References |
1. |
Ahearn, G. A., and
H. Murer.
Functional role of Na+ and H+ in SO42− transport by rabbit ileal brush border membrane vesicles.
J. Membr. Biol.
78:
177–186,
1984.
|
2. |
Anaizi, N. H.,
J. J. Cohen,
A. J. Black, and
S. J. Wertheim.
Renal tissue citrate: independence from citrate utilization, reabsorption, and pH.
Am. J. Physiol.
251
(Renal Fluid Electrolyte Physiol. 20):
F547–F561,
1986.
|
3. |
Baestlein, C., and
G. Burckhardt.
Sensitivity of rat renal luminal and contraluminal sulfate transport to DIDS.
Am. J. Physiol.
250
(Renal Fluid Electrolyte Physiol. 19):
F226–F234,
1986.
|
4. |
Balagura, S., and
W. J. Stone.
Renal tubular secretion of α‐ketoglutarate in dog.
Am. J. Physiol.
212:
1319–1326,
1967.
|
5. |
Balagura‐Baruch, S.,
R. L. Burich, and
V. F. King.
Effect of alkalosis on renal citrate metabolism in dogs infused with citrate.
Am. J. Physiol.
225:
385–388,
1973.
|
6. |
Balagura‐Baruch, S.,
R. L. Burich, and
V. F. King.
Pyruvate handling by the intact functioning kidney of the dog.
Am. J. Physiol.
225:
389–392,
1973.
|
7. |
Barac‐Nieto, M.
Renal uptake of p‐aminohippuric acid in vitro: effects of palmitate and l‐carnitine.
Biochim. Biophys. Acta
233:
446–452,
1971.
|
8. |
Barac‐Nieto, M.
Effects of pH, calcium, and succinate on sodium citrate cotransport in renal microvilli.
Am. J. Physiol.
247
(Renal Fluid Electrolyte Physiol. 16):
F282–F290,
1984.
|
9. |
Barac‐Nieto, M.
Renal hydroxybutyrate and acetoacetate reabsorption and utilization in the rat.
Am. J. Physiol.
249
(Renal Fluid Electrolyte Physiol. 18):
F40–F48,
1985.
|
10. |
Barac‐Nieto, M.
Renal absorption and utilization of hydroxybutyrate and acetoacetate in starved rats.
Am. J. Physiol.
251
(Renal Fluid Electrolyte Physiol. 20):
F257–F565,
1986.
|
11. |
Barac‐Nieto, M.,
H. Murer, and
R. Kinne.
Lactate‐sodium cotransport in rat renal brush border membranes.
Am. J. Physiol.
239
(Renal Fluid Electrolyte Physiol. 8):
F496–F506,
1980.
|
12. |
Barac‐Nieto, M.,
H. Murer, and
R. Kinne.
Asymmetry in the transport of lactate by basolateral and brush border membranes of rat kidney cortex.
Pflugers Arch.
392:
366–371,
1982.
|
13. |
Bartlett, S.,
J. Espinal,
P. Janssens, and
P. D. Ross.
The influence on renal function of lactate and glucose metabolism.
Biochem. J.
219:
73–78,
1984.
|
14. |
Baverel, G.,
M. Bonnard, and
M. Pellet.
Lactate and pyruvate metabolism in isolated human kidney tubules.
FEBS Lett.
101:
282–286,
1979.
|
15. |
Berglund, F., and
R. P. Forster.
Renal tubular transport of inorganic divalent ions by the aglomerular marine teleost, Lophius americanus.
J. Gen. Physiol.
41:
429–440,
1958.
|
16. |
Berglund, F.,
C. G. Helander, and
R. B. Howe.
Inorganic sulphate and thiosulphate: transport and competition in renal tubules of the dog.
Am. J. Physiol.
198:
586–594,
1960.
|
17. |
Berglund, F., and
W. D. Lotspeich.
Renal tubular reabsorption of inorganic sulfate in dog as affected by glomerular filtration rate and sodium chloride.
Am. J. Physiol.
185:
533–538,
1956.
|
18. |
Berglund, F., and
W. D. Lotspeich.
Effect of various amino acids on the renal tubular reabsorption of inorganic sulphate in the dog.
Am. J. Physiol.
185:
539–542,
1956.
|
19. |
Bindslev, N., and
E. M. Wright.
Histidyl residues at the active site of the Na/succinate cotransporter in rabbit renal brush borders.
J. Membr. Biol.
81:
159–170,
1984.
|
20. |
Bing, J., and
P. Effersoe.
Comparative tests of the thiosulphate and creatinine clearance in rabbits and cats.
Acta Physiol. Scand.
15:
231–236,
1948.
|
21. |
Blomstedt, J. W., and
P. S. Aronson.
pH gradient‐stimulated transport of urate and p‐aminohippurate in dog renal microvillus membrane vesicles.
