore. The concentrations of cysteine and cystine in human blood plasma. J. Clin. Invest. 39: 1633–1638, 1960.
 31. Brodehl, J., Postnatal development of tubular amino acid reabsorption. In: Amino Acid Transport and Uric Acid Transport, edited by S. Silbernagl, F. Lang, and R. Greger. Stuttgart: Thieme, 1976, p. 128–135.
 32. Burch, H. B., N. Cambon, and O. H. Lowry. Branched‐chain amino acid aminotransferase along the rabbit and rat nephron. Kidney Int. 28: 114–117, 1985.
 33. Burch, H. B., A. W. K. Chan, T. R. Alvey, and O. H. Lowry. Localization of glutamine accumulation and tubular reabsorption in rat nephron. Kidney Int. 14: 406–413, 1978.
 34. Burch, H. B., S. Choi, W. Z. McCarthy, P. Y. Wong, and O. H. Lowry. The localization of glutamine synthetase within the rat and rabbit nephron. Biochem. Biophys. Res. Commun. 82: 498–505, 1978.
 35. Burckhardt, G., T. Kinne, G. Stange, and H. Murer. The effects of potassium and membrane potential on sodium‐dependent glutamic acid uptake. Biochim. Biophys. Acta 599: 191–201, 1980.
 36. Busse, D. Transport of L‐arginine in brush border vesicles derived from rabbit kidney cortex. Arch. Biochem. Biophys. 191: 551–560, 1978.
 37. Cahill, G. F., Jr. Protein and amino acid metabolism in man. Circ. Res. 38: 1109–1114, 1976.
 38. Carone, F. A., D. R. Peterson, and G. Flouret. Renal tubular processing of small peptide hormones. J. Lab. Clin. Med. 100: 1–14, 1982.
 39. Carone, F. A., D. R. Peterson, S. Oparil, and T. N. Pullman. Renal tubular transport and catabolism of proteins and peptides. Kidney Int. 16: 271–278, 1979.
 40. Chan, A. W. K., H. B. Burch, T. R. Alvey, and O. H. Lowry. A quantitative histochemical approach to renal transport. I. Aspartate and glutamate. Am. J. Physiol. 229: 1034–1044, 1975.
 41. Chan, A. W. K., S. G. Perry, H. B. Burch, S. Fagioli, T. R. Alvey, and O. H. Lowry. Distribution of two aminotransferases and D‐amino acid oxidase within the nephron of young and adult rats. J. Histochem. Cytochem. 27: 751–755, 1979.
 42. Chan, Y.‐L., and K. C. Huang. Renal excretion of D‐tryptophan, 5‐hydroxytryptamine, and 5‐hydroxyindoleacetic acid in rats. Am. J. Physiol. 224: 140–143, 1973.
 43. Chesney, R. W., N. Gusowski, and A. L. Friedman. Renal adaptation to altered dietary sulfur amino acid intake occurs at luminal brushborder membrane. Kidney Int. 24: 588–594, 1983.
 44. Chesney, R. W., N. Gusowski, M. Padilla, and S. Lippincott. Effect of amino acid intake on brush‐border membrane uptake of sulfur amino acids. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F125–F131, 1986.
 45. Christensen, H. N. Interorgan amino acid nutrition. Physiol. Rev. 62: 1193–1233, 1982.
 46. Christensen, H. N. Organic ion transport during seven decades. Biochim. Biophys. Acta 779: 255–269, 1984.
 47. Christensen, H. N. On the strategy of kinetic discrimination of amino acid transport systems. J. Membr. Biol. 84: 97–103, 1985.
 48. Christensen, H. N., and A. M. Cullen. Synthesis of metabolism‐resistant substrates for the transport system for cationic amino acids; their stimulation of the release of insulin and glucagon, and of the urinary loss of amino acids related to cystinuria. Biochim. Biophys. Acta 298: 932–950, 1973.
 49. Christensen, H. N., and J. C. Jones. Amino acid transport models: renal resorption and resistance to metabolic attack. J. Biol. Chem. 237: 1203–1206, 1962.
 50. Christophel, W., and P. Deetjen. Mikroperfusionsuntersuchungen zum tubulären Transport von Glyzin. Pflugers Arch. 297: R52, 1967.
 51. Collander, R. Die Verteilung organischer Verbindungen zwischen Äther und Wasser. Acta Chem. Scand. [B] 3: 717–747, 1949.
 52. Craan, A. G., and M. Bergeron. Nonparticipation of extracellular glutathione in renal transport of dibasic amino acids. Can. J. Physiol. Pharmacol. 57: 1168, 1979.
 53. Crampton, R. F., and D. H. Smyth. The excretion of enantiomorphs of amino acids. J. Physiol. (Lond.) 122: 1–10, 1953.
 54. Crane, R. K. Hypothesis for mechanism of intestinal active transport of sugars. Federation Proc. 21: 891–895, 1962.
 55. Crawhall, J. C., and S. Segal. Dithiothreitol in the study of cysteine transport. Biochim. Biophys. Acta 121: 215–217, 1966.
 56. Crawhall, J. C., and S. Segal. The intracellular ratio of cysteine and cystine in various tissues. Biochem. J. 105: 891–896, 1967.
 57. Curthoys, N. P., and R. P. Hughey. Characterization and physiological function of rat renal γ‐glutamyltranspeptidase. Enzyme 24: 383–403, 1979.
 58. Curthoys, N. P., and T. Kuhlenschmidt. Phosphate‐dependent glutaminase from rat kidney. Partial purification and identity with gamma‐glutamyltranspeptidase. J. Biol. Chem. 250: 2099–2105, 1975.
 59. Curthoys, N. P., and O. H. Lowry. The distribution of glutaminase isoenzymes in the various structures of the nephron in normal, acidotic, and alkalotic rat kidney. J. Biol. Chem. 248: 162–168, 1973.
 60. Curthoys, N. P., and R. A. Shapiro. Effect of inactivation of γ‐glutamyl transpeptidase on rat renal glutamine and glutathione metabolism. In: Abstr. VIIIth Int. Congr. Nephrology, Athens, 1981, p. RM‐004, Athens: Int. Soc. of Nephrology, 1981.
 61. Cushny, A. R. The Secretion of the Urine (1st ed.). London: Longmans, Green, 1917.
 62. Dantzler, W. H., and S. Silbernagl. Renal tubular reabsorption of taurine, γ‐aminobutyric acid (GABA) and β‐alanine studied by continuous microperfusion. Pflugers Arch. 367: 123–128, 1976.
 63. Dantzler, W. H., and S. Silbernagl. Amino acid transport by juxtamedullary nephrons: distal reabsorption and recycling. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F397–F407, 1988.
 64. Dantzler, W. H., and S. Silbernagl. Amino acid transport: microinfusion and micropuncture of Henle's loop and vasa recta. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F504–F513, 1990.
 65. Dass, P. D., and T. C. Welbourne. Evidence for luminal and antiluminal localization of γ‐glutamyltranspeptidase in rat kidney. Life Sci. 28: 355–360, 1981.
 66. Dent, C. E., and G. A. Rose. Amino acid metabolism in cystinuria. Q. J. Med. 20: 205–219, 1951.
 67. Du Vigneaud, V., R. H. Sifferd, and G. W. Irving. The utilization of L‐carnosine by animals on a histidine‐deficient diet. J. Biol. Chem. 117: 589–597, 1937.
