Comprehensive Physiology Wiley Online Library

Renal Metabolism: Integrated Responses

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Methodological Considerations
2 Coupling of Metabolism to Transport
2.1 Oxidative vs. Glycolytic Metabolism in the Mammalian Kidney
2.2 Stoichiometry of Transepithelial Na+ Transport to QO2
2.3 Transport as the Pacemaker of Respiration
2.4 Control of Transport by Metabolism
3 Metabolic Substrate Utilization by the Kidney
3.1 Metabolic Heterogeneity of the Kidney
3.2 Metabolism of Glucose
3.3 Lactate Metabolism
3.4 Pyruvate Metabolism
3.5 Renal Lipid Metabolism
3.6 Amino Acid Metabolism
3.7 Citrate Metabolism
3.8 Ketone Metabolism
4 Synthetic Functions of the Kidney
4.1 Gluconeogenesis
4.2 Alanine
4.3 Serine
5 Renal Phospholipid Metabolism
5.1 Phospholipid Composition of Kidney
5.2 Metabolism of Specific Renal Phospholipids
6 Metabolism of Membrane Proteins in Kidney
6.1 Phosphorylation of Membrane Proteins
6.2 ADP‐Ribosylation
Figure 1. Figure 1.

QO2 as function of net sodium reabsorption in whole dog kidney. •, Control; ○, hypoxia; □, hydrochlorothiazide.

Adapted from Thurau 531
Figure 2. Figure 2.

QO2 (nmol O2/min/mg) traces of renal proximal tubules, indicated by numbers next to traces. A: Added digitonin (Dig), 0.1 mg/mg protein; ADP, 0.38 mM. B: Added nystatin (NYS), 0.026 mg/mg protein; ouabain (Oub), 60 μM. C: Added ouabain, 60 μM; nystatin 0.018 mg/mg protein.

Adapted from Harris et al. 236
Figure 3. Figure 3.

Uptake of K+ and QO2 in K+‐depleted isolated renal tubules. Double‐headed arows indicate initial rate period. During this 18 s interval, K+ uptake was 239 nmol of K+/ml, and QO2 was 20.4 nmol/ml, yielding K+/O2 ratio of 11.7.

From Harris et al. 237
Figure 4. Figure 4.

Schematic of renal proximal cell, showing relationship between mitochondrial ATP production and utilization of ATP by Na+,K+‐ATPase. x = tubular solutes reabsorbed coupled to Na+.

Figure 5. Figure 5.

Dependence of Na+,K+‐ATPase activity of proximal tubule membranes (solid line) and sodium pump activity of intact proximal tubules (broken line) on ATP concentration.

From Soltoff and Mandel 514
Figure 6. Figure 6.

Major renal metabolic substrates include glucose, lactate, fatty acids, glutamine, and citrate. Shown are their carbon structures and where each enters citric acid cycle to be oxidized.

Figure 7. Figure 7.

[14C]O2 production from various substrates in isolated, single proximal convoluted tubules (top) and cortical thick ascending limbs (bottom) from rats.

From Klein et al. 312
Figure 8. Figure 8.

Lactate production from glucose by various isolated rat nephron segments in vitro. PROX, proximal tubule; CAL, cortical ascending limb; MAL, medullary ascending limb; DCT, distal convoluted tubule; CCT, cortical convoluted tubule; OMCD, outer medullary collecting duct; IMCD, inner medullary collecting duct.

From Bagnasco et al. 16
Figure 9. Figure 9.

Substrate support of active transport (given as percentage of control equivalent short‐circuit current [Isc]) in isolated perfused cortical thick ascending limbs (cTAL) from rabbits, a: Substrates that supported transport, b: Substrates with poorly supported transport. Substrates ranged in concentration from 0.25 to 10 mmol and were presented in either peritubular solution only (hatched bars) or both the peritubular and luminal solutions (open bars).

From Wittner et al. 592
Figure 10. Figure 10.

Simplified schematic of various pathways of glucose metabolism: glycolysis, complete oxidation to CO2 in citric acid cycle (tricarboxylic or Krebs cycle), pentose phosphate pathway (hexose monophosphate shunt), and glucuronate xylulose (glucuronic acid oxidation pathway). Only initial steps shown (except for glycolysis). Pentose phosphate and glucuronate pathways both produce riboses (and can intersect through xylulose‐5‐phosphate). , hexokinase; , phosphofructokinase; , pyruvate dehydrogenase complex; , lactate dehydrogenase; and , glucose‐6‐phosphate dehydrogenase. Sites of distinct enzymes for gluconeogenesis shown as dashed arrows.

Figure 11. Figure 11.

Oleate metabolism in isolated rat cortical tubule suspensions. As oleate concentration in medium is raised, proportion incorporated into lipids increases. Symbols are data points from which the lines were drawn.

From Wirthensohn and Guder 587
Figure 12. Figure 12.

Renal arteriovenous whole‐blood concentration differences in humans for various amino acids derived from data of Tizianello et al. 535. Numbers in parentheses are arterial whole‐blood concentrations in μM. *, Statistically significant; ‡ for glycine, although whole‐blood uptake by kidney was not significant, plasma arteriovenous difference was significant (20.4 ± 6.15 μM), as demonstrated in other studies 423.

Figure 13. Figure 13.

Citrate metabolism by nephrons in humans. Circled numbers are μM/min. Most filtered citrate is reabsorbed and metabolized; lesser amount escapes reabsorption and is excreted. Citrate also taken up across basolateral membrane.

From Simpson 499
Figure 14. Figure 14.

Metabolism of ketone bodies. , β‐Hydroxybutyrate dehydrogenase; , 3‐oxoacid‐CoA transferase; , acetoacetyl‐CoA thiolase.

Figure 15. Figure 15.

Pathways and rate‐limiting enzymes of gluconeogenesis. PEP, phosphoenolpyruvate; PEPCK, phosphoenolpyruvate carboxy kinase.

see text for additional details
Figure 16. Figure 16.

Effects of fasting on alanine uptake or release across liver, gut, and renal beds. Dogs were fasted for 18 h (open bars), 48 h (hatched bars), or 96 h (dotted bars).

Adapted from Miller et al. 394
Figure 17. Figure 17.

Possible pathways of serine synthesis by kidney. Enzymes of phosphorylated intermediate pathway are (1), 3‐phosphoglycerate dehydrogenase; (2), phosphoserine aminotransferase; (3), phosphoserine phosphatase. Enzymes of nonphosphorylated pathway are (4), 2‐phosphoglycerate phosphatase; (5), D‐glycerate dehydrogenase; (6), alanine‐hydroxypyruvate aminotransferase. Serine synthesis from glycine is accomplished by glycine cleavage complex (7) and serine hydroxymethyltransferase (8). D‐glycerate kinase (9) is also indicated.

Adapted from Lowry et al. 362
Figure 18. Figure 18.

Conversion of glycine to serine is catalyzed by serine transhydroxymethylase, a reversible reaction.

Figure 19. Figure 19.

General formula for diacylphosphoglyceride.

From Montgomery 399
Figure 20. Figure 20.

Schematic cross‐sectional view of phospholipid bilayer. Filled circles represent ionic and polar head groups of phospholipid molecules, which make contact with water; wavy lines represent fatty acid chains.

From Singer and Nicolson 502
Figure 21. Figure 21.

General formulas for alkyl ether phosphoglyceride and plasmalogen.

From Montgomery 399
Figure 22. Figure 22.

Kennedy pathway of phosphatidylcholine biosynthesis. Choline enters renal cells and is subsequently converted to phosphatidylcholine. Substrate 1,2‐diacylglycerol is synthesized from glucose and fatty acids. Phosphatidylcholine‐lysophosphatidylcholine cycle is mediated by opposing actions of acyltransferases and phospholipases.

From Toback 538
Figure 23. Figure 23.

Metabolism of phosphatidylinositol and polyphosphoinositides. CDP‐DG, CDP‐diglyceride; 1,2‐DG, 1,2‐diglyceride; IP, inositol‐1‐phosphate; IP2, inositol‐1,4‐diphosphate; IP3, inositol‐1,4,5‐triphosphate; 2MG, 2‐monoglyceride; PA, phosphatidic acid; PI, phosphatidylinositol; PI‐4P, phosphatidylinositol‐4‐phosphate; PI‐4,5P2, phosphatidylinositol‐4,5‐diphosphate.

From Majerus et al. 369


Figure 1.

QO2 as function of net sodium reabsorption in whole dog kidney. •, Control; ○, hypoxia; □, hydrochlorothiazide.

Adapted from Thurau 531


Figure 2.

QO2 (nmol O2/min/mg) traces of renal proximal tubules, indicated by numbers next to traces. A: Added digitonin (Dig), 0.1 mg/mg protein; ADP, 0.38 mM. B: Added nystatin (NYS), 0.026 mg/mg protein; ouabain (Oub), 60 μM. C: Added ouabain, 60 μM; nystatin 0.018 mg/mg protein.

Adapted from Harris et al. 236


Figure 3.

Uptake of K+ and QO2 in K+‐depleted isolated renal tubules. Double‐headed arows indicate initial rate period. During this 18 s interval, K+ uptake was 239 nmol of K+/ml, and QO2 was 20.4 nmol/ml, yielding K+/O2 ratio of 11.7.

From Harris et al. 237


Figure 4.

Schematic of renal proximal cell, showing relationship between mitochondrial ATP production and utilization of ATP by Na+,K+‐ATPase. x = tubular solutes reabsorbed coupled to Na+.



Figure 5.

Dependence of Na+,K+‐ATPase activity of proximal tubule membranes (solid line) and sodium pump activity of intact proximal tubules (broken line) on ATP concentration.

From Soltoff and Mandel 514


Figure 6.

Major renal metabolic substrates include glucose, lactate, fatty acids, glutamine, and citrate. Shown are their carbon structures and where each enters citric acid cycle to be oxidized.



Figure 7.

[14C]O2 production from various substrates in isolated, single proximal convoluted tubules (top) and cortical thick ascending limbs (bottom) from rats.

From Klein et al. 312


Figure 8.

Lactate production from glucose by various isolated rat nephron segments in vitro. PROX, proximal tubule; CAL, cortical ascending limb; MAL, medullary ascending limb; DCT, distal convoluted tubule; CCT, cortical convoluted tubule; OMCD, outer medullary collecting duct; IMCD, inner medullary collecting duct.

From Bagnasco et al. 16


Figure 9.

Substrate support of active transport (given as percentage of control equivalent short‐circuit current [Isc]) in isolated perfused cortical thick ascending limbs (cTAL) from rabbits, a: Substrates that supported transport, b: Substrates with poorly supported transport. Substrates ranged in concentration from 0.25 to 10 mmol and were presented in either peritubular solution only (hatched bars) or both the peritubular and luminal solutions (open bars).

From Wittner et al. 592


Figure 10.

Simplified schematic of various pathways of glucose metabolism: glycolysis, complete oxidation to CO2 in citric acid cycle (tricarboxylic or Krebs cycle), pentose phosphate pathway (hexose monophosphate shunt), and glucuronate xylulose (glucuronic acid oxidation pathway). Only initial steps shown (except for glycolysis). Pentose phosphate and glucuronate pathways both produce riboses (and can intersect through xylulose‐5‐phosphate). , hexokinase; , phosphofructokinase; , pyruvate dehydrogenase complex; , lactate dehydrogenase; and , glucose‐6‐phosphate dehydrogenase. Sites of distinct enzymes for gluconeogenesis shown as dashed arrows.



Figure 11.

Oleate metabolism in isolated rat cortical tubule suspensions. As oleate concentration in medium is raised, proportion incorporated into lipids increases. Symbols are data points from which the lines were drawn.

From Wirthensohn and Guder 587


Figure 12.

Renal arteriovenous whole‐blood concentration differences in humans for various amino acids derived from data of Tizianello et al. 535. Numbers in parentheses are arterial whole‐blood concentrations in μM. *, Statistically significant; ‡ for glycine, although whole‐blood uptake by kidney was not significant, plasma arteriovenous difference was significant (20.4 ± 6.15 μM), as demonstrated in other studies 423.



Figure 13.

