Comprehensive Physiology Wiley Online Library

Tubular Transport of Monocarboxylates, Krebs Cycle Intermediates, and Inorganic Sulfate

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Overall Renal Handling
1.1 Mono‐, Di‐, and Tricarboxylates
1.2 Sulfate and Thiosulfate
2 Tubular Handling as Studied by Micropuncture and Microperfusion
2.1 Monocarboxylates
2.2 Di‐ftricarboxylates
2.3 Sulfate/Thiosulfate
3 Transport in Isolated Membrane Vesicles
3.1 Monocarboxylates
3.2 Di‐ltricarboxylates
3.3 Sulfate/Thiosulfate
4 Characterization of Proteins Involved in Transmembrane Transport
4.1 Reconstitution of Mono‐, Di‐, and Tricarboxylate Transport in Artificial Liposomes
4.2 Partial Purification of a Dicarboxylic Acid‐Binding Protein
4.3 Identification of a Protein Involved in Basolateral Sulfate Transport
5 Cellular Models
5.1 Monocarboxylates
5.2 Di‐/tricarboxylates
5.3 Sulfate/Thiosulfate
Figure 1. Figure 1.

Summary of work of Ullrich et al. 126,127,128 regarding structural requirements for active reabsorption of monocarboxylates in rat proximal tubule in situ, a: aliphatic acid analogs that inhibit transport of d‐lactate. b: analogs of aliphatic acids that do not inhibit d‐lactate transport, c: benzoate and substituted analogs that inhibit transport of d‐lactate. d: substitutes that do not inhibit d‐lactate transport. Alternative substances are shown for individual positions.

Adapted from Ullrich et al. 129
Figure 2. Figure 2.

Reaction scheme for kinetics of succinate uptake by renal brush borders. Carrier on cis side (Cc) of membrane combines with cis sodium and succinate in ordered fashion, whereas dissociation of substrates at trans side (Ct) is random.

From Wright 146
Figure 3. Figure 3.

Structural specificity for dicarboxylic acid binding to renal brush border transporter. Optimal structure is shown, and, at each position, C1 (carboxyl residue), R1, and R2, acceptable analogs (above lines) and unacceptable analogs (below lines) are indicated

From Wright 146
Figure 4. Figure 4.

Cellular scheme for membrane transport systems and their functions in renal proximal tubular reabsorption of monocarboxylates. Boxes with solid lines indicate major aliphatic monocarboxylate substrates. Anions in boxes with dashed lines also interact with transport systems.

Figure 5. Figure 5.

Cellular scheme for membrane transport systems and their functions in renal proximal tubular reabsorption/secretion of aliphatic di‐/tricarboxylates. Boxes with solid lines indicate major substrates. Anions in boxes with dashed lines also interact with transport systems.

Figure 6. Figure 6.

Cellular scheme for membrane transports and their functions in renal proximal tubular reabsorption/secretion of sulfate/thiosulfate. Inorganic anions accepted by the systems are in solid boxes. Other anions interacting with transport pathway are in boxes with dashed lines.



Figure 1.

Summary of work of Ullrich et al. 126,127,128 regarding structural requirements for active reabsorption of monocarboxylates in rat proximal tubule in situ, a: aliphatic acid analogs that inhibit transport of d‐lactate. b: analogs of aliphatic acids that do not inhibit d‐lactate transport, c: benzoate and substituted analogs that inhibit transport of d‐lactate. d: substitutes that do not inhibit d‐lactate transport. Alternative substances are shown for individual positions.

Adapted from Ullrich et al. 129


Figure 2.

Reaction scheme for kinetics of succinate uptake by renal brush borders. Carrier on cis side (Cc) of membrane combines with cis sodium and succinate in ordered fashion, whereas dissociation of substrates at trans side (Ct) is random.

From Wright 146


Figure 3.

Structural specificity for dicarboxylic acid binding to renal brush border transporter. Optimal structure is shown, and, at each position, C1 (carboxyl residue), R1, and R2, acceptable analogs (above lines) and unacceptable analogs (below lines) are indicated

From Wright 146


Figure 4.

Cellular scheme for membrane transport systems and their functions in renal proximal tubular reabsorption of monocarboxylates. Boxes with solid lines indicate major aliphatic monocarboxylate substrates. Anions in boxes with dashed lines also interact with transport systems.



Figure 5.

Cellular scheme for membrane transport systems and their functions in renal proximal tubular reabsorption/secretion of aliphatic di‐/tricarboxylates. Boxes with solid lines indicate major substrates. Anions in boxes with dashed lines also interact with transport systems.



Figure 6.

Cellular scheme for membrane transports and their functions in renal proximal tubular reabsorption/secretion of sulfate/thiosulfate. Inorganic anions accepted by the systems are in solid boxes. Other anions interacting with transport pathway are in boxes with dashed lines.

