Comprehensive Physiology Wiley Online Library

Biochemical Characterization of Individual Nephron Segments

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Biochemical Basis of Active Tubular Transport
2 Biochemical Mechanisms of Hormone Action
2.1 Cyclic AMP as Intracellular Messenger of Hormones
2.2 Inositol Polyphosphates, Diacylglycerol, and Ca2+ as Hormone Messengers
2.3 Insulin and Growth Factors
2.4 Action of Steroid Hormones Including Vitamin D Hormone
2.5 Thyroid Hormones
3 Biochemical Functions of the Proximal Tubule
3.1 Coupling of Metabolism and Transport
3.2 Brush‐Border Enzymes
3.3 Renal Gluconeogenesis
3.4 Amino Acid and Peptide Metabolism
3.5 Biotransformation Reactions
4 Thin Limbs of Henle's Loop
5 Thick Ascending Limb of Henle's Loop
5.1 Tamm‐Horsfall Glycoprotein
6 The Distal Convoluted Tubule
7 The Collecting Tubule
7.1 Metabolism and Transport ATPases
8 Organic Osmolytes
Figure 1. Figure 1.

Model of sodium, potassium ATPase, and biochemical reactions involved in sodium‐driven conformational changes of the α‐subunit. Scheme of α‐subunit of Na+,K+‐ATPase (left) and α‐subunit changes during sodium‐potassium transport (right). 3 Na bind to E1‐ATP to form phosphorylated (E1‐P) which, after release of 3 Na at outer surface (above), undergoes conformational change to the E1 form, binding 2 K and is dephosphorylated during one turn to the inner surface, where it rebinds ATP and releases 2 K. The inner pathway (dotted lines) represents the reactions in the absence of extracellular K.

Derived from refs. 414 and 415
Figure 2. Figure 2.

Comparison between relative densities and activities of mitochondrial and basolateral functions. Relative mitochondrial and basolateral membrane densities were measured morphometrically 354, and activities of mitochondrial enzyme acetoacetyl‐CoA transferase 53 and basolateral Na+,K+‐ATPase 238 were measured with ultramicro‐procedures. Maximal densities and activities set at 100%.

From ref. 160
Figure 3. Figure 3.

Distribution pattern of segment‐specific metabolic functions along the nephron. Enzyme activities and luminal membrane area (F) represent segment‐specific metabolic functions, not correlating with basic morphological or biochemical equipment: (A) glycolysis (hexokinase) 461; (B) gluconeogenesis (phosphoenolpyruvate carboxykinase) 58,164; (C) bicarbonate transport (anion‐stimulated ATPase) 35; (D) choline metabolism (choline kinase) 476; (E) betaine formation 476; (F) brush border structure 354; (G) brush border function (alkaline phosphatase) 388; (H) glycerol metabolism (glycerokinase) 57,483; (I) lysosomal function (N‐acetyl, β‐D‐glucosaminidase) 160; (K) kallikrein secretion (kininogenase) 158,342; (L) K‐stimulated ATPase.

Adapted from refs. 35,99,158, and 160
Figure 4. Figure 4.

Role of guanine nucleotide binding proteins in adenylate cyclase activation and inhibition by hormones. Model for regulation of adenylate cyclase activity by stimulatory and inhibitory hormones. H, hormone; R, receptor; CT, cholera toxin; PT, pertussis toxin; C, cyclase; s, stimulatory; i, inhibitory; *, active conformation. Dissociation of Gs results in stimulation of C by its αs‐subunit. Dissociation of Gi results in inhibition of catalytic activity as a result of reduction of αs* following its interaction with β and/or as a result of indirect or direct effects of αi* on C. The β‐subunit represents the β‐γ‐complex found more recently 39,446.

Adapted from ref. 139
Figure 5. Figure 5.

Mechanism of action of hormones acting via intracellular calcium. Hormones (agonists) binding to specific receptors (R1, R2) activate plasma membrane phospholipase C, modulated by guanine nucleotide binding protein (GBP). Phospholipase splits specifically phosphatidylinositol phosphate (PIP) and phosphatidylinositolbisphosphate (PIP2) to release inositol 1,4‐biphosphate (IP2) and inositol 1,4,5‐triphosphate (IP3), plus diglycerides (DG). Inositol‐P3 stimulates calcium release from endoplasmic reticulum, which activates phospholipase A2 to release arachidonate from 1,2sn‐phosphoglycerides, the precursors of eicosanoids (prostaglandin, prostacyclins, leucotrienes). Diglyceride, on the other hand, activates proteinkinase C, which phosphorylates specific proteins involved in the metabolic effects of hormone. Inositol phosphates can re‐enter the cycle by being phosphorylated through the phosphatidic acid (PA), CDP‐diglyceride (CDP‐DG) pathway. Lithium (Li) inhibits IP phosphatase. Phorbol ester directly activates protein kinase C. For sake of simplicity additional isoforms of IP3 and enzymes involved have been omitted.

Adapted from refs. 38 and 205
Figure 6. Figure 6.

Coupling of active sodium transport to fluid acidification in proximal cells. Na+ ions enter the cell across the luminal cell border in exchange against H+ ions. On the peritubular cell border, Na+ ions are extruded by the Na+, +‐ATPase activity and by an electrogenic Na+ cotransport system 487. As indicated by the numbers in parentheses, one ATPase cycle would allow the secretion of 4.5 H+ ions and the net absorption of 4.5 sodium and bicarbonate ions.

Adapted from ref. 12
Figure 7. Figure 7.

Carbohydrate and fatty acid metabolism in the proximal tubule. Lactate, glutamine, ketone bodies, and fatty acids can be degraded to CO2. Gluconeogenic precursors are resynthetized to glucose and form the glycerol backbone of tryglycerides in presence of fatty acids.

Figure 8. Figure 8.

Pathways of renal gluconeogenesis. Metabolic steps involved in glucose formation from various precursors entering the proximal tubular cell from the luminal or contraluminal side. Besides basic metabolic steps like the citric acid cycle in mitochondria and the glycolytic pathway in cell cytosol, the following typical enzymes are involved: (1) pyruvate carboxylase; (2) mitochondrial phosphoenolpyruvate carboxykinase (not present in rat and mouse kidney); (3) cytosolic phosphoenolpyruvate carboxykinase (little present in avian kidney); (4) fructose‐1,6‐bisphosphatase; (5) glucose‐6‐phosphatase; (6) glycerokinase; (7) fructokinase; (8) phosphate‐dependent glutaminase; (9) proline oxidase.

From ref. 480
Figure 9. Figure 9.

Pathways of proximal tubular amido acid metabolism, summarizing the major metabolic steps involved in tubular glycine, serine, proline, glutamine, 4‐hydroxypyrroline, aspartate, and alanine metabolism. The enzymes involved are as follows: (1) phosphate‐dependent glutaminase; (2) glutamine synthetase; (3) proline oxidase; (4) pyrroline‐5‐carboxylate dehydrogenase; (5) 4‐hydroxyproline oxidase; (6) 3‐hydroxypyrroline‐5‐carboxylate dehydrogenase; (7) glutamate dehydrogenase; (8) serine hydroxymethyltransferase; (9) glycine pyruvate transaminase; (10) alanine aminotransferase; (11) aspartate aminotransferase; (12) aspartate aminotransferase; (13) hydroxyoxoglutarate aldolase.

Figure 10. Figure 10.

Cytochrome P‐450 redox cycle. A methyl‐substrate in the cycle is hydroxylated with the aid of molecular oxygen and electrons derived from NADPH catalyzed by ferri‐cytochrome P‐450.

Figure 11. Figure 11.

Glutathione‐related reactions in proximal tubular cell. Schematic proximal tubular cell with the luminal brush border (left) and the basolateral sides (right). Constituent amino acids can be reabsorbed by specific carriers from lumen and from basolateral side (not shown). The following enzymatic steps are shown: (1) γ‐glutamylcysteine synthase; (2) glutathione synthase; (3) glutathione peroxidase; (4) glutathione reductase; (5) glutathione S‐transferase; (6) brush border and basolateral γ‐glutamyl‐transferase; (7) brush border cysteinyl glycine dipeptidase; (8) cysteinyl conjugate N‐acetyltransferase; (9) β‐lyase; (10) superoxide dismutase.

Figure 12. Figure 12.

Coupling of sodium transport to NaCl reabsorption in thick ascending limb. Peritubular Na+,K+‐ATPase activity maintains low Na+ concentration in the cell, which, via luminal 1 Na/1 K/2 Cl electroneutral cotransport mechanism, allows accumulation of K+ and Cl ions in the cell above their respective electrochemical equilibrium. Peritubular membranes conductive to chloride and apical membranes conductive to potassium allow passive reabsorption of chloride and passive recycling of potassium. The whole transcellular process is electrogenic. The resulting lumen‐positive transepithelial PD drives net fluxes of Na+ and Cl ions along the intercellular pathway, which is highly conductive to cations. Numbers in parentheses indicate respective ion fluxes per ATP cycle. According to this scheme, one ATP would correspond to the net absorption of 5 NaCl.

Adapted from ref. 145
Figure 13. Figure 13.

Dependency of oxidative metabolism from extracellular chloride in cortical thick ascending limb. Co2 production from [U‐14C]lactate by single fragments of medullary thick ascending limb was measured in vitro for 40 min as function of the chloride concentration in incubation solution. Each point corresponds to mean value of 12‐18 measurements. Inset shows Hill plot of data (R = .99, N = 2.12, apparent Km=41 mM).

Adapted from ref. 212
Figure 14. Figure 14.

Carbohydrate and fatty acid metabolism in thick ascending limb of Henle's loop cells.

Figure 15. Figure 15.

Functional segmentation of rabbit distal convoluted tubule. A, deep cortex nephron, including an arcade; B, middle cortex nephron; C, very superficial nephron including a “light” DCT portion. Terminal CAL portion; “bright” distal tubule (true distal tubule); “granulous” distal tubule (connecting tubule, CNT); “light” distal tubule (initial collecting tubule, ICT). CAL, cortical portion of the thick ascending limb; MD, macula densa; CCT, cortical collecting tubule.

Redrawn from ref. 315
Figure 16. Figure 16.

Energy metabolism of collecting tubule.



Figure 1.

Model of sodium, potassium ATPase, and biochemical reactions involved in sodium‐driven conformational changes of the α‐subunit. Scheme of α‐subunit of Na+,K+‐ATPase (left) and α‐subunit changes during sodium‐potassium transport (right). 3 Na bind to E1‐ATP to form phosphorylated (E1‐P) which, after release of 3 Na at outer surface (above), undergoes conformational change to the E1 form, binding 2 K and is dephosphorylated during one turn to the inner surface, where it rebinds ATP and releases 2 K. The inner pathway (dotted lines) represents the reactions in the absence of extracellular K.

Derived from refs. 414 and 415


Figure 2.

Comparison between relative densities and activities of mitochondrial and basolateral functions. Relative mitochondrial and basolateral membrane densities were measured morphometrically 354, and activities of mitochondrial enzyme acetoacetyl‐CoA transferase 53 and basolateral Na+,K+‐ATPase 238 were measured with ultramicro‐procedures. Maximal densities and activities set at 100%.

From ref. 160


Figure 3.

Distribution pattern of segment‐specific metabolic functions along the nephron. Enzyme activities and luminal membrane area (F) represent segment‐specific metabolic functions, not correlating with basic morphological or biochemical equipment: (A) glycolysis (hexokinase) 461; (B) gluconeogenesis (phosphoenolpyruvate carboxykinase) 58,164; (C) bicarbonate transport (anion‐stimulated ATPase) 35; (D) choline metabolism (choline kinase) 476; (E) betaine formation 476; (F) brush border structure 354; (G) brush border function (alkaline phosphatase) 388; (H) glycerol metabolism (glycerokinase) 57,483; (I) lysosomal function (N‐acetyl, β‐D‐glucosaminidase) 160; (K) kallikrein secretion (kininogenase) 158,342; (L) K‐stimulated ATPase.

Adapted from refs. 35,99,158, and 160


Figure 4.

Role of guanine nucleotide binding proteins in adenylate cyclase activation and inhibition by hormones. Model for regulation of adenylate cyclase activity by stimulatory and inhibitory hormones. H, hormone; R, receptor; CT, cholera toxin; PT, pertussis toxin; C, cyclase; s, stimulatory; i, inhibitory; *, active conformation. Dissociation of Gs results in stimulation of C by its αs‐subunit. Dissociation of Gi results in inhibition of catalytic activity as a result of reduction of αs* following its interaction with β and/or as a result of indirect or direct effects of αi* on C. The β‐subunit represents the β‐γ‐complex found more recently 39,446.

Adapted from ref. 139


Figure 5.

Mechanism of action of hormones acting via intracellular calcium. Hormones (agonists) binding to specific receptors (R1, R2) activate plasma membrane phospholipase C, modulated by guanine nucleotide binding protein (GBP). Phospholipase splits specifically phosphatidylinositol phosphate (PIP) and phosphatidylinositolbisphosphate (PIP2) to release inositol 1,4‐biphosphate (IP2) and inositol 1,4,5‐triphosphate (IP3), plus diglycerides (DG). Inositol‐P3 stimulates calcium release from endoplasmic reticulum, which activates phospholipase A2 to release arachidonate from 1,2sn‐phosphoglycerides, the precursors of eicosanoids (prostaglandin, prostacyclins, leucotrienes). Diglyceride, on the other hand, activates proteinkinase C, which phosphorylates specific proteins involved in the metabolic effects of hormone. Inositol phosphates can re‐enter the cycle by being phosphorylated through the phosphatidic acid (PA), CDP‐diglyceride (CDP‐DG) pathway. Lithium (Li) inhibits IP phosphatase. Phorbol ester directly activates protein kinase C. For sake of simplicity additional isoforms of IP3 and enzymes involved have been omitted.

Adapted from refs. 38 and 205


Figure 6.

Coupling of active sodium transport to fluid acidification in proximal cells. Na+ ions enter the cell across the luminal cell border in exchange against H+ ions. On the peritubular cell border, Na+ ions are extruded by the Na+, +‐ATPase activity and by an electrogenic Na+ cotransport system 487. As indicated by the numbers in parentheses, one ATPase cycle would allow the secretion of 4.5 H+ ions and the net absorption of 4.5 sodium and bicarbonate ions.

Adapted from ref. 12


Figure 7.

Carbohydrate and fatty acid metabolism in the proximal tubule. Lactate, glutamine, ketone bodies, and fatty acids can be degraded to CO2. Gluconeogenic precursors are resynthetized to glucose and form the glycerol backbone of tryglycerides in presence of fatty acids.



Figure 8.

Pathways of renal gluconeogenesis. Metabolic steps involved in glucose formation from various precursors entering the proximal tubular cell from the luminal or contraluminal side. Besides basic metabolic steps like the citric acid cycle in mitochondria and the glycolytic pathway in cell cytosol, the following typical enzymes are involved: (1) pyruvate carboxylase; (2) mitochondrial phosphoenolpyruvate carboxykinase (not present in rat and mouse kidney); (3) cytosolic phosphoenolpyruvate carboxykinase (little present in avian kidney); (4) fructose‐1,6‐bisphosphatase; (5) glucose‐6‐phosphatase; (6) glycerokinase; (7) fructokinase; (8) phosphate‐dependent glutaminase; (9) proline oxidase.

From ref. 480


Figure 9.