J. Clin. Invest
65:
931–934,
1980.
|
22. |
Bond, P. A., and
F. A. Jenner.
The effects of lithium on organic acid excretion.
In: Lithium Research and Therapy,
edited by F. N. Johnson.
London:
Academic,
1975,
p. 499–506.
|
23. |
Brazy, P. C., and
V. W. Dennis.
Sulfate transport in rabbit proximal convoluted tubules: presence of anion exchange.
Am. J. Physiol.
241
(Renal Fluid Electrolyte Physiol. 10):
F300–F307,
1981.
|
24. |
Brazy, P. C.,
L. J. Mandel,
S. R. Gullans, and
S. P. Soltoff.
Interactions between phosphate and oxidative metabolism in proximal renal tubules.
Am. J. Physiol.
247
(Renal Fluid Electrolyte Physiol. 16):
F575–F581,
1984.
|
25. |
Brennan, T. S.,
S. Klahr, and
L. L. Hamm.
Citrate transport in rabbit nephron.
Am. J. Physiol.
251
(Renal Fluid Electrolyte Physiol. 20):
F683–F689,
1986.
|
26. |
Burckhardt, G.
Sodium‐dependent dicarboxylate transport in rat renal basolateral membrane vesicles.
Pflugers Arch.
401:
254–261,
1984.
|
27. |
Burckhardt, G.,
C. Baestlein, and
T. Friedrich.
DIDS: an affinity label for the sulfate transport system in rat renal basolateral but not brush border membrane vesicles.
Pflugers Arch.
403:
R17,
1985.
|
28. |
Cohen, J. J., and
M. Barac‐Nieto.
Renal metabolism of substrates in relation to renal function.
In: Handbook of Physiology. Renal Physiology,
edited by J. Orloff and
R. W. Berliner.
Washington, DC:
Am. Physiol. Soc.,
sect. 8,
1973,
p. 909–1001.
|
29. |
Cohen, J. J.,
F. Berglund, and
W. D. Lotspeich.
Renal tubular reabsorption of acetoacetate, inorganic sulfate and inorganic phosphate in the dog as affected by glucose and phlorizin.
Am. J. Physiol.
184:
91–96,
1956.
|
30. |
Cohen, J. J.,
F. Berglund, and
W. D. Lotspeich.
Interrelations during renal tubular reabsorption in the dog among several anions showing a sensitivity to glucose and phlorizin.
Am. J. Physiol.
189:
331–338,
1957.
|
31. |
Cohen, J. J., and
D. E. Kamm.
Renal metabolism: relation to renal function.
In: The Kidney,
edited by B. M. Brenner and
F. C. Rector, Jr.
Philadelphia:
Saunders,
1981,
p. 144–248.
|
32. |
Cohen, J. J., and
E. Wittmann.
Renal utilization and excretion of α‐ketoglutarate in dog: effects of alkalosis.
Am. J. Physiol.
204:
795–811,
1963.
|
33. |
Cohen, R. D., and
R. E. S. Prout.
Studies on renal transport of citrate using 14C‐citrate.
Clin. Sci.
28:
487–497,
1965.
|
34. |
Craig, F. N.
Renal tubular reabsorption, metabolic utilization and isomeric fractionation of lactic acid in the dog.
Am. J. Physiol.
146:
146–159,
1946.
|
35. |
Dennis, V. W., and
P. C. Brazy.
Divalent anion transport in isolated renal tubules.
Kidney Int.
22:
498–506,
1982.
|
36. |
Dies, F.,
G. Ramos,
E. Avelar, and
M. Lennhoff.
Renal excretion of lactic in the dog.
Am. J. Physiol.
216:
106–111,
1969.
|
37. |
Eggleton, M.G., and
Y. A. Habib.
Sodium thiosulphate excretion in the cat.
J. Physiol. (Lond.)
110:
98–109,
1949.
|
38. |
Ferrier, B.,
M. Martin, and
G. Baverel.
Reabsorption and secretion of α‐ketoglutarate along the rat nephron: a micro‐puncture study.
Am. J. Physiol.
248
(Renal Fluid Electrolyte Physiol. 17):
F404–F412,
1985.
|
39. |
Fonteles, M. C.,
J. J. Cohen,
J. J. Black, and
S. J. Wertheim.
Support of kidney function by long‐chain fatty acids derived from renal tissue.
Am. J. Physiol.
244
(Renal Fluid Electrolyte Physiol. 13):
F235–F246,
1983.
|
40. |
Forster, J.,
P. S. Steels, and
E. L. Boulpaep.
Organic substrate effects on and heterogeneity of Necturus proximal tubule function.
Kidney Int.
17:
479–490,
1980.
|
41. |
Foulks, J.,
P. Brazeau,
E. S. Koelle, and
A. Gilman.
Renal secretion of thiosulfate in the dog.
Am. J. Physiol.