 68. Duckworth, W. C. Insulin and glucagon degradation by the kidney. I. Subcellular distribution under different assay conditions. Biochim. Biophys. Acta 437: 518–530, 1976.
 69. Duckworth, W. C. Insulin and glucagon degradation by the kidney. II. Characterization of the mechanisms at neutral pH. Biochim. Biophys. Acta 437: 531–542, 1976.
 70. Eisenbach, G. M., M. Weise, and H. Stolte. Amino acid reabsorption in the rat nephron. Free flow micropuncture study. Pflugers Arch. 357: 63, 1975.
 71. Elwyn, D. H., W. J. Launder, H. C. Parikh, E. M. Wise, Jr. Roles of plasma and erythrocytes in interorgan transport of amino acids in dogs. Am. J. Physiol. 222: 1333–1342, 1972.
 72. Endou, H., H. Shimada, C. Koseki, Y. Yokokura, and Y. Sakai. Distribution and possible functions of gamma‐glutamyl‐transpeptidase in the kidney. Jpn. J. Nephrol. 23: 981–988, 1981.
 73. Evers, J., H. Murer, and R. Kinne. Phenylalanine uptake in isolated renal brush border vesicles. Biochim. Biophys. Acta 426: 598–615, 1976.
 74. Featherston, W. R., Q. R. Rogers, and R. A. Freedland. Relative importance of kidney and liver in synthesis of arginine by the rat. Am. J. Physiol. 224: 127–129, 1973.
 75. Felig, P., J. Wahren, and L. Räf. Evidence for interorgan amino‐acid transport by blood cells in humans. Proc. Natl. Acad. Sci. USA 70: 1775–1779, 1973.
 76. Foreman, J. W., S. M. Hwang, and S. Segal. Transport interactions of cystine and dibasic amino acids in isolated rat renal tubules. Metabolism 29: 53, 1980.
 77. Foreman, J. W., H. Wald, R. A. Reynolds, and S. Segal. Amino acid uptake by isolated renal brush border membrane vesicles in various buffers. Biochim. Biophys. Acta 646: 188–192, 1981.
 78. Foulkes, E. C. Cellular localization of amino acid carriers in renal tubules. Proc. Soc. Exp. Biol. Med. 139: 1032–1033, 1972.
 79. Foulkes, E. C. Tubular reabsorption delay of amino acids in the rabbit kidney. Am. J. Physiol. 149 (Renal Fluid Electrolyte Physiol. 18): F878–F883, 1985.
 80. Foulkes, E. C., and T. Gieske. Specificity and metal sensitivity of renal amino acid transport. Biochim. Biophys. Acta 318: 439–445, 1973.
 81. Fox, M., S. Thier, L. E. Rosenberg, W. Kiser, and S. Segal. Evidence against a single renal transport defect in cystinuria. N. Engl. J. Med. 270: 556–561, 1964.
 82. Fox, M., S. Thier, L. E. Rosenberg, and S. Segal. Ionic requirements for amino acid transport in the rat kidney cortex slices. I. Influence of extracellular ions. Biochim. Biophys. Acta 79: 167–176, 1964.
 83. Friedman, A., P. W. Albright, and R. W. Chesney. Dietary adaptation of taurine transport by rat renal epithelium. Life Sci. 29: 2415–2419, 1981.
 84. Frömter, E., Electrical aspects of tubular transport of organic substances. In: Renal Transport of Organic Substances, edited by R. Greger, F. Lang, and S. Silbernagl. Berlin: Springer, 1981, p. 30–44.
 85. Frimpter, G. W., M. Horwith, E. Furth, R. E. Fellows, and D. D. Thompson. Inulin and endogenous amino acid renal clearance in cystinuria: evidence for tubular secretion. J. Clin. Invest. 42: 281–288, 1962.
 86. Frömter, E. Electrophysiological analysis of rat renal sugar and amino acid transport. I. Basic phenomena. Pflugers Arch. 393: 179–189, 1982.
 87. Fukuda, S., and J. D. Kopple. Evidence that the dog kidney is an endogenous source of histidine. Am. J. Physiol. 237 (Endocrinol. Metab. 6): E1–E5, 1979.
 88. Fukuhara, Y., and J. R. Turner. Cation dependence of renal outer cortical brush border membrane L‐glutamate transport. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F869–F875, 1985.
 89. Galicek, J., F. Seow, and J. M. Lingard. The effect of chronic acid/base disturbances on renal amino acid clearances in the rat. Aust. J. Exp. Biol. Med. Sci. 59: 383–391, 1981.
 90. Ganapathy, V., and F. H. Leibach. Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush‐border membrane vesicles from the rabbit. J. Biol. Chem. 258: 14189–14192, 1983.
 91. Ganapathy, V., and F. H. Leibach. Carrier‐mediated reabsorption of small peptides in renal proximal tubule. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F945–F953, 1986.
 92. Ganapathy, V., J. Mendicino, and F. H. Leibach. Evidence for a dipeptide transport system in renal brush border membranes from rabbit. Biochim. Biophys. Acta 642: 381–391, 1981.
 93. Ganapathy, V., J. Mendicino, D. H. Pashley, and F. H. Leibach. Carrier‐mediated transport of glycyl‐L‐proline in renal brush border vesicles. Biochem. Biophys. Res. Commun. 97: 1133–1139, 1980.
 94. Gekle, M., M. Grimme, and S. Silbernagl. Peritubular transport, tubular metabolism and transcellular secretion of L‐citrulline in the isolated kidney of the frog (Xenopus laevis). Kidney Int. 36: 311, 1989.
 95. Gekle, M., and S. Silbernagl. On leaking into the lumen amino acids cross the tubule cells. Secretion of L‐citrulline in the isolated perfused non‐filtering kidney of the African clawed toad (Xenopus laevis). Pflugers Arch. (in press), 1991.
 96. Gekle, M., and S. Silbernagl. Baso‐lateral uptake and tubular metabolism of L‐citrulline in the isolated perfused nonfiltering kidney of the African clawed toad (Xenopus laevis). Pflugers Arch. (in press), 1991.
 97. Gingery, R., and R. W. Chesney. The influence of hypotaurine on taurine transport in isolated renal cortex tubules. Proc. Soc. Exp. Biol. Med. 164: 18, 1980.
 98. Goldman, H., and C. R. Scriver. A transport system in mammalian kidney with preference for β‐amino compounds. Pediatr. Res. 1: 212–213, 1967.
 99. Goldstein, L., Ammonia production and excretion in the mammalian kidney. In: Kidney and Urinary Tract Physiology II, edited by K. Thurau. Baltimore: University Park Press, 1976, vol. 11, p. 283–316.
 100. Griffith, O. W. The role of glutathione turnover in the apparent renal secretion of cystine. J. Biol. Chem. 256: 12263–12268, 1981.
 101. Griffith, O. W., and A. Meister. Glutathione: interorgan translocation, turnover, and metabolism. Proc. Natl. Acad. Sci. USA 76: 5606, 1979.
 102. Griffith, O. W., and A. Meister. Excretion of cysteine and γ‐glutamylcysteine moieties in human and experimental animal γ‐glutamyltranspeptidase deficiency. Proc. Natl. Acad. Sci. USA 77: 3384–3387, 1980.