Pathways of proximal tubular amido acid metabolism, summarizing the major metabolic steps involved in tubular glycine, serine, proline, glutamine, 4‐hydroxypyrroline, aspartate, and alanine metabolism. The enzymes involved are as follows: (1) phosphate‐dependent glutaminase; (2) glutamine synthetase; (3) proline oxidase; (4) pyrroline‐5‐carboxylate dehydrogenase; (5) 4‐hydroxyproline oxidase; (6) 3‐hydroxypyrroline‐5‐carboxylate dehydrogenase; (7) glutamate dehydrogenase; (8) serine hydroxymethyltransferase; (9) glycine pyruvate transaminase; (10) alanine aminotransferase; (11) aspartate aminotransferase; (12) aspartate aminotransferase; (13) hydroxyoxoglutarate aldolase.



Figure 10.

Cytochrome P‐450 redox cycle. A methyl‐substrate in the cycle is hydroxylated with the aid of molecular oxygen and electrons derived from NADPH catalyzed by ferri‐cytochrome P‐450.



Figure 11.

Glutathione‐related reactions in proximal tubular cell. Schematic proximal tubular cell with the luminal brush border (left) and the basolateral sides (right). Constituent amino acids can be reabsorbed by specific carriers from lumen and from basolateral side (not shown). The following enzymatic steps are shown: (1) γ‐glutamylcysteine synthase; (2) glutathione synthase; (3) glutathione peroxidase; (4) glutathione reductase; (5) glutathione S‐transferase; (6) brush border and basolateral γ‐glutamyl‐transferase; (7) brush border cysteinyl glycine dipeptidase; (8) cysteinyl conjugate N‐acetyltransferase; (9) β‐lyase; (10) superoxide dismutase.



Figure 12.

Coupling of sodium transport to NaCl reabsorption in thick ascending limb. Peritubular Na+,K+‐ATPase activity maintains low Na+ concentration in the cell, which, via luminal 1 Na/1 K/2 Cl electroneutral cotransport mechanism, allows accumulation of K+ and Cl ions in the cell above their respective electrochemical equilibrium. Peritubular membranes conductive to chloride and apical membranes conductive to potassium allow passive reabsorption of chloride and passive recycling of potassium. The whole transcellular process is electrogenic. The resulting lumen‐positive transepithelial PD drives net fluxes of Na+ and Cl ions along the intercellular pathway, which is highly conductive to cations. Numbers in parentheses indicate respective ion fluxes per ATP cycle. According to this scheme, one ATP would correspond to the net absorption of 5 NaCl.

Adapted from ref. 145


Figure 13.

Dependency of oxidative metabolism from extracellular chloride in cortical thick ascending limb. Co2 production from [U‐14C]lactate by single fragments of medullary thick ascending limb was measured in vitro for 40 min as function of the chloride concentration in incubation solution. Each point corresponds to mean value of 12‐18 measurements. Inset shows Hill plot of data (R = .99, N = 2.12, apparent Km=41 mM).

Adapted from ref. 212


Figure 14.

Carbohydrate and fatty acid metabolism in thick ascending limb of Henle's loop cells.



Figure 15.

Functional segmentation of rabbit distal convoluted tubule. A, deep cortex nephron, including an arcade; B, middle cortex nephron; C, very superficial nephron including a “light” DCT portion. Terminal CAL portion; “bright” distal tubule (true distal tubule); “granulous” distal tubule (connecting tubule, CNT); “light” distal tubule (initial collecting tubule, ICT). CAL, cortical portion of the thick ascending limb; MD, macula densa; CCT, cortical collecting tubule.

Redrawn from ref. 315


Figure 16.

Energy metabolism of collecting tubule.