Citrate metabolism by nephrons in humans. Circled numbers are μM/min. Most filtered citrate is reabsorbed and metabolized; lesser amount escapes reabsorption and is excreted. Citrate also taken up across basolateral membrane.

From Simpson 499


Figure 14.

Metabolism of ketone bodies. , β‐Hydroxybutyrate dehydrogenase; , 3‐oxoacid‐CoA transferase; , acetoacetyl‐CoA thiolase.



Figure 15.

Pathways and rate‐limiting enzymes of gluconeogenesis. PEP, phosphoenolpyruvate; PEPCK, phosphoenolpyruvate carboxy kinase.

see text for additional details


Figure 16.

Effects of fasting on alanine uptake or release across liver, gut, and renal beds. Dogs were fasted for 18 h (open bars), 48 h (hatched bars), or 96 h (dotted bars).

Adapted from Miller et al. 394


Figure 17.

Possible pathways of serine synthesis by kidney. Enzymes of phosphorylated intermediate pathway are (1), 3‐phosphoglycerate dehydrogenase; (2), phosphoserine aminotransferase; (3), phosphoserine phosphatase. Enzymes of nonphosphorylated pathway are (4), 2‐phosphoglycerate phosphatase; (5), D‐glycerate dehydrogenase; (6), alanine‐hydroxypyruvate aminotransferase. Serine synthesis from glycine is accomplished by glycine cleavage complex (7) and serine hydroxymethyltransferase (8). D‐glycerate kinase (9) is also indicated.

Adapted from Lowry et al. 362


Figure 18.

Conversion of glycine to serine is catalyzed by serine transhydroxymethylase, a reversible reaction.



Figure 19.

General formula for diacylphosphoglyceride.

From Montgomery 399


Figure 20.

Schematic cross‐sectional view of phospholipid bilayer. Filled circles represent ionic and polar head groups of phospholipid molecules, which make contact with water; wavy lines represent fatty acid chains.

From Singer and Nicolson 502


Figure 21.

General formulas for alkyl ether phosphoglyceride and plasmalogen.

From Montgomery 399


Figure 22.

Kennedy pathway of phosphatidylcholine biosynthesis. Choline enters renal cells and is subsequently converted to phosphatidylcholine. Substrate 1,2‐diacylglycerol is synthesized from glucose and fatty acids. Phosphatidylcholine‐lysophosphatidylcholine cycle is mediated by opposing actions of acyltransferases and phospholipases.

From Toback 538


Figure 23.

Metabolism of phosphatidylinositol and polyphosphoinositides. CDP‐DG, CDP‐diglyceride; 1,2‐DG, 1,2‐diglyceride; IP, inositol‐1‐phosphate; IP2, inositol‐1,4‐diphosphate; IP3, inositol‐1,4,5‐triphosphate; 2MG, 2‐monoglyceride; PA, phosphatidic acid; PI, phosphatidylinositol; PI‐4P, phosphatidylinositol‐4‐phosphate; PI‐4,5P2, phosphatidylinositol‐4,5‐diphosphate.