References
 1. Ahearn, G. A., and H. Murer. Functional role of Na+ and H+ in SO42− transport by rabbit ileal brush border membrane vesicles. J. Membr. Biol. 78: 177–186, 1984.
 2. Anaizi, N. H., J. J. Cohen, A. J. Black, and S. J. Wertheim. Renal tissue citrate: independence from citrate utilization, reabsorption, and pH. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F547–F561, 1986.
 3. Baestlein, C., and G. Burckhardt. Sensitivity of rat renal luminal and contraluminal sulfate transport to DIDS. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F226–F234, 1986.
 4. Balagura, S., and W. J. Stone. Renal tubular secretion of α‐ketoglutarate in dog. Am. J. Physiol. 212: 1319–1326, 1967.
 5. Balagura‐Baruch, S., R. L. Burich, and V. F. King. Effect of alkalosis on renal citrate metabolism in dogs infused with citrate. Am. J. Physiol. 225: 385–388, 1973.
 6. Balagura‐Baruch, S., R. L. Burich, and V. F. King. Pyruvate handling by the intact functioning kidney of the dog. Am. J. Physiol. 225: 389–392, 1973.
 7. Barac‐Nieto, M. Renal uptake of p‐aminohippuric acid in vitro: effects of palmitate and l‐carnitine. Biochim. Biophys. Acta 233: 446–452, 1971.
 8. Barac‐Nieto, M. Effects of pH, calcium, and succinate on sodium citrate cotransport in renal microvilli. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F282–F290, 1984.
 9. Barac‐Nieto, M. Renal hydroxybutyrate and acetoacetate reabsorption and utilization in the rat. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F40–F48, 1985.
 10. Barac‐Nieto, M. Renal absorption and utilization of hydroxybutyrate and acetoacetate in starved rats. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F257–F565, 1986.
 11. Barac‐Nieto, M., H. Murer, and R. Kinne. Lactate‐sodium cotransport in rat renal brush border membranes. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F496–F506, 1980.
 12. Barac‐Nieto, M., H. Murer, and R. Kinne. Asymmetry in the transport of lactate by basolateral and brush border membranes of rat kidney cortex. Pflugers Arch. 392: 366–371, 1982.
 13. Bartlett, S., J. Espinal, P. Janssens, and P. D. Ross. The influence on renal function of lactate and glucose metabolism. Biochem. J. 219: 73–78, 1984.
 14. Baverel, G., M. Bonnard, and M. Pellet. Lactate and pyruvate metabolism in isolated human kidney tubules. FEBS Lett. 101: 282–286, 1979.
 15. Berglund, F., and R. P. Forster. Renal tubular transport of inorganic divalent ions by the aglomerular marine teleost, Lophius americanus. J. Gen. Physiol. 41: 429–440, 1958.
 16. Berglund, F., C. G. Helander, and R. B. Howe. Inorganic sulphate and thiosulphate: transport and competition in renal tubules of the dog. Am. J. Physiol. 198: 586–594, 1960.
 17. Berglund, F., and W. D. Lotspeich. Renal tubular reabsorption of inorganic sulfate in dog as affected by glomerular filtration rate and sodium chloride. Am. J. Physiol. 185: 533–538, 1956.
 18. Berglund, F., and W. D. Lotspeich. Effect of various amino acids on the renal tubular reabsorption of inorganic sulphate in the dog. Am. J. Physiol. 185: 539–542, 1956.
 19. Bindslev, N., and E. M. Wright. Histidyl residues at the active site of the Na/succinate cotransporter in rabbit renal brush borders. J. Membr. Biol. 81: 159–170, 1984.
 20. Bing, J., and P. Effersoe. Comparative tests of the thiosulphate and creatinine clearance in rabbits and cats. Acta Physiol. Scand. 15: 231–236, 1948.
 21. Blomstedt, J. W., and P. S. Aronson. pH gradient‐stimulated transport of urate and p‐aminohippurate in dog renal microvillus membrane vesicles. J. Clin. Invest 65: 931–934, 1980.
 22. Bond, P. A., and F. A. Jenner. The effects of lithium on organic acid excretion. In: Lithium Research and Therapy, edited by F. N. Johnson. London: Academic, 1975, p. 499–506.
 23. Brazy, P. C., and V. W. Dennis. Sulfate transport in rabbit proximal convoluted tubules: presence of anion exchange. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F300–F307, 1981.
 24. Brazy, P. C., L. J. Mandel, S. R. Gullans, and S. P. Soltoff. Interactions between phosphate and oxidative metabolism in proximal renal tubules. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F575–F581, 1984.