References
 1. Abodeely, D. A., and J. B. Lee. Fuel of respiration of outer renal medulla. Am. J. Physiol. 220: 1693–1700, 1971.
 2. Ait‐Mohamed, A., S. Marsy, C. Barlet, C. Khadouri, and A. Doucet. Characterization of N‐ethylmaleimide sensitive proton pump in the rat kidney. Localization along the nephron. J. Biol. Chem. 261: 12526–12533, 1986.
 3. Aitio, A., and M. G. Parkki. Organ specific induction of drug metabolizing enzymes by 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin in the rat. Toxicol. Appl. Pharmacol. 44: 107–114, 1978.
 4. Aitio, A., H. Vainio, and H. Hänninen. Enhancement of drug oxidation and conjugation by carcinogen in different rat tissues. FEBS Lett. 24: 237–240, 1972.
 5. Alleyne, G. A. O., and A. Roobol. Renal metabolic processes and acid‐base changes. Med. Clin. North Am. 59: 781–795, 1975.
 6. Almeida, A. J., and M. B. Burg. Sodium transport in the rabbit connecting tubule. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F330–F334, 1982.
 7. Anders, M. W. Metabolism of drugs by the kidney. Kidney Int. 18: 636–647, 1980.
 8. Anders, M. W., Biotransformation and bioactivation of xenobiotics by the kidney. In: Intermediary Xenobiotic Metabolism in Animals: Methodology, Mechanisms and Significance, edited by D. H. Houston, J. Caldwell, and G. D. Paulson. London: Taylor and Francis, pp. 81–97, 1989.
 9. Angielski, S., J. Zielkiewicz, and G. Dzierzko. Metabolism of NAD by isolated rat renal brush border membranes. Pflugers Arch. 395: 159–161, 1982.
 10. Anner, B. M. The receptor function of the Na+,K+‐activated adenosine triphosphatase system. Biochem. J. 227: 1–11, 1985.
 11. Appleman, M. M., and W. L. Terasaki. Regulation of cyclic nucleotide phosphodiesterase. Adv. Cyclic Nucleotide Protein Phosphorylation Res. 5: 153–162, 1975.
 12. Aronson, P. S. Kinetic properties of the plasma membrane Na+‐H‐exchanger. Annu. Rev. Physiol. 47: 545–560, 1985.
 13. Bach, P. H., and E. A. Lock. Renal Heterogeneity and Target Cell Toxicity. Chichester: Wiley & Sons, 184 pp., 1985.
 14. Bach, P. H., N. J. Gregg, M. F. Wilks, and L. Delacruz. Nephrotoxicity: Mechanisms, Early Diagnosis and Therapeutic Management. New York: Marcel Dekker, 1991.
 15. Bachman, S., I. Koeppen‐Hagemann, and W. Kriz. Ultra‐structural localization of Tamm‐Horsfall‐glycoprotein (THP) in rat kidney as revealed by protein A–gold immunocytochemistry. Histochemistry 83: 531–538, 1985.
 16. Bagnasco, S., R. S. Balaban, H. LM. Fales, M. Burg, and Y.‐M. Young. Predominant osmotically active organic solutes in rat and rabbit renal medullas. J. Biol. Chem. 261: 5872–5877, 1986.
 17. Bagnasco, S., D. Good, R. Balaban, and M. Burg. Lactate production in isolated segments of the rat nephron. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F522–F526, 1985.
 18. Bailly, C., N. Roinel, and C. Amiel. PTH‐like glucagon stimulation of Ca and Mg reabsorption in Henle's loop of rat. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F205–F212, 1984.
 19. Baines, A. D., and B. D. Ross. Nonoxidative glucose metabolism a prerequisite for formation of dilute urine. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F491–F498, 1982.
 20. Balaban, R. S., Non‐invasive techniques for the investigation of renal metabolism and transport. In: Biochemistry in Kidney Functions, edited by F. Morel. Amsterdam: Elsevier, 1982, pp. 337–348.
 21. Balaban, R. S., L. J. Mandel, St. P. Soltoff, and J. M. Storey. Coupling of active ion transport and aerobic respiratory rate in isolated renal tubules. Proc. Natl. Acad. Sci. USA 77: 447–451, 1980.
 22. Balaban, R. S., and M. A. Knepper. Nitrogen‐14 nuclear magnetic resonance spectroscopy of mammalian tissues. Am. J. Physiol. 246 (Cell Physiol. 15): C439–C444, 1983.
 23. Bankir, L., C. de Rouffignac. Urinary concentrating ability: insights from comparative anatomy. Am. J. Physiol. 249 (Regulatory Integrative Comp. Physiol. 18): R643–R666, 1985.
 24. Barac‐Nieto, H., R. Kinne, and H. Murer. Lactate sodium cotransport in rat renal brush border membranes. Am. J. Physiol. 239: 496–506, 1980.
 25. Barlet, C., M. Ben Abdelkhalek, and A. Doucet. Sites of thyroid hormone action on Na‐K‐ATPase along the rabbit nephron. Pflugers Arch. 405: 52–57, 1985.
 26. Barlet, C., and A. Doucet. Kinetics of triiodothyronine action on Na‐K‐ATPase in single segments of rabbit nephron. Pflugers Arch. 407: 27–32, 1986.
 27. Baron, J., T. T. Kawabata, J. A. Redick, S. A. Knapp, D. G. Wick, R. B. Wallace, W. B. Jacoby, and F. B. Guengerich. Localization of carcinogen‐metabolizing enzymes in human and animal tissue. In: Extrahepatic Drug Metabolism and Chemical Carcinogenesis. Amsterdam: Elsevier, pp. 73–88, 1983.
 28. Barret, P. Q., K. Zawalich, and H. Rasmussen. Protein kinase C activity in renal microvillus membranes. Biochem. Biophys. Res. Commun. 128: 494–505, 1985.
 29. Barritt, G. J., G. L. Zander, and M. F. Utter. The regulation of pyruvate carboxylase activity in gluconeogenic tissues. In: Gluconeogenesis, edited by R. W. Hanson and M. A. Mehlman. New York: Wiley, 1976, pp. 3–46.
 30. Baverel, G., M. Fourissier, and M. Pellet. Lactate and pyruvate metabolism in dog renal outer medulla. Effects of oleate and ketone bodies. Int. J. Biochem. 12: 163–168, 1980.
 31. Baverel, G., C. Michoudet, and G. Martin. Role of fatty acids in simultaneous regulation of flux through glutaminase and glutamine synthetase in rat kidney cortex. In: Glutamine Metabolism in Mammalian Tissues, edited by D. Häussinger and H. Sies. Berlin: Springer, 1984, pp. 187–202.
 32. Baverel, G., G. Martin, and M. Michoudet. Glutamine synthesis from aspartate in guinea‐pig renal cortex. Biochem. J. 268: 437–442, 1990.
 33. Beck, F.‐X., A. Dörge, K. Thurau, and W. G. Guder. Cell osmoregulation in the countercurrent system of the renal medulla: the role of organic osmolytes. In: Comparative Physiology, edited by K. W. Beyenbach. Basel: S. Karger, pp. 132–158, 1990.
 34. Behrens, M. T., A. L. Corbin, and M. K. Hise. Epidermal growth factor receptor regulation in rat kidney: two models of renal growth. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F1059–F1064, 1989.
 35. Ben Abdelkhalek, M., J. Lee, C. Barlet, and A. Doucet. Presence of an extramitochondrial anion‐stimulated ATPase in the rabbit kidney: localization along the nephron and effect of corticosteroids. J. Membr. Biol. 89: 225–240, 1986.
 36. Benoy, M. P., and K. A. C. Elliot. The metabolism of lactic and pyruvic acids in normal and tumour tissue. V. Synthesis of carbohydrate. Biochem. J. 31: 1268–1275, 1937.
 37. Berger, S. J., and B. Sacktor. Isolation and biochemical characterization of brush borders from rabbit kidney. J. Cell Biol. 47: 637–645, 1970.
 38. Berridge, M. J., and R. F. Irvine. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321, 1984.
 39. Birnbaumer, L., J. Abramowitz, and A. M. Brown. Receptor‐effector coupling by G proteins. Biochim. Biophys. Acta 1031: 163–224, 1990.
 40. Borson, W. F., and R. L. Prairie. Reduced triphosphopyridine‐linked aldehyde reductase: species and tissue distribution. Arch. Biochem. Biophys. 154: 166–172, 1973.
 41. Bourdeau, J. E., and M. B. Burg. Effect of PTH on calcium transport across the cortical thick ascending limb of Henle's loop. Am. J. Physiol. 239: (Renal Fluid Electrolyte Physiol. 8): F121–F126, 1980.
 42. Brand, K., K. Spokes, P. Silva, and F. H. Epstein. Plasma membrane phospholipase C is activated by atrial natriuretic peptide in rat papilla. Miner. Electrolyte Metab. 6: 365–382, 1989.
 43. Brand, K., K. Spokes, P. Silva, and F. H. Epstein. Adenosine analogs activate membrane‐associated phospholipase in rat outer medulla. Miner. Electrolyte Metab. 6: 365–382, 1989.
 44. Brehe, J. E., A. W. K. Chan, T. R. Alvey, and H. B. Burch. Effect of methionine sulfoximine on glutathione and amino acid levels in the nephron. Am. J. Physiol. 231: 1536–1540, 1976.
 45. Brezis, M., S. Rosen, P. Silva, and F. H. Epstein. Renal ischemia, a new perspective. Kidney Int. 26: 375–383, 1984.
 46. Brosnan, J. T., and D. M. Perry. Accelerated recovery from metabolic acidosis. Contrib. Nephrol. 31: 135–139, 1982.
 47. Brown, D., J. Roth, T. Kumpulainen, and L. Orci. Ultra‐structural immunocytochemical localization of carbonic anhydrase. Presence in intercalated cells of the rat collecting tubule. Histochemistry 75: 209–213, 1982.
 48. Brown, J., S. P. Salas, A. Singleton, J. M. Polak, and C. T. Dollery. Autoradiographic localization of atrial natriuretic peptide receptor subtypes in rat kidney. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F26–F29, 1990.
 49. Brundin, A., and M. W. Anders. Glutathione dependent reductive dehalogenation of 2,2,4‐trichloroacetophenone to 2,4‐dichloroacetophenone. Pharmacologist 21: 215, 1979.
 50. Brunner, G., W. Neupert. Localization of proline oxidase and 1‐pyrroline‐5‐carboxylic acid dehydrogenase in rat liver. FEBS Lett. 3: 283–286, 1969.
 51. Burch, H. B., J. E. Brehe, C. Chu, and S. Fagioli. Gluconeogenic enzymes in defined structures of developing rat nephron. In: Biochemistry Nephrology, edited by W. G. Guder and U. Schmidt. Bern: Huber, 1978, pp. 290–296.
 52. Burch, H. B., C. A. Brooks, N. Cambon, and O. H. Lowry. Metabolic systems of nephron segments from hydronephrotic rabbit kidney. In: Kidney Metabolism and Function, edited by R. Dzurik, B. Lichardus, and W. G. Guder. Dordrecht: Martinus Nijhoff, 1985, pp. 251–255.
 53. Burch, H. B., T. E. Bross, Ch. A. Brooks, B. R. Cole, and O. H. Lowry. The distribution of six enzymes of oxidative metabolism along the rat nephron. J. Histochem. Cytochem. 32: 731–736, 1984.
 54. Burch, H. B., N. Cambon, and O. H. Lowry. Branchedchain amino acid aminotransferase along the rabbit and rat nephron. Kidney Int. 28: 114–117, 1985.
 55. Burch, H. B., S. Choi, C. Dence, T. R. Alvey, B. R. Cole, and O. H. Lowry. Metabolic effects of large fructose loads in different parts of the rat nephron. J. Biol. Chem. 255: 8239–8244, 1980.
 56. Burch, H. B., S. Choi, W. Z. McCarthy, P. Y. Wong, and O. H. Lowry. The location of glutamine synthetase within the rat and rabbit nephron. Academic Press 82: 498–505, 1978.
 57. Burch, H. B., A. E. Hays, M. D. McCreary, B. R. Cole, M. M.‐Y. Chi, C. N. Dence, and O. H. Lowry. Relationship in different parts of the nephron between enzyme of glycerol metabolism and the changes which result from large glycerol loads. J. Biol. Chem. 257: 3676–3679, 1982.
 58. Burch, H. B., C. Narins, C. Chu, S. Fagiolo, S. Choi, W. McCarthy, and O. H. Lowry. Distribution along the rat nephron of three enzymes of gluconeogenesis in acidosis and starvation. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F246–F253, 1978.
 59. Burchardt, U., R. J. Haschen, and H. Krosch. Clinical usefulness of enzyme determinations in urine. In: Diagnostic Significance of Enzymes and Proteins in Urine, edited by U. C. Dubach and U. Schmidt. Bern.: Huber, 1979, pp. 106–112.
 60. Burg, M. B. Thick ascending limb of Henle's loop. Kidney Int. 22: 454–464, 1982.
 61. Burg, M. B., and P. F. Kador. Sorbitol, osmoregulation, and the complications of diabetes. J. Clin. Invest. 81: 635–640, 1988.
 62. Büttner, H. Aldehyd‐ und Alkoholdehydrogenase‐Aktivität in Leber and und Niere der Ratte. Biochem. Z. 341: 300–314, 1965.
 63. Butlen, D., S. Vadrot, S. Roseau, and F. Morel. Insulin receptors along the rat nephron: [125I]insulin binding in microdissected glomeruli and tubules. Pflugers Arch. 412: 604–612, 1989.
 64. Carpenter, G., and S. Cohen. Epidermal growth factor. J. Biol. Chem. 265: 7709–7712, 1990.
 65. Catterall, J. F., C. S. Watson, K. K. Kontula, O. A. Janne, and C. W. Bardin. Differential regulation of specific gene expression in mouse kidney by androgens and antiandrogens. Adv. Exp. Med. Biol. 196: 213, 1984.
 66. Chabardes, D., M. Gagnan‐Brunette, M. Imbert‐Teboul, O. Gontcharevskaia, M. Montegut, A. Clique, and F. Morel. Adenylate cyclase responsiveness to hormone in various portions of the human nephron. J. Clin. Invest. 65: 439–448, 1980.
 67. Chabardes, D., M. Imbert‐Teboul, M. Gagnan‐Brunette, and F. Morel. Different hormonal target sites along the mouse and rabbit nephrons. Curr. Probl. Clin. Biochem. 8: 447–454, 1977.
 68. Chabardes, D., M. Imbert‐Teboul, M. Montegut, A. Clique, and F. Morel. Catecholamine sensitive adenylate cyclase activity in different segments of the rabbit nephron. Pflugers Arch. 361: 9–15, 1975.
 69. Chabardes, D., M. Montegut, M. Imbert‐Teboul, and R. Morel. Inhibition of 2‐adrenergic agonists on AVP‐induced cAMP accumulation in isolated collecting tubule of the rat kidney. Mol. Cell. Endocrinol. 37: 263–275, 1984.
 70. Chamberlin, M. E., A. LeFurgey, and L. J. Mandel. Suspension of medullary thick ascending limb tubules from rabbit kidney. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F955–F964, 1985.
 71. Chan, A. W. K., St. G. Perry, H. B. Burch, S. Fagioli, T. R. Alvey, and O. H. Lowry. Distribution of two aminotransferases and d‐amino acid oxidase within the nephron of young and adult rats. J. Histochem. Sci. 27: 751–755, 1979.
 72. Chaseaud, L. F. The nature and distribution of enzymes catalyzing the conjugation of glutathione with foreign compounds. Drug Metab. Rev. 2: 185–220, 1973.
 73. Chen, Q. Y., and L. W. Schwarz. Sulfation in isolated kidney tubule fragments of rats. Dependence on inorganic sulfate. Biochem. Pharmacol. 34: 1363–1366, 1985.
 74. Cheng, L., and B. Sacktor. Sodium gradient‐dependent phosphate transport in renal brush border membrane vesicles. J. Biol. Chem. 256: 1556–1564, 1981.
 75. Cohen, J. J. Relationship between energy requirements for Na reabsorption and other renal functions. Kidney Int. 29: 32–40, 1986.
 76. Cohen, J. J., and M. Barac‐Nieto. Renal metabolism of substrates in relation to renal function. In: Handbook of Physiology. Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington: Am. Physiol. Soc. Sect. 8, 1973, pp. 909–1001.
 77. Cohen, J. J., and D. E. Kamm. Renal metabolism: relation to renal function. In: The Kidney, edited by B. M. Brenner and F. C. Rector, Jr. Philadelphia: Saunders, 1981, pp. 144–248.
 78. Cohen, M. A. H., K. A. Hruska, and W. H. Daughaday. Free myoinositol in canine kidneys: selective concentration in the renal medulla. Proc. Soc. Exp. Biol. Med. 169: 380–385, 1982.
 79. Cole, B. R., A. E. Hays, J. G. Boylan, H. B. Burch, and O. H. Lowry. Distribution of enzymes of adenylate and guanylate nucleotide metabolism in rat nephron. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 11): F349–F355, 1982.
 80. Cooper, A. J. L., and M. W. Anders. Glutamine transaminase K and cysteine conjugate β‐lyase. Ann. N.Y. Acad. Sci. 585: 118–127, 1990.
 81. Crayen, M.‐L., and W. Thoenes. Architecture and cell structures in the distal nephron of the rat kidney. Cytobiologie 17: 197–211, 1978.
 82. Currie, M. G., and Ph. Needleman. Renal arachidonic acid metabolism. Annu. Rev. Physiol. 46: 327–412, 1984.
 83. Curthoys, N. P., and O. H. Lowry. The distribution of glutaminase isoenzymes in the various structures of the nephron in normal, acidotic and alkalotic rat kidney. J. Biol. Chem. 248: 162–168, 1973.
