References |
1. |
Aronson, P., and
B. Sacktor.
The Na gradient‐dependent transport of d‐glucose in renal brush border membranes.
J. Biol. Chem.
250:
6032–6039,
1975.
|
2. |
Arruda, J. A. L.,
C. Westenfelder, and
R. Lockwood.
Glucose and bicarbonate reabsorption in edematous dogs.
Am. J. Physiol.
231:
749–753,
1976.
|
3. |
Baines, A. D.
Effect of extracellular fluid volume expansion on maximum glucose reabsorption rate and glomerular tubular balance in single rat nephrons.
J. Clin. Invest.
50:
2414–2424,
1971.
|
4. |
Barfuss, D. W., and
J. A. Schafer.
Differences in active and passive glucose transport along the proximal nephron.
Am. J. Physiol.
240:
(Renal Fluid Electrolyte Physiol. 9):
F344–F332,
1981.
|
5. |
Beck, J. D., and
B. Sacktor.
Energetics of the Na‐dependent transport of d‐glucose in renal brush border membranes.
J. Biol. Chem.
250:
8647–8680,
1975.
|
6. |
Beck, J., and
B. Sacktor.
The sodium electrochemical potential mediated transport of d‐glucose in renal brush border membrane vesicles.
J. Biol. Chem.
253:
5531–5535,
1978.
|
7. |
Bergeron, M.,
L. Dubord, and
C. Hausser.
Membrane permeability as a cause of transport defects in experimental Fanconi syndrome: a new hypothesis.
J. Clin. Invest.
57:
181–189,
1976.
|
8. |
Bergeron, M., and
M. Vadeboncoeur.
Microinjections of l‐leucine into tubules and peritubular capillaries of the rat. II. The maleic acid model.
Nephron
8:
367–374,
1971.
|
9. |
Berliner, R. W.,
J. G. Hilton,
T. F. Yu, and
T. J. Kennedy.
The renal mechanism for urate excretion in man.
J. Clin. Invest.
29:
396–401,
1950.
|
10. |
Bishop, J. H. V.,
R. Green, and
S. Thomas.
Reabsorption of sodium and water in proximal convoluted tubules of the rat kidney.
J. Physiol. (Lond.)
266:
66P–67P,
1977.
|
11. |
Bishop, J. H. V.,
R. Green, and
S. Thomas.
Free‐flow reabsorption of glucose, sodium, osmoles and water in rat proximal convoluted tubule.
J. Physiol. (Lond.)
288:
331–351,
1977.
|
12. |
Bode, F.,
Y. L. Chan,
A. M. Goldner,
F. Papavassiliou,
M. Wagner, and
K. Baumann.
Reabsorption of d‐glucose from various regions of the rat proximal convoluted tubule: evidence that the proximal convolution is not homogeneous.
In: Biochemical Aspects of Renal Function,
edited by S. Angielski and
U. C. Dubach.
Bern:
H. Huber,
1975,
p. 39–43.
|
13. |
Boonjarern, S.,
M. E. Laski, and
N. A. Kurtzman.
Effects of extracellular volume expansion on the tubular reabsorption of glucose.
Pflugers Arch.
266:
67–71,
1976.
|
14. |
Bradley, S. E.,
G. P. Bradley,
D. J. Tyson,
J. J. Curry, and
W. C. Blake.
Renal function in renal diseases.
Am. J. Med.
9:
766,
1950.
|
15. |
Bradley, S. E.,
I. H. Laragh,
H. O. Wheeler,
M. Mac‐Dowell, and
J. Oliver.
Correlation of structure and function in the handling of glucose by nephrons of the canine kidney.
J. Clin. Invest.
40:
1113–1131,
1961.
|
16. |
Braun, W.,
V. P. Whittaker, and
W. D. Lotspeich.
Renal excretion of phlorizin and phlorizin glucuronide.
Am. J. Physiol.