 103. Guder, W. G., and G. Wirthenson. Renal turnover of substrates. In: Renal Transport of Organic Substances, edited by R. Greger, F. Lang, and S. Silbernagl. Berlin: Springer, 1981, p. 66–77.
 104. Günther, R., and S. Silbernagl. Renal handling of L‐histidine studied by continuous microperfusion and free flow micropuncture in the rat. Pflugers Arch. 389: 137–142, 1981.
 105. Günther, R., S. Silbernagl, and P. Deetjen. Maleic acid induced aminoaciduria studied by free flow micropuncture and continuous microperfusion. Pflugers Arch. 382: 109–114, 1979.
 106. Häberle, D., A. Wahlländer, and H. Sies. Assessment of the kidney function in maintenance of plasma glutathione concentration and redox state in anaesthetized rats. FEBS Lett. 108: 335–340, 1979.
 107. Hammerman, M. R. Na+‐independent L‐arginine transport in rabbit renal brush border membrane vesicles. Biochim. Biophys. Acta 685: 71–77, 1982.
 108. Hammerman, M. R., and B. Sacktor. Transport of β‐alanine in renal brush border membrane vesicles. Biochim. Biophys. Acta 509: 338–347, 1978.
 109. Hammerman, M. R., and B. Sacktor. Na+‐dependent transport of glycine in renal brush border membrane vesicles. Evidence for a single specific transport system. Biochim. Biophys. Acta 686: 189–196, 1982.
 110. Hanson, H. T., and E. L. Smith. Carnosinase: an enzyme of swine kidney. J. Biol. Chem. 179: 789–801, 1949.
 111. Harms, E., N. Gochman, and J. A. Schneider. Lysosomal pool of free amino acids. Biochem. Biophys. Res. Commun. 99: 830–836, 1981.
 112. Harris, H., and A. G. Searle. Urinary amino acids in mice of different genotypes. Ann. Eugen. (Lond.) 17: 165–167, 1952.
 113. Heinle, H., A. Wendel, and U. Schmidt. The activities of the key enzymes of the γ‐glutamyl cycle in microdissected segments of the rat nephron. FEBS Lett. 73: 220–224, 1977.
 114. Heinz, E., D. L. Sommerfeld, and R. K. H. Kinne. Electrogenicity of sodium/L‐glutamate cotransport in rabbit renal brush‐border membranes: a reevaluation. Biochim. Biophys. Acta 937: 300–308, 1988.
 115. Helbig, I., B. Pohl, and D. Busse. Interconversion of cysteine and cystine by subcellular fractions of rabbit kidney cortical tubules. Pflugers Arch. 400: R24, 1984.
 116. Heuner, A., J. S. Schwegler, and S. Silbernagl. Renal tubular transport of glutathione in rat kidney. Pflugers Arch. 414: 551–557, 1989.
 117. Heuner, A., W. Dekant, J. S. Schwegler, and S. Silbernagl. Localization and capacity of the lest step of mercapturic acid biosynthesis and the reabsorption and acetylation of cysteine S‐conjugates in the rat kidney. Pflugers Arch. 417: 523–527, 1991.
 118. Hilden, S. A., and B. Sacktor. L‐arginine uptake into renal brush border membrane vesicles. Arch. Biochem. Biophys. 210: 289–297, 1981.
 119. Hopfer, U. Transport in isolated plasma membranes. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F89–F96, 1978.
 120. Hoshi, T., K. Sudo, and Y. Suzuki. Characteristics of changes in the intracellular potential associated with transport of neutral, dibasic and acidic amino acids in triturus proximal tubule. Biochim. Biophys. Acta 448: 492–504, 1976.
 121. Hsu, B. Y. L., S. M. Corcoran, C. M. Marshall, and S. Segal. The effect on amino acid transport of trypsin treatment of rat renal brush border membranes. Biochim. Biophys. Acta 689: 181–193, 1982.
 122. Hughey, R. P., B. B. Rankin, J. S. Elce, and N. P. Curthoys. Specificity of a particulate rat renal peptidase and its localization along with other enzymes of mercapturic acid synthesis. Arch. Biochem. Biophys. 186: 211–217, 1978.
 123. Inoue, M., and Y. Morino. Direct evidence for the role of the membrane potential in glutathione transport by renal brush‐border membranes. J. Biol. Chem. 260: 326–331, 1985.
 124. Inoue, M., K. Okajima, and Y. Morino. Renal transtubular transport of mercapturic acid in vivo. Biochim. Biophys. Acta 641: 122–128, 1981.
 125. Jepson, J. B., Hartnup disease. In: The Metabolic Basis of Inherited Disease, edited by J. B. Stanbury, J. B. Wyngaarden, and D. S. Frederickson. New York: McGraw‐Hill, 1978, p. 1563–1577.
 126. Jessen, H., H. Vorum, K. E. Jorgensen, and M. I. Sheikh. Characteristics of D‐alanine transport by luminal membrane vesicles from pars convoluta and pars recta of rabbit proximal tubule. Biochim. Biophys. Acta 942: 262–270, 1988.
 127. Jonas, A. J., M. L. Smith, W. S. Allison, P. K. Laikind, A. A. Greene, and J. A. Schneider. Proton‐translocating ATPase and lysosomal cystine transport. J. Biol. Chem. 258: 11727–11730, 1983.
 128. Jones, D. P., P. Moldeus, A. H. Stead, K. Ormstad, H. Joernvall, and S. Orrenius. Metabolism of glutathione and a glutathione conjugate by isolated kidney cells. J. Biol. Chem. 254: 2787–2792, 1979.
 129. Katz, A. L., and D. S. Emmanouel. Metabolism of polypeptide hormones by the normal kidney and in uremia. Nephron 22: 69–80, 1978.
 130. Kenny, A. J., and S. Maroux. Topology of microvillar membrane hydrolases of kidney and intestine. Physiol. Rev. 62: 91–128, 1982.
 131. Kettner, A., and S. Silbernagl. Renal handling of citrulline. In: Kidney Metabolism and Function, edited by R. Dzurik, B. Lichardus, and W. Guder. Dordrecht: Martinus Nijhoff, 1985, p. 51–60.
 132. King, P. A., K. W. Beyenbach, and L. Goldstein. Taurine transport by isolated flounder renal tubules. J. Exp. Zool. 223: 103–114, 1982.
 133. King, P. A., R. Kinne, and L. Goldstein. Taurine transport by brush border membrane vesicles isolated from the flounder kidney. J. Comp. Physiol. 155: 185–193, 1985.
 134. Kirk, E. Studies on the amino acid clearance. Acta Med. Scand. 89: 450–453, 1936.
 135. Klein, R. A., M. J. Moore, and M. W. Smith. Selective diffusion of neutral amino acids across lipid bilayers. Biochim. Biophys. Acta 233: 420–433, 1971.
 136. Koepsell, H., K. Korn, D. Ferguson, H. Menuhr, D. Ollig, and W. Haase. Reconstruction and partial purification of several Na+ cotransport systems from renal brush‐border membranes. Properties of the L‐glutamate transporter in proteoliposomes. J. Biol. Chem. 259: 6548–6558, 1984.