168:
77–85,
1952.
|
42. |
Fritsch, G.,
W. Haase,
G. Rumrich,
H. Fasold, and
K. J. Ullrich.
A stopped flow capillary perfusion method to evaluate contraluminal transport parameters of methylsuccinate from interstitium into renal proximal tubular cells.
Pflugers Arch.
400:
250–256,
1984.
|
43. |
Frömter, E.
Viewing the kidney through microelectrodes.
Am. J. Physiol.
247
(Renal Fluid Electrolyte Physiol. 16):
F695–F705,
1984.
|
44. |
Fukuhara, Y., and
R. J. Turner.
Sodium‐dependent succinate transport in renal outer cortical brush border membrane vesicles.
Am. J. Physiol.
245
(Renal Fluid Electrolyte Physiol. 14):
F374–F381,
1983.
|
45. |
Garcia, M. L.,
J. Benavides, and
F. Valdivieso.
Ketone body transport in renal brush border membrane vesicles.
Biochim. Biophys. Acta
600:
922–930,
1980.
|
46. |
Goudsmit, A., Jr.,
H. M. Power, and
J. L. Bollman.
The excretion of sulfate by the dog.
Am. J. Physiol.
125:
506–520,
1939.
|
47. |
Grassl, S. M.,
E. Heinz, and
R. Kinne.
Effect of K+ and H+ on sodium/citrate cotransport in renal brush border vesicles.
Biochim. Biophys. Acta
736:
178–188,
1983.
|
48. |
Grinstein, S.,
R. J. Turner,
M. Silverman, and
A. Rothstein.
Inorganic anion transport in kidney and intestinal brush border and basolateral membranes.
Am. J. Physiol.
238
(Renal Fluid Electrolyte Physiol. 7):
F452–F460,
1980.
|
49. |
Grollman, A. P.,
W. G. Walker,
H. C. Harrison, and
H. E. Harrison.
Site of reabsorption of calcium and citrate in the renal tubule in the dog.
Am. J. Physiol.
205:
697–701,
1963.
|
50. |
Guder, W. G., and
G. Wirthensohn.
Renal turnover of substrates.
In: Renal Transport of Organic Substances,
edited by R. Greger,
F. Lang, and
S. Silbernagl.
Berlin:
Springer,
1981,
p. 66–77.
|
51. |
Guggino, S. E., and
P. S. Aronson.
Paradoxical effects of pyrazinoate and nicotinate on urate transport in dog renal microvillus membranes.
J. Clin. Invest.
76:
543–547,
1985.
|
52. |
Guggino, S. E.,
G. J. Martin, and
P. S. Aronson.
Specificity and modes of the anion exchanger in dog renal microvillus membranes.
Am. J. Physiol.
244
(Renal Fluid Electrolyte Physiol. 13):
F612–F621,
1983.
|
53. |
Hagenbuch, B.,
G. Stance, and
H. Murer.
Transport of sulphate in rat jejunal and rat proximal tubular basolateral membrane vesicles.
Pflugers Arch.
405:
202–208,
1985.
|
54. |
Herndon, R. F., and
S. Freeman.
Renal citric acid utilization in the dog.
Am. J. Physiol.
192:
369–372,
1958.
|
55. |
Herrin, R. C., and
C. C. Lardinois.
Renal clearance of citrate in dogs.
Proc. Soc. Exp. Biol. Med.
97:
294–297,
1958.
|
56. |
Hierholzer, K.,
R. Cade,
R. Gurd,
R. Kessler, and
R. Pitts.
Stop‐flow analysis of renal reabsorption and excretion of sulfate in the dog.
Am. J. Physiol.
198:
833–837,
1960.
|
57. |
Hirayama, B., and
E. M. Wright.
Asymmetry of the Na+‐succinate cotransporter in rabbit renal brush border membranes.
Biochim. Biophys. Acta
775:
17–21,
1984.
|
58. |
Hirayama, B., and
E. M. Wright.
Coupling between sodium and succinate transport across renal brush border membrane vesicles.
Pflugers Arch.
407:
S174–S179,
1986.
|
59. |
Hoehmann, B.,
P. P. Frohnert,
R. Kinne,
K. Baumann,
F. Papavassiliou, and
M. Wagner.
Proximal tubular lactate transport in rat kidney: a micropuncture study.
Kidney Int.
5:
261–270,
1974.
|
60. |
Jacobsen, C.,
H. Roigaard‐Petersen,
K. E. Jørgensen, and
M. J. Sheikh.
Isolation and partial purification of dicar‐boxylic acid binding protein from luminal membrane vesicles of rabbit kidney cortex.
Biochim. Biophys. Acta
773:
173–179,
1984.
|
61. |
Jenkins, A. D.,
T. P. Dousa, and
L. D. Smith.
Transport of citrate across renal brush border membrane: effects of dietary acid and alkali loading.