 84. Curthoys, N. P., Cellular distribution and induction of the enzymes of renal ammoniagenesis and glucogenesis. In: pH Homeostasis: Mechanisms and Control, edited by D. Häussinger. London: Academic Press, pp. 323–336, 1988.
 85. Deetjen, P., and K. Kramer. Die Abhängigkeit des O 2‐Verbrauchs der Niere von der Na‐Rückresorption. Pflugers Arch. 273: 636–650, 1961.
 86. Dawson, T. P., R. Gandhi, M. Lehir, and B. Kaissling. Ecto‐5'‐nucleotidase: localization in rat kidney by light microscopic histochemical and immunhistochemical methods. J. Histochem. Cytochem. 37: 39–47, 1989.
 87. Degawa, M., M. Namiki, S.‐I. Miura, H. Ueno, and Y. Hashimoto. A male‐specific renal cytochrome P‐450 isoenzyme(s) responsible for mutagenic activation of 3‐methoxy‐4‐amino‐azobenzene in mice. Biochem. Biophys. Res. Commun. 152: 843–848, 1988.
 88. Dekant, W., L. H. Lash, and M. W. Anders. Bioactivation of nephrotoxic haloalkenes by glutathione conjugation: formation of toxic and mutagenic intermediates by cysteine conjugate β‐lyase. Drug Metab. Rev. 20: 43–83, 1989.
 89. Deitrich, R. A. Tissue and subcellular distribution of mammalian aldehyde‐oxidizing capacity. Biochem. Pharmacol. 15: 1911–1922, 1966.
 90. Dhanakoti, S. N., J. T. Brosnan, G. R. Herzberg, and M. E. Brosnan. Renal arginine synthesis: studies in vitro and in vivo. Am. J. Physiol. 259 (Endocrinol. Metab. 22): E437–442, 1990.
 91. Dies, F., J. Herrera, M. Matos, E. Avelar, and G. Ramos. Substrate uptake by the dog kidney in vivo. Am. J. Physiol. 218: 405–410, 1970.
 92. Dixon, B. S., R. Breckon, J. Fortune, E. Sutherland, F. R. Simon, and R. J. Anderson. Bradykinin activates protein kinase C in cultured cortical collecting tubular cells. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F808–F817, 1989.
 93. Dobashi, K., K. Asayama, H. Hayashibe, N. Uchida, M. Kobayashi, A. Kawaoi, and K. Kato. Effect of diabetes mellitus induced by streptozotocin on renal superoxide dismutases in rat: radioimmunoassay and immunhistochemical study. Kidney Int. (in press).
 94. Domeyer, B. E. Biotransformation of “activated” cyclophosphamide. Ph.D. thesis, Univ. Minnesota, 1977.
 95. Doucet, A., and C. Barlet. Evidence for differences in the sensitivity to ouabain of NaK‐ATPase along the nephron of rabbit kidney. J. Biol. Chem. 261: 993–995, 1986.
 96. Doucet, A., C. Barlet‐Bas, S. Siaume‐Perez, C. Khadouri, and S. Masry. Gluco‐ and mineralocorticoids control adenylate cyclase in specific nephron segments. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F812–F820, 1990.
 97. Doucet, A., and A. I. Katz. Mineralocorticoid receptors along the nephron: (3H)aldosterone binding in rabbit tubules. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10) 241: F605–F611, 1981.
 98. Doucet, A., and A. I. Katz. High affinity Ca‐Mg‐ATPase along the rabbit nephron. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F346–F352, 1982.
 99. Doucet, A., and S. Marsy. Characterization of K‐ATPase activity in distal nephron: stimulation by potassium depletion. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F418–F423, 1987.
 100. Edwards, R. M., B. A. Jackson, and T. P. Dousa. Protein kinase activity in isolated tubules of rat renal medulla. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F269–F278, 1980.
 101. Eisen, L. P., R. W. Harrison, and J. M. Harmon. Immunochemical characterization of the rat kidney glucocorticoid receptor. J. Biol. Chem. 261: 3725–3731, 1986.
 102. Elalouf, J. M., N. Roinel, and C. de Rouffignac. ADH‐like effects of calcitonin on electrolyte transport by Henle's loop of rat kidney. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F213–F220, 1984.
 103. Elfarra, A. A., I. Jakobson, and M. W. Anders. Mechanism of S‐ 1,2‐dithioglutathione‐induced nephrotoxicity. Biochem. Pharmacol. 35: 283–288, 1986.
 104. El Mernissi, G., D. Chabardes, A. Doucet, A. Hus‐Citharel, M. Imbert‐Teboul, F. LeBouffant, M. Montegut, S. Siaume, and F. Morel. Changes in tubular basolateral membrane markers after chronic DOCA treatment. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F100–F109, 1983.
 105. El Mernissi, G., and A. Doucet. Short‐term effect of aldosterone on renal sodium transport and tubular Na‐K‐ATPase in the rat. Pflugers Arch. 399: 1139–146, 1983.
 106. El Mernissi, G., and A. Doucet. Short‐term effects of aldosterone and dexamethasone on Na‐K‐ATPase along the rabbit nephron. Pflugers Arch. 399: 147–151, 1983.
 107. El Mernissi, G., and A. Doucet. Specific activity of Na‐K‐ATPase after adrenalectomy and hormone replacement along the rabbit nephron. Pflugers Arch. 402: 258–263, 1984.
 108. Emmanouel, D. S., M. D. Lindheimer, and A. I. Katz. Role of the kidney in hormone metabolism and its implications in clinical medicine. Klin. Wochenschr. 58: 1005–1012, 1980.
 109. Endou, H., C. Koseki, S. Hasumura, K. Kakuno, K. Hojo, and F. Sakai. Renal cytochrome P 450: its localization along the nephron and its induction. In: Biochemistry of Kidney Functions, edited by F. Morel. Amsterdam: Elsevier, 1982, pp. 319–327.
 110. Endou, H., H. Nonoguchi, J. Nakada, Y. Takehara, and H. Yamada. Glutamine metabolism in the kidney: ammoniagenesis and gluconeogenesis in isolated nephron segments of rats. In: Kidney Metabolism and Function, edited by R. Dzurik, B. Lichardus, and W. G. Guder. Dordrecht: Martinus Nijhoff, 1985, pp. 26–33.
 111. Endou, H., T. Obara, and Y. Veno. Use of isolated nephron segments and isolated renal cells for the evaluation of nephrotoxicity. In: Renal Heterogeneity and Target‐Cell Toxicity, edited by P. H. Bach, and E. A. Lock. Chichester: Wiley, 1985, pp. 535–538.
 112. Endou, H., H. Shimada, C. Koseki, Y. Yokokura, and F. Sakai. Distribution and possible functions of γ‐glutamyl‐transpeptidase in the kidney. Nippon Jinzo Gakkai Shi. 23: 981–988, 1981.
 113. Eng, J., B. A. Berkowitz, and R. S. Balaban. Renal distribution and metabolism of [2H9]choline. A 2H NMR and MRI study. NMR Biomed. 3: 173–177, 1990.
 114. Epstein, F. H., R. S. Balaban, and B. D. Ross. Redox state of cytochrome aa in isolated perfused rat kidney. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F356–F363, 1982.
 115. Ernst, S. A. Transport ATPase cytochemistry: ultrastructural localization of potassium dependent and potassium independent activities in the rat kidney cortex. J. Cell. Biol. 66: 586–608, 1975.
 116. Farman, N., A. Vandewalle, and J‐P. Bonvalet. Aldosterone binding in isolated tubules. I. Biochemical determination in proximal and distal parts of the rabbit nephron. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F69–F77, 82.
 117. Farman, N., A. Vandewalle, and J‐P. Bonvalet. Autoradiographic determination of dexamethasone binding sites along the rabbit nephron. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F325–F334, 1983.
 118. Featherston, W. R., Q. Roger, R. Freedland. Relative importance of kidney and liver in synthesis of arginine by the rat. Am. J. Physiol. 224: 127–129, 1973.
 119. Feinfeld, D. A., G. M. Fleischner, E. J. Goldstein, R. D. Levine, S. D. Levine, M. M. Avram, and I. M. Arias. Ligandinuria: an indication of tubular cell necrosis. Curr. Probl. Clin. Biochem. 9: 273–280, 1979.
 120. Felder, B., M. Blecher, P. L. Calcagno, and P. A. Jose. Dopamine receptors in the proximal tubule of the rabbit. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F499–F505, 1984.
 121. Figueroa, C. D., I. Caorsi, J. Subiabre, C. B. Vio. Immunoreactive kallikrein localization in the rat kidney. J. Histochem. Cytochem. 32: 117–121, 1984.
 122. Filburn, C. R., and B. Sacktor. Cyclic nucleotide phosphodiesterase of rabbit renal cortex. Arch. Biochem. Biophys. 174: 249–261, 1976.
 123. Fine, L. G., E. J. Goldstein, and I. M. Arias. Localization of glutathione‐S‐transferase activity in the rabbit nephron using isolated segments; adaptation in chronic renal failure. Kidney Int. 8: 474, 1975 (abstr.).
 124. Forissier, M., and G. Baverel. The conversion of alanine into glutamine in guinea‐pig renal cortex. Biochem. J. 200: 27–33, 1981.
 125. Friedrichs, D., and W. Schoner. Stimulation of renal gluconeogenesis by inhibition of the sodium pump. Biochim. Biophys. Acta 304: 142–160, 1973.
 126. Froesch, E. R., Essential fructosuria, hereditary fructose intolerance, and fructose‐1,6‐diphosphatase deficiency. In The Metabolic Basis of Inherited Disease, edited by J. B. Stanbury, J. B. Wyngarden, and D. S. Fredrickson. New York: McGraw‐Hill, 1978, pp. 121–136.
 127. Fry, J. R., P. Wiebkin, J. Kao, C. A. Jones, J. Gwynn, and J. W. Bridges. A comparison of drug metabolizing capability of isolated viable rat hepatocytes and renal tubule fragments. Xenobiotica 8: 113–120, 1978.
 128. Funahashi, M., H. Kato, S. Shiosaka, and H. Nakagawa. Formation of arginine and guanidinacetic acid in the kidney. J. Biochem. 89: 1347–1356, 1981.
 129. Funder, J. W. Aldosterone receptors. Adv. Exp. Med. Biol. 196: 145–152, 1986.
 130. Gammeltoft, S., and E. Van Obberghen. Protein kinase activity of the insulin receptor. Biochem. J. 235: 1–11, 1986.
 131. Garg, L. C., M. A. Knepper, and M. B. Burg. Mineralocorticoid effects on Na‐K‐ATPase in individual nephron segments. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F536–F544, 1981.
 132. Garg, L. E., and N. Narang. Stimulation of N‐ethylmaleimide sensitive ATPase in the collecting duct segments of the rat nephron by metabolic acidosis. Can. J. Physiol. Pharmacol 63: 1291–1296, 1985.
 133. Garg, L. C., and N. Narang. Ouabain‐insensitive K‐adenosine triphosphatase in distal nephron segments of the rabbit. J. Clin. Invest. 81: 1204–1208, 1988.
 134. Garg, L. C., and N. Narang. Suppression of ouabain‐insensitive K‐ATPase activity in rabbit nephron segments during hyperkalemia. Renal Physiol. Biochem. 12: 295–301, 1989.
 135. Garg, L. C., and N. Narang. Effects of low‐potassium diet on N‐ethylmaleimide‐sensitive ATPase in distal nephron segments. Renal Physiol. Biochem. 13: 129–136, 1990.
 136. Garg, L. C., and N. Narang. Changes in H‐ATPase in distal nephron segments during metabolic acidosis and alkalosis. In: Molecular Aspects in Ammoniagenesis, edited by H. Endou, G. Bavarel, K. Kurokawa, A. C. Schoolwerth, and A. Tizianello. Basel: Karger, (in press), 1991.
 137. Garrick, R. E., A. Wasserstein, and Z. S. Agus. Mineral metabolism. In: Contemporary Nephrology, Vol. 3, edited by S. Klahr, and S. Massry. New York: Plenum Medical, 1985, pp. 249–302.
 138. Gillette, J. R., Reductive enzymes. In: Handbook of Experimental Pharmacology, edited by B. B. Brodie, and J. R. Gillette. New York: Springer, 1971, pp. 349.
 139. Gilman, A. G. Guanine nucleotide‐binding regulatory proteins and dual control of adenylate cyclase. J. Clin. Invest. 73: 1–4, 1984.
 140. Gluck, S., and Q. Al‐Awqati. An electrogenic proton‐translocating adenosine triphosphatase from bovine kidney medulla. J. Clin. Invest. 73: 1705–1710, 1984.
 141. Goldberg, J. P., and R. J. Anderson. Renal metabolism and excretion of drugs. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin, and G. Giebisch. New York: Raven, 1985, pp. 2097–2110.
 142. Goldstein, J. A., and P. Linko. Differential induction of two 2,3,7,8‐tetrachlorodibezo‐p‐dioxin inducible forms of cytochrome P‐450 in extrahepatic versus hepatic tissue. Mol. Pharmacol. 25: 185–191, 1984.
 143. Goodman, A. D., R. E. Fuisz, and G. F. Cahill, Jr. Renal gluconeogenesis in acidosis, alkalosis, and potassium deficiency, its possible role in regulation of renal ammonia production. J. Clin. Invest. 45: 612–619, 1966.
 144. Green, C. The role of oxygen derived free radicals and lipid peroxidation in renal pathology after normothermic and hypothermic ischemia. IRCS J. Med. Sci. 13: 1156–1159, 1985.
 145. Greger, R. Ion transport mechanisms in thick ascending limb of Henle's loop of mammalian nephron. Physiol. Rev. 65: 760–797, 1985.
 146. Greger, R., and E. Schlatter. Properties of the basolateral membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 396: 325–334, 1983.
 147. Griffith, O. W., and A. Meister. Origin and turnover of mitochondrial glutathione. Proc. Natl. Acad. Sci. USA 82: 4668–4672, 1985.
 148. Grossman, E. B., and S. C. Hebert. Renal inner medullary choline dehydrogenase activity: characterization and modulation. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F107–F112, 1989.
 149. Gstraunthaler, G., W. Pfaller, and P. Kotanko. Inter‐relation between oxygen consumption and Na‐K‐ATPase activity in rat renal proximal tubule suspension. Renal Physiol. 38–44, 1985.
 150. Guder, W. G., Discussion in: Baumann, K., P. P. Frohnert, B. Höhmann, and R. Kinne. Micropuncture study on the lactate transport of the proximal tubule of the rat kidney. In: Biochemical Aspects of Kidney Function, edited by M. Hohenegger. Munich: Goldmann, 1972, pp. 93–96.
 151. Guder, W. G. Stimulation of renal gluconeogenesis by angiotensin II. Biochim. Biophys. Acta 584: 507–519, 1979.
 152. Guder, W.G. Renal gluconeogenesis. Nippon Jinzo Gakkai Shi. 23: 539–543, 1981.
 153. Guder, W. G., F.‐X. Beck, M. Schmolke, and G. Wirthensohn. Distribution and regulation of organic osmolytes in the kidney. Proc. Int. Union Physiol. Sci. XVII: 337, 1989.
 154. Guder, W. G., F.‐X. Beck, and M. Schmolke. Regulation and localization of organic osmolytes in mammalian kidney. Klin. Wochenschr. 68: 1091–1095, 1990.
 155. Guder, W. G., F.‐X. Beck, and M. Schmolke. Organic compounds in renal volume regulation. Proc. XI Int. Cong. Nephrol., Tokyo (in press), 1991.
 156. Guder, W. G., W. Gerok, and D. Häussinger. The role of liver and kidney nitrogen metabolism in acid base homeostasis. J. Clin. Chem. Clin. Biochem. 25: 457–466.
 157. Guder, W. G., and B. Gruber‐Stukowski. Studies on the effect of ouabain on renal carbohydrate metabolism. In: Diuretics in Research and Clinics, edited by W. Siegenthaler, R. Beckerhoff, and W. Vetter. Stuttgart: Thieme, 1977, pp. 17–20.
 158. Guder, W. G., J. Hallbach, E. Fink, B. Kaissling, and G. Wirthensohn. Kallikrein (kininogenase) in the mouse nephron: effect of dietrary potassium. Biol. Chem. Hoppe‐Seyler 368: 367–645, 1987.
 159. Guder, W. G., S. Pürschel, S. Wagner, and G. Wirthensohn. Renal ketone body metabolism. In: Kidney Metabolism and Function, edited by R. Dzurik, B. Lichardus, and W. Guder. Dordrecht: Martinus Nijhoff, 1985, pp. 93–102.
 160. Guder, W. G., and B. D. Ross. Enzyme distribution along the nephron. Kidney Int. 26: 101–111, 1984.
 161. Guder, W. G., and A. Rupprecht. Metabolism of isolated kidney tubules. Independent actions of catecholamines on renal cyclic adenosine 3,5‐monophosphate levels and gluconeogenesis. Eur. J. Biochem. 52: 283–290, 1975.
 162. Guder, W. G., and A. Rupprecht. Antagonism between parathyroid hormone and norepinephrine on cyclic adenosine‐3:5‐monophosphate (cAMP) levels in isolated tubules from rat kidney cortex. Pflugers Arch. 354: 177–186, 1975.
 163. Guder, W. G., and A. Rupprecht. Hormonal regulation of gluconeogenesis in isolated rat kidney tubule fragments. In: Use of Isolated Liver Cells and Kidney Tubules in Metabolic studies, edited by J. M. Tager, H. D. Söling, and J. R. Williamson. Amsterdam: North‐Holland, 1976, pp. 379–388.