 25. Brennan, T. S., S. Klahr, and L. L. Hamm. Citrate transport in rabbit nephron. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F683–F689, 1986.
 26. Burckhardt, G. Sodium‐dependent dicarboxylate transport in rat renal basolateral membrane vesicles. Pflugers Arch. 401: 254–261, 1984.
 27. Burckhardt, G., C. Baestlein, and T. Friedrich. DIDS: an affinity label for the sulfate transport system in rat renal basolateral but not brush border membrane vesicles. Pflugers Arch. 403: R17, 1985.
 28. Cohen, J. J., and M. Barac‐Nieto. Renal metabolism of substrates in relation to renal function. In: Handbook of Physiology. Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington, DC: Am. Physiol. Soc., sect. 8, 1973, p. 909–1001.
 29. Cohen, J. J., F. Berglund, and W. D. Lotspeich. Renal tubular reabsorption of acetoacetate, inorganic sulfate and inorganic phosphate in the dog as affected by glucose and phlorizin. Am. J. Physiol. 184: 91–96, 1956.
 30. Cohen, J. J., F. Berglund, and W. D. Lotspeich. Interrelations during renal tubular reabsorption in the dog among several anions showing a sensitivity to glucose and phlorizin. Am. J. Physiol. 189: 331–338, 1957.
 31. Cohen, J. J., and D. E. Kamm. Renal metabolism: relation to renal function. In: The Kidney, edited by B. M. Brenner and F. C. Rector, Jr. Philadelphia: Saunders, 1981, p. 144–248.
 32. Cohen, J. J., and E. Wittmann. Renal utilization and excretion of α‐ketoglutarate in dog: effects of alkalosis. Am. J. Physiol. 204: 795–811, 1963.
 33. Cohen, R. D., and R. E. S. Prout. Studies on renal transport of citrate using 14C‐citrate. Clin. Sci. 28: 487–497, 1965.
 34. Craig, F. N. Renal tubular reabsorption, metabolic utilization and isomeric fractionation of lactic acid in the dog. Am. J. Physiol. 146: 146–159, 1946.
 35. Dennis, V. W., and P. C. Brazy. Divalent anion transport in isolated renal tubules. Kidney Int. 22: 498–506, 1982.
 36. Dies, F., G. Ramos, E. Avelar, and M. Lennhoff. Renal excretion of lactic in the dog. Am. J. Physiol. 216: 106–111, 1969.
 37. Eggleton, M.G., and Y. A. Habib. Sodium thiosulphate excretion in the cat. J. Physiol. (Lond.) 110: 98–109, 1949.
 38. Ferrier, B., M. Martin, and G. Baverel. Reabsorption and secretion of α‐ketoglutarate along the rat nephron: a micro‐puncture study. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F404–F412, 1985.
 39. Fonteles, M. C., J. J. Cohen, J. J. Black, and S. J. Wertheim. Support of kidney function by long‐chain fatty acids derived from renal tissue. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F235–F246, 1983.
 40. Forster, J., P. S. Steels, and E. L. Boulpaep. Organic substrate effects on and heterogeneity of Necturus proximal tubule function. Kidney Int. 17: 479–490, 1980.
 41. Foulks, J., P. Brazeau, E. S. Koelle, and A. Gilman. Renal secretion of thiosulfate in the dog. Am. J. Physiol. 168: 77–85, 1952.
 42. Fritsch, G., W. Haase, G. Rumrich, H. Fasold, and K. J. Ullrich. A stopped flow capillary perfusion method to evaluate contraluminal transport parameters of methylsuccinate from interstitium into renal proximal tubular cells. Pflugers Arch. 400: 250–256, 1984.
 43. Frömter, E. Viewing the kidney through microelectrodes. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F695–F705, 1984.
 44. Fukuhara, Y., and R. J. Turner. Sodium‐dependent succinate transport in renal outer cortical brush border membrane vesicles. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F374–F381, 1983.
 45. Garcia, M. L., J. Benavides, and F. Valdivieso. Ketone body transport in renal brush border membrane vesicles. Biochim. Biophys. Acta 600: 922–930, 1980.
 46. Goudsmit, A., Jr., H. M. Power, and J. L. Bollman. The excretion of sulfate by the dog. Am. J. Physiol. 125: 506–520, 1939.
 47. Grassl, S. M., E. Heinz, and R. Kinne. Effect of K+ and H+ on sodium/citrate cotransport in renal brush border vesicles. Biochim. Biophys. Acta 736: 178–188, 1983.