Am. J. Physiol.
249
(Renal Fluid Electrolyte Physiol. 18):
F590–F595,
1985.
|
62. |
Jørgensen, K. E.,
U. Kragh‐Hansen,
H. Roigaard‐Petersen, and
M. I. Sheikh.
Citrate uptake by basolateral and luminal membrane vesicles from rabbit kidney cortex.
Am. J. Physiol.
244
(Renal Fluid Electrolyte Physiol. 13):
F686–F695,
1983.
|
63. |
Jørgensen, K. E., and
M. I. Sheikh.
Mechanisms of uptake of ketone bodies by luminal membrane vesicles.
Biochim. Biophys. Acta
814:
23–34,
1985.
|
64. |
Jørgensen, K. E., and
M. I. Sheikh.
Characteristics of uptake of short chain fatty acids by luminal membrane vesicles from rabbit kidney.
Biochim. Biophys. Acta
860:
632–640,
1986.
|
65. |
Kahn, A. M., and
P. S. Aronson.
Urate transport via anion exchange in dog renal microvillus membrane vesicles.
Am. J. Physiol.
244
(Renal Fluid Electrolyte Physiol. 13):
F56–F63,
1983.
|
66. |
Kahn, A. M., and
Branham, E. J. Weinman.
Mechanism of urate and p‐aminohippurate transport in rat renal microvillus membrane vesicles.
Am. J. Physiol.
245
(Renal Fluid Electrolyte Physiol. 14):
F151–F158,
1983.
|
67. |
Kahn, A. M.,
H. Shelat, and
E. J. Weinman.
Urate and p‐aminohippurate transport in rat renal basolateral vesicles.
Am. J. Physiol.
249
(Renal Fluid Electrolyte Physiol. 18):
F654–F661,
1985.
|
68. |
Kahn, A. M., and
E. J. Weinman.
Urate transport in the proximal tubule: in vivo and vesicle studies.
Am. J. Physiol.
249
(Renal Fluid Electrolyte Physiol. 18):
F789–F798,
1985.
|
69. |
Karniski, L. P., and
P. S. Aronson.
Chloride/formate exchange with formic acid recycling: a mechanism of active chloride transport across epithelial membranes.
Proc. Natl. Acad. Sci. USA
82:
6362–6365,
1985.
|
70. |
Kinne, R., and
E. Kinne‐Saffran.
Renal metabolism: coupling of luminal and antiluminal transport processes.
In: The Kidney: Physiology and Pathophysiology,
edited by D. W. Selding and
G. Giebisch.
New York:
Raven,
1985,
p. 719–737.
|
71. |
Kippen, I.,
B. Hirayama,
J. R. Klinenberg, and
E. M. Wright.
Transport of tricarboxylic acid cycle intermediates by membrane vesicles from renal brush border.
Proc. Natl. Acad. Sci. USA
76:
3397–3400,
1979.
|
72. |
Koepsell, H.,
K. Korn,
D. Ferguson,
H. Menuhr,
D. Ollig, and
W. Haase.
Reconstitution and partial purification of several Na+ cotransport systems from renal brush border membranes: properties of the l‐glutamate transporter in proteoliposomes.
J. Biol. Chem.
259:
6548–6558,
1984.
|
73. |
Kook, J. J., and
W. D. Lotspeich.
Citrate excretion during intrarenal arterial precursor infusion in the alkalotic dog.
Am. J. Physiol.
215:
282–288,
1968.
|
74. |
Kragh‐Hansen, U.,
K. E. Jørgensen, and
M. I. Sheikh.
The use of potential‐sensitive cyanine dye for studying iondependent electrogenic renal transport of organic solutes.
Biochem. J.
208:
359–368,
1982.
|
75. |
Kragh‐Hansen, U.,
K. E. Jørgensen, and
M. I. Sheikh.
The use of potential‐sensitive cyanine dye for studying ion‐dependent electrogenic renal transport of organic solutes.
Biochem. J.
208:
369–376,
1982.
|
76. |
Krebs, H. A.,
R. N. Speake, and
R. Hems.
Acceleration of renal gluconeogenesis by ketone bodies and fatty acids.
Biochem. J.
94:
712–720,
1965.
|
77. |
Kurokawa, K.
Use of isolated single nephron segments to study metabolic heterogeneity of the nephron.
Miner. Electrolyte Metab.
9:
260–269,
1983.
|
78. |
Lee, C. R., and
R. J. Pollitt.
The effect of lithium salts on the urinary excretion of some dicarboxylic acids.
Biochem. Soc. Trans.
1:
108–109,
1973.
|
79. |
Levine, R.,
B. Hirayama, and
E. M. Wright.
Sensitivity of renal brush border Na+ cotransport systems to anions.