 137. Konno, R., Y. Nagata, A. Niwa, and Y. Yasumara. Spontaneous excretion of D‐alanine in urine in mutant mice lacking D‐amino‐acid oxidase. Biochem. J. 261: 285–287, 1989.
 138. Kragh‐Hansen, U., and M. I. Sheikh. Serine uptake by luminal and basolateral membrane vesicles from rabbit kidney. J. Physiol (Lond.) 354: 55–67, 1984.
 139. Kugler, P. Localization of aminopeptidase A (angiotensinase A) in the rat and mouse kidney. Histochemistry 72: 269–278, 1981.
 140. Kuwahara, M., S. Sasaki, T. Shigai, and J. Takeuchi. Glutamine transport in the rabbit proximal straight tubule: effect of acute acid pH. Kidney Int. 30: 340–347, 1986.
 141. Lang, F., G. Messner, and W. Rehwald. Electrophysiology of sodium‐coupled transport in proximal renal tubules. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F953–F962, 1986.
 142. Lash, L. H., and D. P. Jones. Transport of glutathione by renal basal–lateral membrane vesicles. Biochem. Biophys. Res. Commun. 112: 55–60, 1983.
 143. Lash, L. H., and D. P. Jones. Renal glutathione transport. Characteristics of the sodium‐dependent system in the basolateral membrane. J. Biol. Chem. 23: 14508–14514, 1984.
 144. Lash, L. H., and D. P. Jones. Distribution of oxidized and reduced forms of glutathione and cysteine in rat plasma. Arch. Biochem. Biophys. 240: 583–592, 1985.
 145. Lee, K. E., and R. A. Summerill. Phosphate reabsorption in the conscious dog following amino acid administration. J. Physiol. (Lond.) 320: 43P, 1981.
 146. Lee, K. E., and R. A. Summerill. Glomerular filtration rate following administration of individual amino acids in conscious dogs. Q. J. Exp. Physiol. 67: 459–465, 1982.
 147. Lee, S. H., and J. B. Pritchard. Proton‐coupled L‐lysine uptake by renal brush border membrane vesicles from mullet. J. Membr. Biol. 75: 171–178, 1983.
 148. Lemieux, G., G. Baverel, P. Vinay, and P. Wadoux. Glutamine synthetase and glutamyltransferase in the kidney of man, dog, and rat. Am. J. Physiol. 231: 1068–1073, 1976.
 149. Linder, G., and E. C. Foulkes. Kinetics of renal reabsorption and its inhibition by metals in the intact rat kidney. Environ. Res. 36: 241–247, 1985.
 150. Lindheimer, M. D., A. Reinharz, A. Grandchamp, and M. B. Vallotton. Fate of arginine vasopressin (AVP) perfused into nephron of Wistar (W) and Brattleboro (DI) rats. Clin. Res. 25: 595A, 1977.
 151. Lingard, J. M. Recent advances in amino acid transport in the kidney. In: Proc. IUPS, XXIXth Congr. Sydney, (Ed.: D. F. Davey) 1983. p. 442, Sydney, 1983.
 152. Lingard, J. M., D. I. Cook, and J. A. Young. A mathematical analysis of the role of passive diffusion in the renal reabsorption of amino acids and other organic compounds under free flow conditions. Aust. J. Exp. Biol. Med. Sci. 56: 395–408, 1978.
 153. Lingard, J. M., A. Z. Györy, and J. A. Young. Microperfusion study of the kinetics of reabsorption of cycloleucine in early and late segments of the proximal convolution of the rat nephron. Proc. Aust. Physiol. Pharmacol. Soc. 5: 223–225, 1974.
 154. Lingard, J. M., A. Z. Györy, and J. A. Young. Inhomogeneity of cycloleucine reabsorption in the proximal convolution of rat kidney. Pflugers Arch. 357: 51–61, 1975.
 155. Lingard, J. M., G. Rumrich, and J. A. Young. Kinetics of L‐histidine transport in the proximal convolution of the rat nephron studied using the stationary microperfusion technique. Pflugers Arch. 342: 13–28, 1973.
 156. Lingard, J. M., B. Turner, D. B. Williams, and J. A. Young. Endogenous amino acid clearance by the rat kidney. Aust. J. Exp. Biol. Med. Sci. 52: 687–695, 1974.
 157. Maak, T., C. H. Park, and M. J. F. Camargo. Renal filtration, transport and metabolism of proteins. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, p. 1773–1804.
 158. Maunsbach, A. B., Cellular mechanisms of tubular protein transport. In: Kidney and Urinary Tract Physiology II, vol. 11, edited by K. Thurau. Baltimore: University Park Press, 1976. 145–168.
 159. McIntyre, T., and N. P. Curthoys. Renal catabolism of glutathione. Characterization of a particulate rat renal dipeptidase that catalyzes the hydrolysis of cysteinglycine. J. Biol. Chem. 257: 11915–11921, 1982.
 160. McIntyre, T. M., and N. P. Curthoys. The interorgan metabolism of glutathione. Int. J. Biochem. 12: 545–551, 1980.
 161. Meister, A. Biochemistry of Amino Acids (2nd ed.). New York: Academic, 1965. vols. I, II.
 162. Melancon, S. B., L. Dallaire, B. Lemieux, P. Robitaille and M. Potier. Dicarboxylic aminoaciduria: an inborn error of amino acid conservation. J. Pediatr. 91: 422–427, 1977.
 163. Messner, G., A. Koller, and F. Lang. The effect of phenylalanine on intracellular pH and sodium activity in proximal convoluted tubule cells from frog kidney. Pflugers Arch. 404: 145–149, 1985.
 164. Messner, G., H. Oberleithner, and F. Lang. The effect of phenylalanine on the electrical properties of proximal tubule cells in the frog kidney. Pflugers Arch. 404: 138–144, 1985.
 165. Milne, M. D. Pharmacology of amino acids. Clin. Pharmacol. Ther. 9: 484–516, 1968.
 166. Miyamoto, Y., V. Ganapathy, and F. H. Leibach. Proton gradient–coupled uphill transport of glycylsarcosine in rabbit renal brush‐border membrane vesicles. Biochim. Biophys. Acta 132: 946–953, 1985.
 167. Mohyuddin, F., and C. R. Scriver. Amino acid transport in mammalian kidney: multiple systems for imino acids and glycine in rat kidney. Am. J. Physiol. 219: 1–8, 1970.
 168. Morrow, G. III, L. A. Barness, and M. L. Efron. Citrullinemia with defective urea production. Pediatrics 40: 565–574, 1967.
 169. Mudge, G. H., M. W. Gemborys, and G. G. Duggin. Covalent binding of metabolites of acetaminophen to kidney protein and depletion of renal glutathione. J. Pharmacol. Exp. Ther. 206: 218–226, 1978.
 170. Mueller, W. A., G. R. Faloona, and R. H. Unger. Hyperglucagonemia in diabetic ketoacidosis. Its prevalence and significance. Am. J. Med. 54: 52–57, 1973.
 171. Murer, H., G. Burckhardt, and B. Stieger. Cellular mechanisms in proximal tubular transport; advantages and disadvantages of studies with vesicles. In: Proc. IUPS, XXIXth Congr., Sydney, edited by D. F. Davey. p. 443, Sydney, 1983.