190:
563–569,
1957.
|
17. |
Burgen, A. S. V.
A theoretical treatment of glucose reabsorption in the kidney.
Can. J. Biochem. Physiol.
4:
466–474,
1956.
|
18. |
Chinard, F. P.,
W. R. Taylor,
M. F. Nolan, and
T. Enns.
Renal handling of glucose in dogs.
Am. J. Physiol.
196:
535,
1959.
|
19. |
Crane, R. K.
Hypothesis for mechanism of intestinal active transport of sugars.
Federation Proc.
21:
891–895,
1962.
|
20. |
Deetjen, P., and
J. W. Boylan.
Glucose reabsorption in the rat kidney (microperfusion studies).
Pflugers Arch.
229:
19–29,
1968.
|
21. |
Elsas, L. J.,
R. E. Hillman,
J. H. Patterson, and
L. E. Rosenberg.
Renal and intestinal hexose transport in familial glucose–galactose malabsorption.
J. Clin. Invest.
49:
576–585,
1970.
|
22. |
Frasch, W.,
P. P. Frohnert,
F. Bode,
K. Baumann, and
R. Kinne.
Competitive inhibition of phlorizin binding by d‐glucose and the influence of sodium; a study on isolated brush border membranes of rat kidney.
Pflugers Arch.
320:
265–284,
1970.
|
23. |
Frohnert, P. P.,
B. Hormann,
R. Zwiebel, and
K. Baumann.
Free flow micropuncture studies of glucose transport in the rat nephron.
Pflugers Arch.
315:
66–85,
1970.
|
24. |
Frömter, E.
Electrophysiological analysis of rat renal sugar and amino acid transport. I. Basic phenomenon.
Pflugers Arch.
393:
179–189,
1982.
|
25. |
Frömter, E., and
K. Gessner.
Free‐flow potential along rat kidney proximal tubule.
Pflugers Arch.
351:
69–83,
1974.
|
26. |
Glossmann, H., and
D. M. Neville, Jr.
Phlorizin receptors in isolated brush border membranes.
J. Biol. Chem.
247:
7779–7789,
1972.
|
27. |
Harrison, D. A.,
G. W. Rowe,
C. J. Lumsden, and
M. Silverman.
Computational analysis of models for cotransport.
Biochim. Biophys. Acta
773:
1–10,
1984.
|
28. |
Hediger, M. A.,
M. J. Coady,
T. S. Ikeda, and
E. M. Wright.
Expression cloning and cDNA sequencing of the Na+/glucose co‐transporter.
Nature
330:
379–381,
1987.
|
29. |
Hediger, M. A.,
E. Turk,
A. M. Pajor, and
E. M. Wright.
Molecular genetics of the human Na+/glucose cotransporter.
Klin. Wochenschr.
67:
843–846,
1989.
|
30. |
Higgins, I. T., and
A. E. Meinders.
Quantitative relationship of renal glucose and sodium reabsorption during ECF expansion.
Am. J. Physiol.
229:
66–71,
1975.
|
31. |
Hilden, S. A., and
B. Sacktor.
d‐glucose—dependent sodium transport in renal brush border membrane vesicles.
J. Biol. Chem.
254:
7090–7096,
1979.
|
32. |
Hopfer, U.,
Membrane transport mechanisms for hexoses and amino acids in the small intestine.
In: Physiology of the Gastrointestinal Tract
(2nd ed.),
edited by L. R. Johnson.
New York:
Raven,
1987,
p. 1499–1526.
|
33. |
Hopfer, U., and
R. Groseclose.
The mechanism of Na+‐dependent d‐glucose transport.
J. Biol. Chem.
255:
4453–4462,
1980.
|
34. |
Hosang, M.,
E. M. Gibbs,
D. F. Diedrich, and
G. Semenza.
Photoaffinity labeling and identification of (a component of) the small‐intestinal Na+, d‐glucose transporter using 4‐azidophlorizin.