 164. Guder, W. G., and U. Schmidt. The localization of gluconeogenesis in rat nephron. Determination of phosphoenolpyruvate carboxykinase in microdissected tubules. Hoppe‐Seylers Z. Physiol. Chem. 355: 273–278, 1974.
 165. Guder, W. G., and U. Schmidt. Substrate and oxygen dependence of renal metabolism. Kidney Int. 10: 32–38, 1976.
 166. Guder, W. G., and U. Schmidt. Enzymatic organization of carbohydrate metabolism along the nephron. In: Proc. 6th. Cong. Nephrol., Florence. Basel: Karger, 1976, pp. 187–195.
 167. Guder, W. G., and T. Schorn. Metabolic interactions of renal proline and glutamine metabolism. In: Molecular Aspects of Ammoniagenesis, edited by H. Endou, A. C. School‐werth, G. Bavarel, and A. Tizianello. Basel: Karger, 1991, pp. 46–51.
 168. Guder, W. G., B. Stukowski, E. A. Siess, and O. H. Wieland. Pyruvate dehydrogenase in rat kidney metabolism. In: Biochemical Aspects of Renal Function, edited by S. Angielski, and U. C. Dubach. Bern: Huber, 1975, pp. 70–75.
 169. Guder, W., B. Stukowski, W. Wiesner, and O. H. Wieland. Metabolism of isolated kidney tubules. Comparison of the stimulatory action of acetate and adenosine 3,5‐monophosphate (cAMP) on glucose formation from l‐lactate and pyruvate. In: Biochemical Aspects of Kidney Function, edited by M. Hohenegger. München: Goldmann, 1972, pp. 48–62.
 170. Guder, W. G., S. Wagner, and G. Wirthensohn. Metabolic fuels along the nephron: pathways and intracellular mechanisms of interaction. Kidney Int. 29: 41–45, 1986.
 171. Guder, W. G., and O. H. Wieland. Metabolism of isolated kidney tubules. Additive effects of parathyroid hormone and free fatty acids on renal gluconeogenis. Eur. J. Biochem. 31: 69–79, 1972.
 172. Guder, W. G., and O. H. Wieland. Metabolism of isolated kidney tubules: regulation of pyruvate dehydrogenase by metabolic substrates. Eur. J. Biochem. 42: 529–538, 1974.
 173. Guder, W. G., I. W. Wiesner, B. Stukowski, and O. H. Wieland. Metabolism of isolated kidney tubules. Oxygen consumption gluconeogenesis and the effect of cyclic nucleotides in tubules from starved rats. Hoppe‐Seylers Z. Physiol. Chem. 352: 1319–1328, 1971.
 174. Guder, W. G., and G. Wirthensohn. Metabolism of isolated kidney tubules. Interactions between lactate glutamine and oleate metabolism. Eur. J. Biochem. 99: 577–584, 1979.
 175. Guder, W. G, and G. Wirthensohn. Renal turnover of substrates. In: Renal Transport of Organic Substances, edited by R. Greger, F. Lang, an d S. Silbernagl. Berlin: Springer, 1981, pp. 66–77.
 176. Guder, W. G., and G. Wirthensohn. Triacylglycerol synthesis along the rabbit nephron. In: Biochemistry of Kidney Functions, edited by F. Morel. Amsterdam: Elsevier, 1982, pp. 95–102.
 177. Guder, W. G., and G. Wirthensohn. Enzyme distribution and unique biochemical pathways in specific cells along the nephron. In: Renal Heterogeneity and Target Cell Toxicity, edited by P. Bach, and E. A. Lock. Cichester: Wiley, 1985, pp. 91–101.
 178. Gullans, S. R., P. C. Brazy, L. J. Mandel, and V. Dennis. Stimulation of phosphate transport in the proximal tubule by metabolic substrates. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F582–F587, 1984.
 179. Gustin, M. C., and D. B. P. Goodman. Isolation of brush border membrane from the rabbit descending colon epithelium. Partial characterization of a unique K+‐activated ATPase. J. Biol. Chem. 256: 10651–10656, 1981.
 180. Gutenberg, C., L. Jensson, L. Nyström, E. Österlund, M. K. Tahir, and B. Mannervik. Isoenzymes of glutathione‐S‐transferase in rat kidney cytosol. Biochem. J. 230: 609–615, 1985.
 181. György, P., W. Keller, and T. Brehme. Nierenstoffwechsel und Nierenentwicklung. Biochem. Z. 184: 484–488, 1928.
 182. Häberle, D., A. Wahländer, and H. Sies. Assessment of the kidney function in maintenance of plasma glutathione concentration and redox state in anaesthetized rats. FEBS Lett. 108: 335–340, 1979.
 183. Hagege, J., M. Gabe, and G. Richet. Augmentation du nombre des cellules intercalaires rénales du rat soumis à une surcharge en bicarbonate alkaline. C. R. Acad. Sci. (Paris) 267: 1611–1613, 1968.
 184. Hagege, J., G. Richet, and M. Gabe. Effet de l'acidose gazeuse sur les parties distales du nephron de rat albinos. C. R. Acad. Sci. (Paris) 269: 1539–1542, 1969.
 185. Hall, D. A., and D. M. Varney. Effect of vasopressin on electrical potential difference and chloride transport in mouse medullary thick ascending limb of Henle. J. Clin. Invest. 66: 792–802, 1980.
 186. Hamilton, G. A. Peroxisomal oxidases and suggestions for the mechanism of action of insulin and other hormones. Adv. Enzymol. 57: 85–178, 1985.
 187. Hammermann, M. R. Interaction of insulin with the renal proximal tubular cell. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F1–F11, 1985.
 188. Hammerman, M. R., and K. A. Hruska. Cyclic AMP‐dependent protein phosphorylation in canine renal brush‐border membrane vesicles is associated with decreased phosphate transport. J. Biol. Chem. 257: 992–999, 1982.
 189. Handler, J. S., F. M. Perkins, and J. P. Johnson. Studies of renal cell function using cell culture techniques. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F1–F9, 1980.
 190. Harris, R. C., and T. O. Daniel. Epidermal growth factor binding, stimulation of phosporylation, and inhibition of gluconeogenesis in rat proximal tubule. J. Cell. Physiol. 139: 383–391, 1989.
 191. Häussinger, D. pH Homeostasis. Mechanisms and Control. London: Academic Press, 1988.
 192. Hebert, S. C., and T. E. Andreoli. Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limb of Henle. Determinants of the ADH‐mediated increase in transepithelia voltage and in net Cl‐absorption. J. Membr. Biol. 80: 221–223, 1984.
 193. Hebert, S. C., P. A. Friedman, and T. E. Andreoli. Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle ADH increases transcellular conductance pathways. J. Membr. Biol. 80: 201–219, 1984.
 194. Heidrich, H. G., R. Kinne, E. Kinne‐Saffran, and K. Hannig. The polarity of the proximal tubule cell in rat kidney. J. Cell Biol. 54: 232–245, 1972.
 195. Heinle, A., A. Wendel, and U. Schmidt. The activities of the key enzymes of the γ‐glutamyl cycle in microdissected segments of the rat nephron. FEBS Lett. 73: 220–224, 1977.
 196. Hems, D. A., and J. T. Brosnan. Effects of metabolic acidosis and starvation on the content of intermediary metabolites in rat kidney. J. Biochem. 123: 391–397, 1971.
 197. Henderson, C. J., A. R. Scott, C. S. Yang, and C. R. Wolf. Testosterone‐mediated regulation of mouse renal cytochrome P‐450 isoenzymes. Biochem. J. 266: 675–681, 1990.
 198. Heusgens, H. E., A. J. Meier, J. R. Williamson, J. A. Gimpel, and J. M. Tager. Proline metabolism in isolated rat liver cells. Biochem. J. 170: 699–707, 1978.
 199. Hierholzer, K., Sodium reabsorption in the distal tubular system. In: The Kidney. Physiology and Pathophysiology, edited by P. W. Seldin, and G. Giebisch. New York: Raven, 1985, pp. 1063–1096.
 200. Hierholzer, K., T. Lichtenstein, H. Siebe, D. Tsiakiras, and I. Witt. Renal metabolism of corticosteroid hormones. Klin. Wochenschr. 60: 1127–1135, 1982.
 201. Hirschberg, R., and J. D. Kopple. Effect of growth hormone and IGF‐I on renal function. Kidney Int. 36: S20–S26, 1989.
 202. Höhmann, B. Einführung biochemischer Ultramikromethoden bei zellphysiologischen Fragestellungen im Nephron. Heidelberg: Habil‐Schrift, 1973.
 203. Höhmann, B., P. P. Frohnert, R. Kinne, and K. Baumann. Proximal tubular lactate transport in rat kidney. A micro‐puncture study. Kidney Int. 5: 261–270, 1975.
 204. Höhmann, B., and K. Schärer. Gluconeogenesis in isolated nephron segments of the rabbit. In: Biochemical Aspects of Renal Function, edited by S. Angielski, and U. C. Dubach. Basel: Huber, 1975, pp. 47–50.
 205. Hokin, L. E. Receptors and phosphoinositide‐generated second messengers. Annu. Rev. Biochem. 54: 205–235, 1985.
 206. Hook, G., J. K. Haseman, and J. W. Lucier. Induction and suppression of hepatic and extrahepatic microsomal foreign‐compound‐metabolizing enzyme systems by 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin. Chem. Biol. Interact. 10: 199–214, 1975.
 207. Horster, M. Loop of Henle functional differentiation: in vitro perfusion of the isolated thick ascending segment. Pflugers Arch. 378: 15–24, 1978.
 208. Horster, M. Tissue culture in nephrology: potential and limits for the study of renal disease. Klin. Wochenschr. 58: 965–973, 1980.
 209. Horster, M. R., and M. Stopp. Transport and metabolic functions in cultured renal tubule cells. Kidney Int. 29: 46–53, 1986.
 210. Hughey, R. B., B. B. Rankin, J. S. Elce, and N. P. Curthoys. Specificity of a particulate rat renal peptidase and its localization along the nephron and other enzymes of mercapturic acid synthesis. Arch. Biochem. Biophys. 186: 211–217, 1978.
 211. Huo, T., and D. P. Healy. Autoradiographic localization of dopamine DA1 receptors in rat kidney with [3H]Sch 23390. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F414–F423, 1989.
 212. Hus‐Citharel, A., and F. Morel. Coupling of metabolic CO2 production to ion transport in isolated rat thick ascending limbs and collecting tubules. Pflugers Arch. 407: 421–427, 1986.
 213. Imai, M. The connecting tubule: a functional subdivision of the rabbit distal nephron segment. Kidney Int. 15: 346–356, 1979.
 214. Imai, M. Effects of parathyroid hormone and N6, O2‐dibutyryl cyclic AMP on Ca2+ transport across the rabbit nephron segments perfused in vitro. Pflugers Arch. 39: 145–151, 1981.
 215. Imai, M., D. Taniguchi, and K. Tabei. Function of thin loops of Henle. Kidney Int. 31: 565–579, 1987.
 216. Ishikawa, T., Th. P. M. Akerboom, and H. Sies. Role of key defense systems in target organ toxicity. In: Target Organ Toxicity, edited by G. M. Cohen. Boca Raton, FL: CRC Press, 1986.
 217. Jacobson, H. R. Medullary collecting duct acidification. Effects of potassium, HCO concentration and pCO. J. Clin. Invest. 74: 2107–2114, 1984.
 218. Jans, A. W. H., and R. Willem. A 13C‐n.m.r. investigation of the metabolism of amino acids in renal proximal convoluted tubules of normal and streptozotocin‐treated rats and rabbits. Biochem. J. 263: 231–241, 1989.
 219. Jones, D. P., P. Moldeus, A. H. Stead, K. Ormstadt, H. Jornvall, and S. Orrenius. Metabolism of glutathione and a glutathione conjugate by isolated kidney cells. J. Biol. Chem. 254: 2787–2792, 1979.
 220. Jorgensen, P. L. Mechanism of the Na+,K+ pump protein structure and conformations of the pure (Na+ + K+)‐ATPase. Biochim. Biophys. Acta 694: 27–68, 1982.
 221. Jorgensen, P. L. Structure, function and regulation of Na,K‐ATPase in the kidney. Kidney Int. 29: 10–20, 1986.
 222. Joseph, P. K., and K. Subrahmanyam. Effect of growth hormone, insulin, thyroxine and cortisone on renal gluconeogenesis. Arch. Biochem. Biophys. 127: 288–291, 1968.
 223. Jung, K. Y., and H. Endou. Biphasic increasing effect of angiotensin‐II on intracelluar free calcium in isolated rat early proximal tubules. Biochem. Biophys. Res. Commun. 165: 1221–1228, 1989.
 224. Jung, K. Y., and H. Endou. Cellular adenosine triphosphate production and consumption in the descending thin limb of Henle's loop in the rat. Renal Physiol. Biochem. 13: 248–258, 1990.
 225. Jung, K. Y., and H. Endou. Species differences in cellular ATP turnover within the nephron. In: Cellular and Molecular Biology of the Kidney, edited by H. Koide, H. Endou, and K. Kurokawa. Basel: Karger, (in press), 1991.
 226. Jung, K. Y., A. Tojo, and H. Endou. Different modes of ouabain actions on cellular ATP content in rat proximal and distal tubules. In: Cellular and Molecular Biology of the Kidney, edited by H. Koide, H. Endou, and H. Kurokawa. Basel: Karger, (in press), 1991.
 227. Jung, K. Y., S. Uchida, and H. Endou. Nephrotoxicity assesment by measuring cellular ATP content. I. Substrate specificities in the maintenance of ATP content in isolated rat nephron segments. Toxicol. Appl. Pharmacol. 100: 369–382, 1989.
 228. Jung, K. Y., and H. Endou. Furosemide acts on short loop of descending thin limb, but not on long loop. J. Pharmacol. Exp. Ther. 253: 80–100, 1990.
 229. Jynedjian, P. B., and W. R. Hanson. Messenger RNA for renal phosphoenolpyruvate carboxykinase (GTP). Its translation in a heterologous cell‐free system and its regulation by glucocorticoids and by changes in acid base balance. J. Biol. Chem. 252: 8398–8403, 1977.
 230. Kaiser, P. S., J. J. Hwang, and N. P. Curthoys. Effect of acidosis on phosphoenolpyruvate carboxykinase (PCK) and glutaminase (GA) mRNAs in rat kidney and in LLC‐PK‐F+ cells. In: Molecular Aspects of Ammoniagenesis, edited by H. Endou, A. C. Schoolwerth, G. Bavarel, and A. Tizianello. Basel: Karger, 1991, pp. 206–210.
 231. Kaissling, B. Structural aspects of adaptative changes in electrolyte excretion. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F211–F226, 1982.
 232. Kaissling, B. Cellular heterogeneity of the distal nephron and its relation to function. Klin. Wochenschr. 63: 868–876, 1985.
 233. Kaissling, B., and W. Kriz. Structural analysis of the rabbit kidney. Adv. Anat. Embryol. Cell Biol. 56: 1–123, 1979.
 234. Kamm, D. E., R. E. Fuisz, A. D. Goodman, and G. F. Cahill, Jr. Acid‐base alterations and renal gluconeogenesis: effect of pH, bicarbonate concentration and PCO. J. Clin. Invest. 46: 1172–1177, 1967.
 235. Kasahara, M., T. Matsuzawa, M. Kokubo, Y. Gushiken, K. Tashiro, T. Koide, H. Watanabe, and N. Katunuba. Immunohistochemical localization of ornithine aminotransferase in normal rat tissues by FAB'‐horseradish peroxidase conjugates. J. Histochem. Cytochem. 34: 1385–1388, 1986.
 236. Kato, R., K. Iwasaki, T. Shiraga, and H. Noguchi. Evidence for the involvement of cytochrome P‐450 in reduction of benzo(a)pyrene 4,5‐oxide by rat liver microsomes. Biochem. Biophys. Res. Commun. 70: 681–687, 1976.
 237. Katz, A. I. Distribution and function of classes of ATPases along the nephron. Kidney Int. 29: 21–31, 1986.
 238. Katz, A. I., A. Doucet, and F. Morel. Na‐K‐ATPase activity along the rabbit, rat and mouse nephron. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F114–F120, 1979.
 239. Kawashima, H., and K. Kurokawa. Unique hormonal regulation of vitamin D metabolism in the mammalian kidney. Miner. Electrolyte Metab. 9: 227–235, 1983.
 240. Kenny, A. J., and S. Maroux. Topology of microvillar membrane hydrolases of kidney and intestine. Physiol. Rev. 62: 91–128, 1982.
 241. Kettner, A., and S. Silbernagl. Renal handling of citrulline. In: Kidney Metabolism and Function, edited by R. Dzurik, R. Lichardus, and W. G. Guder. Dordrecht: Martinus Nijhoff, 1985, pp. 51–60.
 242. Khadouri, C., S. Marsy, C. Barlet‐Bas, and A. Doucet. Effect of adrenalectomy on NEM‐sensitive ATPase along the rat nephron and on urinary acidification. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F495–F499, 1987.
 243. Khadouri, C., S. Masry, C. Barlet‐Bas, and A. Doucet. Short‐term effect of aldosterone on NEM‐sensitive ATPase in rat collecting tubule. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F177–F181, 1989.