 48. Grinstein, S., R. J. Turner, M. Silverman, and A. Rothstein. Inorganic anion transport in kidney and intestinal brush border and basolateral membranes. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F452–F460, 1980.
 49. Grollman, A. P., W. G. Walker, H. C. Harrison, and H. E. Harrison. Site of reabsorption of calcium and citrate in the renal tubule in the dog. Am. J. Physiol. 205: 697–701, 1963.
 50. Guder, W. G., and G. Wirthensohn. Renal turnover of substrates. In: Renal Transport of Organic Substances, edited by R. Greger, F. Lang, and S. Silbernagl. Berlin: Springer, 1981, p. 66–77.
 51. Guggino, S. E., and P. S. Aronson. Paradoxical effects of pyrazinoate and nicotinate on urate transport in dog renal microvillus membranes. J. Clin. Invest. 76: 543–547, 1985.
 52. Guggino, S. E., G. J. Martin, and P. S. Aronson. Specificity and modes of the anion exchanger in dog renal microvillus membranes. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F612–F621, 1983.
 53. Hagenbuch, B., G. Stance, and H. Murer. Transport of sulphate in rat jejunal and rat proximal tubular basolateral membrane vesicles. Pflugers Arch. 405: 202–208, 1985.
 54. Herndon, R. F., and S. Freeman. Renal citric acid utilization in the dog. Am. J. Physiol. 192: 369–372, 1958.
 55. Herrin, R. C., and C. C. Lardinois. Renal clearance of citrate in dogs. Proc. Soc. Exp. Biol. Med. 97: 294–297, 1958.
 56. Hierholzer, K., R. Cade, R. Gurd, R. Kessler, and R. Pitts. Stop‐flow analysis of renal reabsorption and excretion of sulfate in the dog. Am. J. Physiol. 198: 833–837, 1960.
 57. Hirayama, B., and E. M. Wright. Asymmetry of the Na+‐succinate cotransporter in rabbit renal brush border membranes. Biochim. Biophys. Acta 775: 17–21, 1984.
 58. Hirayama, B., and E. M. Wright. Coupling between sodium and succinate transport across renal brush border membrane vesicles. Pflugers Arch. 407: S174–S179, 1986.
 59. Hoehmann, B., P. P. Frohnert, R. Kinne, K. Baumann, F. Papavassiliou, and M. Wagner. Proximal tubular lactate transport in rat kidney: a micropuncture study. Kidney Int. 5: 261–270, 1974.
 60. Jacobsen, C., H. Roigaard‐Petersen, K. E. Jørgensen, and M. J. Sheikh. Isolation and partial purification of dicar‐boxylic acid binding protein from luminal membrane vesicles of rabbit kidney cortex. Biochim. Biophys. Acta 773: 173–179, 1984.
 61. Jenkins, A. D., T. P. Dousa, and L. D. Smith. Transport of citrate across renal brush border membrane: effects of dietary acid and alkali loading. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F590–F595, 1985.
 62. Jørgensen, K. E., U. Kragh‐Hansen, H. Roigaard‐Petersen, and M. I. Sheikh. Citrate uptake by basolateral and luminal membrane vesicles from rabbit kidney cortex. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F686–F695, 1983.
 63. Jørgensen, K. E., and M. I. Sheikh. Mechanisms of uptake of ketone bodies by luminal membrane vesicles. Biochim. Biophys. Acta 814: 23–34, 1985.
 64. Jørgensen, K. E., and M. I. Sheikh. Characteristics of uptake of short chain fatty acids by luminal membrane vesicles from rabbit kidney. Biochim. Biophys. Acta 860: 632–640, 1986.
 65. Kahn, A. M., and P. S. Aronson. Urate transport via anion exchange in dog renal microvillus membrane vesicles. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F56–F63, 1983.
 66. Kahn, A. M., and Branham, E. J. Weinman. Mechanism of urate and p‐aminohippurate transport in rat renal microvillus membrane vesicles. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F151–F158, 1983.
 67. Kahn, A. M., H. Shelat, and E. J. Weinman. Urate and p‐aminohippurate transport in rat renal basolateral vesicles. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F654–F661, 1985.
 68. Kahn, A. M., and E. J. Weinman. Urate transport in the proximal tubule: in vivo and vesicle studies. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F789–F798, 1985.
 69. Karniski, L. P., and P. S. Aronson. Chloride/formate exchange with formic acid recycling: a mechanism of active chloride transport across epithelial membranes. Proc. Natl. Acad. Sci. USA 82: 6362–6365, 1985.