FEBS Lett.
130:
244–248,
1981.
|
35. |
Kano‐Kameyama, A., and
T. Hoshi.
Purification and reconstitution of Na+/d‐glucose cotransport carriers from guinea pig small intestine.
Jpn. J. Physiol.
33:
955–970,
1983.
|
36. |
Kaunitz, J. D.,
R. Gunther, and
E. M. Wright.
Involvement of multiple sodium ions in intestinal d‐glucose transport.
Proc. Natl. Acad. Sci. USA
79:
3215–3218,
1982.
|
37. |
Keller, D. M.
Glucose excretion in man and dog.
Nephron
5:
43–66,
1968.
|
38. |
Kinne, R.,
H. Murer,
E. Kinne‐Saffran,
M. Thees, and
G. Sachs.
Sugar transport by renal plasma membrane vesicles.
J. Membr. Biol.
21:
375–395,
1975.
|
39. |
Kinne, R.,
L. J. Shlatz,
E. Kinne‐Saffran, and
I. L. Schwartz.
Distribution of membrane‐bound cyclic AMP‐dependent protein kinase in plasma membranes of cells of the kidney cortex.
J. Membr. Biol.
24:
145,
1975.
|
40. |
Kleinzeller, A., and
M. McAvoy.
Sugar transport across the peritubular face of renal cells in the flounder.
J. Gen. Physiol.
62:
169–184,
1973.
|
41. |
Knight, T.,
S. Sansom, and
E. J. Weinman.
Renal tubular absorption of d‐glucose, 3‐O‐methyl‐d‐glucose and 2‐deoxy‐d‐glucose.
Am. J. Physiol.
233
(Renal Fluid Electrolyte Physiol. 2):
F274–F277,
1977.
|
42. |
Koepsell, H.,
H. Menuhr,
I. Ducis, and
T. F. Wissmuller.
Partial purification and reconstitution of the Na+—d‐glucose cotransport protein from pig renal proximal tubules.
J. Biol. Chem.
258:
1888–1894,
1983.
|
43. |
Krane, S. M.,
Renal glycosuria.
In: The Metabolic Basis of Inherited Disease
(4th ed.),
edited by J. B. Stanbury,
J. B. Wyngaarden, and
D. S. Fredrickson,
New York:
McGraw‐Hill,
1978,
p. 1607.
|
44. |
Kurtzman, N. A.,
M. G. White,
P. W. Rogers, and
U. U. Glynn.
Relationship of sodium reabsorption and glomerular filtration rate to renal glucose reabsorption.
J. Clin. Invest.
51:
127–133,
1972.
|
45. |
Kwong, T. F., and
C. M. Bennett.
Relationship between glomerular filtration rate and maximum tubular reabsorption rate of glucose.
Kidney Int.
5:
23–29,
1974.
|
46. |
Lea, P. J., and
M. J. Hollenberg.
Mitochondrial structure revealed by scanning electron microscopy.
In: Cells and Tissues: A Three‐Dimensional Approach by Modern Techniques in Microscopy,
edited by P. M. Motta.
New York:
Alan R. Liss,
1988,
p. 63–70.
|
47. |
Lever, J. E.
Expression of a differentiated transport function in apical membrane vesicles isolated from an established kidney epithelial cell line.
J. Biol. Chem.
257:
8680–8686,
1982.
|
48. |
Lin, J. T.,
K. Szarc,
R. Kinne, and
C. Y. Jung.
Structural state of the Na+ d‐glucose co‐transporter in calf‐kidney brush border membranes: target size analysis of Na+‐dependent phlorizin binding and Na+‐dependent d‐glucose transport.
Biochim. Biophys. Acta
777:
201–208,
1984.
|
49. |
Lindquist, B.,
G. Meeuwisse, and
K. Melin.
Glucose‐galactose malabsorption.