 244. Khairallah, E. A., J. S. Bond, and J. W. C. Bird. Intracellular Protein Catabolism. New York: Alan R. Liss, Inc., 1985.
 245. Kiil, F., K. Aukland, and H. E. Refsum. Renal sodium transport and oxygen consumption. Am. J. Physiol. 201: 511–516, 1961.
 246. Kimura, K., J. Skudo, T. Yazawa, Ch. Koseki, H. Endou, and F. Sakai. Cyclic AMP‐dependent protein kinase activity and endogenous protein phosphorylation in isolated cortical segments of rabbit nephron. Jpn. J. Pharmacol. 32: 131–137, 1982.
 247. Kinne‐Saffran, E., R. Bauwens, and R. Kinne. An ATP‐driven proton pump in brush‐border membranes from rat renal cortex. J. Membr. Biol. 64: 67–76, 1982.
 248. Kinne‐Saffran, E., and R. Kinne. Further evidence for the existence of an intrinsic bicarbonate‐stimulated Mg2+‐ATPase in brush‐border membranes isolated from rat kidney cortex. J. Membr. Biol. 49: 235–251, 1979.
 249. Kinsler, S., P. E. Levi, and E. Hodgson. Hepatic and extrahepatic oxidation of phorate by cytochrome P‐450 and FAD‐containing myooxygenase systems in the mouse. Pesticide Biochem. Physiol. 31: (in press).
 250. Klahr, S., and M. Hammerman. Renal metabolism. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin, and G. Giebisch. New York: Raven, 1985, pp. 699–718.
 251. Kleineke, J., and H. D. Söling. Mitochondrial and extra‐mitochondrial Ca2+ pools in the perfused rat liver. J. Biol. Chem. 260: 1040–1045, 1985.
 252. Klingenberg, M. The ADP, ATP shuttle of the mitochondrion. Trends Biochem. Sci. 00: 249–252, 1979.
 253. Kluwe, W. M., W. M. McCormack, and J. B. Hook. Selective modification of the renal and hepatic toxicities of chloroform by induction of drug metabolizing enzyme systems in kidney. J. Pharmacol. Exp. Ther. 207: 566–573, 1978.
 254. Knox, F. G., and T. P. Dousa. Mechanism of regulation of phosphate transport in the renal tubule. In: Proc 8th Int. Congr. Nephrol., Athens, edited by W. Zurukzoglu, M. Papadimitrion, M. Pyrpasopoulos, and M. Sion. Basel: Karger, 1981.
 255. Kramer, K., and P. Deetjen. Beziehungen des O2‐Verbrauchs der Niere zur Durchblutung und Glomerulumfiltrat. Pflugers Arch. 271: 782–796, 1960.
 256. Krebs, E. G. The phosphorylation of proteins: a major mechanism for biological regulation. Biochem. Soc. Trans. 13: 813–820, 1985.
 257. Krebs, H. A. Metabolism of amino acids: IV. The synthesis of glutamine from glutamic acid and ammonia and the enzymatic hydrolysis of glutamine in animal tissue. Biochem. J. 29: 1951–1969, 1935.
 258. Krebs, H. A., D. A. H. Bennet, P. de Gasquet, T. Gascoyne, and T. Yoshida. Renal gluconeogenesis. The effect of diet on the gluconeogenic capacity of rat‐kidney‐cortex slices. Biochem. J. 86: 22–27, 1963.
 259. Krebs, H. A., R. N. Speake, and R. Hems. Acceleration of renal gluconeogenesis by ketone bodies and fatty acids. J. Biochem. 94: 712–720, 1965.
 260. Kriz, W. Structural organization of the renal medulla: comparative and functional aspects. Am. J. Physiol. 241 (Regulatory Integrative Comp. Physiol. 10): R3–R16, 1981.
 261. Kumar, S., and A. Muchmore. Tamm‐Horsfall protein‐uromodulin (1950–1990). Kidney Int. 37: 1395–1401, 1990.
 262. Kurokawa, K., and H. Rasmussen. Ionic control of renal gluconeogenesis. I. The interrelated effect of calcium and hydrogen ions. Biochim. Biophys. Acta 313: 17–31, 1973.
 263. Lake, B. G., R. Hopkins, J. Chakraborty, J. Bridges, and D. V. Parke. The influence of some hepatic enzyme inducers and inhibitors on extrahepatic drug metabolism. Drug Metab. Dispos. 1: 342–349, 1973.
 264. Lash, L. H., A. A. Elfarra, and M. W. Anders. Renal cysteine conjugate lyase. Bioactivation of nephrotoxic cysteine‐S‐conjugates in mitochondrial outer membranes. J. Biol. Chem. 261: 5930–5935, 1986.
 265. Laski, M. E., and N. A. Kurtzman. Characterization of acidification in the cortical and medullary collecting tubule of the rabbit. J. Clin. Invest. 72: 2050–2059, 1983.
 266. Lassen, N. A., O. Munck, and J. H. Thaysen. Oxygen consumption of acidification in the cortical and medullary collecting tubule of the rabbit. Acta Physiol. Scand. 51: 371–384, 1961.
 267. Le Bouffant, F., A. Hus‐Citharel, and F. Morel. In vitro 14CO2 production by single pieces of rat cortical thick ascending limbs and its coupling to active salt transport. In: Biochemistry of Kidney Functions, edited by F. Morel. Amsterdam: Elsevier, Biomedical Press, 1982, pp. 363–370.
 268. Le Bouffant, F., A. Hus‐Citharel, and F. Morel. Metabolic CO2 production by isolate single pieces of rat distal nephron segments. Pflugers Arch. 401: 346–353, 1984.
 269. Lee, S.‐M. K., M. A. Chekal, and A. J. Katz. Corticosterone binding sites along the rat nephron. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F504–F509, 1983.
 270. Lee, T. B., V. K. Vance, and G. F. Cahill, Jr. Metabolism, of 14C‐labelled substrates by rabbit kidney cortex and medulla. Am. J. Physiol. 203: 27–36, 1962.
 271. Le Grimellec, Ch., S. Carriere, J. Cardinal, and M. C. Giocondi. Fluidity of brush border and basolateral membranes from human kidney cortex. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 17): F227–F234, 1983.
 272. Le Grimellec, Ch., M. C. Giocondi, B. Carriere, S. Carriere, and J. Cardinal. Membrane fluidity and enzyme activities in brush border and basolateral membranes of the dog kidney. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F246–F253, 1982.
 273. LeHir, M., S. Angielski, and V. C. Dubach. Properties of an ecto‐5'‐nucleotidase of the renal brush border. Renal Physiol. 8: 265–275, 1985.
 274. LeHir, M., and U. C. Dubach. The activity patterns of two peroxisomal oxidases in the rat nephron. FEBS Lett. 127: 250–252, 1981.
 275. LeHir, M., and U. C. Dubach. Activities of enzymes of the tricarboxylic acid cycle in segments of the rat nephron. Pflugers Arch. 395: 239–243, 1982.
 276. LeHir, M., V. C. Dubach, and S. Angielski. Localization of nucleotide pyrophosphatase in the rat kidney. Histochemistry 86: 207–210, 1986.
 277. Lemieux, G., P. Vinay, and P. Cartier. Renal hemodynamics and ammoniagenesis. Characteristics of the antiluminal site for glutamine extraction. J. Clin. Invest. 53: 884–894, 1974.
 278. Lemieux, G., J. Berkofsky, C. Lemieux, A. Quenneville, and M. Marsolais. Real importance of alanine in renal metabolism: in vitro studies in rat and dog. Am. J. Physiol. 255 (Regulatory Integrative Comp. Physiol. 24): R42–R45, 1989.
 279. Levillain, O., A. Hus‐Citharel, F. Morel, and L. Bankir. Production of urea from arginine in pars recta and collecting duct of the rat kidney. Renal Physiol. Biochem. 12: 302–312, 1989.
 280. Levillain, O., A. Hus‐Citharel, F. Morel, and L. Bankir. Localization of arginine synthesis along the rat nephron. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F916–F923, 1990.
 281. Levillain, O., A. Hus‐Citharel, F. Morel, and L. Bankir. Study of urea production along the mouse and rabbit nephron; comparison with the rat. J. Am. Soc. Nephrol. 1: 703, 1990.
 282. Litterst, C. L., E. G. Mimnaugh, and T. E. Gram. Comparative alterations in extrahepatic drug metabolism by factors known to affect hepatic activity. Biochem. Pharmacol. 25: 749–755, 1977.
 283. Litterst, C. L., E. G. Mimnaugh, R. L. Reagan, and T. E. Gram. Comparison of in vitro drug metabolism by lung and kidney of several common laboratory species. Drug Metab. Dispos. 3: 259–265, 1975.
 284. Little, J. R., and J. J. Spitzer. Uptake of ketone bodies by dog kidney in vivo. Am. J. Physiol. 221: 679–683, 1971.
 285. Lombard, W. E., J. P. Kokko, and H. R. Jacobson. Bicarbonate transport in cortical and outer medullary collecting tubules. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F289–F296, 1983.
 286. Lönnerholm, G., and Y. Ridderstrale. Intracellular distribution of carbonic anhydrase in the rat kidney. Kidney Int. 17: 162–174, 1980.
 287. Lowry, M., D. E. Hall, and J. T. Brosnan. Metabolism of glycine‐ and hydroxyproline‐containing peptides by the isolated perfused rat kidney. Biochem. J. 229: 545, 1985.
 288. Lowry, M., D. E. Hall, and J. T. Brosnan. Increased activity of renal glycine‐cleavage‐enzyme complex in metabolic acidosis. Biochem. J. 231: 477–480, 1985.
 289. Lowry, M., D. E. Hall, and J. T. Brosnan. Hydroxyproline metabolism by the rat kidney: distribution of renal enzymes of hydroxyproline catabolism and renal conversion of hydroxyproline to glycine and serine. Metabolism 34: 955–961, 1985.
 290. Lowry, M., D. E. Hall, and J. T. Brosnan. Serine synthesis in rat kidney: studies with perfused kidney and cortical tubules. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F649–F657, 1988.
 291. Mandel, L. J. Use of noninvasive fluorometry and spectrophotometry to study epithelial metabolism and transport. Federation Proc. 41: 36–41, 1982.
 292. Mandel, L. J. Metabolic substrate, cellular energy production and the regulation of proximal tubular transport. Annu. Rev. Physiol. 47: 85–101, 1985.
 293. Mandel, L., and R. S. Balaban. Stoichoimetry and coupling of active transport to oxidative metabolism in epithelial tissues. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F357–F371, 1981.
 294. Manillier, G., D. Vinay, L. Lalonde, J. Noel, A. Gougoux, and M. L. Halperin. ATP turnover and renal response of dog tubules to pH changes in vitro. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F919–F932, 1986.
 295. Marchetti, J., M. Imbert‐Teboul, F. Alhenc‐Gelas, J. Allegrini, J. Menard, and F. Morel. Kallikrein along the rabbit microdissected nephron: a micro method for its measurement. Pflugers Arch. 401: 27–33, 1984.
 296. Marchetti, J., S. Roseau, and F. Alhenc‐Gelas. Angiotensin I converting enzyme and kinin‐hydrolyzing enzymes along the rabbit nephron. Kidney Int. 31: 744–751, 1987.
 297. Marchetti, J., S. Taniguchi, F. Lebrun, and F. Morel. Cholinergic agonists increase cell calcium in rat medullary collecting tubules: a fura‐2 study. Pflugers Arch. 416: 561–567, 1990.
 298. Marver, D. Models of aldosterone action on sodium transport—emerging concepts. Adv. Exp. Med. Biol. 196: 153–172, 1986.
 299. Marver, D., and K. J. Petty. Biochemical events mediating the action of aldosterone in the isolated cortical collecting tubule. In: Biochemistry of Kidney Functions, edited by F. Morel. Amsterdam: Elsevier, 1982, pp. 249–256.
 300. Marver, D., and M. J. Schwartz. Identification of mineralocorticoid target sites in the isolated rabbit cortical nephron. Proc. Natl. Acad. Sci. USA 77: 3672–3676, 1980.
 301. Masters, B. S. S., Enzymology of extrahepatic cytochromes P‐450. In: Mammalian Cytochromes P‐450, edited by F. P. Guengerich. Boca Raton, FL: CRC Press, pp. 108–133, 1987.
 302. Mattenheimer, H., Enzymology of kidney tissue. In: Enzymes in Urine and Kidney, edited by U. C. Dubach. Bern and Stuttgart: Hans Huber, 1986, pp. 119–156.
 303. McArdle, S., and L. C. Garg. Cholinergic stimulation of phosphoinositide hydrolysis in medullary collecting duct cells. J. Pharmacol. Exp. Ther. 248: 343–359, 1989.
 304. McKinney, T. D., and M. B. Burg. Bicarbonate transport by rabbit cortical collecting tubules. Effects of acid and alkali loads in vivo on transport in vitro. J. Clin. Invest. 60: 766–768, 1977.
 305. McKinney, T. D., and M. B. Burg. Bicarbonate secretion by rabbit cortical collecting tubules in vitro. J. Clin. Invest. 61: 1421–1427, 1978.
 306. Meister, A., and M. E. Anderson. Glutathione. Annu. Rev. Biochem. 52: 711–760, 1983.
 307. Michoudet, C., and G. Baverel. Metabolism and metabolic effects of acetaldehyde in dog, rat and guinea pig renal cortex. In: Kidney Metabolism and Function, edited by R. Dzurik, B. Lichardus, and W. Guder. Dordrecht: Martinus Nijhoff, 1985, pp. 143–158.
 308. Mitch, W. E., and R. W. Chesney. Amino acid metabolism by the kidney. Miner. Electrolyte Metab. 9: 190–202, 1983.
 309. Mizuiri, S., K. Hirata, S. Izumi, N. Komatsu, S. Yoshimura, and K. Watanabe. Immunocytochemical study of glutathione peroxidase in normal rat kidney. Renal Physiol. 9: 249–256, 1986.
 310. Mohandas, J., J. J. Marshall, C. G. Duggin, J. S. Hovrath, and J. Tiller. Differential distribution of glutathione and glutathione‐related enzymes in rabbit kidney. Biochem. Pharmacol. 33: 1810–1807, 1984.
 311. Moldeus, P., A. Ellin, H. Thor, and H. Orrenius. A comparative study on kidney microsomes with special reference to fatty acid hydroxylation. In: Regulation of Hepatic Metabolism, edited by F. Lundquist, and N. Tygstrup. London: Academic, p. 659, 1974.
 312. Morel, F. Sites of hormone action in the mammalian nephron. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F159–F164, 1981.
 313. Morel, F. Regulation of kidney functions by hormones: a new approach. Recent Prog. Horm. Res. 39: 271–304, 1983.
 314. Morel, F., and D. Chabardes. Functional segmentation of the nephron. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin, and G. Giebisch. New York: Raven, 1984, pp. 519–530.
 315. Morel, F., D. Chabardes, and M. Imbert‐Teboul. Functional segmentation of the rabbit distal tubule by microdetermination of hormone‐dependent adenylate cyclase activity. Kidney Int. 9: 264–277, 1976.
 316. Morel, F., D. Chabardes, M. Imbert‐Teboul, A. Le Bouffant, A. Hus‐Citharel, and M. Montegut. Multiple hormonal control of adenylate in distal segments of the rat kidney. Kidney Int. 21: S55–S62, 1982.
 317. Morel, F., and A. Doucet. Hormonal control of kidney functions at the cell level. Physiol. Rev. 66: 377–468, 1986.
 318. Morel, F., M. Imbert‐Teboul, and D. Chabardes. Cyclic nucleotides and tubule function. Adv. Cyclic Nucleotide Protein Phosphorylation Res. 12: 301–313, 1980.
 319. Moriyama, T., H. R. Murphy, B. M. Martin, and A. Garcia‐Perez. Detection of specific mRNAs in single nephron segments by use of the polymerase chain reaction. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F1470–F1474, 1990.
 320. Morris, S. M., Jr., C. L. Moncman, J. S. Holub, and Y. Hod. Nutritional and hormonal regulation of mRNA abundance for arginine biosynthetic enzymes in the kidney. Arch. Biochem. Biophys. 273: 230–237, 1989.
 321. Mujais, S. Effect of aldosterone on rat collecting tubule N‐ethylmaleimide‐sensitive adenosine triphosphatase. J. Lab. Clin. Med. 109: 34–39, 1987.
 322. Nagami, G. T., C. M. Sonu, and K. Kurokawa. Ammonia production by isolated mouse proximal tubules perfused in vitro. Effect of metabolic acidosis. J. Clin. Invest. 78: 149–129, 1986.
 323. Nagami, G. T., and P. Lee. Effect of luminal perfusion on glucose production by isolated proximal tubules. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F120–F127, 1989.
 324. Nagata, N., and H. Rasmussen. Renal gluconeogenesis: effects of Ca2+ and H+. Biochim. Biophys. Acta 215: 1–16, 1970.
 325. Nakada, J., H. Yamada, and H. Endou. Evidence that alpha 1‐adrenergic stimuli specifically increase gluconeogenesis of the isolated proximal convoluted tubule in the rat. Renal Physiol. 9: 213–22, 1986.
 326. Nakamura, R., D. S. Emmanouel, and A. I. Katz. Insulin binding sites in various segments of the rabbit nephron. J. Clin. Invest. 72: 388–392, 1983.
 327. Nakanishi, T., and M. B. Burg. Osmoregualtory fluxes of myoinositol and betaine in renal cells. Am. J. Physiol. 257 (Cell Physiol. 26): C964–C970, 1989.