 70. Kinne, R., and E. Kinne‐Saffran. Renal metabolism: coupling of luminal and antiluminal transport processes. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Selding and G. Giebisch. New York: Raven, 1985, p. 719–737.
 71. Kippen, I., B. Hirayama, J. R. Klinenberg, and E. M. Wright. Transport of tricarboxylic acid cycle intermediates by membrane vesicles from renal brush border. Proc. Natl. Acad. Sci. USA 76: 3397–3400, 1979.
 72. Koepsell, H., K. Korn, D. Ferguson, H. Menuhr, D. Ollig, and W. Haase. Reconstitution and partial purification of several Na+ cotransport systems from renal brush border membranes: properties of the l‐glutamate transporter in proteoliposomes. J. Biol. Chem. 259: 6548–6558, 1984.
 73. Kook, J. J., and W. D. Lotspeich. Citrate excretion during intrarenal arterial precursor infusion in the alkalotic dog. Am. J. Physiol. 215: 282–288, 1968.
 74. Kragh‐Hansen, U., K. E. Jørgensen, and M. I. Sheikh. The use of potential‐sensitive cyanine dye for studying iondependent electrogenic renal transport of organic solutes. Biochem. J. 208: 359–368, 1982.
 75. Kragh‐Hansen, U., K. E. Jørgensen, and M. I. Sheikh. The use of potential‐sensitive cyanine dye for studying ion‐dependent electrogenic renal transport of organic solutes. Biochem. J. 208: 369–376, 1982.
 76. Krebs, H. A., R. N. Speake, and R. Hems. Acceleration of renal gluconeogenesis by ketone bodies and fatty acids. Biochem. J. 94: 712–720, 1965.
 77. Kurokawa, K. Use of isolated single nephron segments to study metabolic heterogeneity of the nephron. Miner. Electrolyte Metab. 9: 260–269, 1983.
 78. Lee, C. R., and R. J. Pollitt. The effect of lithium salts on the urinary excretion of some dicarboxylic acids. Biochem. Soc. Trans. 1: 108–109, 1973.
 79. Levine, R., B. Hirayama, and E. M. Wright. Sensitivity of renal brush border Na+ cotransport systems to anions. Biochim. Biophys. Acta 769: 508–510, 1984.
 80. Little, J. R., and J. J. Spitzer. Uptake of ketone bodies by dog kidney in vivo. Am. J. Physiol. 221: 679–863, 1971.
 81. Loew, I., T. Friedrich, and G. Burckhardt. Properties of an anion exchanger in rat renal basolateral membrane vesicles. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F334–F342, 1984.
 82. Lotspeich, W. D. Renal tubular reabsorption of inorganic sulphate in the normal dog. Am. J. Physiol. 151: 311–318, 1947.
 83. Luecke, H., G. Stance, and H. Murer. Sulphate‐ion/sodium‐ion cotransport by brush border membrane vesicles isolated from rat kidney cortex. Biochem. J. 182: 223–229, 1979.
 84. Manganel, M., F. Roch‐Ramel, and H. Murer. Sodium–pyrazinoate cotransport in rabbit renal brush border membrane vesicles. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F400–F408, 1985.
 85. Medow, M. S., S. B. Baruch, O. Gutierrez, V. F. King, and E. Leal‐Pinto. Transport of citric acid by luminal and contraluminal membrane vesicles of dog renal cortex, abstracted. Federation Proc. 37: 466, 1978.
 86. Mengual, R., G. Lebalnc, and P. Sudaka. The mechanism of Na+ l‐lactate cotransport by brush border membrane vesicles from horse kidney: analysis by isotopic exchange kinetics of a sequential model and stoichiometry. J. Biol. Chem. 258: 15071–15078, 1983.
 87. Mengual, R., and P. Sudaka. The mechanism of Na+ l‐lactate cotransport by brush border membrane vesicles from horse kidney: analysis of rapid equilibrium kinetics in absence of membrane potential. J. Membr. Biol. 71: 163–171, 1983.
 88. Mudge, G. H., W. O. Berndt, J. Lockhart, and A. Saunders. Renal tubular secretion‐reabsorption of thiosulfate in the dog. Am. J. Physiol. 216: 843–852, 1969.
 89. Mudge, G. H., W. O. Berndt, and H. Valtin. Tubular transport of urea, glucose, phosphate, uric acid, sulfate, and thiosulfate. In: Handbook of Physiology. Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington, DC: Am. Physiol. Soc., 1973, sect. 8, p. 587–652.
 90. Murer, H., J. Biber, P. Gmaj, and B. Stieger. Cellular mechanisms in epithelial transport: advantages and disadvantages of studies with vesicles. Mol. Physiol. 6: 55–82, 1984.
 91. Murer, H., and G. Burckhardt. Membrane transport of anions across epithelia of mammalian small intestine and kidney proximal tubule. Rev. Physiol. Biochem. Pharmacol. 96: 1–51, 1983.