 172. Murer, H., A. Leopolder, R. Kinne, and G. Burckhardt. Recent observation on the proximal tubular transport of acidic and basic amino acids by rat renal proximal tubular brush border vesicles. Int. J. Biochem. 12: 223–228, 1980.
 173. Nadvornikova, H., O. Schück, J. Maly, J. Pechar, P. Dobersky, and D. Tomkova. Renal clearance of amino acids in patients with severe chronic renal failure. Nephron 20: 83–89, 1978.
 174. Nelson, P. J., G. E. Dean, P. S. Aronson, and G. Rudnick. Hydrogen ion cotransport by the renal brush border glutamate transporter. Biochemistry 22: 5459–5464, 1983.
 175. Nonoguchi, H., S. Uchida, T. Shiigai, and H. Endou. Effect of chronic metabolic acidosis on ammonia production from L‐glutamine in microdissected rat nephron segments. Pflugers Arch. 403: 229–235, 1985.
 176. Nunokawa, T., and T. Hoshi. Electrophysiological study of L‐lysine transport across Triturus proximal tubule: evidence for Na+‐independent entry and Na+‐independent exit. Renal Physiol. Biochem. 13: 295–305, 1990.
 177. Nutzenadel, W., and C. R. Scriver. Uptake and metabolism of β‐alanine and L‐carnosine by rat tissue in vitro: role in nutrition. Am. J. Physiol. 230: 643–651, 1976.
 178. Oken, D. E., and M. Weise. Micropuncture studies of the transport of individual amino acids by the Necturus proximal tubule. Kidney Int. 13: 445–451, 1978.
 179. Oparil, S., F. A. Carone, T. N. Pullman, and S. Nakamura. Inhibition of proximal tubular hydrolysis and reabsorption of bradykinin by peptides. Am. J. Physiol. 231: 743–748, 1976.
 180. Orlowski, M., and A. Meister. The gamma‐glutamyl cycle: a possible transport system for amino acids. Proc. Natl. Acad. Sci. USA 67: 1248–1255, 1970.
 181. Orlowski, M., and S. Wilk. Metabolism of gamma‐glutamyl amino acids and peptides in mouse liver and kidney in vivo. Eur. J. Biochem. 71: 549–555, 1976.
 182. Orlowski, M., and S. Wilk. Kidney as a site of uptake and metabolism of gamma‐glutamyl compounds. In: Current Problems in Clinical Biochemistry, edited by W. G. Guder and U. Schmidt. Bern: Huber, 1977, vol. 8, p. 66–72.
 183. Oxender, D. L., and H. N. Christensen. Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell. J. Biol. Chem. 238: 3686–3699, 1963.
 184. Oyanagi, K., H. Sogawa, R. Minami, T. Nakao, K. Karube, and S. Tsugawa. A new transport interaction of dibasic amino acids and citrulline in human kidney. Tohoku J. Exp. Med. 134: 55–58, 1981.
 185. Perez, G., M. Epstein, B. Reitberg, C. Horton, and R. Loutzenhiser. Uptake and release of amino acids by normal and remnant kidneys: studies in the isolated perfused rat kidney. Am. J. Clin. Nutr. 33: 1373–1377, 1980.
 186. Peterson, D. R., F. A. Carone, S. Oparil, and E. I. Christensen. Differences between renal tubular processing of glucagon and insulin. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F112–F118, 1982.
 187. Peterson, D. R., E. A. Green, S. Oparil, and T. Hjelle. Transport and hydrolysis of glucagon in the proximal nephron. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F460–F467, 1986.
 188. Peterson, D. R., S. Oparil, G. Fluoret, and F. A. Carone. Handling of angiotensin II and oxytocin by renal tubular segments perfused in vitro. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F319–F324, 1977.
 189. Peterson, J., J. Kitaji, W. C. Duckworth, and R. Rabkin. Fate of [125I]insulin removed from the peritubular circulation of isolated perfused rat kidney. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F126–F132, 1982.
 190. Pfaundler, M. Über ein Verfahren zur Bestimmung des Amino‐säurenstickstoffs im Harne. Hoppe Seylers Z. Physiol. Chem. 30: 75–89, 1900.
 191. Pilkington, L. A., T. K. Young, and R. F. Pitts. Properties of renal luminal and antiluminal transport of plasma glutamine. Nephron 7: 51–60, 1970.
 192. Pitts, R. F. A renal reabsorptive mechanism in the dog common to glycine and creatine. Am. J. Physiol. 140: 156–167, 1943.
 193. Powell, G. F., M. A. Rasco, and R. M. Maniscalco. A prolidase deficiency in man with iminopeptiduria. Metabolism 23: 505–513, 1974.
 194. Pullman, T. N., S. Oparil, and F. A. Carone. Fate of labeled angiotensin II microinfused into individual nephrons in the rat. Am. J. Physiol. 228: 747–751, 1975.
 195. Rabkin, R., and J. Kitaji. Renal metabolism of peptide hormones. Miner. Electrolyte Metab. 9: 212–226, 1983.
 196. Rajantie, J., O. Simell, and J. Perheentupa. Lysinuric protein intolerance. Basolateral transport defect in renal tubuli. J. Clin. Invest. 67: 1078–1082, 1981.
 197. Rankin, B. B., and N. P. Curthoys. Evidence for the renal paratubular transport of glutathione. FEBS Lett. 147: 193–196, 1982.
 198. Rankin, B. B., W. Wells, and N. P. Curthoys. Rat renal tubular transport and metabolism of plasma [35S]glutathione. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F198–F204, 1985.
 199. Reed, D. J., and P. W. Beatty. Biosynthesis and regulation of glutathione in toxic processes. In: Reviews in Biochemical Toxicology 2, edited by E. Hodgson, J. R. Bond, and R. M. Philpott. Amsterdam: Elsevier/North Holland, 1980, p. 230.
 200. Reynolds, R. A., H. Wald, and S. Segal. Glutamine uptake by rat renal basolateral membrane. Biosci. Rep. 2: 883–890, 1982.
 201. Rocha, A., M. Marcondes, and G. Malnic. Micropuncture study in rats with experimental glomerulonephritis. Kidney Int. 33: 14–23, 1973.
 202. Roesinger, B., A. Schiller, and R. Taugner. A freeze‐fracture study of tight junctions in the pars convoluta and pars recta of the renal proximal tubule. Cell Tissue Res. 186: 121–133, 1978.
 203. Roigaard‐Petersen, H., and M. I. Sheikh. Renal transport of neutral amino acids. Demonstration of Na+‐independent and Na+‐dependent electrogenic uptake of L‐proline, hydroxy‐L‐proline and 5‐oxo‐L‐proline by luminal‐membrane vesicles. Biochem. J. 220: 25–33, 1984.
 204. Rosenhagen, M., and S. Segal. Stereospecificity of amino acid uptake by rat and human kidney cortex slices. Am. J. Physiol. 227: 843–847, 1974.
 205. Ross, B. D., and W. G. Guder. Heterogeneity and compartmentation in the kidney. In: Metabolic Compartmentation, edited by H. Sies. New York: Academic, 1982, p. 363–409.
 206. Rozen, R., and C. R. Scriver. Renal transport of taurine adapts to perturbed taurine homeostasis. Proc. Natl. Acad. Sci. USA 79: 2101–2105, 1982.