From Majerus et al. 369
References
 1. Abodeely, D. A. and J. B. Lee. Fuel of respiration of the outer renal medulla. Am. J. Physiol. 220: 1693–1700, 1971.
 2. Acara, M., and B. Rennick. Renal tubular transport of choline: modifications caused by intrarenal metabolism. J. Pharmacol. Exp. Ther. 182: 1–13, 1972.
 3. Aikawa, T., H. Matsutaka, H. Yamamoto, T. Okuda, E. Ishikawa, T. Kawano, and E. Matsumura. Gluconeogenesis and amino acid metabolism. II. Interorgan relations and roles of glutamine and alanine in the amino acid metabolism of fasted rats. J. Biochem. (Tokyo) 74: 1003–1017, 1973.
 4. Aithal, H. N., M. M. Walsh‐Reitz, and F. G. Toback. Regulation of glyceraldehyde‐3‐phosphate dehydrogenase by a cytosolic protein. Am. J. Physiol. 249 (Cell Physiol. 18): C111–C116, 1985.
 5. Akerboom, T. P. M., H. Bookelman, P. K. Zuurendonk, R. Van Der Meer, and J. M. Tager. Intramitochondrial and extramitochondrial concentrations of adenine nucleotides and inorganic phosphate in isolated hepatocytes from fasted rats. Eur. J. Biochem. 84: 413–420, 1978.
 6. Alcorn, D., K. R. Emslie, B. D. Ross, G. B. Ryan, and J. D. Tange. Selective distal nephron damage during isolated kidney perfusion. Kidney Int. 19: 638–647, 1981.
 7. Allen, F., and C. C. Tisher. Morphology of the ascending thick limb of Henle. Kidney Int. 9: 8–22, 1976.
 8. Alleyne, G. A. O., H. Flores, and A. Roobol. The inter‐relationship of the concentration of hydrogen ions, bicarbonate ions, carbon dioxide and calcium ions in the regulation of renal gluconeogenesis in the rat. Biochem. J. 136: 445–453, 1973.
 9. Aloia, J. F. Monosaccharides and polyols in diabetes mellitus and uremia. J. Lab. Clin. Med. 82: 809–817, 1973.
 10. Andreoli, T. E., and J. A. Schafer. Effective luminal hypotonicity: the driving force for isotonic proximal tubular fluid absorption. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F89–F96, 1979.
 11. Andrews, P. M. and A. K. Coffey. Protection of kidneys from acute renal failure resulting from normothermic ischemia. Lab Invest. 49: 87–98, 1983.
 12. Angielsky, S., and J. Lukovicz. The role of the kidney in the removal of ketone bodies under different acid‐base status of the rat. Am. J. Clin. Nutr. 31: 1635–1641, 1978.
 13. Artom, C. Methylation of phosphatidyl monomethylethanolanine in liver preparations. Biochem. Biophys. Res. Commun. 15: 201–206, 1964.
 14. Aukland, K. Hemoglobin oxygen saturation in the dog kidney. Acta Physiol. Scand. 56: 315–323, 1962.
 15. Aukland, K., J. Johannesen, and F. Kiil. In vivo measurements of local metabolic rate in the dog kidney: effect of mersalyl, chlorothiazide, ethacrynic acid and furosemide. Scand. J. Clin. Lab. Invest. 23: 317–330, 1969.
 16. Bagnasco, S., D. Good, R. Balaban, and M. Burg. Lactate production in isolated segments of the rat nephron. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F522–F526, 1985.
 17. Bagnasco, S., R. Balaban, H. M. Fales, Y. M. Yang, and M. Burg. Predominant osmotically active organic solutes in rat and rabbit renal medullas. J. Biol. Chem. 261: 5872–5877, 1986.
 18. Bagnasco, S., S. Uchida, R. Balaban, P. Kador, and M. Burg. Induction of aldose reductase and sorbitol in renal inner medullary cells by elevated extracellular NaCl. Proc. Natl. Acad. Sci. USA 84: 1718–1720, 1987.
 19. Bagnasco, S. M., D. S. Gaydos, H. Risquez, and H. G. Preuss. The regulation of renal ammoniagenesis in the rat by extracellular factors. III. Effects of various fuels on in vitro ammoniagenesis. Metabolism 32: 900–905, 1983.
 20. Baines, A. D., and B. D. Ross. Nonoxidative glucose metabolism: a prerequisite for formation of dilute urine. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F491–F498, 1982.
 21. Baines, A. D., and B. D. Ross. Substrate‐dependency of noradrenaline‐modified ion and water transport in the perfused rat kidney. In: Biochemistry of Kidney Functions, edited by F. Morel. Amsterdam: Elsevier Biomedical Press, 1982, INSERM Symposium No. 21, p. 187–194.
 22. Balaban, R. S. Nuclear magnetic resonance studies of epithelial metabolism and function. Federation Proc. 41: 42–47, 1982.
 23. Balaban, R. S., V. W. Dennis, and L. J. Mandel. Microfluorometric monitoring of NAD redox state in isolated perfused renal tubules. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F337–F342, 1981.
 24. Balaban, R. S., D. G. Gadian, and G. K. Radda. Phosphorus nuclear magnetic resonance study of the rat kidney in vivo. Kidney Int. 20: 575–579, 1981.
 25. Balaban, R. S., and L. J. Mandel. Metabolic substrate utilization by the rabbit proximal tubule. An NADH fluorescence study. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F407–F416, 1988.
 26. Balaban, R. S., L. J. Mandel, S. Soltoff, and J. M. Storey. Coupling of Na‐K‐ATPase activity to aerobic respiratory rate in isolated cortical tubules from the rabbit kidney. Proc. Natl. Acad. Sci. USA 77: 447–451, 1980.
 27. Balaban, R. S., S. Soltoff, J. M. Storey, and L. J. Mandel. Improved renal cortical tubule suspension: spectrophotometric study of O2 delivery. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F50–F59, 1980.
 28. Balaban, R. S., and A. L. Sylvia. Spectrophotometric monitoring of O2 delivery to the exposed rat kidney. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F257–F262, 1981.
 29. Balagura‐Baruch, S., R. L. Burich, and V. F. King. Effects of alkalosis on renal citrate metabolism in dogs infused with citrate. Am. J. Physiol. 225: 385–388, 1973.
 30. Balagura‐Baruch, S., R. L. Burich, and V. F. King. Pyruvate handling by the intact functioning kidney of the dog. Am. J. Physiol. 225: 389–392, 1973.
 31. Banfic, H., N. Pokrajac, and R. F. Irvine. Incorporation of 32P into phospholipids in vivo during compensatory renal growth. Biochim. Biophys. Acta 833: 223–228, 1985.
 32. Bannister, D. W., and M. E. Cleland. The biochemistry of fatty liver and kidney syndrome of the fowl (Gallus domesticus): effects of fasting and fasting/re‐feeding on renal gluconeogenesis in chicks fed on the syndrome‐inducing diet. Int. J. Biochem. 9: 531–537, 1979.
 33. Bannister, D. W., A. J. Evans and C. C. Whitehead. Evidence for a lesion in carbohydrate metabolism in fatty liver and kidney syndrome in chicks. Res. Vet. Sci. 18: 149–156, 1975.
 34. Barac‐Nieto, M. Renal uptake of p‐aminohippuric acid in vitro: effects of palmitate and l‐carnitine. Biochim. Biophys. Acta 233: 446–452, 1971.
 35. Barac‐Nieto, M. Effects of lactate and glutamine on palmitate metabolism in rat kidney cortex. Am. J. Physiol. 231: 14–19, 1976.
 36. Barac‐Nieto, M. Effects of pH, calcium, and succinate on sodium citrate cotransport in renal microvilli. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F282–F290, 1984.
 37. Barac‐Nieto, M. Renal hydroxybutyrate and acetoacetate reabsorption and utilization in the rat. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F40–F48, 1985.
 38. Barac‐Nieto, M., and J. J. Cohen. Nonesterified fatty acid uptake by dog kidney: effects of probenecid and chlorothiazide. Am. J. Physiol. 215: 98–107, 1968.
 39. Barac‐Nieto, M., and J. J. Cohen. The metabolic fates of palmitate in the dog kidney in vivo: evidence for incomplete oxidation. Nephron 8: 488–499, 1971.
 40. Barac‐Nieto, M., H. Murer, and R. Kinne. Lactate‐sodium cotransport in rat renal brush border membranes. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8); F496–F506, 1980.
 41. Barac‐Nieto, M., H. Murer, and R. Kinne. Asymmetry in the transport of lactate by basolateral and brush border membranes of rat kidney cortex. Pflugers Arch. 392: 366–371, 1982.
 42. Barfuss, D. W., and J. A. Schafer. Differences in active and passive glucose transport along the proximal nephron. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F322–F332, 1981.
 43. Barfuss, D. W., and J. A. Schafer. Hyperosmolality of absorbate from isolated rabbit proximal tubules. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): 130–139, 1984.
 44. Barrett, P. Q., K. Zawalich, and H. Rasmussen. Protein kinase C activity in renal microvillus membranes. Biochem. Biophys. Res. Commun. 128: 494–505, 1985.
 45. Barritt, G. J., G. L. Zander, and M. F. Utter. The regulation of pyruvate carboxylase in gluconeogenic tissues. In: Gluconeogenesis: Its Regulation in Mammalian Species, edited by R. W. Hanson and M. A. Mehlman. New York: John Wiley & Sons, 1976, p. 3–46.
 46. Bartlett, S., J. Espinal, P. Janssens, and B. D. Ross. The influence of renal function on lactate and glucose metabolism. Biochem. J. 219: 73–78, 1984.
 47. Baruch, S. B., R. L. Burich, C. K. Eun, and V. F. King. Renal metabolism of citrate. Med. Clin. North Am. 59: 569–582, 1975.
 48. Baverel, G., M. Bonnard, D. E. D'Armagnac, E. Castanet, and M. Pellet. Lactate and pyruvate metabolism in isolated renal tubules of normal dogs. Kidney Int. 14: 567–575, 1978.
 49. Baverel, G., M. Bonnard, and M. Pellet. Lactate and pyruvate metabolism in isolated human kidney tubules. FEBS Lett. 101: 282–286, 1979.
 50. Baverel, G., M. Forissier, and M. Pellet. Lactate and pyruvate metabolism in dog renal outer medulla: effects of oleate and ketone bodies. Int. J. Biochem. 12: 163–168, 1980.
 51. Baverel, G., G. Martin, B. Ferrier, and M. Pellet. Characteristics of ketone‐body metabolism in dog renal cortex and outer medulla. In: Biochemistry of Kidney Functions, edited by F. Morel. Amsterdam: Elsevier Biomedical, 1982, p. 177–185.
 52. Beale, E. G., J. L. Hartley, and D. K. Granner. N6O2'‐dibutyryl cyclic AMP and glucose regulate the amount of messenger RNA coding for hepatic phosphoenolpyruvate carboxykinase (GTP). J. Biol. Chem. 257: 2022–2028, 1982.
 53. Bedford, J. J., S. M. Bagnasco, P. F. Kador, H. W. Harris, and M. B. Burg. Characterization and purification of a mammalian osmoregulatory protein, aldose reductase, induced in renal medullary cells by high extracellular NaCl. J. Biol. Chem. 262; 14255–14259, 1987.
 54. Bell, R. M. Enzymes of glycerolipid synthesis in eukaryotes. Annu. Rev. Biochem. 49: 459–487, 1980.
 55. Benabe, J. E., L. A. Spry, and A. R. Morrison. Effects of angiotensin II on phosphatidylinositol and polyphosphoinositide turnover in rat kidney. J. Biol. Chem. 257: 7430–7434, 1982.
 56. Bentle, L. A., and H. A. Lardy. Interaction of anions and divalent metal ions with phosphoenolpyruvate carboxykinase. J. Biol. Chem. 251: 2916–2921, 1976.
 57. Bergman, E. N., C. F. Kaufman, J. E. Wolff, and H. H. Williams. Renal metabolism of amino acids and ammonia in fed and fasted pregnant sheep. Am. J. Physiol. 226: 833–837, 1974.
 58. Bernanke, D., and F. H. Epstein. Metabolism of the renal medulla. Am. J. Physiol. 208: 541–545, 1965.
 59. Berridge, M. J. Inositol triphosphate and diacylglycerol as second messengers. Biochem. J. 220: 345–360, 1984.
 60. Berridge, M. J., and R. F. Irvine. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321, 1984.
 61. Besarab, A., P. Silva, B. Ross, and F. H. Epstein. Bicarbonate and sodium reabsorption by the isolated perfused kidney. Am. J. Physiol. 288: 1525–1530, 1975.
 62. Biber, J., B. Stieger, W. Haase, and H. Murer. A high yield preparation for rat kidney brush border membranes: different behaviour of lysosomal markers. Biochim. Biophys. Acta 647: 169–176, 1981.
 63. Bidot‐Lopez, P., R. V. Farese, and M. A. Sabir. Parathyroid hormone and adenosine‐3',5'‐monophosphate acutely increase phospholipids of the phosphatidate‐polyphosphoinositide pathway in rabbit kidney cortex tubules in vitro by a cyclo‐heximide‐sensitive process. Endocrinology 108: 2078–2081, 1981.
 64. Bjornstad, P., and J. Bremer. In vivo studies on pathways for the biosynthesis of lecithin in the rat. J. Lipid Res. 7: 38–45, 1966.
 65. Blond, D. M., and R. Whittam. The regulation of kidney respiration by sodium and potassium ions. Biochem. J. 92: 158–167, 1960.