 92. Murer, H., and P. Gmaj. Transport studies in plasma membrane vesicles isolated from renal cortex. Kidney Int. 30: 171–186, 1986.
 93. Murer, H., U. Hopfer, and R. Kinne. Sodium/proton antiport in brush border membrane vesicles isolated from rat small intestine and kidney. Biochem. J. 154: 597–604, 1976.
 94. Murer, H., and R. Kinne. The use of isolated membrane vesicles to study epithelial transport processes. J. Membr. Biol. 55: 81–95, 1980.
 95. Nord, E., S. H. Wright, I. Kippen, and E. M. Wright. Pathways for carboxylic acid transport by rabbit renal brush border membrane vesicles. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F456–F462, 1982.
 96. Nord, E. P., S. H. Wright, I. Kippen, and E. M. Wright. Specificity of the Na+‐dependent monocarboxylic acid transport pathway in rabbit renal brush border membranes. J. Membr. Biol. 72: 213–221, 1983.
 97. Oh, M. S., J. Uribari, D. Alveranga, J. Lazar, N. Baziliski, and H. J. Carroll. Metabolic utilization and renal handling of d‐lactate in men. Metabolism 34: 621–625, 1985.
 98. Owen, O. E., P. Felig, A. P. Morgan, J. Wahren, and G. F. Cahill, Jr. Liver and kidney metabolism during prolonged starvation. J. Clin. Invest. 48: 574–583, 1969.
 99. Owen, O. E., P. Felig, R. Sherwin, and G. Palaiologos. Ketone utilization and ketone‐amino acid interactions in starvation and diabetes. In: Biochemical and Clinical Aspects of Ketone Body Metabolism, edited by H. D. Soeling and D. C. Seufert. Stuttgart: Thieme, 1978, p. 189–190.
 100. Pritchard, J. B., and J. L. Renfro. Renal sulfate transport at the basolateral membrane is mediated by anion exchange. Proc. Natl. Acad. Sci. USA 80: 2603–2607, 1983.
 101. Sachs, G., R. J. Jackson, and E. C. Rabon. Use of plasma membrane vesicles. Am. J. Physiol. 238 (Gastrointest. Liver Physiol. 1): G151–G164, 1980.
 102. Sacktor, B., Transport in membrane vesicles isolated from the mammalian kidney and intestine. In: Current Topics in Bioenergetics, edited by R. Sanadi. New York: Academic, 1977, p. 39–81.
 103. Samarzija, J., V. Molnar, and E. Frömter. The stoichiometry of Na+‐coupled anion absorption across the brush border membrane of rat renal proximal tubule. Adv. Physiol. Sci. (Kidney Body Fluids) 11: 419–434, 1981.
 104. Schell, R. E., B. R. Stevens, and E. M. Wright. Kinetics of sodium‐dependent solute transport by rabbit renal and jejunal brush border vesicles using a fluorescent dye. J. Physiol. (Lond.) 355: 307–318, 1983.
 105. Schell, R. E., and E. M. Wright. Electrophysiology of succinate transport across rabbit renal brush border membrane. J. Physiol. (Lond.) 360: 95–104, 1985.
 106. Schneider, G. E., J. C. Durham, and B. Sacktor. Sodium‐dependent transport of inorganic sulfate by rabbit renal brush border membrane vesicles. J. Biol. Chem. 259: 14591–14599, 1984.
 107. Sheikh, M. I., U. Kragh‐Hansen, K. E. Jørgensen, and H. Roigaard‐Petersen. An efficient method for the isolation and separation of basolateral membrane and luminal membrane vesicles from rabbit kidney cortex. Biochem. J. 208: 377–382, 1982.
 108. Sheridan, E., G. Rumrich, and K. J. Ullrich. Reabsorption of dicarboxylic acids from the proximal convolution of rat kidney. Pflugers Arch. 399: 18–28, 1983.
 109. Shimada, H., and G. Burckhardt. Kinetic studies on sulfate transport in basolateral membrane vesicles from rat renal cortex. Pflugers Arch. 407: S160‐S167, 1986.
 110. Silva, P., R. Hallac, K. Spokes, and F. H. Epstein. Relationship among gluconeogenesis, QO2, and Na+ transport in the perfused rat kidney. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F508–F513, 1982.
 111. Simpson, D. P. Citrate excretion: a window on renal metabolism. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 9): F223–F234, 1983.
 112. Stolte, H., R. G. Galaske, G. M. Eisenbach, C. Lechene, B. Schmidt‐Nielsen, and J. W. Boylan. Renal tubule ion transport and collecting duct function in the elasmobranch little skate Rajaerinacea. J. Exp. Zool. 199: 403–410, 1977.
 113. Trimble, M. E. Transport and metabolism of octanoate by the perfused rat kidney. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F210–F217, 1979.