Lancet
2:
666,
1962.
|
50. |
Loeschke, K., and
K. Baumann.
Kinetische studien der d‐glukoseresorption im proximalen konvolut der rattenniere.
Pflugers Arch.
305:
139–154,
1969.
|
51. |
Malathi, P., and
H. Preiser.
Isolation of the Na+‐dependent d‐glucose transport proteins from brush border membranes.
Biochim. Biophys. Acta
735:
314–324,
1983.
|
52. |
Meeuwisse, G. W., and
A. Dahlquist.
Glucose–galactose malabsorption: a study with biopsy of the small intestinal mucosa.
Acta Paediatr. Scand.
57:
273,
1968.
|
53. |
Misfeldt, D. S., and
M. J. Sanders.
Transepithelial transport in cell culture: stoichiometry of Na/phlorizin binding and Na/d‐glucose cotransport. A two‐step, two‐sodium model of binding and translocation.
J. Membr. Biol.
70:
191–198,
1983.
|
54. |
Moran, A.,
L. J. Davis, and
R. J. Turner.
High affinity phlorizin binding to the LLC‐PK1 cells exhibits a sodium:phlorizin stoichiometry of 2:1.
J. Biol. Chem.
263:
187–192,
1988.
|
55. |
Moran, A.,
J. S. Handler, and
R. J. Turner.
Na dependent hexose transport in vesicles from cultured renal epithelial cell line.
Am. J. Physiol.
243
(Cell Physiol. 12):
C293–C298,
1982.
|
56. |
Mudge, G. H.,
W. O. Berndt, and
H. Valtin.
Tubular transport of urea, glucose, phosphate, uric acid, sulphate, and thiosulphate.
In: Handbook of Physiology. Renal Physiology,
edited by J. Orloff and
R. W. Berliner.
Washington, DC:
Am. Physiol. Soc.,
1973,
sect. 8, chapt. 19,
p. 587–652.
|
57. |
Mueckler, M.,
C. Caruso,
S. A. Baldwin,
M. Panico,
I. Blench,
H. R. Morris,
W. J. Allard,
G. E. Lienhard, and
H. F. Lodish.
Sequence and structure of a human glucose transporter.
Science
229:
941–945,
1985.
|
58. |
Neeb, M.,
H. Fasold, and
H. Koepsell.
Identification of the d‐glucose binding polypeptide of the renal Na+—d‐glucose cotransporter with a covalently binding d‐glucose analog.
FEBS Lett.
182:
139–144,
1985.
|
59. |
Nizet, A.
Excretion and tubular reabsorption of sodium, glucose and phosphate by isolated dog kidneys: influence of blood dilution.
Pflugers Arch.
332:
248–258,
1972.
|
60. |
Oliver, J., and
M. MacDowell.
The structural and functional aspects of the handling of glucose by the nephrons and the kidney and their correlation by means of structural‐functional equivalents.
J. Clin. Invest.
40:
1093–1112,
1961.
|
61. |
Peerce, B. E., and
R. D. Clarke.
Isolation and reconstitution of the intestinal Na+/glucose cotransporter.
J. Biol. Chem.
265:
1731–1736,
1990.
|
62. |
Peerce, B. E., and
E. M. Wright.
Sodium‐induced conformational changes in the glucose transporter of intestinal brush borders.
J. Biol. Chem.
259:
14105–14112,
1984.
|
63. |
Peerce, B. E., and
E. M. Wright.
Evidence for tyrosine residues at the Na+ site on the intestinal Na+/d‐glucose co‐transporter.
J. Biol. Chem.
260:
6026–6031,
1984.
|
64. |
Peerce, B. E,. and
E. M. Wright.
Conformational changes in the intestinal brush border sodium—glucose cotransporter labelled with fluorescein isothiocyanate.