 328. Naruse, M., S. Uchida, E. Ogata, and K. Kurokawa. Endothelin increases intracellular calcium ion concentration in mouse collecting tubule cells via enhanced calcium entry through Ca‐channel in a G‐protein dependent manner. Proc. XI Int. Cong. Nephrol., Tokyo (in press), 1991.
 329. Neely, J. R., and H. E. Morgan. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu. Rev. Physiol. 36: 413–459, 1974.
 330. Negri, A., V. Massey, and C. H. Williams, Jr. d‐aspartate oxidase from beef kidney. Purification and properties. J. Biol. Chem. 262: 10026–10034, 1987.
 331. Ng, R. C. K., A. Peraino, and W. N. Suki. Divalent cation transport in isolated tubules. Kidney Int. 22: 492–497, 1982.
 332. Nieth, H., and P. Schollmeyer. Substrate utilization of the human kidney. Nature 209: 1244–245, 1966.
 333. Nishiitsutsuji‐Uwo, J., B. D. Ross, and H. A. Krebs. Metabolic activities of the isolated perfused rat kidney. Biochem. J. 103: 852–862, 1967.
 334. Nordlie, R. D., Glucose‐6‐phosphatase‐phosphotransferase: roles and regulation in relation to gluconeogenesis. In: Gluconeogenesis, edited by R. W. Hanson and M. A. Mehlman. New York: Wiley, 1976, pp. 93–152.
 335. Norman, J., B. Badie‐Dezfolly, E. P. Nord, I. Kurtz, J. Schlosser, A. Chaudhari, and L. G. Fine. EGF‐induced mitogenesis in proximal tubular cells: potentiation by angiotensin II. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F299–F309, 1987.
 336. Nuglozeh, E., G. Gauquelin, R. Garcia, J. Tremblay, and E. L. Schiffrin. Atrial natriuretic peptide receptors in renal medulla of DOCA‐salt hypertensive rats. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F130–F137, 1990.
 337. Oesch, F., and H. Schmassmann. Species and organ specificity of the transstilbene oxide induced effects on epoxide hydratase and benzo(a)pyrene monooxygenase activity in rodents. Biochem. Pharmacol. 28: 171–176, 1979.
 338. Ogita, K., E. Kusunose, K. Ichihara, and M. Kusunose. Multiple forms of cytochrome P‐450 in kidney cortex microsomes of rabbits treated with 3‐methylcholanthrene. J. Biochem. 92: 921–928, 1982.
 339. Oka, Y., K. Fujiwara, and H. Endou. Intranephron distribution of epidermal growth factor immunoreactivity in the mouse. Renal Physiol. 10: 283–288, 1987.
 340. O'Malley, B. W., W. T. Schrader, and M. J. Tsai. Molecular actions of steroid hormones. Adv. Exp. Med. Biol. 196: 1–10, 1986.
 341. Omata, K., O. A. Carretero, S. Itoh, and A. G. Scicli. Active and inactive kallikrein in rabbit connecting tubules and urine during low and normal sodium intake. Kidney. Int. 24: 714–718, 1983.
 342. Omata, K., O. A. Carretero, A.G. Scicli, and B. A. Jackson. Localisation of active and inactive kallikrein in the isolated tubular segments of the rabbit nephron. Kidney Int. 22: 602–607, 1982.
 343. O' Neil, R. G., and E. L. Boulpaep. Ionic conductive properties and electrophysiology of the rabbit cortical collecting tubule. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F81–F95, 1982.
 344. O' Neil, R. G., and S. I. Helman. Transport characteristics of renal collecting tubules: influences of DOCA and diet. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F544–F558, 1977.
 345. Ordonez, N. G., and B. H. Spargo. The morphologic relationship of light and dark cells of the collecting tubule in potassium depleted rats. Am. J. Physiol. 84: 317–326, 1976.
 346. Orlowski, M., and M. Meister. The γ‐glutamyl cycle: a possible transport system for amino acids. Proc. Natl. Acad. Sci. USA 67: 1248–1255, 1970.
 347. Orrenius, S., and H. Sies. Compartmentation of detoxication reactions. In: Metabolic Compartmentation, edited by H. Sies. London: Academic, 1982, pp. 485–520.
 348. Owen, O. E., P. Felig, A. P. Morgan, J. Wahren, and G. F. Cahill, Jr. Liver and kidney metabolism during prolonged starvation. J. Clin. Invest. 48: 574–583, 1969.
 349. Palent, C. E., M. E. Duffey, B. K. Mookerjee, S. Ho, and C. J. Bentzel. Ca regulation of tight‐junction permeability and structure in Necturus gallbladder. Am. J. Physiol. 245 (Cell Physiol. 14): C203–C212, 1983.
 350. Palmer, R. M. J., and S. Moncada. A novel citrulline‐forming enzyme implicated in the formation of nitric oxide by vascular endothelial cells. Biochem. Biophys. Res. Commun. 158: 348–352, 1989.
 351. Parke, D. V., The responsiveness of cells to various drug inducers. In: The Induction of Drug Metabolism, edited by R. W. Estabrook, and E. Lindenlaub. Stuttgart: Schattauer, 1979, p. 101.
 352. Patston, Ph. A., J. Espinal, M. Shaw, and Ph. J. Randle. Rat tissue concentrations of branched‐chain 2‐oxo acid dehydrogenase complex. Biochem. J. 235: 429–434, 1986.
 353. Perez, G., M. Epstein, B. Rietberg, and R. Loutzenhiser. Metabolism of arginine by the isolated perfused rat kidney. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F376–F380, 1978.
 354. Pfaller, W. Structure function correlation in rat kidney. Adv. Anat. Embryol. Cell Biol. 70: 1–106, 1982.
 355. Pfaller, W., W. G. Guder, G. Gstraunthaler, P. Kotanko, I. Jehart, and S. Pürschel. Compartmentation of ATP within renal proximal tubular cells. Biochim. Biophys. Acta 805: 152–157, 1984.
 356. Pfeilschifter, J. M. Cellular signalling in the kidney: the role of inositol lipids. Renal Physiol. Biochem. 12: 1–31, 1989.
 357. Pitts, R. F., Renal metabolism of amino acids and ammonia. In: Renal Transport and Diuretics, edited by K. Thurau, and H. Jahrmärker. Berlin: Springer, 1969, pp. 11–21.
 358. Pitts, R. F. Production of CO2 by the intact functioning kidney of the dog. Med. Clin. North Am. 59: 507–518, 1975.
 359. Pitts, R. F. Metabolism of the kidney of the dog in vivo. In: Proc. 6th Int. Cong. Nephrol. Florence, edited by S. Giovanetti, V. Bonomini, and V. D'Amico. Basel: Karger, 1976, pp. 159–170.
 360. Pitts, R. F., A. C. Damian, and M. B. Macleod. Synthesis of serine by rat kidney in vivo. Am. J. Physiol. 219: 584–589, 1970.
 361. Pogson, C. I., J. D. Longshaw, A. Robool, S. A. Smith, and G. A. Alleyne. Phosphoenolpyruvate carboxykinase and renal gluconeogenesis. In: Gluconeogenesis: Its Regulation in Mammalian Species, edited by R. W. Hanson, and M. A. Mehlman. New York: Wiley, 1976, pp. 335–368.
 362. Poland, A., E. Glover, and A. S. Kende. Stereospecific high affinity binding of 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin by hepatic cytosol. J. Biol. Chem. 251: 4936–4949, 1976.
 363. Pollak, V.E., and R. D. Arbel. The distribution of Tamm‐Horsfall mucoprotein. (Uromucoid) in the human nephron. Nephron 6: 667, 1969.
 364. Quebbemann, A. J., and M. W. Anders. Enhanced maximum secretion of catechol glucuronide following oral salicylate administration. Pharmacologist 12: 273, 1970.
 365. Quebbemann, A. J., and M. W. Anders. Renal tubular conjugation excretion of phenol and p‐nitrophenol in the chicken: differing mechanisms of renal transfer. J. Pharmacol Exp. Ther. 184: 695–708, 1973.
 366. Reinecke, R. M. The kidney as a source of glucose in the eviscerated rat. Am. J. Physiol. 140: 276–285, 1943.
 367. Rodman, J. S., L. Seidman, and M. G. Farquhar. The membrane composition of coated pits, microvilli, endosomes, and lysosomes is distinctive in the rat kidney proximal tubule cell. J. Cell Biol. 102: 77–87, 1986.
 368. Rogers, S. A., and M. R. Hammermann. Insulin‐like growth factor II stimulates production of inositol trisphosphate in proximal tubular basolateral membranes from canine kidney. Proc. Natl. Acad. Sci USA 85: 4037–4041, 1988.
 369. Ross, B. D., F. H. Epstein, and A. Leaf. Sodium reabsorption in the perfused rat kidney. Am. J. Physiol. 225: 1165–1171, 1973.
 370. Ross, B. D., R. Hems, and H. A. Krebs. The rates of gluconeogenesis from various precursors in the perfused rat liver. Biochem. J. 102: 942–951, 1967.
 371. de Rouffignac, C., B. Corman, and N. Roinel. Stimulation by antidiuretic hormone of electrolyte tubular reabsorption in rat kidney. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F156–F164, 1983.
 372. Rush, G. F., and J. B. Hook. Characteristics of renal UDP‐glucuronyltransferase. Life Sci. 35: 145–153, 1984.
 373. Rush, G. F., J. H. Smith, J. F. Newton, and J. B. Hook. Chemically induced nephrotoxicity: role of metabolic activation. CRC Crit. Rev. Toxicol. 13: 99–160, 1984.
 374. Sacktor, B., R. A. Balakir, and Ch. R. Filburn. Adenosine 3:5‐cyclic phosphate—dependent and —independent protein kinase of renal brush border membranes. Arch. Biochem. Biophys. 184: 391–399, 1977.
 375. Safirstein, R., A. Z. Zelent, and P. M. Price. Reduced prepro‐epidermal growth factor mRNA and decreased EGF excretion in ARF. Kidney Int. 36: 810–815, 1989.
 376. Salido, E. C., L. Barajas, J. Lechago, N. P. Laborde, and D. A. Fisher. Immuncytochemical localization of epidermal growth factor in mouse kidney. J. Histochem. Cytochem. 34: 1155–1160, 1986.
 377. Salto, R., J. Oliver, M. del Mar Sola, and A. M. Vargas. Distribution of pyruvate carboxylase along the rat nephron: an immunological and enzymatic study. Kidney Int. 39: 1162–1167, 1991.
 378. Sanchez‐Medina, F., J. Sanchez‐Urrutia, M. Medina, and F. Major. Effect of short‐term exercise on gluconeogenesis by rat kidney cortex. FEBS Lett. 26: 25–27, 1972.
 379. Sands, J. E., Y. Terada, L. M. Bernard, and M. A. Knepper. Aldose reductase activities in microdissected rat renal tubule segments. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F563–F569, 1989.
 380. Sasaki, S., M. Imai. Effects of vasopressin on water and NaCl transport across the thick ascending limb of Henle's loop of mouse, rat and rabbit kidneys. Pflugers Arch. 383: 215–221, 1980.
 381. Scaduto, R. C., and E. J. Davis. Serine synthesis by an isolated perfused rat kidney preparation. Biochem. J. 230: 303–311, 1985.
 382. Schäli, Ch., D. A. Vaughan, and D. D. Fanestil. Reconstruction of the partially purified renal phosphate (Pi) transporter. Biochem. J. 235: 189–197, 1986.
 383. Scherberich, J. E., C. Gaukl, and W. Mondorf. Biochemical, immunological and ultrastructural studies on brush border membranes of human kidney. In: Biochemical Nephrology, edited by W. G. Guder, and W. Schmidt. Bern: Hans Huber, 1978, pp. 85–97.
 384. H. Schimassek, D. Kohl, and Th. Bücher. Glycerylphosphorylcholin, die Nierensubstanz “Ma‐Mark” von Ullrich. Biochem. Z. 331: 87–97, 1959.
 385. Schlatter, E., and R. Greger. cAMP increases the basolateral Cl‐conductance in isolated perfused medullary thick ascending limb of Henle's loop of the mouse. Pflugers Arch. 405: 367–376, 1985.
 386. Schlondorf, D., and R. Ardaillou. Prostaglandins and other arachidonic metabolites in the kidney. Kidney Int. 29: 108–119, 1986.
 387. Schmassmann, H., A. Sparrow, K. Platt, and F. Oesch. Epoxide hydratase and benzo(a)pyrene monooxygenase activities in liver, kidney and lung after treatment of rats with epoxides of widely varying structures. Biochem. Pharmacol. 27: 2237–2245, 1978.
 388. Schmidt, U., and U. C. Dubach. Quantitative Histochemie am Nephron. Prog. Histochem. Cytochem. 2: 185–298, 1971.
 389. Schmidt, U., and W. G. Guder. Enzyme activity along the nephron. Kidney Int. 9: 233–242, 1976.
 390. Schmidt, U., and M. Horster. Na‐K‐activated ATPase: activity maturation in rabbit nephron segments dissected in vitro. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F55–F60, 1977.
 391. Schmolke, M., A. Bornemann, and W. G. Guder. Polyol determination along the rat nephron. Biol. Chem. Hoppe‐Seyler 371: 909–916, 1990.
 392. Schmolke, M., F. X. Beck, and W. G. Guder. Effect of antidiuretic hormone on renal organic osmolytes in Brattleboro rats. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F732–F737, 1989.
 393. Schmolke, M., A. Bornemann, and W. G. Guder. Distribution and regulation of organic osmolytes along the nephron. In: Cell Biology and Nephron Heterogeneity: Fine Structure and Functions, edited by H. Koide, H. Endou, and H. Kurokawa. Basel: Karger, (in press), 1991.
 394. Schmolke, M., and W. G. Guder. Metabolic regulation of organic osmolytes in tubules of rat renal inner and outer medulla. Renal Physiol. Biochem. 12: 347–358, 1989.
 395. Schmidt, U., and M. Horster. Sodium‐potassium‐activated adenosine triphosphatase: methodology for quantification in microdissected renal tubule segments from freeze‐dried and fresh tissue. In: Methods in Pharmacology, edited by M. Martinez‐Maldonado. New York: Plenum, 1978, pp. 259–296.
 396. Schnellmann, R. G., and L. Mandel. Intracellular compartmentation of glutathione in renal proximal tubules. Biochem. Biophys. Res. Commun. 133: 1001–1005, 1985.
 397. Schoolwerth, A. C., and K. LaNoue. Transport of metabolic substrates in renal mitochondria. Annu. Rev. Physiol. 47: 143–171, 1985.
 398. Schorn, Th. Studien zum Prolinstoffwechsel der Niere. Thesis, Ludwig Maximilians Universitat, Munich, 1982.
 399. Schulman, J. D., S. J. Goodman, J. W. Mace, A. D. Patrick, F. Tietze, and E. J. Butler. l‐glutathionuria: inborn error of metabolism due to tissue deficiency of gamma‐glutamyl transpeptidase. Biochem. Biophys. Res. Commun. 65: 68–74, 1976.
 400. Schurek, H.‐J., and W. Kriz. Morphologic and functional evidence for oxygen deficiency in the isolated perfused rat kidney. Lab. Invest. 53: 145–155, 1985.
 401. Schwab, G. E., and E. F. Johnson. Enzymology of rabbit cytochromes P‐450. In: Mammalian Cytochromes P‐450, edited by F. P. Guengerich. Boca Raton, FL: CRC Press, pp. 56–107, 1987.
 402. Schwartz, G. I., and Q. Al‐Awqati. Carbon dioxide causes exocytosis of vesicles containing H+ pump in isolated perfused proximal and collecting tubules. J. Clin. Invest. 75: 1638–1644, 1985.
 403. Schwartz, G. J., J. Barasch, Q. Al‐Awqati. Plasticity of functional epithelial polarity. Nature 318: 363–371, 1985.
 404. Schwartz, G. J., and M. B. Burg. Mineralocorticoid effects on cation transport by cortical collecting tubules in vitro. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F576–F586, 1978.
 405. Scicli, A. G., and O. A. Carretero. Renal kallikrein‐kinin‐system. Kidney Int. 29: 120–130, 1986.
 406. Scrutton, M. C., and M. F. Utter. The regulation of glycolysis and gluconeogenesis in animal tissues. Annu. Rev. Biochem. 37: 249–302, 1968.
 407. Segal, R., and L. G. Fine. Polypeptide growth factors and the kidney. Kidney Int. 36: S2–S10, 1989.
 408. Sejersted, O. M., O. Mathiesen, and F. Kiil. Oxygen requirement of renal Na,K‐ATPase dependent sodium reabsorption. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F152–F158, 1977.
 409. Sekura, R., and A. Meister. Glutathione turnover in the kidney: considerations relating to the γ‐glutamyl cyclic and the transport of amino acids. Proc. Natl. Acad. Sci. USA 71: 2969–2972, 1974.
 410. Shareghi, G. R., and Z. S. Agus. Magnesium transport in the cortical thick ascending limb of Henle's loop of the rabbit. J. Clin. Invest. 69: 759–769, 1982.
 411. Shareghi, G. R., and L. C. Stoner. Calcium transport across segments of the rabbit distal nephron in vitro. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F367–F376, 1978.
 412. Shayman, J. A., K. Hruska, and A. R. Morrison. Bradykinin stimulates increased intracellular calcium in papillary collecting tubules of the rabbit. Biochem. Biophys. Res. Commun. 134: 299–304, 1986.