 114. Trimble, M. E. Long chain fatty acid transport by the perfused rat kidney. Renal Physiol. 5: 136–142, 1982.
 115. Trimble, M. E., W. W. Harrington, Jr., and R. H. Bowman. Fatty acid transport and metabolism in the isolated perfused rat kidney. Curr. Probl. Clin. Biochem. 8: 362–370, 1977.
 116. Turner, R. J. Quantitative studies of cotransport systems: models and vesicles. J. Membr. Biol. 76: 1–15, 1983.
 117. Turner, R. J. Sodium‐dependent sulfate transport in renal outer cortical brush border membrane vesicles. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F793–F798, 1984.
 118. Ullrich, K. J., H. Fasold, G. Rumrich, and S. Kloess. Secretion and contraluminal uptake of dicarboxylic acids in the proximal convolution of rat kidney. Pflugers Arch. 400: 241–249, 1984.
 119. Ullrich, K. J., and H. Murer. Sulphate and phosphate transport in the renal proximal tubule. Philos. Trans. R. Soc. Lond. [Biol.] 299: 549–558, 1982.
 120. Ullrich, K. J., and G. Rumrich. Contraluminal transport systems in the proximal tubule involved in secretion of organic anions. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F453–F462, 1988.
 121. Ullrich, K. J., and F. Papavassiliou. Contraluminal transport of small aliphatic carboxylates in the proximal tubule of the rat kidney in situ. Pflugers Arch. 407: 488–492, 1986.
 122. Ullrich, K. J., G. Rumrich, G. Fritzsch, and S. Kloess. Contraluminal para‐aminohippurate (PAH) transport in the proximal tubule of the rat kidney. I. Kinetics, influence of cations, anions and capillary preperfusion. Pflugers Arch. 409: 229–235, 1987.
 123. Ullrich, K. J., G. Rumrich, G. Fritzsch, and S. Kloess. Contraluminal para‐aminohippurate (PAH) transport in the proximal tubule of the rat kidney. II. Specificity: alphatic dicarboxylic acids. Pflugers Arch. 408: 38–45, 1986.
 124. Ullrich, K. J., G. Rumrich, and S. Kloess. Active sulfate reabsorption in the proximal convolution of the rat kidney: specificity, Na+ and HCO3− dependence. Pflugers Arch. 383: 159–163, 1980.
 125. Ullrich, K. J., G. Rumrich, and S. Kloess. Bidirectional active transport of thiosulfate in the proximal convolution of the rat kidney. Pflugers Arch. 387: 127–132, 1980.
 126. Ullrich, K. J., G. Rumrich, and S. Kloess. Reabsorption of monocarboxylic acids in the proximal tubule of the rat kidney. I. Transport kinetics of d‐lactate, Na+‐dependence, pH‐dependence and effect of inhibitors. Pflugers Arch. 395: 212–219, 1982.
 127. Ullrich, K. J., G. Rumrich, and S. Kloess. Reabsorption of monocarboxylic acids in the proximal tubule of the rat kidney. II. Specificity for aliphatic compounds. Pflugers Arch. 395: 220–226, 1982.
 128. Ullrich, K. J., G. Rumrich, and S. Kloess. Reabsorption of monocarboxylic acids in the proximal tubule of the rat kidney. III. Specificity for aromatic compounds. Pflugers Arch. 395: 227–231, 1982.
 129. Ullrich, K. J., G. Rumrich, and S. Kloess. Transport of inorganic and organic substances in the renal proximal tubule. Klin. Wochenschr. 60: 1165–1172, 1982.
 130. Ullrich, K. J., G. Rumrich, and S. Kloess. Contraluminal sulfate transport in the proximal tubule of the rat kidney. I. Kinetics, effects of K+, Na+, Ca2+, H+, and anions. Pflugers Arch. 402: 264–271, 1984.
 131. Ullrich, K. J., G. Rumrich, and S. Kloess. Contraluminal sulfate transport in the proximal tubule of the rat kidney. II. Specificity: sulfate‐ester, sulfonates and amino sulfonates. Pflugers Arch. 404: 293–299, 1985.
 132. Ullrich, K. J., G. Rumrich, and S. Kloess. Contraluminal sulfate transport in the proximal tubule of the rat kidney. III. Specificity: disulfonates, di‐ and tri‐carboxylates and sulfo‐carboxylates. Pflugers Arch. 404: 300–306, 1985.
 133. Ullrich, K. J., G. Rumrich, and S. Kloess. Contraluminal sulfate transport in the proximal tubule of the rat kidney. IV. Specificity: salicylate analogs. Pflugers Arch. 404: 307–310, 1985.
 134. Ullrich, K. J., G. Rumrich, and S. Kloess. Contraluminal sulfate transport in the proximal tubule of the rat kidney. V. Specificity: phenolphthaleins, sulfonphthaleins, and other sulfodyes, sulfamoyl compounds and diphenylamine‐2‐carboxylates. Pflugers Arch. 404: 311–318, 1985.