Biochim. Biophys. Acta
769:
508–510,
1984.
|
80. |
Little, J. R., and
J. J. Spitzer.
Uptake of ketone bodies by dog kidney in vivo.
Am. J. Physiol.
221:
679–863,
1971.
|
81. |
Loew, I.,
T. Friedrich, and
G. Burckhardt.
Properties of an anion exchanger in rat renal basolateral membrane vesicles.
Am. J. Physiol.
246
(Renal Fluid Electrolyte Physiol. 15):
F334–F342,
1984.
|
82. |
Lotspeich, W. D.
Renal tubular reabsorption of inorganic sulphate in the normal dog.
Am. J. Physiol.
151:
311–318,
1947.
|
83. |
Luecke, H.,
G. Stance, and
H. Murer.
Sulphate‐ion/sodium‐ion cotransport by brush border membrane vesicles isolated from rat kidney cortex.
Biochem. J.
182:
223–229,
1979.
|
84. |
Manganel, M.,
F. Roch‐Ramel, and
H. Murer.
Sodium–pyrazinoate cotransport in rabbit renal brush border membrane vesicles.
Am. J. Physiol.
249
(Renal Fluid Electrolyte Physiol. 18):
F400–F408,
1985.
|
85. |
Medow, M. S.,
S. B. Baruch,
O. Gutierrez,
V. F. King, and
E. Leal‐Pinto.
Transport of citric acid by luminal and contraluminal membrane vesicles of dog renal cortex, abstracted.
Federation Proc.
37:
466,
1978.
|
86. |
Mengual, R.,
G. Lebalnc, and
P. Sudaka.
The mechanism of Na+ l‐lactate cotransport by brush border membrane vesicles from horse kidney: analysis by isotopic exchange kinetics of a sequential model and stoichiometry.
J. Biol. Chem.
258:
15071–15078,
1983.
|
87. |
Mengual, R., and
P. Sudaka.
The mechanism of Na+ l‐lactate cotransport by brush border membrane vesicles from horse kidney: analysis of rapid equilibrium kinetics in absence of membrane potential.
J. Membr. Biol.
71:
163–171,
1983.
|
88. |
Mudge, G. H.,
W. O. Berndt,
J. Lockhart, and
A. Saunders.
Renal tubular secretion‐reabsorption of thiosulfate in the dog.
Am. J. Physiol.
216:
843–852,
1969.
|
89. |
Mudge, G. H.,
W. O. Berndt, and
H. Valtin.
Tubular transport of urea, glucose, phosphate, uric acid, sulfate, and thiosulfate.
In: Handbook of Physiology. Renal Physiology,
edited by J. Orloff and
R. W. Berliner.
Washington, DC:
Am. Physiol. Soc.,
1973,
sect. 8,
p. 587–652.
|
90. |
Murer, H.,
J. Biber,
P. Gmaj, and
B. Stieger.
Cellular mechanisms in epithelial transport: advantages and disadvantages of studies with vesicles.
Mol. Physiol.
6:
55–82,
1984.
|
91. |
Murer, H., and
G. Burckhardt.
Membrane transport of anions across epithelia of mammalian small intestine and kidney proximal tubule.
Rev. Physiol. Biochem. Pharmacol.
96:
1–51,
1983.
|
92. |
Murer, H., and
P. Gmaj.
Transport studies in plasma membrane vesicles isolated from renal cortex.
Kidney Int.
30:
171–186,
1986.
|
93. |
Murer, H.,
U. Hopfer, and
R. Kinne.
Sodium/proton antiport in brush border membrane vesicles isolated from rat small intestine and kidney.
Biochem. J.
154:
597–604,
1976.
|
94. |
Murer, H., and
R. Kinne.
The use of isolated membrane vesicles to study epithelial transport processes.
J. Membr. Biol.
55:
81–95,
1980.
|
95. |
Nord, E.,
S. H. Wright,
I. Kippen, and
E. M. Wright.
Pathways for carboxylic acid transport by rabbit renal brush border membrane vesicles.
Am. J. Physiol.
243
(Renal Fluid Electrolyte Physiol. 12):
F456–F462,
1982.
|
96. |
Nord, E. P.,
S. H. Wright,
I. Kippen, and
E. M. Wright.
Specificity of the Na+‐dependent monocarboxylic acid transport pathway in rabbit renal brush border membranes.
J. Membr. Biol.
72:
213–221,
1983.
|
97. |
Oh, M. S.,
J. Uribari,
D. Alveranga,
J. Lazar,
N. Baziliski, and
H. J. Carroll.
Metabolic utilization and renal handling of d‐lactate in men.
Metabolism
34:
621–625,
1985.
|
98. |
Owen, O. E.,
P. Felig,
A. P. Morgan,
J. Wahren, and
G. F. Cahill, Jr.
Liver and kidney metabolism during prolonged starvation.