 207. Rozen, R., H. S. Tenenhouse, and C. R. Scriver. Taurine transport in renal brush border membrane vesicles. Biochem. J. 180: 245–248, 1979.
 208. Ruszkowski, M., C. Arasimowicz, J. Knapowski, J. Steffen, and K. Weiss. Renal reabsorption of amino acids. Am. J. Physiol. 203: 891–896, 1962.
 209. Sacktor, B., Transport in membrane vesicles isolated from the mammalian kidney and intestine. In: Current Topics in Bioenergetics, edited by R. Sanadi. New York: Academic, 1977, vol. 6, 39–81.
 210. Sacktor, B., Mechanism and specificities of amino acid transport in proximal tubule luminal membrane vesicles. In Renal Function, edited by G. Giebisch and E. D. Purcell. New York: Josiah Macy Jr. Foundation, 1978, p. 221–229.
 211. Sacktor, B. Electrogenic and electroneutral Na+ gradient–dependent transport systems in the renal brush border membrane vesicle. Curr. Top. Membr. Transp. 13: 291–300, 1980.
 212. Sacktor, B., I. L. Rosenbloom, C. T. Liang, and L. Cheng. Sodium gradient– and sodium plus potassium gradient–dependent L‐glutamate uptake in renal basolateral membrane vesicles. J. Membr. Biol. 60: 63–71, 1981.
 213. Sacktor, B., and E. G. Schneider. The singular effect of an internal K+ gradient (Ki+ > Ko+) on the Na+ gradient (Nao+ > Nai+)–dependent transport of L‐glutamate in renal brush border membrane vesicles. Int. J. Biochem. 12: 229–234, 1980.
 214. Samarzija, I., and E. Frömter. Electrophysiological analysis of rat renal sugar and amino acid transport. III. Neutral amino acids. Pflugers Arch. 393: 199–209, 1982.
 215. Samarzija, I., and E. Frömter. Electrophysiological analysis of rat renal sugar and amino acid transport. IV: Basic amino acids. Pflugers Arch. 393: 210–214, 1982.
 216. Samarzija, I., and E. Frömter. Electrophysiological analysis of rat renal sugar and amino acid transport. V. Acidic amino acids. Pflugers Arch. 393: 215–221, 1982.
 217. Samarzija, I., B. T. Hinton, and E. Frömter. Electrophysiological analysis of rat renal sugar and amino acid transport. II. Dependence on various transport parameters and inhibitors. Pflugers Arch. 393: 190–197, 1982.
 218. Schafer, J. A., and D. W. Barfuss. Membrane mechanisms for transepithelial amino acid absorption and secretion. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F335–F346, 1980.
 219. Schafer, J. A., and M. L. Watkins. Transport of L‐cystine in isolated perfused proximal straight tubules. Pflugers Arch. 401: 143–151, 1984.
 220. Schneider, E. G., and B. Sacktor. Sodium gradient–dependent L‐glutamate transport in renal brushborder membrane vesicles. Effect of an intravesicular > extravesicular potassium gradient. J. Biol. Chem. 255: 7645–7649, 1980.
 221. Schneider, E. G., and B. Sacktor. Sodium gradient‐dependent L‐glutamate transport in renal brushborder membrane vesicles. Evidence for an electroneutral mechanism. J. Biol. Chem. 255: 7650–7656, 1980.
 222. Schwegler, J. S., A. Heuner, and S. Silbernagl. Electrogenic transport of neutral and dibasic amino acids in a cultured opossum kidney cell line (OK). Pflugers Arch. 414: 543–550, 1989.
 223. Schwegler, J. S., E. Schömig, A. Heuner, and S. Silbernagl. Development of high‐capacity, low‐affinity L‐arginine transport in a proximal tubular cell line during differentiation. In: Amino Acids: Chemistry, Biology and Medicine, edited by G. Lubec and G. A. Rosenthal. Leiden: Escom Science Publ., 1990, pp. 1017–1028.
 224. Schoolwerth, A. C., and N. F. LaNoue. Transport of metabolic substrates in renal mitochondria. Annu. Rev. Physiol. 47: 143–171, 1985.
 225. Schröck, H., R. P. Forster, and L. Goldstein. Renal handling of taurine in marine fish. Am. J. Physiol. 24 (Regulatory Integrative Comp. Physiol. 11): R64–R69, 1982.
 226. Schulman, J. J. D., S. I. Goodman, J. W. Mace, A. D. Patrick, F. Tietze, and E. J. Butler. Glutathionuria: inborn error of metabolism due to tissue deficiency of gamma‐glutamyl transferase. Biochem. Biophys. Res. Commun. 65: 68–74, 1975.
 227. Schwab, S., and R. Hammerman. Na+ gradient–dependent glycine uptake in basolateral membrane vesicles from the dog kidney. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F338–F345, 1985.
 228. Scott, D. M., and J. A. Pateman. The acidic amino acid transport system of the baby hamster kidney cell line BHK21‐C13. Biochim. Biophys. Acta 508: 379–388, 1978.
 229. Scott, R. D., and N. P. Curthoys. Renal clearance of glutathione measured in rats pretreated with inhibitors of glutathione metabolism. Am. J. Physiol. 252: F877–F882, 1987.
 230. Scriver, C. R., M. F. Arthus, and M. Bergeron. Neonatal iminoglycinuria—evidence that the prolinuria originates in selective deficiency of transport activity in the proximal nephron. Pediatr. Res. 16: 684–687, 1982.
 231. Scriver, C. R., and M. Bergeron. Amino acid transport in kidney. The use of mutation to dissect membrane and trans‐epithelial transport. In: Heritable Disorders of Amino Acid Metabolism, edited by W. L. Nyhan. New York: Wiley, 1974, p. 515–592.
 232. Scriver, C. R., R. W. Chesney, and R. R. McInnes. Genetic aspects of renal tubular transport: diversity and topology of carriers. Kidney Int. 9: 149–171, 1976.
 233. Scriver, C. R., S. Pueschel, and E. Davies. Hyper‐β‐alaninemia associated with β‐aminoaciduria and β‐aminobutyric aciduria, somnolence and seizures. N. Engl. J. Med. 274: 635–645, 1966.
 234. Scriver, C. R., and O. H. Wilson. Amino acid transport: evidence for genetic control of two types in human kidney. Science 155: 1428–1430, 1967.
 235. Segal, S., L. Schwartzman, A. Blair, and D. Bertoli. Dibasic amino acid transport in rat kidney cortex slices. Biochim. Biophys. Acta 135: 127–135, 1967.
 236. Segal, S., and S. O. Thier. Renal handling of amino acids. In: Handbook of Physiology. Vol. 8, Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington, DC: Am. Physiol. Soc., 1973, p. 653–676.
 237. Sereni, F., H. McNamara, M. Shibuya, N. Kretchmer, and H. L. Barnett. Concentration in plasma and rate of urinary excretion of amino acids in premature infants. Pediatrics 15: 575–585, 1955.
 238. Shannon, J. A., N. Jolliffe, and H. W. Smith. The excretion of urine in the dog. IV. The effect of maintenance diet, feeding, etc., upon the quantity of glomerular filtrate. Am. J. Physiol. 101: 625–638, 1932.