 413. Shrago, E., A. Shug, and Ch. Elson. Regulation of cell metabolism by mitochondrial transport systems. In: Gluconeogenesis, edited by R. W. Hanson, and M. A. Mehlman. New York: Wiley, 1976, pp. 221–238.
 414. Shull, G. E., L. K. Lane, and J. B. Lingrel. Amino acid sequence of the β‐subunit of the (Na+ + K+) ATPase deduced from a cDNA. Nature 321: 429–431, 1986.
 415. Shull, G. E., A. Schwartz, and J. B. Lingrel. Amino‐acid sequence of the catalytic subunit of the (Na+ + K+)ATPase deduced from a complementary DNA. Science 229: 395–399, 1985.
 416. Siebe, H., H. Tsiakiras, K. Hierholzer, and J. Lichtenstein. Corticosteroid metabolism in isolated rat kidney in vitro. Pflugers Arch. 400: 372–376, 1984.
 417. Sikri, K. L., D. P. Alexander, and C. L. Forster. Localisation of Tamm‐Horsfall glycoprotein in the normal rat kidney and the effects of adrenalectomy on its localisation in the hamster and rat kidney. J. Anat. 135: 29–45, 1982.
 418. Silbernagl, S. Tubular reabsorption of l‐glutamine studied by free‐flow micropuncture and microperfusion of rat kidney. Int. J. Biochem. 12: 9–16, 1980.
 419. Silbernagl, S. Tubular reabsorption of amino acids and oligopeptides. Physiol. Rev. 68: 911–1007, 1988.
 420. Silbernagl, S., and G. Vetter. The role of brush border enzymes in tubular reabsorption of disaccharides. Pflugers Arch. 371: 141–145, 197.
 421. Silva, P., R. Hallac, K. Spokes, and F. H. Epstein. Relationship among gluconeogenesis, Co2 and Na transport in the perfused rat kidney. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F508–F513, 1982.
 422. Silva, P., R. Hallac, R. Swartz, and F. H. Epstein. Competition between different metabolic demands for oxygen consumption in the kidney. Int. J. Biochem. 12: 251–255, 1980.
 423. Skou, J. C. The sodium, potassium pump. Scand. J. Clin. Lab. Invest. 46: 11–23, 1986.
 424. Slater, E., T. Anderson, P. Cattini, R. Isaacs, M. J. Birnbaum, D. G. Gardner, N. L. Eberhardt, and J. D. Baxter. Mechanisms of glucocorticoid hormone action. Adv. Exp. Med. Biol. 196: 67–75, 1986.
 425. Slotki, I. N., J. H. Schwartz, and E. A. Alexander. Na+‐H+ exchange is stimulated by protein kinase C activation in inner medullary collecting duct cells. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F666–F671, 1990.
 426. Söling, H. D., and J. Kleineke. Species dependent regulation of hepatic gluconeogenesis in higher animals. In: Gluconeogenesis. Its Regulation in Mammalian Species, edited by R. W. Hanson, and M. A. Mehlman. New York: Wiley, 1976, pp. 369–462.
 427. Squires, E. J., and J. T. Brosnan. Measurements of the turnover rate of glutaminase in normal and acidotic rats. Biochem. J. 210: 277–280, 1983.
 428. Stanton, B. A., D. Biemesderfer, J. B. Wade, and G. Giebisch. Structural and functional study of the rat distal nephron. Effects of potassium adaptation and depletion. Kidney Int. 19: 36–48, 1981.
 429. Stanton, B. A. Renal potassium transport: morphological and functional adaptations. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 26): R989–R997, 1989.
 430. Star, R., M. Knepper, and M. Burg. Bicarbonate secretion by rabbit cortical collecting duct. Role of chloride bicarbonate exchange. Kidney Int. 27: 289, 1985 (abstr.).
 431. Sterling, K. Thyroid hormone action at the cell level. N. Engl. J. Med. 300: 117–177, 1979.
 432. Stetson, D. L., J. B. Wade, and G. Giebisch. Morphologic alterations in the rat medullary collecting duct following potassium depletion. Kidney Int. 17: 45–56, 1980.
 433. Stevens, J., P. Hayden, and G. Taylor. The role of glutathione conjugate metabolism and cysteine conjugate β‐lyase in the mechanism of S‐cysteine conjugate toxicity in LLC‐PK1 cells. J. Biol. Chem. 261: 3325–3332, 1986.
 434. Stewart, J. R., and J. Kenny. Proteins of the kidney microvillar membrane. Biochem. J. 244: 559–568, 1984.
 435. Stoecklin, F. B., S. Mörikofer‐Zwez, and P. Walter. Formation of hexose 6‐phosphates from lactate + pyruvate + glutamate by a cell‐free system from rat liver. Biochem. J. 236: 61–70, 1986.
 436. Stokes, J. B., M. J. Ingram, A. D. Williams, and D. Ingram. Heterogeneity of the rabbit collecting tubule: localization of mineralocorticoid hormone action to the cortical portion. Kidney Int. 20: 340–347, 1981.
 437. Stone, D. K., D. W. Seldin, H. R. Jacobson, and J. P. Kokko. Mineralocorticoid modulation of rabbit medullary collecting duct acidification. A sodium‐independent effect. J. Clin. Invest. 72: 77–83, 1983.
 438. Stone, D. K., D. W. Seldin, J. P. Kokko, and H. R. Jacobson. Anion dependence of rabbit medullary collecting duct acidification. J. Clin. Invest. 71: 1505–1508, 1983.
 439. Strecker, H. J. The interconversion of glutamic acid and proline. J. Biol. Chem. 235: 3218–3223, 1960.
 440. Stumpf, W. E., M. Sar, R. Narbaitz, F. A. Reid, H. F. DeLuca, and Y. Tanaka. Cellular and subcellular localization of 1,25‐(OH)‐vitamin D in rat kidney: comparison with localization of parathyroid hormone and estradiol. Proc. Natl. Acad. Sci. USA 7: 1149–1153, 1980.
 441. Sudo, J. I. Distributions of peptidases in the metabolization of peptide hormones, particulary angiotensin II, along the isolated single nephron of rat. Nippon Yakurigaku Zasshi 78: 27–44, 1981.
 442. Sudo, J. I., and F. Morel. Na+ and K+ cell concentration in collagenase treated rat kidney tubules incubated at various temperatures. Am. J. Physiol. 246: C407–C414, 1984.
 443. Suki, W. N., and D. Rouse. Hormonal regulation of calcium transport in thick ascending limb renal tubules. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F171–F174, 1981.
 444. Suki, W. N., H. D. Rouse, R. C. K. Ng, and J. P. Kokko. Calcium transport in the thick ascending limb of Henle. Heterogeneity of function in the medullary and cortical segments. J. Clin. Invest. 66: 1004–1009, 1980.
 445. Takeda, M. Biosynthesis of guanidoacetic acid in isolated rat tubules. Jp. J. Nephrol. 32: 117–126, 1990.
 446. Taylor, C. W. The role of G proteins in transmembrane signalling. Biochem. J. 272: 1–13, 1990.
 447. Teitelbaum, I., A. Strasheim, and T. Berl. Epidermal growth factor‐stimulated phosphoinositide hydrolysis in rat medullary collecting tubule cells: regulation by G protein, calcium, and protein kinase C. J. Clin. Invest. 85: 1044–1050, 1990.
 448. Teng, C. T. Studies on carbohydrate metabolism in rat kidney slices. I. Metabolism of glycerol and pyruvate. Arch. Biochem. Biophys. 48: 409–414, 1954.
 449. Thevenod, F., H. Streb, K. J. Ullrich, and I. Schulz. Inositol 1,4,5‐trisphosphate releases Ca2+ from a nonmitochondrial store site in permeabilized rat cortical kidney cells. Kidney Int. 29: 695–702, 1986.
 450. Tisher, C. C., M. Madsen, and J. W. Verlander. Structural adaptation of the collecting duct to acid‐base disturbances. In: Cell Biology of Nephron Heterogeneity: Fine Structure and Functions, edited by H. Koide, H. Endou, and H. Kurokawa. Basel: Karger, (in press), 1991.
 451. Tizianello, A., G. DeFerrari, G. Garibotto, G. Gurreri, and C. Robano. Renal metabolism of amino acids and ammonia in subjects with normal renal function and patients with chronic renal insufficiency. J. Clin. Invest. 65: 1162–1173, 1980.
 452. Tizianello, A., G. DeFerrari, G. Garibotto, N. Robaudo, N. Aquarone, and G. M. Ghiggeri. Renal ammoniagenesis in an early stage of metabolic acidosis in man. J. Clin. Invest. 69: 240–250, 1982.
 453. Tomita, K., and J. J. Pisano. Binding of (33H)bradykinin in isolated nephron segments in the rabbit. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F732–F737, 1984.
 454. Torikai, S., M. S. Wang, K. L. Klein, and K. Kurokawa. Adenylate cyclase and cell cyclic AMP of rat cortical thick ascending limb of Henle. Kidney Int. 20: 649–654, 1981.
 455. Tou, J. S., and C. G. Higgins. Kidney. In: Lipid Metabolism in Mammals, edited by F. Snyder. New York: Plenum Press, Vol. 2. 1977, pp. 39–82.
 456. Trinh‐Trang‐Tan, M. M., O. Levillain, and L. Bankir. Contribution of leucine to oxidative metabolism of the rat medullary thick ascending limb. Pflugers Arch. 411: 676–680, 1988.
 457. Uchida, S., and H. Endou. Substrate specificity to maintain cellular ATP along the mouse nephron. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F977–F983, 1988.
 458. Ujiie, K., H. Nonoguchi, K. Tomita, and F. Marumo. Effects of ANF on cGMP synthesis in inner medullary collecting duct subsegments of rats. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F535–F538, 1990.
 459. Ullrich, K. J. Über das Vorkommen von Phosphorverbindungen in verschiedenen Nierenabschnitten und Anderungen ihrer Konzentration in Abhängigkeit vom Diuresezustand. Pflugers Arch. 262: 551–561, 1956.
 460. Uotila, P., M. G. Parkki, and A. Aitio. Quantitative and qualitative changes in the metabolism of benzo(a)pyrene in rat tissues after intragastric administration of TCDD. Toxicol. Appl. Pharmacol. 46: 671–683, 1978.
 461. Vandewalle, A., G. Wirthensohn, H. G. Heidrich, and W. G. Guder. Distribution of hexokinase and phosphoenol‐pyruvate carboxy kinase in rabbit nephron. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F492–F500, 1981.
 462. Velazquez, H., and R. Gregor. Electrical properties of early distal convoluted tubules of the rabbit‐kidney. Renal Physiol. 9: 55, 1986 (abstr.).
 463. Vinay, P., G. Lemieux, A. Gougoux, and M. Halperin. Regulation of glutamine metabolism in dog kidney in vivo. Kidney Int. 29: 68–79, 1986.
 464. Wade, J. B., R. G. O'Neil, J. L. Pryor, and E. L. Boulpaep. Modulation of cell membrane area in renal collecting tubules by corticosteroid hormones. J. Cell Biol. 81: 439–445, 1979.
 465. Wagner, S., T. Deufel, and W. G. Guder. Carnitine metabolism in isolated rat kidney cortex tubules. Biol. Chem. Hoppe‐Seyler 367: 75–79, 1986.
 466. Wahländer, D., S. Soboll, and H. Sies. Hepatic mitochondrial and cytosolic glutathione content and the subcellular distribution of GSH‐S‐transferase. FEBS Lett. 97: 138–140, 1979.
 467. Watford, M., Regulation of expression of the genes for glutaminase isoenzymes and glutamine synthetase in the acidotic rat. In: Molecular Aspects of Ammoniagenesis, edited by H. Endou, A. C. Schoolwerth, G. Bavarel, and A. Tizianello. Basel: Karger, (in press), 1991.
 468. Weidemann, M. J., and H. A. Krebs. The fuel of respiration of rat kidney cortex. Biochem. J. 112: 149–166, 1969.
 469. Wendel, A., and P. Cikryt. The level and half‐life of glutathione in human plasma. FEBS Lett. 120: 209–211, 1980.
 470. Wendel, A., R. Hahn, and W. G. Guder. On the role of γ‐glutamyltransferase in renal tubular amino acid reabsorption. Curr. Problems Clin. Biochem. 6: 426–435, 1976.
 471. Wieland, O. H. The mammalian pyruvate dehydrogenase complex: structures and regulation. Rev. Physiol. Biochem. Pharmacol. 96: 123–170, 1983.
 472. Wirth, A., C. C. Heuck, N. Bieger, and G. Schlierf. Pseudo‐Hypertriglyceridämie bei Glycerokinase‐Mangel. Dtsch. Med. Wochenschr. 21: 843–847, 1985.
 473. Wirthensohn, G., F. X. Beck, and W. G. Guder. Role and regulation of glycerophosphorylcholine in rat renal papilla. Pflugers Arch. 409: 411–415, 1987.
 474. Wirthensohn, G., M. Gerl, and W. G. Guder. Triacylglycerol metabolism in kidney cortex and outer medulla. Int. J. Biochem. 12: 157–161, 1980.
 475. Wirthensohn, G., and W. G. Guder. Triacylglycerol metabolism in isolated rat kidney cortex tubules. Biochem. J. 186: 317–324, 1980.
 476. Wirthensohn, G., and W. G. Guder. Studies on renal choline metabolism and phosphatidylcholine synthesis. In: Biochemistry of Kidney Functions, edited by F. Morel. Amsterdam: Elsevier, 1982, pp. 119–128.
 477. Wirthensohn, G., and W. G. Guder. Glycerophosphorylcholine. In: Methods of Enzymatic Analysis, edited by H. U. Bergmeyer. Weinheim: Verlag Chemie, 1985, pp. 112–117.
 478. Wirthensohn, G., and W. G. Guder. Stimulation of phospholipid turnover by angiotensin II and phenylephrine in proximal convoluted tubules microdissected from mouse nephron. Pflugers Arch. 404: 94–96, 1985.
 479. Wirthensohn, G., and W. G. Guder. Hormone effects on phospholipid metabolism in kidney tubules. Fresenius Z. Anal. Chem. 324: 342–343, 1986.
 480. Wirthensohn, G., and W. G. Guder. Renal substrate metabolism. Physiol. Rev. 66: 469–489, 1986.
 481. Wirthensohn, G., S. Lefrank, and W. G. Guder. Phospholipid metabolism in rat kidney cortical tubules. II. Effect of hormones on 32P incorporation. Biochim. Biophys. Acta 795: 401–410, 1984.
 482. Wirthensohn, G., S. Lefrank, M. Schmolke, and W. G. Guder. Regulation of organic osmolyte concentrations in tubules from rat inner medulla. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F128–F135, 1989.
 483. Wirthensohn, G., A. Vandewalle, and W. G. Guder. Renal glycerol metabolism and the distribution of glycerolkinase in rabbit nephron. Biochem. J. 198: 534–549, 1981.
 484. Wittner, M., C. Weidtke, E. Schlatter, A. di Stefano, and R. Greger. Substrate utilization in the isolated perfused cortical thick ascending limb of rabbit nephron. Pflugers Arch. 402: 52–62, 1984.
 485. Wright, P. A., and M. A. Knepper. Glutamate dehydrogenase in microdissected rat nephron segments: effect of acid‐base loading. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F53–F59, 1990.
 486. Yancey, P. H., and M. B. Burg. Distribution of major organic osmolytes in rabbit kidneys in diuresis and antidiuresis. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F602–F607, 1989.
 487. Yoshitomi, K., B. C. Burckhardt, and E. Frömter. Rheogenic sodium bicarbonate cotransport in the peritubular cell membrane of rat proximal tubule. Pflugers Arch. 405: 360–366, 1985.
 488. Yoshitomi, K., and E. Frömter. Cell pH of rat proximal tubule in vivo and the conductive nature of peritubular HCO3− (OH−) exit. Pflugers Arch. 402: 300–305, 1984.
 489. Yoshimoto, M., E. Kusunose, S. Yamamoto, M. Maekawa, and M. Kunusone. Purification and characterization of two forms of cytochrome P‐450 from rat‐kidney cortex microsomes. Biochem. Int. 13: 749–755, 1986.
 490. Zaar, K., A. Völkl, and H. D. Fahimi. d‐aspartate oxidase in rat, bovine and sheep kidney cortex is localized in peroxisomes. Biochem. J. 261: 233–238, 1989.
 491. Zablocki, K., J. Gemel, and J. Bryla. The inhibitory effect of oleate on glucose formation in rabbit kidney tubules. Biochim. Biophys. Acta 757: 111–118, 1983.
 492. Zerahn, K. Oxygen consumption and active sodium transport in the isolated and short‐circuited frog skin. Acta Physiol. Scand. 36: 300, 1956.
 493. Ziegler, D. M., Microsomal flavin‐containing monooxygenase: oxygenation of nucleophilic nitrogen and sulphur compounds. In: Enzymatic Basis of Detoxification, edited by W. B. Jakoby. New York: Academic Press, 1980, pp. 201–227.
 494. Zorzoli, A., I. J. Turkenkopf, and V. L. Mueller. Gluconeogenesis in developing rat kidney cortex. Biochem. J. 111: 181–185, 1969.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

W. G. Guder, Francois Morel. Biochemical Characterization of Individual Nephron Segments. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 2119-2164. First published in print 1992. doi: 10.1002/cphy.cp080246