Proc. Natl. Acad. Sci. USA
81:
2223–2226,
1984.
|
65. |
Peerce, B. E., and
E. M. Wright.
Examination of the Na+‐induced conformational change of the intestinal brush border sodium/glucose symporter using fluorescent probes.
Biochemistry
26:
4272–4276,
1987.
|
66. |
Pitt, R. F.
Physiology of the Kidney and Body Fluids.
Chicago:
Year Book Medical,
1963.
|
67. |
Quiocho, F. A., and
N. K. Vyas.
Novel stereospecificity of the l‐arabinose—binding protein.
Nature
310:
381–386,
1984.
|
68. |
Reubi, F. C.,
Glucose titration in renal glycosuria.
In: Ciba Foundation Symposium on the Kidney,
edited by A. A. G. Lewis and
G. E. W. Wolstenholme.
Philadelphia:
Little, Brown & Co.,
1954,
p. 96–107.
|
69. |
Robson, A. M.,
P. L. Srivastava, and
N. S. Bricker.
The influence of saline loading on renal glucose reabsorption in the rat.
J. Clin. Invest.
47:
329–335,
1968.
|
70. |
Rosen, V. J.,
H. J. Kramer, and
H. Gonick.
Experimental Fanconi syndrome. II. Effect of maleic acid on renal tubular ultrastructure.
Lab. Invest.
28:
446–455,
1973.
|
71. |
Rosenberg, L. E., and
S. Segal.
Maleic acid induced inhibition of amino acid transport in rat kidney.
Biochem. J.
92:
345–352,
1964.
|
72. |
Roth, K. S.,
S. M. Hwang,
M. Yudkoff, and
S. Segal.
On the transport of sugars and amino acids by newborn kidney: use of isolated proximal tubule.
Life Sci.
18:
1125–2219,
1976.
|
73. |
Schmidt, U. M.,
B. Eddy,
C. M. Fraser,
J. C. Venter, and
G. Semenza.
Isolation of (a subunit of) the Na+/d‐glucose cotransporter(s) of rabbit intestinal brush border membranes using monoclonal antibodies.
FEBS Lett.
161:
279–283,
1983.
|
74. |
Schultze, R. G., and
H. Berger.
The influence of GFR and saline expansion in TmG of the dog kidney.
Kidney Int.
3:
291–297,
1973.
|
75. |
Scriver, C. R.,
R. W. Chesney, and
R. R. McInnes.
Genetic aspects of renal tubular transport: diversity and topology of carriers.
Kidney Int.
9:
149–171,
1976.
|
76. |
Semenza, G.,
M. Kessler,
M. Hosang,
J. Weber, and
U. Schmidt.
Biochemistry of the Na+, d‐glucose cotransporter of the small‐intestinal brush‐border membrane: the state of the art in 1984.
Biochim. Biophys. Acta
779:
343–379,
1984.
|
77. |
Shannon, J. A.,
S. Farber, and
L. Troast.
The measurement of glucose Tm in the normal dog.
Am. J. Physiol.
133:
752–761,
1941.
|
78. |
Shannon, J. A., and
S. Fisher.
The renal tubular reabsorption of glucose in the normal dog.
Am. J. Physiol.
122:
765–771,
1943.
|
79. |
Silverman, M.
The chemical and steric determinants governing sugar interactions with renal tubular membranes.
Biochim. Biophys. Acta
332:
248–262,
1974.
|
80. |
Silverman, M.
The in vivo localization of high‐affinity phlorizin receptors to the brush border surface on the proximal tubule in dog kidney.
Biochim. Biophys. Acta
339:
92–102,
1974.
|
81. |
Silverman, M.
Glucose transport in the kidney.
Biochim. Biophys. Acta
457:
303–351,
1976.
|
82. |
Silverman, M.,
Specificity of membrane transport.
In: Receptors and Recognition,
edited by P. Cuatrecasas and
M. F. Greaves.
London:
Chapman and Hall,
1977,
ser. A,
vol. 3,
p. 131–166.
|
83. |
Silverman, M.