J. Clin. Invest.
48:
574–583,
1969.
|
99. |
Owen, O. E.,
P. Felig,
R. Sherwin, and
G. Palaiologos.
Ketone utilization and ketone‐amino acid interactions in starvation and diabetes.
In: Biochemical and Clinical Aspects of Ketone Body Metabolism,
edited by H. D. Soeling and
D. C. Seufert.
Stuttgart:
Thieme,
1978,
p. 189–190.
|
100. |
Pritchard, J. B., and
J. L. Renfro.
Renal sulfate transport at the basolateral membrane is mediated by anion exchange.
Proc. Natl. Acad. Sci. USA
80:
2603–2607,
1983.
|
101. |
Sachs, G.,
R. J. Jackson, and
E. C. Rabon.
Use of plasma membrane vesicles.
Am. J. Physiol.
238
(Gastrointest. Liver Physiol. 1):
G151–G164,
1980.
|
102. |
Sacktor, B.,
Transport in membrane vesicles isolated from the mammalian kidney and intestine.
In: Current Topics in Bioenergetics,
edited by R. Sanadi.
New York:
Academic,
1977,
p. 39–81.
|
103. |
Samarzija, J.,
V. Molnar, and
E. Frömter.
The stoichiometry of Na+‐coupled anion absorption across the brush border membrane of rat renal proximal tubule.
Adv. Physiol. Sci. (Kidney Body Fluids)
11:
419–434,
1981.
|
104. |
Schell, R. E.,
B. R. Stevens, and
E. M. Wright.
Kinetics of sodium‐dependent solute transport by rabbit renal and jejunal brush border vesicles using a fluorescent dye.
J. Physiol. (Lond.)
355:
307–318,
1983.
|
105. |
Schell, R. E., and
E. M. Wright.
Electrophysiology of succinate transport across rabbit renal brush border membrane.
J. Physiol. (Lond.)
360:
95–104,
1985.
|
106. |
Schneider, G. E.,
J. C. Durham, and
B. Sacktor.
Sodium‐dependent transport of inorganic sulfate by rabbit renal brush border membrane vesicles.
J. Biol. Chem.
259:
14591–14599,
1984.
|
107. |
Sheikh, M. I.,
U. Kragh‐Hansen,
K. E. Jørgensen, and
H. Roigaard‐Petersen.
An efficient method for the isolation and separation of basolateral membrane and luminal membrane vesicles from rabbit kidney cortex.
Biochem. J.
208:
377–382,
1982.
|
108. |
Sheridan, E.,
G. Rumrich, and
K. J. Ullrich.
Reabsorption of dicarboxylic acids from the proximal convolution of rat kidney.
Pflugers Arch.
399:
18–28,
1983.
|
109. |
Shimada, H., and
G. Burckhardt.
Kinetic studies on sulfate transport in basolateral membrane vesicles from rat renal cortex.
Pflugers Arch.
407:
S160‐S167,
1986.
|
110. |
Silva, P.,
R. Hallac,
K. Spokes, and
F. H. Epstein.
Relationship among gluconeogenesis, QO2, and Na+ transport in the perfused rat kidney.
Am. J. Physiol.
242
(Renal Fluid Electrolyte Physiol. 11):
F508–F513,
1982.
|
111. |
Simpson, D. P.
Citrate excretion: a window on renal metabolism.
Am. J. Physiol.
244
(Renal Fluid Electrolyte Physiol. 9):
F223–F234,
1983.
|
112. |
Stolte, H.,
R. G. Galaske,
G. M. Eisenbach,
C. Lechene,
B. Schmidt‐Nielsen, and
J. W. Boylan.
Renal tubule ion transport and collecting duct function in the elasmobranch little skate Rajaerinacea.
J. Exp. Zool.
199:
403–410,
1977.
|
113. |
Trimble, M. E.
Transport and metabolism of octanoate by the perfused rat kidney.
Am. J. Physiol.
237
(Renal Fluid Electrolyte Physiol. 6):
F210–F217,
1979.
|
114. |
Trimble, M. E.
Long chain fatty acid transport by the perfused rat kidney.
Renal Physiol.
5:
136–142,
1982.
|
115. |
Trimble, M. E.,
W. W. Harrington, Jr., and
R. H. Bowman.
Fatty acid transport and metabolism in the isolated perfused rat kidney.
Curr. Probl. Clin. Biochem.
8:
362–370,
1977.
|
116. |
Turner, R. J.
Quantitative studies of cotransport systems: models and vesicles.
J. Membr. Biol.
76:
1–15,
1983.
|
117. |
Turner, R. J.
Sodium‐dependent sulfate transport in renal outer cortical brush border membrane vesicles.
Am. J. Physiol.
247
(Renal Fluid Electrolyte Physiol. 16):
F793–F798,
1984.
|
118. |
Ullrich, K. J.,
H. Fasold,
G. Rumrich, and
S. Kloess.
Secretion and contraluminal uptake of dicarboxylic acids in the proximal convolution of rat kidney.