 66. Bloom, B., and D. Stetten, Jr. Pathways of glucose catabolism. J. Am. Chem. Soc. 75: 5446, 1953.
 67. Blue, M. L., A. A. Protter, and D. L. Williams. Biosynthesis of apolipoprotein B in rooster kidney, intestine and liver. J. Biol. Chem. 255: 10048–10051, 1980.
 68. Bojesen, I. N., Fatty acid composition and depot function of lipid droplet triacylglycerols in renomedullary interstitial cells. In: The Renal Papilla and Hypertension, edited by A. K. Mandel and S. O. Bohman. New York: Plenum, 1980, p. 121–147.
 69. Bojesen, I. N. In vitro and in vivo lipogenesis of the rat renal papillae from glucose. Biochim. Biophys. Acta 619: 308–317, 1980.
 70. Bond, M., H. Shuman, A. P. Somlyo, and A. V. Somlyo. Total cytoplasmic calcium in relaxed and maximally contracted rabbit portal vein smooth muscle. J. Physiol. (Lond.) 357: 185–201, 1984.
 71. Bonjour, J.‐P., and H. Fleisch. Tubular adaptation to the supply and requirement of phosphate. In: Renal Handling of Phosphate, edited by S. G. Massry and H. Fleisch. New York: Plenum, 1980, p. 243–264.
 72. Bonventre, J. V., K. L. Skorecki, J. I. Kreisberg, and J. Y. Cheung. Vasopressin increases cytosolic free calcium concentration in glomerular mesangial cells. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F94–F102, 1986.
 73. Bowman, R. H., J. Dolgin, and R. Coulson. Furosemide, ethacrynic acid, and iodoacetate on function and metabolism in perfused rat kidney. Am. J. Physiol. 224: 416–424, 1973.
 74. Brady, L. J., D. R. Romsos, P. S. Brady, W. G. Bergen, and G. A. Leveille. The effects of fasting on body composition, glucose turnover, enzymes and metabolites in the chicken. J. Nutr. 108: 648–657, 1978.
 75. Brady, L. J., D. R. Romsos, and G. A. Leveille. Gluconeogenesis in isolated chicken Gallus domesticus liver cells. Comp. Biochem. Physiol. 63B: 193–198, 1979.
 76. Brand, P. H., J. J. Cohen, and M. C. Bignall. Independence of lactate oxidation from net Na+ reabsorption in dog kidney in vivo. Am. J. Physiol. 227: 1255–1262, 1974.
 77. Brand, P. H., and R. S. Stansbury. Lactate absorption in Thamnophis proximal tubule: transport versus metabolism. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F218–F228, 1980.
 78. Brazy, P. C., R. S. Balaban, S. R. Gullans, L. J. Mandel, and V. W. Dennis. Inhibition of renal metabolism: relative effects of arsenate on sodium, phosphate, and glucose transport by the rabbit proximal tubule. J. Clin. Invest. 66: 1211–1221, 1980.
 79. Brazy, P. C., S. R. Gullans, L. J. Mandel, and V. W. Dennis. Metabolic requirements for inorganic phosphate by the rabbit proximal tubule. J. Clin. Invest. 70: 53–62, 1982.
 80. Brazy, P. C., L. J. Mandel, S. R. Gullans, and S. P. Soltoff. Interactions between phosphate and oxidative metabolism in proximal renal tubules. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F575–581, 1984.
 81. Bremer, J., P. H. Figard, and D. M. Greenberg. The biosynthesis of choline and its relation to phospholipid metabolism. Biochim. Biophys. Acta 43: 477–488, 1960.
 82. Brendel, K., and E. Meezan. Properties of a pure metabolically active glomerular preparation from rat kidneys. II. Metabolism. J. Pharmacol. Exp. Ther. 187: 342–351, 1973.
 83. Brennan, T. S., S. Klahr, and L. L. Hamm. Citrate transport in the rabbit nephron. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F683–F689, 1986.
 84. Brennan, S., K. Hering‐Smith, and L. Hamm. Effect of pH on citrate reabsorption in the proximal convoluted tubule. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F301–F306, 1988.
 85. Brezis, M., S. Rosen, P. Silva, and F. H. Epstein. Transport activity modifies thick ascending limb damage to isolated perfused kidney. Kidney Int. 25: 65–72, 1984.
 86. Brezis, M., P. Shanley, K. Silva, S. Spokes, S. Lear, F. H. Epstein, and S. Rosen. Disparate mechanisms for the hypoxic cell injury in different nephron segments. Studies in the isolated perfused rat kidney. J. Clin. Invest. 76: 1796–1806, 1985.
 87. Brinkworth, R. I., R. W. Hanson, F. A. Fullin, and V. L. Schramm. Mn2+‐sensitive and ‐insensitive forms of phosphoenolpyruvate carboxykinase (GTP). J. Biol. Chem. 256: 10795–10802, 1981.
 88. Buckley, J. T., and J. N. Hawthorne. Erythrocyte membrane polyphosphoinositide metabolism and the regulation of calcium binding. J. Biol. Chem. 247: 7218–7223, 1972.
 89. Burch, H. B., Quantitative histochemistry of defined parts of rat nephron. In: Biochemistry of Kidney Functions, edited by F. Morel. Amsterdam: Elsevier Biomedical, 1982, p. 297–318.
 90. Burch, H. B., T. E. Bross, C. A. Brooks, B. R. Cole, and O. H. Lowry. The distribution pattern of six enzymes of oxidative metabolism in defined structures of the rat nephron. J. Histochem. Cytochem. 32: 731–736, 1984.
 91. Burch, H. B., A. E. Hays, M. D. McCreary, B. R. Cole, M. M.‐Y. Chi, C. N. Dence, and O. H. Lowry. Relationships in different parts of the nephron between enzymes of glycerol metabolism and the metabolite changes which result from large glycerol loads. J. Biol. Chem. 257: 3670–3676, 1982.
 92. Burch, H. B., R. G. Narins, C. Chu, S. Gogioli, S. Choi, W. McCarthy, and O. H. Lowry. Distribution along the rat nephron of three enzymes of gluconeogenesis in acidosis and starvation. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F50–F59, 1978.
 93. Cammarata, P. S., and P. P. Cohen. The scope of the transamination reaction in animal tissues. J. Biol. Chem. 187: 439–452, 1950.
 94. Capelli, J. P., L. G. Wesson, Jr., and G. E. Aponte. The effects of sodium and angiotensin upon renal renin and renal, adrenal and salivary gland glucose‐6‐phosphate dehydrogenase. Lab. Invest. 16: 925–936, 1967.
 95. Capelli, J. P., L. G. Wesson, Jr., and G. E. Aponte. The effect of sodium on renal renin and glucose‐6‐phosphate dehydrogenase in the kidneys, salivary glands and adrenal glands. Nephron 5: 106–123, 1968.
 96. Capraro, V., G. Valzelli, and C. de Agostini. Lactic acid concentration in the kidney of the golden hamster, Mesocricetus auratus, in different conditions of diuresis. Nature 190: 178–179, 1961.
 97. Chamberlin, M. E., A. le Furgey, and L. J. Mandel. Suspension of medullary thick ascending limb tubules from the rabbit kidney. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F955–F964, 1984.
 98. Chamberlin, M. E., and L. J. Mandel. Na+K+‐ATPase activity in medullary thick ascending limb during short term anoxia. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F838–F843, 1987.
 99. Chance, B., and C. M. Williams. The respiratory chain and oxidative phosphorylation. Adv. Enzymol. 17: 65–134, 1956.
 100. Chauhan, V. P. S., and V. K. Kalra. Effect of phospholipid methylation on calcium transport and (Ca2+ + Mg2+)‐ATPase activity in kidney cortex basolateral membranes. Biochim. Biophys. Acta 727: 185–195, 1983.
 101. Chauhan, V. P. S., S. C. Sikka, and V. K. Kalra. Phospholipid methylation of kidney cortex brush border membranes effect on fluidity and transport. Biochim. Biophys. Acta 688: 357–368, 1982.
 102. Cherrington, A. D., K. E. Steiner, and W. W. Lacy. Amino acid and gluconeogenesis. In: Amino Acids: Metabolism and Medical Application, edited by G. L. Blackburn, J. R. Grant, and V. R. Young. Boston: John Wright, 1983, p. 63–75.
 103. Chiasson, J. L., R. L. Atkinson, A. D. Cherrington, U. Keller, B. C. Sinclair‐Smith, W. W. Lacy, and J. E. Liljenquist. Effects of fasting on gluconeogenesis from alanine in nondiabetic man. Diabetes 28: 56–60, 1979.
 104. Chinard, F. P. Distribution and transport of varied substances in the dog kidney in vivo. Med. Clin. North Am. 59: 539–554, 1975.
 105. Chinard, F. P., T. Enns, and M. F. Nolan. Indicator dilution studies with “diffusible” indicators. Circ. Res. 10: 473–490, 1962.
 106. Chinard, F. P., W. R. Taylor, M. F. Nolan, and T. Enns. Renal handling of glucose in dogs. Am. J. Physiol. 196: 535–544, 1959.
 107. Cimbala, M. A., W. H. Lamers, K. Nelson, J. E. Monahan, H. Yoo‐Warren, and R. W. Hanson. Rapid changes in the concentration of phosphoenolpyruvate carboxykinase mRNA in rat liver and kidney. J. Biol. Chem. 257: 7629–7636, 1982.
 108. Clark, D. L., F. G. Hamel, and S. F. Queener. Changes in renal phospholipid fatty acids in diabetes mellitus: correlation with changes in adenylate cyclase activity. Lipids 18: 696–705, 1983.
 109. Clark, N., and R. M. C. Dawson. Localization of d‐myoinositol 1:2‐cyclic phosphate 2‐phosphohydrolase in rat kidney. Biochem. J. 130: 229–238, 1972.
 110. Clements, R. S., Jr., and A. G. Diethelm. The metabolism of myoinositol by the human kidney. J. Lab. Clin. Med. 93: 210–219, 1979.
 111. Cohen, H., B. Gidoni, D. Shouval, N. Benvenisty, D. Mencher, O. Meyuhas, and L. Reshef. Conservation from rat to human of cytosolic phosphoenolpyruvate carboxykinase and the control of its gene expression. FEBS Lett. 180: 175–180, 1985.
 112. Cohen, J. J. High respiratory quotient of dog kidney in vivo. Am. J. Physiol. 199: 560–568, 1960.
 113. Cohen, J. J. Significance of respiratory quotients in toad bladder and kidney. Nature 216: 399–400, 1967.
 114. Cohen, J. J. Is the function of the renal papilla coupled exclusively to an anaerobic pattern of metabolism? Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F423–F433, 1979.
 115. Cohen, J. J. Relationship between energy requirements for Na+ reabsorption and other renal functions. Kidney Int. 29: 32–40, 1986.
 116. Cohen, J. J., and M. Barac‐Nieto. Renal metabolism of substrates in relation to renal function. In: Handbook of Physiology. Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington, DC: Am. Physiol. Soc., 1973, sect. 8, p. 909–1001.
 117. Cohen, J. J., and D. E. Kamm. Renal metabolism: relation to renal function. In: The Kidney, edited by B. M. Brenner and F. C. Rector. Philadelphia: W. B. Saunders, 1976, p. 126–200.
 118. Cohen, J. J., and D. E. Kamm. Renal metabolism: relation to renal function. In: The Kidney (2nd ed.), edited by B. M. Brenner and F. C. Rector. Philadelphia: W. B. Saunders, 1981, p. 144–248.
 119. Cohen, J. J., Y. J. Kook, and J. R. Little. Substrate‐limited function and metabolism of the isolated perfused rat kidney: effects of lactate and glucose. J. Physiol. 266: 103–121, 1977.
 120. Cohen, J. J., L. S. Merkens, and O. W. Peterson. Relation of Na+ reabsorption to utilization of O2 and lactate in the perfused rat kidney. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F415–F427, 1980.
 121. Coleman, R. Membrane‐bound enzymes and membrane ultrastructure. Biochim. Biophys. Acta 300: 1–30, 1973.
 122. Cortes, P., F. Dumler, K. K. Venkatachalam, and N. W. Levin. Effect of diabetes mellitus on renal metabolism. Miner. Electrolyte Metab. 9: 306–316, 1983.
 123. Costello, J., J. M. Scott, P. Wilson, and E. Bourke. Glucose utilization and production by the dog kidney in vivo in metabolic acidosis and alkalosis. J. Clin. Invest. 52: 608–611, 1973.
 124. Courtade, S., G. V. Marinetti, and E. Stotz. The structure and abundance of rat tissue cardiolipins. Biochim. Biophys. Acta 137: 121–134, 1967.
 125. Craan, A. G., G. Lemieux, P. Vinay, and A. Gougoux. The kidney of chicken adapts to chronic metabolic acidosis: in vivo and in vitro studies. Kidney Int. 22: 103–111, 1982.
 126. Craan, A. G., P. Vinay, G. Lemieux, and A. Gougoux. Metabolism and transport of l‐glutamine and l‐alanine by renal tubules of chickens. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F142–F150, 1983.
 127. Curthoys, N. P., and O. H. Lowry. The distribution of glutaminase isoenzymes in the various structures of the nephron in normal, acidotic, and alkalotic rat kidney. J. Biol. Chem. 248: 162–168, 1973.
 128. Czech, M. P. The nature and regulation of the insulin receptor: structure and function. Annu. Rev. Physiol. 47: 357–381, 1985.
 129. Darnton, S. J. Glycogen metabolism in rabbit kidney under differing physiological states. Q. J. Exp. Physiol. 52: 392–400, 1967.