 135. Vinay, P., E. Allignet, C. Pichette, M. Watford, G. Lemieux, and A. Gougoux. Changes in renal metabolite profile and ammoniagenesis during acute and chronic metabolic acidosis in dog and rat. Kidney Int. 17: 312–325, 1980.
 136. Vinay, P., G. Lemieux, P. Cartier, and M. Ahmad. Effect of fatty acids on renal ammoniagenesis in in vivo and in vitro studies. Am. J. Physiol. 231: 880–887, 1976.
 137. Vinay, P., G. Lemieux, A. Gougoux, and M. Halperin. Regulation of glutamine metabolism in dog kidney in vivo. Kidney Int. 29: 68–79, 1986.
 138. Vishwakarma, P. Reabsorption and secretion of l‐malic acid in kidney proximal tubule. Am. J. Physiol. 202: 572–576, 1962.
 139. Vishwakarma, P. The proximal renal tubular transport of α‐ketoglutaric acid. Can. J. Physiol. Pharmacol. 41: 1099–1104, 1963.
 140. Vishwakarma, P., and W. D. Lotspeich. The excretion of l‐malic acid in relation to the tricarboxylic acid cycle in the kidney. J. Clin. Invest. 38: 414–423, 1959.
 141. Vishwakarma, P., and W. D. Lospeich. Excretion of l‐malic acid in the chicken. Am. J. Physiol. 198: 819–823, 1960.
 142. Windus, D. W., D. E. Cohn, and M. Heifets. Effects of fasting on citrate transport by the brush border membrane of rat kidney. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F678–F682, 1986.
 143. Wirthensohn, G., and W. G. Guder. Renal substrate metabolism. Physiol. Rev. 66: 469–497, 1986.
 144. Wittner, M., C. Weidtke, E. Schlatter, A. Di Stefano, and R. Greger. Substrate utilization in the isolated perfused cortical thick ascending limb of rabbit nephron. Pflugers Arch. 402: 52–62, 1984.
 145. Wright, E. M. Electrophysiology of plasma membrane vesicles. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F363–F372, 1984.
 146. Wright, E. M. Transport of carboxylic acids by renal membrane vesicles. Annu. Rev. Physiol. 47: 127–141, 1985.
 147. Wright, E. M., S. H. Wright, B. Hirayama, and I. Klippen. Interactions between lithium and renal transport of Krebs cycle intermediates. Proc. Natl. Acad. Sci. USA 79: 7514–7517, 1982.
 148. Wright, S. H., B. Hirayama, J. D. Kaunitz, I. Kippen, and E. M. Wright. Kinetics of sodium succinate cotransport across renal brush border membranes. J. Biol. Chem. 258: 5456–5462, 1983.
 149. Wright, S. H., B. Hirayama, I. Kippen, and E. M. Wright. Effect of Na+ and membrane potential on kinetics of succinate transport in renal brush border membranes, abstracted. Federation Proc. 41: 1264, 1982.
 150. Wright, S. H., I. Kippen, J. R. Klinenberg, and E. M. Wright. Specificity of the transport system for tricarboxylic acid cycle intermediates in renal brush borders. J. Membr. Biol. 57: 73–82, 1980.
 151. Wright, S. H., I. Kippen, and E. M. Wright. Effect of pH on the transport of Krebs cycle intermediates in renal brush border membranes. Biochim. Biophys. Acta 684: 287–290, 1982.
 152. Wright, S. H., I. Kippen, and E. M. Wright. Stoichiometry of Na+‐succinate cotransport in renal brush border membranes. J. Biol. Chem. 257: 1773–1778, 1982.
 153. Wright, S. H., S. Krasne, I. Kippen, and E. M. Wright. Na+‐dependent transport of tricarboxylic acid cycle intermediates by renal brush border membranes: effects on fluorescence of a potential‐sensitive cyanine dye. Biochim. Biophys. Acta 640: 767–778, 1981.
 154. Yudkin, J., and R. D. Cohen. The contribution of the kidney to the removal of a lactic acid load under normal and acidotic conditions in the conscious rat. Clin. Sci. Mol. Med. 48: 121–131, 1975.
 155. Zwiebel, R., J. Wichmann, B. Hoehmann, and R. Kinne. Das Verhalten der Pyrimidinnucleotide und einiger Metaboliten in der Nierenrinde der Rate bei Normoxie and Anoxic. Hoppe Seylers Z. Physiol. Chem. 351: 854–864, 1970.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Heini Murer, Michel Manganel, Françoise Roch‐Ramel. Tubular Transport of Monocarboxylates, Krebs Cycle Intermediates, and Inorganic Sulfate. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 2165-2188. First published in print 1992. doi: 10.1002/cphy.cp080247