 239. Shapiro, R., and P. Curthoys. Differential effect of AT‐125 on rat renal glutaminase activities. FEBS Lett. 133: 131–134, 1981.
 240. Sigrist‐Nelson, K., H. Murer, and U. Hopfer. Active alanine transport in isolated brushborder membranes. J. Biol. Chem. 250: 5674–5680, 1975.
 241. Silbernagl, S. The renal handling of amino acids and oligopeptides. Physiol. Rev. 68: 911–1007, 1988.
 242. Silbernagl, S. The role of brushborder peptidases for renal tubular reabsorption of oligo‐peptides. Pflugers Arch. 365: R14, 1976.
 243. Silbernagl, S. Renal transport of amino acids. Klin. Wochenschr. 57: 1009–1019, 1979.
 244. Silbernagl, S. Tubular reabsorption of L‐glutamine studied by free flow micropuncture and microperfusion of rat kidney. Int. J. Biochem. 12: 9–16, 1980.
 245. Silbernagl, S., Renal transport of amino acids and oligopeptides. In: Renal Transport of Organic Substances, edited by R. Greger, F. Lang, and S. Silbernagl. Berlin: Springer, 1981, p. 93–117.
 246. Silbernagl, S. Kinetics and localization of tubular resorption of “acidic” amino acids. A microperfusion and free flow micropuncture study in rat kidney. Pflugers Arch. 396: 218–224, 1983.
 247. Silbernagl, S. The fate of glutathione (GSH) in the tubule lumen. An in vivo microperfusion study in rat kidney. In: Abstr. IXth Int. Congr. Nephrol., Los Angeles, 1984. p. 433A, Intern. Soc. of Nephrology, Los Angeles, 1984.
 248. Silbernagl, S., Amino acids and oligopeptides. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, p. 1677–1701.
 249. Silbernagl, S. Tubular reabsorption of amino acids and oligopeptides. NIPS 1: 167–171, 1986.
 250. Silbernagl, S. Ammoniagenesis catalyzed by hippurateactivated γ‐glutamyltransferase in the lumen of the proximal tubule. Pflugers Arch. 407: S72–S79, 1986.
 251. Silbernagl, S., Renal transport and metabolism of carnosine in the rat. In: Molecular Nephrology. Biochem. Aspects of Kidney Function (Ed.: Z. Kovačević, W. G. Guder) Berlin: Walter de Gruyter, 1987, p. 21–26.
 252. Silbernagl, S., Renal transport of amino acids and oligopeptides. In: Proteinuria, edited by M. Weise, Contr. Nephrol. vol. 24, Basel: Karger, 1981, pp. 18–29.
 253. Silbernagl, S., Amino acids and oligopeptides. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch, 2nd edition. New York: Raven, 1991.
 254. Silbernagl, S., N. P. Curthoys, and R. Shapiro. The role of renal tubular brushborder enzymes in metabolism and absorption of glutathione and cysteinyl‐glycine. In: Biochemistry of Kidney Functions, edited by F. Morel. Amsterdam: Elsevier, 1982, p. 429–437.
 255. Silbernagl, S., N. P. Curthoys, and R. Shapiro. Are γ‐glutamyl dipeptides reabsorbed as such? A microperfusion study in rat kidney. Pflugers Arch. 402: R4, 1984.
 256. Silbernagl, S., W. H. Dantzler, and K. Völker. Resorption of alanine in short and long loop of Henle of rat kidney in vivo. Pflugers Arch. 413 (Suppl. 1): R15, 1988.
 257. Silbernagl, S., and P. Deetjen. L‐arginine transport in rat proximal tubules. Microperfusion studies on reabsorption kinetics. Pflugers Arch. 336: 79–86, 1972.
 258. Silbernagl, S., and P. Deetjen. Molecular specificity of the L‐arginine reabsorption mechanism. Microperfusion studies in the proximal tubule of rat kidney. Pflugers Arch. 340: 325–334, 1973.
 259. Silbernagl, S., E. C. Foulkes, and P. Deetjen. Renal transport of amino acids. Rev. Physiol. Biochem. Pharmacol. 74: 105–167, 1975.
 260. Silbernagl, S., V. Ganapathy, and F. H. Leibach. H+‐gradient–driven dipeptide reabsorption in the proximal tubule of rat kidney. Studies in vivo and in vitro. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F448–F457, 1987.
 261. Silbernagl, S., M. Gekle, K. Völker, E. Braun, and W. H. Dantzler. Pump, leak and metabolism: postproximal handling of amino acids in the kidney. In: Nephrology (Proceedings of the XIth International Congress of Nephrology, Tokyo) Tokyo: Springer, 1991.
 262. Silbernagl, S., and A. Heuner. Renal transport and metabolism of mercapturic acids and their precursors. Toxicol. Lett. 53: 45–51, 1990.
 263. Silbernagl, S., J. Joost, E. Jarosch, and H. Völkl. Characteristics of renal tubular reabsorption of “acidic” amino acids. Kidney Int. 20: 165, 1981.
 264. Silbernagl, S., W. Pfaller, and P. Deetjen. Molecular specificity of tubular amino acid reabsorption. In: Current Problems in Clinical Biochemistry, edited by U. Schmidt et al. Bern: Huber, 1976, vol. 6, p. 403–415.
 265. Silbernagl, S., W. Pfaller, H. Heinle, and A. Wendel. Topology and function of renal gamma‐glutamyltranspeptidase (E.C.2.3.2.2.). In: Functions of Glutathione in Liver and Kidney, edited by H. Sies and H. Wendel. Berlin: Springer, 1978, p. 60–69.
 266. Silbernagl, S., and D. Scheller. Formation and excretion of NH3/NH4+. New aspects of an old problem. Klin. Wochenschr. 64: 862–870, 1986.
 267. Silbernagl, S., and H. Völkl. Amino acid reabsorption in the proximal tubule of rat kidney: stereospecificity and passive diffusion studied by continuous microperfusion. Pflugers Arch. 367: 221–227, 1977.
 268. Silbernagl, S., and H. Völkl. Molecular specificity of the tubular reabsorption of “acidic” amino acids. A continuous microperfusion study in rat kidney in vivo. Pflugers Arch. 396: 225–230, 1983.
 269. Silverman, M., P. Vinay, L. Shinobu, A. Gougoux, and G. Lemieux. Luminal and antiluminal transport of glutamine in dog kidney. Effect of metabolic acidosis. Kidney Int. 20: 359–365, 1981.
 270. Slatopolsky, E., I. O. Elkan, C. Weerts, and N. S. Bricker. Studies on characteristics of the control system governing sodium excretion in uremic man. J. Clin. Invest. 47: 521–530, 1968.
 271. Stahl, P., and A. L. Schwartz. Receptor‐mediated endocytosis. J. Clin. Invest. 77: 657–662, 1986.
 272. Stanbury, J. B., J. B. Wyngaarden, and D. S. Fredrickson (eds.)., The Metabolic Basis of Inherited Disease. New York: McGraw‐Hill, 1978.
 273. Stephenson, S. L., and A. J. Kenny. Hydrolysis of neuropeptide by pig kidney microvillar peptidases: the key role of endopeptidase‐24.11. In: Molecular Nephrology. Biochem. Aspects of Kidney Function. Berlin: New York: Walter de Gruyter, 1987, p. 3–11.