 130. Davis, E. J., and W. I. A. Davis‐van Thienen. Control of mitochondrial metabolism by the ATP/ADP ratio. Biochem. Biophys. Res. Commun. 83: 1260–1266, 1978.
 131. Dell, R. B., and R. W. Winters. Lactate gradients in the kidney of the dog. Am. J. Physiol. 213: 301–307, 1967.
 132. Denton, R. M., and J. G. McCormack. On the role of the calcium transport cycle in heart and other mammalian mitochondria. FEBS Lett. 119: 1–8, 1980.
 133. Diamond, M. P., R. C. Rolling, L. Erlendson, P. E. Williams, W. W. Lacy, D. Rabin, and A. D. Cherrington. Dichloroacetate—its in vivo effects on carbohydrate metabolism in the conscious dog. Diabetes 29: 702–709, 1980.
 134. Dickson, A. J., and D. R. Langslow. Hepatic gluconeogenesis in chickens. Mol. Cell. Biochem. 22: 167–181, 1978.
 135. Dies, F., J. Herrera, M. Matos, E. Avelar, and G. Ramos. Substrate uptake by dog kidney in vivo. Am. J. Physiol. 218: 405–416, 1970.
 136. Dies, F. and W. D. Lotspeich. Hexose monophosphate shunt in the kidney during acid‐base and electrolyte imbalance. Am. J. Physiol. 212: 61–71, 1967.
 137. Dies, F., G. Ramos, E. Avelar, and M. Lennhoff. Renal excretion of lactic acid in the dog. Am. J. Physiol. 216: 106–111, 1969.
 138. Dies, F., G. Ramos, E. Avelar, and M. Matos. Relationship between renal substrate uptake and tubular sodium reabsorption in the dog. Am. J. Physiol. 218: 411–416, 1969.
 139. Dies, F., J. M. Valdez, R. Vilet, and R. Garza. Lactate oxidation and sodium reabsorption by dog kidney in vivo. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F343–F351, 1981.
 140. Dietrich, R., L. Desai, and R. T. Bogusky. Renal ammonia formation from amino acids other than glutamine. In: New Advances in Renal Ammonia Metabolism, edited by A. C. Schoolwerth, K. Kurokawa, R. L. Tannen, and P. Vinay. Basel: Karger, 1985, p. 197–202.
 141. Dietschy, J. M., The uptake of lipids into the intestinal mucosa. In: Physiology of Membrane Disorders, edited by T. E. Andreoli, J. J. Hoffman, and D. D. Fanestil. New York: Plenum, 1978, p. 577–592.
 142. Donohoe, J. F., M. A. Venkatachalam, D. B. Bernard, and N. G. Levinsky. Tubular leakage and obstruction after renal ischemia: structural—functional correlations. Kidney Int. 13: 208–222, 1978.
 143. Doucet, A., and A. I. Katz. High‐affinity Ca—Mg‐ATPase along the rabbit nephron. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F346–F352, 1982.
 144. Dousa, T. P., Glomerular metabolism. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, p. 645–667.
 145. Druilhet, R. E., M. L. Overturf, and W. M. Kirkendall. Structure of neutral glycerides and phosphoglycerides of human kidney. J. Biochem. 6: 893–901, 1975.
 146. Druilhet, R. E., M. L. Overturf, and W. M. Kirkendall. Cortical and medullary lipids of normal and nephrosclerotic human kidney. Int. J. Biochem. 9: 729–734, 1978.
 147. Edwards, K. D. G., N. J. Mody, and M. A. Crawford. Citrate utilization by the renal tubules in primates. S. Afr. J. Med. Sci. 27: 45–50, 1962.
 148. Elgavish, A., J. Rifkind, and B. Sacktor. In vitro effects of vitamin D3 on the phospholipids of isolated renal brush border membranes. J. Membr. Biol. 72: 85–91, 1983.
 149. Endou, H., H. Nonoguchi, J. Nakada, Y. Takehara, and H. Yamada. Glutamine metabolism in the kidney ammoniagenesis and gluconeogenesis in isolated nephron segments of rats. In: Kidney Metabolism and Function, edited by R. Dzurik, B. Lichardus, and W. Guder. Dordrecht: Martinus Nijhoff, 1985, p. 26–33.
 150. Epstein, F. H. The kidney in health and disease: XI. Metabolic requirements for renal function. Hosp. Pract. June 1979, pp. 93–102.
 151. Epstein, F. H., R. S. Balaban, and B. B. Ross. Redox state of cytochrome AA3 in isolated perfused rat kidney. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F356–F363, 1982.
 152. Epstein, F. H., J. T. Brosnan, J. D. Tange, and B. D. Ross. Improved function with amino acids in isolated perfused kidney. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F284–F292, 1982.
 153. Evans, H. A., and R. W. Scholz. Development of renal gluconeogenesis in chicks fed high fat and high protein “carbohydrate‐free” diets. J. Nutr. 103: 242–250, 1973.
 154. Eveloff, J., E. Bayerdoerffer, P. Silva, and R. Kinne. Sodium‐chloride transport in the thick ascending limb of Henle's loop: oxygen consumption studies in isolated cells. Pflugers Arch. 389: 263–270, 1981.
 155. Eveloff, J., W. Haase, and R. Kinne. Separation of renal medullary cells: isolation of cells from the thick ascending limb of Henle's loop. J. Cell Biol. 87: 672–680, 1980.
 156. Evered, D. F. Advances in amino acid metabolism in mammals. Biochem. Soc. Trans. 9: 159–169, 1981.
 157. Exton, J. H., and C. R. Park. Control of gluconeogenesis in liver. I. General features of gluconeogenesis in the perfused livers of rats. J. Biol. Chem. 242: 2622–2636, 1967.
 158. Farber, J. L. Biology of disease: membrane injury and calcium homeostasis in the pathogenesis of coagulative necrosis. Lab. Invest. 47: 114–123, 1982.
 159. Farese, R. V., P. Bidot‐Lopez, R. E. Larson, and M. A. Sabir. Effects of parathyroid hormone and cyclic‐AMP on renal phospholipid metabolism. In: Biochemistry of Kidney Functions, INSERM Symposium, No. 21, edited by F. Morel. Amsterdam: Elsevier Biomedical, 1982, p. 205–214.
 160. Farese, R. V., P. Bidot‐Lopez, A. Sabir, J. S. Smith, B. Schinbeckler, and R. Larson. Parathyroid hormone acutely increases polyphosphoinositides of the rabbit kidney cortex by a cycloheximide‐sensitive process. J. Clin. Invest. 65: 1523–1526, 1980.
 161. Farquhar, J. K., W. N. Scott, and F. L. Coe. Hexose monophosphate shunt activity in compensatory renal hypertrophy. Proc. Soc. Exp. Biol. Med. 129: 809–812, 1967.
 162. Faus, M. J., J. A. Lupianez, A. Vargas, and F. Sanchez‐Medina. Induction of rat kidney gluconeogenesis during acute liver intoxication by carbon tetrachloride. Biochem. J. 174: 461–467, 1978.
 163. Fehlmann, M., A. LeCam, P. Kitabgi, J. F. Rey, and P. Freychet. Regulation of amino acid transport in the liver. Emergence of a high affinity transport system in isolated hepatocytes from fasting rats. J. Biol. Chem. 254: 401–407, 1979.
 164. Felig, P., O. E. Owen, J. Wahren, and G. F. Cahill. Amino acid metabolism during prolonged starvation. J. Clin. Invest. 48: 584–594, 1969.
 165. Fine, A. The effects of acute acidosis on alanine and glucose metabolism across the liver, gut, kidney, and muscle in the dog. Metabolism 32: 317–319, 1983.
 166. Fine, I. H., N. O. Kaplan, and D. Kuftinec. Developmental changes in mammalian lactic dehydrogenases. Biochemistry 2: 116–121, 1963.
 167. Flores, H., and G. A. O. Alleyne. Phosphoenolpyruvate carboxykinase of kidney. Biochem. J. 123: 35–39, 1971.
 168. Folkert, V. W., M. Yunis, and D. Schlondorff. Prostaglandin synthesis linked to phosphatidylinositol turnover in isolated rat glomeruli. Biochim. Biophys. Acta 794: 206–217, 1984.
 169. Fonteles, M. C., J. J. Cohen, A. J. Black, and S. J. Wertheim. Support of kidney function by long‐chain fatty acids derived from renal tissue. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F235–F246, 1983.
 170. Freeman, D., S. Bartlett, G. Radda, and B. Ross. Energetics of sodium transport in the kidney. Saturation transfer of 31P‐NMR. Biochim. Biophys. Acta 762: 325–336, 1983.
 171. Freeman, D. M., L. Chan, H. Yahaya, P. Holloway, and B. D. Ross. Magnetic resonance spectroscopy for the determination of renal metabolic rate in vivo. Kidney Int. 30: 35–42, 1986.
 172. Frega, N. S., J. M. Weinberg, B. D. Ross and A. Leaf. Stimulation of sodium transport by glucose in the perfused rat kidney. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F235–F240, 1977.
 173. Friedman, P. A., and J. Torretti. Regional glucose metabolism in the cat kidney in vivo. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F415–F423, 1978.
 174. Friedrichs, D., and W. Schoner. Stimulation of renal gluconeogenesis by inhibition of the sodium pump. Biochim. Biophys. Acta 304: 142–160, 1973.
 175. Frömter, E., G. Rumrich, and K. Ullrich. Phenomenologic description of Na+, Cl−, and HCO3 absorption from proximal tubules of rat kidney. Pflugers Arch. 343: 189–220, 1973.
 176. Fukuda, S., and J. D. Kopple. Uptake and release of amino acids by the normal dog kidney. Miner. Electrolyte Metab. 3: 237–247, 1980.
 177. Garber, A. J., I. E. Karl, and D. M. Kipnis. Alanine and glutamine synthesis and release from skeletal muscle. I. Glycolysis and amino acid release. J. Biol. Chem. 251: 826–835, 1976.
 178. Garcia‐Perez, A., B. Martin, H. R. Murphy, S. Uchida, H. Murer, B. D. Cowley, J. S. Handler, and M. B. Burg. Molecular cloning of cDNA coding for kidney aldose reductase. J. Biol. Chem. 264: 16815–16821, 1989.
 179. Garcia, M. L., J. Benavides, and F. Valdivieso. Ketone body transport in renal brush border membrane vesicles. Biochim. Biophys. Acta 600: 922–930, 1980.
 180. Garza‐Quintero, B., J. J. Cohen, P. H. Brand, and Y. J. Kook. Steady state glucose oxidation by dog kidney in vivo. Relation to Na+ readsorption. Am. J. Physiol. 228: 549–555, 1975.
 181. Gerlach, E., W. Bader, and W. Schwoerer. Uber den Stoffwechsel saureloslicher phosphorverbindungen in der Rattenniere. Arch. Ges. Physiol. 272: 407–433, 1961.
 182. Glaumann, B., H. Glaumann, I. K. Bereesky, and B. F. Trump. Studies on cellular recovery from injury. II. Ultra‐structural studies on the recovery of the pars convoluta of the proximal tubule of the rat kidney from temporary ischemia. Virchows Arch. [B.] 24: 1–18, 1977.
 183. Gold, M., and J. J. Spitzer. Metabolism of free fatty acids by myocardium and kidney. Am. J. Physiol. 206: 153–158, 1964.
 184. Goldstein, L., T. M. Boylan, and H. Schrock. Adaptation of renal ammonia production in the diabetic ketoacidotic rat. Kidney Int. 17: 57–65, 1980.
 185. Goldstein, L., R. J. Solomon, D. F. Perlman, P. M. McLaughlin, and M. A. Taylor. Ketone body effects on glutamine metabolism in isolated kidneys and mitochondria. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F181–F187, 1982.
 186. Good, D. W., and M. B. Burg. Ammonia production by individual segments of the rat nephron. J. Clin. Invest. 73: 602–610, 1984.
 187. Granner, D., T. Andreone, K. Sasaki, and E. Beale. Inhibition of transcription of the phosphoenolpyruvate carboxykinase gene by insulin. Nature 305: 549–551, 1983.
 188. Gray, G. M., and M. G. MacFarlane. Composition of phospholipids of rabbit, pigeon, and trout muscle and various pig tissues. Biochem. J. 81: 480–488, 1961.
 189. Gregg, C. M., J. J. Cohen, A. J. Black, M. A. Espeland, and M. L. Feldstein. Effects of glucose and insulin on metabolism and function of the perfused rat kidney. Am. J. Physiol. 235: (Renal Fluid Electrolyte Physiol. 4): F52–F61, 1978.
 190. Gregoire, F. Oxidative metabolism of the normal rat glomerulus. Kidney Int. 7: 86–93, 1975.
 191. Grenier, F. C., T. E. Rollins, and W. L. Smith. Kinin induced prostaglandin synthesis by renal papillary collecting tubule cells in culture. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F94–F104, 1981.
 192. Grollman, A. P., H. C. Harrison, and H. E. Harrison. The renal excretion of citrate. J. Clin. Invest. 40: 1270–1296, 1961.
 193. Grollman, A. P., W. G. Walker, H. C. Harrison, and H. E. Harrison. Site of reabsorption of calcium and citrate in the renal tubule of the dog. Am. J. Physiol. 205: 697–701, 1963.
 194. Gronow, G. H. J., and J. J. Cohen. Substrate support for renal functions during hypoxia in the perfused rat kidney. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F618–F631, 1984.
 195. Guder, W. G. Stimulation of renal gluconeogenesis by angiotensin II. Biochim. Biophys. Acta 584: 507–519, 1979.