Participation of the ring oxygen in sugar interaction with transporters at renal tubular surfaces.
Biochim. Biophys. Acta
600:
502–512,
1980.
|
84. |
Silverman, M.
Glucose reabsorption in the kidney.
Can. J. Physiol. Pharmacol.
59:
209–224,
1981.
|
85. |
Silverman, M.
The mechanism of maleic acid nephropathy: investigations using brush border membrane vesicles.
Membr. Biochem.
4:
63–69,
1981.
|
86. |
Silverman, M.,
Sugar transport in the mammalian nephron.
In: Membranes and Transport,
edited by A. Martonosi.
New York:
Plenum,
1982,
vol. 2,
p. 207–216.
|
87. |
Silverman, M.
Comparison of glucose transport mechanisms at opposing surfaces of the renal proximal tubular cell.
Biochem. Cell Biol.
64:
1092–1098,
1986.
|
88. |
Silverman, M.,
M. A. Aganon, and
F. P. Chinard.
d‐glucose interactions with renal tubule cell surfaces.
Am. J. Physiol.
218:
735–742,
1970.
|
89. |
Silverman, M.,
M. A. Aganon, and
F. P. Chinard.
Specificity of monosaccharide transport in dog kidney.
Am. J. Physiol.
218:
743–750,
1970.
|
90. |
Silverman, M., and
J. Black.
High affinity phlorizin receptor sites and their relation to the glucose transport mechanism in the proximal tubule of dog kidney.
Biochim. Biophys. Acta
394:
10–30,
1975.
|
91. |
Silverman, M., and
L. Huang.
Mechanism of maleic acid induced glucosuria in dog kidney.
Am. J. Physiol.
231:
1024–1032,
1976.
|
92. |
Silverman, M., and
P. Speight.
Isolation and partial purification of a Na+‐dependent phlorizin receptor from dog kidney proximal tubule.
J. Biol. Chem.
261:
13820–13826,
1986.
|
93. |
Silverman, M., and
P. Speight.
Identification and isolation of the Na+‐dependent phlorizin receptor from the renal proximal convoluted tubule.
Federation Proc.
46:
1075,
1987.
|
94. |
Silverman, M., and
R. J. Turner.
The renal proximal tubule.
Biomembranes
10:
1050–1100,
1979.
|
95. |
Silverman, M.,
C. Whiteside, and
C. Trainor.
Glomerular and postglomerular transcapillary exchange in dog kidney.
Federation Proc.
43:
171–179,
1984.
|
96. |
Smith, H. W.,
W. Goldring,
H. Chassis,
H. A. Ranges, and
S. E. Bradley.
The application of saturation methods to the study of glomerular and tubular functions in the human kidney.
J. Mt. Sinai Hosp.
10:
59–108,
1943.
|
97. |
Stolte, H.,
D. J. Hare, and
J. W. Boylan.
d‐glucose and fluid reabsorption in proximal surface tubule of the rat kidney.
Pflugers Arch.
334:
193–206,
1972.
|
98. |
Thorens, B.,
H. K. Sarkar,
H. R. Kaback, and
H. F. Lodish.
Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and β‐pancreatic islet cells.
Cell
55:
281–290,
1988.
|
99. |
Tune, L.,
R. Kinne, and
P. P. Frohnert.
N‐ethylmaleimide labeling of a phlorizin‐sensitive d‐glucose binding site of brush border membrane from the rat kidney.
Biochim. Biophys. Acta
290:
124–133,
1971.
|
100. |
Turner, R. J.
Stoichiometry of co‐transport systems.
Ann. N.Y. Acad. Sci.
456:
10–25,
1985.
|
101. |
Turner, R. J., and
E. S. Kempner.
Radiation inactivation studies of the renal brush border membrane phlorizin binding protein.