 274. Stetler‐Stevenson, M. A., G. Flouret, and S. Nakamura. In vivo metabolism of tritiated LHRH by the whole kidney and individual tubules of rats. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F628–F632, 1983.
 275. Stieger, B., G. Stange, J. Biber, and H. Murer. Transport of L‐lysine by rat renal brush border membrane vesicles. Pflugers Arch. 397: 106–113, 1983.
 276. Sudo, J. Distribution of peptidases in the metabolization of peptide hormones, particularly angiotensin II, along the isolated single nephron of rat. Folia Pharmacol. Jpn. 78: 27, 1981.
 277. Takuwa, N., T. Shimada, H. Matsumoto, and T. Hoshi. Proton‐coupled transport of glycyl‐glycine in rabbit renal brush‐border membrane vesicles. Biochim. Biophys. Acta 814: 186–190, 1985.
 278. Talor, Z., D. S. Emmanouel, and A. I. Katz. Insulin binding and degradation by luminal and basolateral membranes from rabbit kidney. J. Clin. Invest. 69: 1136–1146, 1982.
 279. Talor, Z., D. S. Emmanouel, and A. I. Katz. Glucagon degradation by luminal and basolateral tubular membranes. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F297–F303, 1983.
 280. Tannen, R. Ammonia metabolism. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F265–F277, 1978.
 281. Tate, S. S., and A. Meister. Interaction of gamma‐glutamyltranspeptidase with amino acids, dipeptides, and derivatives and analogs of glutathione. J. Biol. Chem. 249: 7593–7602, 1974.
 282. Teijema, H. L., H. H. van Gelderen, M. A. H. Giesberts, M. L. Serena, and L. de Angelo. Dicarboxylic aminoaciduria: an inborn error of glutamate and aspartate transport with metabolic implications, in combination with a hyperprolinemia. Metabolism 23: 115–123, 1974.
 283. Thoene, J. G., R. G. Oshima, D. G. Ritchie, and J. A. Schneider. Cystinotic fibroblasts accumulate cystine from intracellular protein degradation. Proc. Natl. Acad. Sci. USA 74: 4505–4507, 1977.
 284. Thompson, G. A., and A. Meister. Modulation of γ‐glutamyl transpeptidase activities by hippurate and related compounds. J. Biol. Chem. 255: 2109–2113, 1980.
 285. Ullrich, K. J. Sugar, amino acid, and Na+ cotransport in the proximal tubule. Annu. Rev. Physiol. 41: 181–195, 1979.
 286. Ullrich, K. J., Driving forces for the transport of organic solutes. In: Renal Transport of Organic Substances, edited by R. Greger, F. Lang, and S. Silbernagl. Berlin: Springer, 1981, p. 17–29.
 287. Ullrich, K. J., G. Rumrich, and S. Klöss. Sodium dependence of the amino acid transport in the proximal convolution of the rat kidney. Pflugers Arch. 351: 49–60, 1974.
 288. Ullrich, K. J., G. Rumrich, and S. Klöss. Specificity and sodium dependence of the active sugar transport in the proximal convolution of the rabbit kidney. Pflugers Arch. 351: 35–48, 1974.
 289. Umezawa, H., M. Ishizuka, T. Aoyagi, and T. Takeuchi. Enhancement of delayed type hypersensitivity by bestatin, an inhibitor of aminopeptidase B and leucine aminopeptidase. J. Antibiot. (Tokyo) 29: 857, 1976.
 290. Völkl, H., J. Geibel, S. Silbernagl, and F. Lang. Intraluminal conversion of cysteine to cystine in the proximal straight tubule of the mouse kidney. Pflugers Arch. 402: R5, 1984.
 291. Völkl, H., and S. Silbernagl. Molecular specificity of tubular reabsorption of L‐proline. A microperfusion study in rat kidney. Pflugers Arch. 387: 253–259, 1980.
 292. Völkl, H., and S. Silbernagl. Mutual inhibition of L‐cystine/L‐cysteine and other neutral amino acids during tubular reabsorption. A microperfusion study in rat kidney. Pflugers Arch. 395: 190–195, 1982.
 293. Völkl, H., and S. Silbernagl. Reexamination of the interplay between dibasic amino acids and L‐cystine/L‐cysteine during tubular reabsorption. Pflugers Arch. 395: 196–200, 1982.
 294. Völkl, H., S. Silbernagl, and P. Deetjen. Kinetics of L‐proline reabsorption in rat kidney studied by continuous microperfusion. Pflugers Arch. 382: 115–121, 1979.
 295. Webber, W. A. Characteristics of acidic amino acid transport in mammalian kidney. Can. J. Biochem. Physiol. 41: 131–137, 1963.
 296. Weise, M., and E. Oken. Amino acid gradients across the brushborder of Necturus proximal tubule. In: Abstr. VIIth Int. Congr. Nephrol., Montreal, 1978. p. M5, Intern. Soc. of Nephrology, Montreal, 1978.
 297. Welbourne, T. C. Ammonia production and pathways of glutamine metabolism in the isolated perfused rat kidney. Am. J. Physiol. 226: 544–548, 1974.
 298. Wendel, A., and P. Cikryt. The level and half‐life of glutathione in human plasma. FEBS Lett. 120: 209–211, 1980.
 299. Wendel, A., R. Hahn, and W. Guder. On the role of γ‐glutamyltransferase in renal tubular amino acid reabsorption. In: Current Problems in Clinical Biochemistry, edited by U. Schmidt. Bern: Huber, 1976, vol. 6, 426–436.
 300. Williams, W. M., and K. C. Huang. In vitro and in vivo renal tubular transport of tryptophan derivatives. Am. J. Physiol. 219: 1468–1475, 1970.
 301. Windmueller, H. G., and A. E. Spaeth. Source and fate of circulating citrulline. Am. J. Physiol. 241 (Endocrinol. Metab. 4): E437–E480, 1981.
 302. Windus, D. W., D. E. Cohn, S. Klahr, and M. R. Hammerman. Glutamine transport in renal basolateral vesicles from dogs with metabolic acidosis. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F78–F86, 1984.
 303. Windus, D. W., S. Klahr, and M. R. Hammerman. Glutamine transport in basolateral vesicles from dogs with acute respiratory acidosis. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F403–F407, 1984.
 304. Wollaston, W. H. On cystic oxide: a new species of urinary calcules. Trans. R. Soc. Edinb. 100: 223, 1810.
 305. Wright, H. R., H. F. Russo, H. R. Skeggs, E. A. Patch, and K. H. Beyer. The renal clearance of essential acids: arginine, histidine, lysine, methionine. Am. J. Physiol. 149: 130–134, 1947.
 306. Yamamoto, H., T. Aikawa, H. Matsutaka, T. Okuda, and E. Ishikawa. Interorganal relationships of amino acid metabolism in fed rats. Am. J. Physiol. 226: 1428–1433, 1974.
 307. Young, J. A., and B. S. Freedman. Renal tubular transport of amino acids. Clin. Chem. 17: 245–266, 1971.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Stefan Silbernagl. Tubular Transport of Amino Acids and Small Peptides. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 1937-1976. First published in print 1992. doi: 10.1002/cphy.cp080241