 196. Guder, W. G., S. Purschel, and G. Wirthensohn. Renal ketone body metabolism. Distribution of 3‐oxoacid CoA‐transferase and 3‐hydroxybutyrate dehydrogenase along the mouse nephron. Hoppe‐Seylers Z. Physiol. Chem. 364: 1727–1737, 1983.
 197. Guder, W. G., S. Purschel, and G. Wirthensohn. Renal ketone body metabolism. In: Kidney Metabolism and Function, edited by R. Dzurik, B. Lichardus, and W. Guder. Dordrecht: Martinus Nijhoff, 1985, p. 93–102.
 198. Guder, W. G., and B. D. Ross. Enzyme distribution along the nephron. Kidney Int. 26: 101–111, 1984.
 199. Guder, W. G., and A. Rupprecht. Metabolism of isolated kidney tubules. Independent actions of catecholamines on renal cyclic adensine 3':5'‐monophosphate levels and gluconeogenesis. Eur. J. Biochem. 52: 283–290, 1975.
 200. Guder, W. G., and U. Schmidt. Substrate and oxygen dependence of renal metabolism. Kidney Int. 10: S32–S38, 1976.
 201. Guder, W. G., and U. Schmidt (eds.)., Current Problems in Clinical Biochemistry, vol. 8. Bern: Huber, 1978, p. 20–420.
 202. Guder, W. G., S. Wagner, and G. Wirthensohn. Metabolic fuels along the nephron: pathways and intracellular mechanisms of interaction. Kidney Int. 22: 41–45, 1986.
 203. Guder, W. G., and O. H. Wieland. Metabolism of isolated kidney tubules. Additive effects of parathyroid hormones and free‐fatty acids on renal gluconeogenesis. Eur. J. Biochem. 31: 69–79, 1972.
 204. Guder, W. G., O. H. Wieland, and B. Stukowski. Metabolism of isolated kidney tubules. Regulation of pyruvate dehydrogenase by metabolic substrates. Eur. J. Biochem. 42: 529–538, 1974.
 205. Guder, W. G., and G. Wirthensohn. Metabolism of isolated kidney tubules. Interactions between lactate, glutamine and oleate metabolism. Eur. J. Biochem. 99: 577–584, 1979.
 206. Guder, W. G., and G. Wirthensohn. Renal turnover of substrates. In: Renal Transport of Organic Substances, edited by R. Greger, F. Lang, and S. Silbernagl. Berlin: Springer‐Verlag, 1981, p. 66–77.
 207. Guder, W. G., and G. Wirthensohn. Triacylglycerol synthesis along the rabbit nephron. In: Biochemistry of Kidney Functions, edited by F. Morel. Amsterdam: Elsevier, 1982, p. 95–102.
 208. Guggino, S. E., G. J. Martin, and P. S. Aronson. Specificity and modes of the anion exchanger in dog renal microvillus membranes. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F612–F621, 1983.
 209. Gullans, S. R., P. C. Brazy, V. W. Dennis, and L. J. Mandel. Interactions between gluconeogenesis and sodium transport in rabbit proximal tubule. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F859–F869, 1984.
 210. Gullans, S. R., P. C. Brazy, L. J. Mandel, and V. W. Dennis. Stimulation of phosphate transport in the proximal tubule by metabolic substrates. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F582–F587, 1984.
 211. Gullans, S. R., P. C. Brazy, S. P. Soltoff, V. W. Dennis, and L. J. Mandel. Metabolic inhibitors: effects on metabolism and transport in the proximal tubule. Am. J. Physiol. 243: (Renal Fluid Electrolyte Physiol. 12): F133–F140, 1982.
 212. Gullans, S. R., S. I. Harris, and L. J. Mandel. Glucose‐dependent respiration in suspensions of rabbit cortical tubules. J. Membr. Biol. 78: 257–262, 1984.
 213. Gunn, M., R. W. Hanson, G. Meyerhas, L. Reshef, and F. J. Ballard. Glucocorticoids and the regulation of phosphoenolpyruvate carboxykinase (guanosine triphosphate) in the rat. Biochem. J. 150: 195–203, 1975.
 214. Gyorgy, P., W. Kellery, and T. Brehme. Nierenstoffwechsel und Nierenentwicklung. Biochem. Z. 200: 356–366, 1928.
 215. Halperin, M. L., P. Vinay, A. Gougoux, C. Pichette, and R. L. Jungas. Regulation of the maximum rate of renal ammoniagenesis in the acidotic dog. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F607–F615, 1985.
 216. Hammerman, M. R. Interaction of insulin with the renal proximal tubular cell. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F1–F11, 1985.
 217. Hammerman, M. R. Phosphorylation of type II cAMP‐dependent protein kinase in renal brush border membranes. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F659–F666, 1986.
 218. Hammerman, M. R. Phosphate transport across renal proximal tubular cell membranes. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F385–F398, 1986.
 219. Hammerman, M. R., and L. R. Chase. Pi transport, phosphorylation, and dephosphorylation in renal membranes from HYP/Y mice. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F701–F706, 1983.
 220. Hammerman, M. R., V. M. Corpus, and J. J. Morrissey. NAD+‐induced inhibition of phosphate transport in canine renal brush‐border membranes. Biochim. Biophys. Acta 731: 110–116, 1983.
 221. Hammerman, M. R., and J. R. Gavin III. Binding of insulinlike growth factor II and multiplication‐stimulating activity‐stimulated phosphorylation in basolateral membranes from dog kidney. J. Biol. Chem. 259: 13511–13517, 1984.
 222. Hammerman, M. R., and J. R. Gavin III. Insulin‐stimulated phosphorylation and insulin binding in canine renal basolateral membranes. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F408–F417, 1984.
 223. Hammerman, M. R., and J. R. Gavin III. Binding of IGF I and IGF I‐stimulated phosphorylation in canine renal basolateral membranes. Am. J. Physiol. 251 (Endocrinol. Metabolism 14): E32–E41, 1986.
 224. Hammerman, M. R., V. A. Hansen, and J. J. Morrissey. ADP ribosylation of canine renal brush border membrane vesicle proteins is associated with decreased phosphate transport. J. Biol. Chem. 257: 12380–12386, 1982.
 225. Hammerman, M. R., V. A. Hansen, and J. J. Morrissey. Cyclic AMP—dependent protein phosphorylation and dephosphorylation alter phosphate transport in canine renal brush border vesicles. Biochim. Biophys. Acta 755: 10–16, 1983.
 226. Hammerman, M. R., and K. A. Hruska. Cyclic AMP—dependent protein phosphorylation in canine renal brush‐border membrane vesicles is associated with decreased phosphate transport. J. Biol. Chem. 257: 992–999, 1982.
 227. Hammerman, M. R., S. Rogers, J. J. Morrissey, and J. R. Gavin III. Phorbol ester—stimulated phosphorylation of basolateral membranes from canine kidney. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F1073–F1081, 1986.
 228. Hammerman, M. R., B. Sacktor, and W. H. Daughaday. Myo‐inositol transport in renal brush border vesicles and its inhibition by d‐glucose. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F113–F120, 1980.
 229. Handler, J. S., F. M. Perkins, and J. P. Johnson. Studies of renal cell function using cell culture techniques. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F1–F9, 1980.
 230. Hansford, R. G. Control of mitochondrial substrate oxidation. Curr. Top. Bioenerg. 10: 217–278, 1980.
 231. Hansford, R. G. Relation between mitochondrial calcium transport and control of energy metabolism. Rev. Physiol. Biochem. Pharmacol. 102: 2–72, 1985.
 232. Hansford, R. G., and F. Castro. Intramitochondrial and extramitochondrial free calcium ion concentrations of suspensions of heart mitochondria with very low, plausibly physiological, contents of total calcium. J. Bioenerg. Biomembr. 14: 361–376, 1982.
 233. Hanson, P. J. and D. S. Parsons. Metabolism and transport of glutamine and glucose in vascularly perfused small intestine in rat. Biochem. J. 166: 509–519, 1977.
 234. Hanson, R. W., and M. A. Mehlman (eds.)., Gluconeogenesis: Its Regulation in Mammalian Species. New York: John Wiley & Sons, 1976, p. 1–558.
 235. Harris, R. A. Phosphatidate as a molecular link between depolarization and neurotransmitter release in the brain. Science 212: 1290–1291, 1981.
 236. Harris, S. I., R. S. Balaban, L. Barrett, and L. J. Mandel. Mitochondrial respiratory capacity and Na+‐and K+‐dependent adenosinetriphosphate‐mediated transport in the intact renal cell. J. Biol. Chem. 256: 10319–10328, 1981.
 237. Harris, S. I., R. S. Balaban, and L. J. Mandel. Oxygen consumption and cellular ion transport: evidence that the ATP/O2 ratio is near 6 in the intact cell. Science 208: 1148–1150, 1980.
 238. Hauser, G., and V. N. Finelli. The biosynthesis of free phosphatide myo‐inositol from glucose by mammalian tissue slice. J. Biol. Chem. 238: 3224–3228, 1963.
 239. Havener, L. J., and F. G. Toback. Amino acid modulation of renal phosphatidylcholine biosynthesis in the rat. J. Clin. Invest. 65: 741–745, 1980.
 240. Hayaishi, O., and K. Ueda. Poly(ADP‐ribose) and ADP‐ribosylation of proteins. Annu. Rev. Biochem. 46: 95–116, 1977.
 241. Haymond, M. W., S. L. Nissen, and J. M. Miles. Effects of ketone bodies on leucine and alanine metabolism in normal man. In: Amino Acids: Metabolism and Medical Application, edited by G. L. Blackburn, J. R. Grant and V. R. Young. Boston: John Wright, 1983, p. 89–95.
 242. Hems, D. A., and G. Gaja. Carbohydrate metabolism in the isolated perfused rat kidney. Biochem. J. 128: 421–426, 1972.
 243. Hendrickson, H. S., and J. L. Reinertsen. Phosphoinositide interconversation: a model for control of Na+ and K+ permeability in the nerve axon membrane. Biochem. Biophys. Res. Commun. 44: 1258–1264, 1971.
 244. Herndon, R. F., and S. Freeman. Renal citric acid utilization in the dog. Am. J. Physiol. 192: 369–372, 1958.
 245. Hess, R., and F. Gross. Glucose‐6‐phosphate dehydrogenase and renin in kidneys of hypertensive or adrenalectomized rats. Am. J. Physiol. 197: 869–972, 1959.
 246. Hess, R., D. G. Scarpelli, and A. G. E. Pearse. The cytochemical localization of oxidative enzymes. J. Biophys. Biochem. Cytol. 4: 753–760, 1968.
 247. Hiatt, H. H., Pentosuria. In: The Metabolic Basis of Inherited Disease (4th ed.), edited by J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredricksen. New York: McGraw‐Hill, 1978, p. 110–120.
 248. Hirata, F., and J. Axelrod. Phospholipid methylation and biological signal transmission. Science 209: 1082–1090, 1980.
 249. Hise, M. K., R. H. Harris, and C. M. Mansbach II. Regulation of de novo phosphatidylcholine biosynthesis during renal growth. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F260–F266, 1984.
 250. Hise, M. K., W. W. Mantulin, and E. J. Wienman. Fluidity and composition of brush border and basolateral membranes from rat kidney. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F434–F439, 1984.
 251. Hise, M. K., W. W. Mantulin, and E. J. Weinman. Fatty acyl chain composition in the determination of renal membrane order. J. Clin. Invest. 77: 768–773, 1986.
 252. Hod, Y., S. M. Morris, and R. W. Hanson. Induction by cAMP of the mRNA encoding the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) from the chicken. J. Biol. Chem. 259: 15603–15608, 1984.
 253. Hod, Y., M. F. Utter, and R. W. Hanson. The mitochondrial and cytosolic forms of avian phosphoenolpyruvate carboxykinase (GTP) are encoded by different messenger RNAs. J. Biol. Chem. 257: 13787–13794, 1982.
 254. Hod, Y., H. Yoo‐Warren, and R. W. Hanson. The gene encoding the cystosolic form of phosphoenolpyruvate carboxykinase (GTP) from the chicken. J. Biol. Chem. 259: 15609–15614, 1984.
 255. Hohenegger, M., Lipid metabolism related to kidney function and electrolyte homeostasis. In: Renal Metabolism in Relation to Renal Function, edited by U. Schmidt and U. C. Dubach. Bern: Huber, 1976, p. 99–107.
 256. Hohenegger, M., H. Brechtelsbauer, U. Finsterer, and P. Prueksunand. Effects of inhibitors of fatty acid oxidation on renal function. Pflugers Arch. 351: 231–240, 1974.
 257. Hohenegger, M., G. Raberger, M. M. Muller, and W. Schutz. On the renal balances for different lipid fractions in dog. In: Biochemical Nephrology, edited by W. G. Guder and U. Schmidt. Bern: Huber, 1978, p. 397–405.
 258. Hohenegger, M., and Schuh, H. Uptake and fatty acid synthesis by the rat kidney. Int. J. Biochem. 12: 169–172, 1980.
 259. Hohenegger, M., G. Wittmann, and H. Dahlheim. Oxidation of fatty acids by different zones of the rat kidney. Pflugers Arch. 341: 105–112, 1973.