J. Biol. Chem.
257:
10794–10797,
1982.
|
102. |
Turner, R. J., and
A. Moran.
Heterogeneity of sodium‐dependent d‐glucose transport sites along the proximal tubule: evidence from vesicle studies.
Am. J. Physiol.
242
(Renal Fluid Electrolyte Physiol. 11):
F406–F414,
1982.
|
103. |
Turner, R. J., and
A. Moran.
Stoichiometric studies of the renal outer cortical brush border membrane d‐glucose transporter.
J. Membr. Biol.
67:
73–80,
1982.
|
104. |
Turner, R. J., and
A. Moran.
Further studies of proximal tubular brush border membrane d‐glucose transport heterogeneity.
J. Membr. Biol.
70:
37–45,
1982.
|
105. |
Turner, R. J., and
M. Silverman.
Sugar uptake into brush border vesicles from normal human kidney.
Proc. Natl. Acad. Sci. USA
75:
2825–2829,
1977.
|
106. |
Turner, R. J., and
M. Silverman.
Sugar uptake into brush border vesicles from dog kidney. I. Specificity.
Biochim. Biophys. Acta
507:
305–321,
1978.
|
107. |
Turner, R. J., and
M. Silverman.
Sugar uptake into brush border vesicles from dog kidney. II. Kinetics.
Biochim. Biophys. Acta
511:
470–486,
1978.
|
108. |
Turner, R. J., and
M. Silverman.
Interaction of phlorizin and sodium with the renal brush border membrane d‐glucose transporter; stoichiometry and order of binding.
J. Membr. Biol.
58:
43–55,
1981.
|
109. |
Ullrich, K. J.
Renal tubular mechanisms of organic solute transport.
Kidney Int.
9:
134–148,
1976.
|
110. |
Ullrich, K. J.
Sugar, amino acid, and Na+ cotransport in the proximal tubule.
Annu. Rev. Physiol.
41:
181–196,
1979.
|
111. |
Ullrich, K. J.,
G. Rumrich, and
S. Kloss.
Specificity and sodium dependence of the active sugar transport in the proximal convolution of the rat kidney.
Pflugers Arch.
351:
35–48,
1974.
|
112. |
van Liew, J. B.,
P. Deetjen, and
J. W. Voylan.
Glucose reabsorption in the rat kidney.
Pflugers Arch.
295:
232–244,
1967.
|
113. |
von Baeyer, H., and
P. Deetjen.
Renal glucose transport.
In: The Kidney: Physiology and Pathophysiology,
edited by D. W. Seldin and
G. Giebisch.
New York:
Raven,
1985,
vol. 2,
p. 1663–1675.
|
114. |
von Baeyer, H.,
C. von Conta,
D. A. Haeberle, and
P. Deetjen.
Determination of transport constants for glucose in proximal tubules of the rat kidney.
Pflugers Arch.
343:
273–286,
1973.
|
115. |
Weber, J., and
G. Semenza.
Chemical modification of the small intestinal Na+/d‐glucose co‐transporter by amino group reagents: evidence for a role of amino group(s) in the binding of the sugar.
Biochim. Biophys. Acta
731:
437–447,
1983.
|
116. |
Wen, S.‐F.
Micropuncture studies of glucose transport in the dog: mechanism of renal glucosuria.
Am. J. Physiol.
231:
468–475,
1976.
|
117. |
Wilbrandt, W.
Secretion and transport of non‐electrolytes.
Symp. Soc. Exp. Biol.
8:
136–163,
1954.
|
118. |
Woolf, L. I.,
B. L. Goodwin, and
C. E. Phelps.
Tm‐limited renal tubular reabsorption and the genetics of renal glycosuria.
J. Theor. Biol.
11:
10–21,
1966.
|
119. |
Worthen, H. G.
Renal toxicity of maleic acid in the rat: enzymatic and morphologic observations.
Lab. Invest.
12:
791–801,
1963.
|