Pflugers Arch.
400:
241–249,
1984.
|
119. |
Ullrich, K. J., and
H. Murer.
Sulphate and phosphate transport in the renal proximal tubule.
Philos. Trans. R. Soc. Lond. [Biol.]
299:
549–558,
1982.
|
120. |
Ullrich, K. J., and
G. Rumrich.
Contraluminal transport systems in the proximal tubule involved in secretion of organic anions.
Am. J. Physiol.
254
(Renal Fluid Electrolyte Physiol. 23):
F453–F462,
1988.
|
121. |
Ullrich, K. J., and
F. Papavassiliou.
Contraluminal transport of small aliphatic carboxylates in the proximal tubule of the rat kidney in situ.
Pflugers Arch.
407:
488–492,
1986.
|
122. |
Ullrich, K. J.,
G. Rumrich,
G. Fritzsch, and
S. Kloess.
Contraluminal para‐aminohippurate (PAH) transport in the proximal tubule of the rat kidney. I. Kinetics, influence of cations, anions and capillary preperfusion.
Pflugers Arch.
409:
229–235,
1987.
|
123. |
Ullrich, K. J.,
G. Rumrich,
G. Fritzsch, and
S. Kloess.
Contraluminal para‐aminohippurate (PAH) transport in the proximal tubule of the rat kidney. II. Specificity: alphatic dicarboxylic acids.
Pflugers Arch.
408:
38–45,
1986.
|
124. |
Ullrich, K. J.,
G. Rumrich, and
S. Kloess.
Active sulfate reabsorption in the proximal convolution of the rat kidney: specificity, Na+ and HCO3− dependence.
Pflugers Arch.
383:
159–163,
1980.
|
125. |
Ullrich, K. J.,
G. Rumrich, and
S. Kloess.
Bidirectional active transport of thiosulfate in the proximal convolution of the rat kidney.
Pflugers Arch.
387:
127–132,
1980.
|
126. |
Ullrich, K. J.,
G. Rumrich, and
S. Kloess.
Reabsorption of monocarboxylic acids in the proximal tubule of the rat kidney. I. Transport kinetics of d‐lactate, Na+‐dependence, pH‐dependence and effect of inhibitors.
Pflugers Arch.
395:
212–219,
1982.
|
127. |
Ullrich, K. J.,
G. Rumrich, and
S. Kloess.
Reabsorption of monocarboxylic acids in the proximal tubule of the rat kidney. II. Specificity for aliphatic compounds.
Pflugers Arch.
395:
220–226,
1982.
|
128. |
Ullrich, K. J.,
G. Rumrich, and
S. Kloess.
Reabsorption of monocarboxylic acids in the proximal tubule of the rat kidney. III. Specificity for aromatic compounds.
Pflugers Arch.
395:
227–231,
1982.
|
129. |
Ullrich, K. J.,
G. Rumrich, and
S. Kloess.
Transport of inorganic and organic substances in the renal proximal tubule.
Klin. Wochenschr.
60:
1165–1172,
1982.
|
130. |
Ullrich, K. J.,
G. Rumrich, and
S. Kloess.
Contraluminal sulfate transport in the proximal tubule of the rat kidney. I. Kinetics, effects of K+, Na+, Ca2+, H+, and anions.
Pflugers Arch.
402:
264–271,
1984.
|
131. |
Ullrich, K. J.,
G. Rumrich, and
S. Kloess.
Contraluminal sulfate transport in the proximal tubule of the rat kidney. II. Specificity: sulfate‐ester, sulfonates and amino sulfonates.
Pflugers Arch.
404:
293–299,
1985.
|
132. |
Ullrich, K. J.,
G. Rumrich, and
S. Kloess.
Contraluminal sulfate transport in the proximal tubule of the rat kidney. III. Specificity: disulfonates, di‐ and tri‐carboxylates and sulfo‐carboxylates.
Pflugers Arch.
404:
300–306,
1985.
|
133. |
Ullrich, K. J.,
G. Rumrich, and
S. Kloess.
Contraluminal sulfate transport in the proximal tubule of the rat kidney. IV. Specificity: salicylate analogs.
Pflugers Arch.
404:
307–310,
1985.
|
134. |
Ullrich, K. J.,
G. Rumrich, and
S. Kloess.
Contraluminal sulfate transport in the proximal tubule of the rat kidney. V. Specificity: phenolphthaleins, sulfonphthaleins, and other sulfodyes, sulfamoyl compounds and diphenylamine‐2‐carboxylates.
Pflugers Arch.
404:
311–318,
1985.
|
135. |
Vinay, P.,
E. Allignet,
C. Pichette,
M. Watford,
G. Lemieux, and
A. Gougoux.
Changes in renal metabolite profile and ammoniagenesis during acute and chronic metabolic acidosis in dog and rat.