 260. Hohenleitner, F. J., and J. J. Spitzer. Changes in plasma free fatty acid concentrations on passage through the dog kidney. Am. J. Physiol. 200: 1095–1098, 1961.
 261. Hohmann, B. O., P. P. Frohnert, R. Kinne, and K. Baumann. Proximal tubular lactate transport in rat kidney. A micropuncture study. Kidney Int. 5: 261–270, 1974.
 262. Hollman, S., and O. Touster. Non‐Glycolytic Paths of Glucose Metabolism. New York: Academic, 1964.
 263. Howard, C. F., Jr., and L. Anderson. Metabolism of myoinositol in animals. II. Complete catabolism of myo‐inositol 14C by rat kidney slices. Arch. Biochem. Biophys. 118: 332–339, 1967.
 264. Hruska, K. A., S. C. Mills, S. Khalifa, and M. R. Hammerman. Phosphorylation of renal brush‐border membrane vesicles. J. Biol. Chem. 258: 2501–2507, 1983.
 265. Huang, J. S., G. L. Downes, and F. O. Belzer. Utilization of fatty acids in perfused hypothermic dog kidney. J. Lipid Res. 12: 622–627, 1971.
 266. Humes, H. D., M. Sastrasinh, and J. M. Weinberg. Calcium is a competitive inhibitor of gentamicin—renal membrane binding interactions and dietary calcium supplementation protects against gentamicin nephrotoxicity. J. Clin. Invest. 73: 134–147, 1984.
 267. Humes, H. D., J. M. Weinberg, and T. C. Knauss. Clinical and pathophysiological aspects of aminoglycoside nephrotoxicity. Am. J. Kidney Dis. 2: 5–29, 1982.
 268. Hunter, F. E., Jr. Anaerobic phosphorylation due to coupled oxidation‐reduction between α‐ketoglutaric acid and oxal‐acetic acid. J. Biol. Chem. 177: 361–372, 1949.
 269. Imbert, M., D. Chabardes, M. Montagu, A. Clique, and F. Morel. Adenylate cyclase activity along the rabbit nephron as measured in single isolated segments. Pflugers Arch. 354: 213–228, 1975.
 270. Inui, K.‐I., T. Okano, M. Takano, S. Kitazawa, and R. Hori. A simple method for the isolation of basolateral plasma membrane vesicles from rat kidney cortex. Enzyme activities and some properties of glucose transport. Biochim. Biophys. Acta 647: 150–154, 981.
 271. Ishikawa, E. The regulation of uptake and output of amino acids by rat tissues. Adv. Enzyme Regul. 14: 117–136, 1977.
 272. Iynedjian, P., F. J. Ballard, and R. W. Hanson. The regulation of phosphoenolpyruvate carboxykinase (GTP) synthesis in rat kidney cortex. The role of acid–base balance and glucocorticoids. J. Biol. Chem. 250: 5596–5603, 1975.
 273. Iynedjian, P., and R. W. Hanson. Increase in level of functional messenger RNA coding for phosphoenolpyruvate carboxykinase (GTP) during induction by cyclic adenosine 3':5'‐monophosphate. J. Biol. Chem. 252: 655–662, 1977.
 274. Jacobus, W. E., R. W. Moreadith, and K. M. Vandegaer. Mitochondrial respiratory control. Evidence against the regulation of respiration by extramitochondrial phosphorylation potentials or by [ATP]/[ADP] ratios. J. Biol. Chem. 257: 2397–2402, 1982.
 275. Jeffery, J., and H. Jornvall. Enzyme relationships in a sorbital pathway that bypasses glycolysis and pentose phosphates in glucose metabolism. Proc. Natl. Acad. Sci. USA 80: 901–905, 1983.
 276. Jenkins, A. D., T. P. Dousa, and L. H. Smith. Transport of citrate across renal brush border membrane: effects of dietary acid and alkali loading. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F590–F595, 1985.
 277. Jennings, R. B., and K. A. Reimer. Lethal myocardial ischemic injury. Am. J. Pathol. 102: 241–255, 1981.
 278. Jones, D. P. Intracellular diffusion gradients of O2 and ATP. Am. J. Physiol. 250 (Cell Physiol. 19): C663–C675, 1986.
 279. Jorgensen, K. E., U. Kragh‐Hansen, H. Roigaard‐Petersen, and M. Iqbal Sheikh. Citrate uptake by basolateral and luminal membrane vesicles from rabbit kidney cortex. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F686–F695, 1983.
 280. Jorgensen, P. L. Sodium and potassium ion pump in kidney tubules. Physiol. Rev. 60: 684–917, 1980.
 281. Kahng, M. W., I. K. Berezesky, and B. F. Trump. Metabolic and ultrastructural response of rat kidney cortex to in vitro ischemia. Exp. Mol. Pathol. 29: 183–198, 1978.
 282. Kaloyanides, G. J., M. Wang, W. Gouvea, J. Kelley, H. Alpert, and C. A. Vaamonde. Altered phosphatdylinositol (PI) metabolism in diabetic (D) rats confers resistance to gentamicin‐induced acute renal failure (G‐ARF). Kidney Int. 21: 219, 1982.
 283. Kamiya, F., H. Kimura, T. Takeuchi, K. Kida, and H. Nakagawa. Effects of glucocorticoids on renal net glucose release in vivo in normal and diabetic rats. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F223–F226, 1983.
 284. Kamm, D. E., and G. F. Cahill, Jr. Effects of acid–base status on renal and hepatic gluconeogenesis in diabetes and fasting. Am. J. Physiol. 216: 1207–1212, 1969.
 285. Kamm, D. E., R. E. Fuisz, A. D. Goodman, and C. F. Cahill, Jr. Acid–base alterations and renal gluconeogenesis: effect of pH, bicarbonate concentration, and PCO2. J. Clin. Invest. 46: 1172–1177, 1967.
 286. Kamm, D. E., and G. L. Strope. Renal cortical and hepatic phosphoenolpyruvate carboxylase in the diabetic rat. Effect of acid–base status. Metabolism 23: 1073–1079, 1974.
 287. Kaplan, N. O., and J. Everse. Regulatory characteristics of lactate dehydrogenases. Adv. Enzyme Regul. 10: 323–336, 1972.
 288. Kashgarian, M. Use of monoclonal antibodies in the study of renal function. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F533–F538, 1984.
 289. Katz, A. I., A. Doucet, and F. Morel. Na‐K‐ATPase activity along the rabbit, rat, and mouse nephron. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F114–F120, 1979.
 290. Katz, N. Correlation between rates and enzyme levels of increased gluconeogenesis in rat liver and kidney after partial hepatectomy. Eur. J. Biochem. 98: 535–542, 1979.
 291. Kaufman, A. M., C. Brod‐Miller, and T. Kahn. Role of citrate excretion in acid–base balance in diuretic induced alkalosis in the rat. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F796–F803, 1985.
 292. Kean, E. L., P. H. Adams, R. W. Winters, and R. E. Davies. Energy metabolism of the renal medulla. Biochim. Biophys. Acta 54: 4744–4748, 1961.
 293. Kelly, S., T. E. Dixon, and Q. Al‐Awqati. Metabolic pathways coupled to H+ transport in turtle urinary bladder. J. Membr. Biol. 54: 237–243, 1980.
 294. Kempson, S. A. Mechanism of stimulation of ADP‐ribosyl‐transferase in the renal brush‐border membrane by EDTA. Biochim. Biophys. Acta 770: 101–104, 1984.
 295. Kempson, S. A. NAD‐glycohydrolase in renal brush border membranes. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F366–F373, 1985.
 296. Kempson, S. A., and N. P. Curthoys. NAD+‐dependent ADP‐ribosyltransferase in renal brush border membranes. Am. J. Physiol. 245 (Cell Physiol. 14): C449–C456, 1983.
 297. Kennedy, B. G., L. Gorm, and J. F. Hoffman. Effects of altering the ATP/ADP ratio on pump‐mediated Na/K and Na/Na exchanges in resealed human red blood cell ghosts. J. Gen. Physiol. 87: 47–72, 1986.
 298. Kenny, A. J., and A. G. Booth. Microvilli: their ultrastructure, enzymology and molecular organization. Essays Biochem. 14: 1–44, 1978.
 299. Kessar, P., and E. D. Saggerson. Evidence that catecholamines stimulate renal gluconeogenesis through an α1‐type of adrenoceptor. Biochem. J. 190: 119–123, 1980.
 300. Khandelwal, R. L., S. M. Zinman, and H. R. Knull. The effect of streptozotocin‐induced diabetes on glycogen metabolism in rat kidney and its relationship to the liver system. Arch. Biochem. Biophys. 197: 310–316, 1979.
 301. Kida, K., S. Nakajo, F. Kamiya, Y. Toyama, T. Nishio, and H. Nakagawa. Renal net glucose release in vivo and its contribution to blood glucose in rats. J. Clin. Invest. 62: 721–726, 1978.
 302. Kida, K., T. Nishio, K. Nagai, H. Matsuda, and H. Nakagawa. Gluconeogenesis in the kidney in vivo in fed rats. Circadian change and substrate specificity. J. Biochem. (Tokyo) 91: 755–760, 1982.
 303. Kiil, F., O. M. Sejersted, and P. A. Steen. Energetics and specificity of transcellular NaCl transport in the dog kidney. Int. J. Biochem. 12: 245–250, 1980.
 304. Kim, C. M., V. F. King, and S. Balagura‐Baruch. Renal oxidation of citrate in the intact dog during acidosis and alkalosis, abstracted. Federation Proc. 33: 405, 1974.
 305. Kinne, R., Metabolic correlates of tubular transport. In: Membrane Transport in Biology, edited by G. Giebisch, D. C. Tosteson, and H. H. Ussing. Berlin: Springer‐Verlag, 1978, vol. IVB, p. 529–562.
 306. Kinne, R. New approaches to study renal metabolism: isolated single cells. Miner. Electrolyte Metab. 9: 270–275, 1983.
 307. Kinne, R., L. J. Shlatz, E. Kinne‐Saffran, and I. L. Schwartz. Distribution of membrane‐bound cyclic AMP‐dependent protein kinase in plasma membranes of cells of the kidney cortex. J. Membr. Biol. 24: 145–159, 1975.
 308. Kjekshus, J., K. Aukland, and F. Kiil. Oxygen cost of sodium reabsorption in proximal and distal parts of the nephron. Scand. J. Clin. Lab. Invest. 23: 307–316, 1969.
 309. Klahr, S., and M. Hammerman. Renal metabolism. In: The Kidney: Physiology aand Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, vol. 1, p. 699–718.
 310. Klahr, S., and P. Mennes. The role of calcium ion in renal gluconeogenesis: studies using ionophore A23187. In: Current Problems in Clinical Biochemistry, edited by W. G. Guder and U. Schmidt. Bern: Huber, 1978, vol. 8, p. 318–325.
 311. Klahr, S., J. Morrissey, and K. Hruska. Effect of parathyroid hormone on phospholipid metabolism. In: Regulation of Phosphate and Mineral Metabolism, edited by S. G. Massry, J. M. Letteri, and E. Ritz. New York: Plenum, 1982, p. 561–575.
 312. Klein, K. L., M. S. Wang, S. Torikai, W. D. Davidson, and K. Kurokawa. Substrate oxidation by isolated single nephron segments of the rat. Kidney Int. 20: 29–35, 1981.
 313. Kleinman, J. G., J. Mandelbaum, and M. L. Levin. Renal functional effects of 4‐petenoic acid, an inhibitor of fatty acid oxidation. Am. J. Physiol. 224: 95–101, 1973.
 314. Knauss, T. C., J. M. Weinberg, and H. D. Humes. Alterations in renal cortical phospholipid content induced by gentamicin: time course, specificity, and subcellular localization. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F535–F546, 1983.
 315. Kook, Y. J., and W. D. Lotspeich. Citrate excretion during intrarenal arterial precursor infusion in the alkalotic dog. Am. J. Physiol. 215: 282–288, 1968.
 316. Krebs, H. Production of CO2 by the intact functioning kidney of the dog. Med. Clin. North Am. 59: 519–522, 1975.
 317. Krebs, H. A. Rate control of the tricarboxylic acid cycle. Adv. Enzyme Regul. 8: 335–353, 1970.
 318. Krebs, H. A., D. A. H. Bennett, P. de Gasquet, T. Gascoyne, and T. Yoshida. Renal gluconeogenesis: the effect of diet on the gluconeogenic capacity of rat kidney cortex slices. Biochem. J. 86: 22–27, 1963.
 319. Krebs, H. A., R. Hems, M. J. Weidmann, and R. N. Speake. The fate of isotopic carbon in kidney cortex synthesizing glucose from lactate. Biochem. J. 101: 242–249, 1966.
 320. Krebs, H. A., and P. Lund. Formation of glucose from hexoses, pentoses, polyols and related substances in kidney cortex. Biochem. J. 98: 210–214, 1966.
 321. Krebs, H. A., R. N. Speake, and R. Hems. Acceleration of renal gluconeogenesis by ketone bodies and fatty acids. Biochem. J. 94: 712–720, 1965.
 322. Krebs, H. A., and T. Yoshida. Renal gluconeogenesis. II. The gluconeogenic capacity of the kidney cortex of various species. Biochem. J. 89: 398–400, 1963.
 323. Kurokawa, K. Use of isolated single nephron segments to study metabolic heterogeneity of the nephron. Miner. Electrolyte Metab. 9: 260–269, 1983.
 324. Kurokawa, K., S. Tori Kai, M. S. Wong, K. L. Klein, and Kawashima. Metabolic heterogeneity of the nephron. Miner. Electrolyte Metab. 7: 225–236, 1982.
 325. Kurokawa, K., and W. J. Kreusser. Renal cell metabolism in phosphate depletion: adenine nucleotide metabolism and gluconeogenesis. In: Current Problems in Clinical Biochemistry, edited by W. G. Guder and U. Schmidt. Bern: Huber, 1978, vol. 8, p. 336–342.