Kidney Int.
17:
312–325,
1980.
|
136. |
Vinay, P.,
G. Lemieux,
P. Cartier, and
M. Ahmad.
Effect of fatty acids on renal ammoniagenesis in in vivo and in vitro studies.
Am. J. Physiol.
231:
880–887,
1976.
|
137. |
Vinay, P.,
G. Lemieux,
A. Gougoux, and
M. Halperin.
Regulation of glutamine metabolism in dog kidney in vivo.
Kidney Int.
29:
68–79,
1986.
|
138. |
Vishwakarma, P.
Reabsorption and secretion of l‐malic acid in kidney proximal tubule.
Am. J. Physiol.
202:
572–576,
1962.
|
139. |
Vishwakarma, P.
The proximal renal tubular transport of α‐ketoglutaric acid.
Can. J. Physiol. Pharmacol.
41:
1099–1104,
1963.
|
140. |
Vishwakarma, P., and
W. D. Lotspeich.
The excretion of l‐malic acid in relation to the tricarboxylic acid cycle in the kidney.
J. Clin. Invest.
38:
414–423,
1959.
|
141. |
Vishwakarma, P., and
W. D. Lospeich.
Excretion of l‐malic acid in the chicken.
Am. J. Physiol.
198:
819–823,
1960.
|
142. |
Windus, D. W.,
D. E. Cohn, and
M. Heifets.
Effects of fasting on citrate transport by the brush border membrane of rat kidney.
Am. J. Physiol.
251
(Renal Fluid Electrolyte Physiol. 20):
F678–F682,
1986.
|
143. |
Wirthensohn, G., and
W. G. Guder.
Renal substrate metabolism.
Physiol. Rev.
66:
469–497,
1986.
|
144. |
Wittner, M.,
C. Weidtke,
E. Schlatter,
A. Di Stefano, and
R. Greger.
Substrate utilization in the isolated perfused cortical thick ascending limb of rabbit nephron.
Pflugers Arch.
402:
52–62,
1984.
|
145. |
Wright, E. M.
Electrophysiology of plasma membrane vesicles.
Am. J. Physiol.
246
(Renal Fluid Electrolyte Physiol. 15):
F363–F372,
1984.
|
146. |
Wright, E. M.
Transport of carboxylic acids by renal membrane vesicles.
Annu. Rev. Physiol.
47:
127–141,
1985.
|
147. |
Wright, E. M.,
S. H. Wright,
B. Hirayama, and
I. Klippen.
Interactions between lithium and renal transport of Krebs cycle intermediates.
Proc. Natl. Acad. Sci. USA
79:
7514–7517,
1982.
|
148. |
Wright, S. H.,
B. Hirayama,
J. D. Kaunitz,
I. Kippen, and
E. M. Wright.
Kinetics of sodium succinate cotransport across renal brush border membranes.
J. Biol. Chem.
258:
5456–5462,
1983.
|
149. |
Wright, S. H.,
B. Hirayama,
I. Kippen, and
E. M. Wright.
Effect of Na+ and membrane potential on kinetics of succinate transport in renal brush border membranes, abstracted.
Federation Proc.
41:
1264,
1982.
|
150. |
Wright, S. H.,
I. Kippen,
J. R. Klinenberg, and
E. M. Wright.
Specificity of the transport system for tricarboxylic acid cycle intermediates in renal brush borders.
J. Membr. Biol.
57:
73–82,
1980.
|
151. |
Wright, S. H.,
I. Kippen, and
E. M. Wright.
Effect of pH on the transport of Krebs cycle intermediates in renal brush border membranes.
Biochim. Biophys. Acta
684:
287–290,
1982.
|
152. |
Wright, S. H.,
I. Kippen, and
E. M. Wright.
Stoichiometry of Na+‐succinate cotransport in renal brush border membranes.
J. Biol. Chem.
257:
1773–1778,
1982.
|
153. |
Wright, S. H.,
S. Krasne,
I. Kippen, and
E. M. Wright.
Na+‐dependent transport of tricarboxylic acid cycle intermediates by renal brush border membranes: effects on fluorescence of a potential‐sensitive cyanine dye.
Biochim. Biophys. Acta
640:
767–778,
1981.
|
154. |
Yudkin, J., and
R. D. Cohen.
The contribution of the kidney to the removal of a lactic acid load under normal and acidotic conditions in the conscious rat.
Clin. Sci. Mol. Med.
48:
121–131,
1975.
|
155. |
Zwiebel, R.,
J. Wichmann,
B. Hoehmann, and
R. Kinne.
Das Verhalten der Pyrimidinnucleotide und einiger Metaboliten in der Nierenrinde der Rate bei Normoxie and Anoxic.
Hoppe Seylers Z. Physiol. Chem.
351:
854–864,
1970.
|