 326. Kurokawa, K., G. T. Nagami, and D. T. Yamaguchi. Transport and substrate metabolism of the kidney. In: Renal Biochemistry: Cells, Membranes, Molecules, edited by R. K. H. Kinne. Amsterdam: Elsevier, 1985, p. 175–223.
 327. Kurokawa, K., and H. Rasmussen. Ionic control of renal gluconeogenesis: I. The interrelated effects of calcium and hydrogen ions. Biochim. Biophys. Acta 313: 17–31, 1973.
 328. Kurokawa, K., and R. L. Tannen. Recent advances in renal metabolism. Miner. Electrolyte Metab. 9: 185–328, 1983.
 329. Lamers, W. H., R. W. Hanson, and H. M. Meisner. cAMP stimulates transcription of the gene for cytosolic phospho‐enolpyruvate carboxykinase in rat liver nuclei. Proc. Natl. Acad. Sci. USA 79: 5137–5141, 1982.
 330. Langslow, D. R. Gluconeogenesis in birds. Biochem. Soc. Trans. 6: 1148–1152, 1978.
 331. Lanoue, K. F., and A. C. Schoolwerth. Metabolic transport in mitochondria. Annu. Rev. Biochem. 48: 871–922, 1979.
 332. Lardy, H. A., and H. Wellman. Oxidative phosphorylations: role of inorganic phosphate and acceptor systems in control of metabolic rates. J. Biol. Chem. 195: 215–224, 1952.
 333. Leal‐Pinto, E., H. C. Park, F. King, M. Macleod, and R. F. Pitts. Metabolism of lactate by the intact functioning kidney of the dog. Am. J. Physiol. 224: 1463–1467, 1973.
 334. Le Bouffant, F., A. Hus‐Citharel, and F. Morel. Metabolic CO2 production by isolated single pieces of rat distal nephron segments. Pflugers Arch. 401: 346–353, 1984.
 335. Lee, J. B., and H. M. Peter. Effect of oxygen tension on glucose metabolism in rabbit kidney cortex and medulla. Am. J. Physiol. 217: 1464–1471, 1969.
 336. Lee, J. B., V. K. Vance, and G. F. Cahill, Jr. Metabolism of 14C‐labeled substrates by rabbit kidney cortex and medulla. Am. J. Physiol. 203: 27–36, 1962.
 337. Lee, J. B., V. K. Vance, and G. F. Cahill, Jr. Effect of osmolality on glucose metabolism in rabbit kidney cortex and medulla. Am. J. Physiol. 207: 473–482, 1964.
 338. Lee, T.‐C., and C. G. Huggins. Triphosphoinositide phosphomonoesterase in rat kidney cortex. Arch. Biochem. Biophys. 126: 206–213, 1968.
 339. Le Furgey, A., P. Ingram, and L. J. Mandel. Heterogeneity of calcium compartmentation: electron probe microanalysis of renal tubules. J. Membr. Biol. 94: 191–196, 1986.
 340. Le Grimellec, C., S. Carriere, J. Cardinal, and M.‐C. Giocondi. Fluidity of brush border and basolateral membranes from human kidney cortex. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F227–F231, 1983.
 341. Le Grimellec, C., M.‐C. Giocondi, B. Carriere, S. Carriere, and J. Cardinal. Membrane fluidity and enzyme activities in brush border and basolateral membranes of the dog kidney. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F246–F253, 1982.
 342. Lehir, M., and U. C. Dubach. Activities of enzymes of the tricarboxylic cycle in segments of the rat nephron. Pflugers Arch. 395: 239–243, 1982.
 343. Lehir, R. K., and U. C. Dubach. Peroxisomal and mitochondrial betaoxidation in the rat kidney. Distribution of fatty acyl–coenzyme A oxidase and 3‐hydroxyacyl–coenzyme A dehydrogenase activities along the nephron. J. Histochem. Cytochem. 30: 441–444, 1982.
 344. Lehninger, A. L. Biochemistry (2nd ed). New York: Worth Publishers, Inc., 1978.
 345. Leichtweiss, H.‐P., D. W. Lubbers, C. Weiss, H. Baumgartl, and W. Reschke. The oxygen supply of the rat kidney: measurements of intrarenal PO2. Pflugers Arch. 309: 328–349, 1969.
 346. Lemieux, G., M. Achkar, B. Moulin, P. Vinay, and A. Gougoux. Utilization of ketone bodies by the diabetic kidney. In vitro studies in the rat. In: Biochemistry of Kidney Functions, edited by F. Morel. Amsterdam: Elsevier, 1982, p. 129–138.
 347. Lemieux, G., M. Achkar, P. Vinay, and A. Gougoux. The effect of acid‐base status on renal utilization of ketone bodies. In vitro studies in the rat. In: Eighth International Congress of Nephrology, edited by W. Zurukzoglu, M. Papadimitriov, M. Pyrpasopoulos, M. Sion, and C. Zamboulis. Basel: S. Karger, 1981, p. 834–840.
 348. Lemieux, G., G. Baverel, P. Vinay, and A. Gougoux. Effect of fluoroacetate on the inhibitory action of ketone bodies and fatty acids on renal ammoniagenesis. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F7–F13, 1979.
 349. Lemieux, G., B. Moulin, J. Davignon, and Y.‐S. Huang. The lipid content of the diabetic kidney of the rat. Can. J. Physiol. Pharmacol. 62: 1274–1278, 1984.
 350. Lemieux, G., B. Moulin, J. Davignon, and Y.‐S. Huang. The lipid profile of the diabetic kidney. In: Kidney Metabolism and Function. edited by R. Dzurik, B. Lichardus, and W. Guder. Dordrecht: Martinus Nijhoff, 1985, p. 111–117.
 351. Lemieux, G., C. Pichette, P. Vinay, and A. Gougoux. Cellular mechanisms of the antiammoniagenic effect of ketone bodies in the dog. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F420–F426, 1980.
 352. Lemieux, G., F. Rocheleau, C. Lemieux, and B. Moulin. Accumulation of ketone bodies in the diabetic kidney. In: Kidney Metabolism and Function, edited by R. Dzurik, B. Lichardus, and W. Guder. Dordrecht: Martinus Nijhoff, 1985, p. 118–125.
 353. Lemieux, G., P. Vinay, P. Robitaille, G. L. Plante, Y. Lussier, and P. Martin. The effect of ketone bodies on renal ammoniagenesis. J. Clin. Invest. 50: 1781–1791, 1971.
 354. Levy, M. N. Uptake of lactate and pyruvate by intact kidney of the dog. Am. J. Physiol. 202: 306–308, 1962.
 355. Levy, M. N. Lactate uptake by the intact kidney. Ann. N.Y. Acad. Sci. 119: 1029–1037, 1965.
 356. Limas, C., and C. J. Limas. Phospholipid metabolism in the rat renal inner medulla. Biochim. Biophys. Acta 753: 314–323, 1983.
 357. Lipsky, J. J., and P. S. Lietman. Aminoglycoside inhibition of a renal phosphatidylinositol phospholipase. C. J. Pharmacol. Exp. Ther. 220: 287–292, 1982.
 358. Little, J. R., and J. J. Spitzer. Uptake of ketone bodies by dog kidney in vivo. Am. J. Physiol. 221: 679–683, 1971.
 359. Lo, H., D. C. Lehotay, D. Katz, and G. S. Levey. Parathyroid hormone–mediated incorporation of 32P‐orthophosphate into phosphatidic acid and phosphatidylinositol in renal cortical slices. Endocrinol. Res. Commun. 3: 377–385, 1976.
 360. Longshaw, I. D., and C. I. Pogson. The effect of steroids and ammonium chloride acidosis on phosphoenolpyruvate carboxykinase in rat kidney cortex. J. Clin. Invest. 51: 2277–2283, 1972.
 361. Low, I., T. Friedrich, and G. Burckhardt. Properties of an anion exchanger in rat renal basolateral membrane vesicles. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F334–F342, 1984.
 362. Lowry, M., D. E. Hall, and J. T. Brosnan. Serine synthesis in rat kidney: studies with perfused kidney and cortical tubules. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F649–F658, 1986.
 363. Lupianez, J. A., K. N. Dileepan, and S. R. Wagle. Stimulation of gluconeogenesis by somatostatin in rat kidney cortex slices. Biochem. Biophys. Res. Commun. 89: 735–742, 1979.
 364. Maack, T. Renal clearance and isolated kidney perfusion techniques. Kidney Int. 30: 142–151, 1986.
 365. Maack, T., C. H. Park, and M. J. F. Camargo. Renal filtration, transport, and metabolism of proteins. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, p. 1773–1803.
 366. Macdonald, D. W. R. and E. D. Saggerson. Hormonal control of gluconeogenesis in tubule fragments from renal cortex of fed rats. Effects of alpha‐adrenergic stimuli, glucagon, theophylline and papaverine. Biochem. J. 168: 33–42, 1977.
 367. Macdonald, D. W. R., and E. D. Saggerson. Effect of adrenalectomy on acceleraton of gluconeogenesis by calcium ions, adenosine 3':5'‐cyclic monophosphate and adrenaline in rat kidney tubules. Biochem. J. 174: 641–646, 1978.
 368. Mackerer, C. R. Enhancement of renal gluconeogenesis by clofibrate. Biochem. Pharmacol. 27: 2277–2278, 1978.
 369. Majerus, P. W., E. J. Neufeld, and D. B. Wilson. Production of phosphoinositide‐derived messengers. Cell 37: 701–703, 1984.
 370. Malila, A., F. D. de Martinis, and E. J. Masoro. Involvement of phospholipids in Rb+ transport by kidney cortex tubules. J. Biol. Chem. 243: 6115–6122, 1968.
 371. Mandel, L. J. Use of noninvasive fluorometry and spectrophotometry to study epithelial metabolism and transport. Federation Proc. 41: 36–41, 1982.
 372. Mandel, L. J. Metabolic substrates, cellular energy production, and the regulation of proximal tubular transport. Annu. Rev. Physiol. 47: 85–101, 1985.
 373. Mandel, L. J., and R. S. Balaban. Stoichiometry and coupling of active transport to oxidative metabolism in epithelial tissues. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F357–F371, 1981.
 374. Mandel, L. J., T. Takano, S. P. Soltoff, and S. Murdaugh. Mechanisms whereby exogenous adenine nucleotides improve rabbit renal proximal function during and after anoxia. J. Clin. Invest. 81: 1255–1264, 1988.
 375. Manillier, C., P. Vinay, L. Lalonde, J. Noel, A. Gougoux, and M. L. Halperin. ATP turnover and glutamine metabolism by dog kidney tubules: effect of in vitro acidosis. In: New Advances in Renal Ammonia Metabolism, edited by A. C. Schoolwerth, K. Kurokawa, R. L. Tanne, and P. Vinay. Basel: S. Karger, 1985, p. 78–86.
 376. Mapes, J. P., and H. A. Krebs. Rate‐limiting factors in urate synthesis and gluconeogenesis in avian liver. Biochem. J. 172: 193–203, 1978.
 377. Marliss, E. B., T. T. Aoki, C. J. Toews, P. Felig, J. J. Cannon, J. Kyner, W. E. Huckabee, and G. F. Cahill, Jr. Amino acid metabolism in lactic acidosis. Am. J. Med. 52: 474–481, 1972.
 378. Martensson, J. On the citric acid metabolism in mammals. Acta Physiol. Scand. 1 (Suppl. 2): 1–96, 1940.
 379. Marx, J. L. A new view of receptor action. Science 224: 271–274, 1984.
 380. Mason, J., F. Beck, A. Doreg, R. Rick, and K. Thurau. Intracellular electrolyte composition following renal ischemia. Kidney Int. 20: 61–70, 1981.
 381. Matyaszczyk, M., E. Karczmarewicz, and R. S. Lorenc. The indirect effect of Ca2+ on liver and kidney cytosol phosphoenolpyruvate carboxykinase activity. Prog. Clin. Biol. Res. 168: 171–175, 1984.
 382. Maxild, J. Role of fatty acid metabolism on renal transport of p‐aminohippurate in vitro. Biochim. Biophys. Acta 233: 434–445, 1971.
 383. McCann, W. P., O. D. Gulati, and H. C. Stanton. Renal glucose metabolism during diuresis induced by infusions of hypotonic saline. Bull. Johns Hopkins Hosp. 108: 36–47, 1961.
 384. McElhaney, R. N., Effects of membrane lipids on transport and enzymic activities. In: Current Topics in Membranes and Transport, edited by F. Bronner and A. Kleinzeller. New York: Academic, 1982, vol. 17, p. 317–380.
 385. McMurray, W. C., and R. M. C. Dawson. Phospholipid exchange reactions within the liver cell. Biochem. J. 112: 91–108, 1969.
 386. Meezan, E., K. Brendel, J. Ulreich, and E. C. Carlson. Properties of pure metabolically active glomerular preparation from rat kidneys. I. Isolation. J. Pharmacol. Exp. Ther. 187: 352–364, 1973.
 387. Meisner, H., M. A. Cimbala, and R. W. Hanson. Decrease of renal phosphoenolpyruvate carboxykinase RNA and poly(A)+ RNA level by ochratoxin A. Arch. Biochem. Biophys. 223: 264–270, 1983.
 388. Meisner, H., D. S. Loose, and R. W. Hanson. Effects of hormones on transcription of the gene for cytosolic phosphoenolpyruvate carboxykinase. Biochemistry 24: 425–432, 1985.
 389. Meisner, H., and P. Selanik. Inhibition of renal gluconeogenesis in rats by ochratoxin. Biochem. J. 180: 681–684, 1979.
 390. Meltzer, V., S. Weinreb, E. Bellorin‐Font, and K. A. Hruska. Parathyroid hormone stimulation of renal phosphoinositide metabolism is a cyclic nucleotide‐independent effect. Biochim. Biophys. Acta 712: 258–267, 1982.
 391. Mergner, W. J., L. Marzella, C. Mergner, M. W. Kahng, M. W. Smith, and B. F. Trump. Studies on the pathogenesis of ischemic cell injury. VII. Proton gradient and respiration of renal tissue cubes, renal mitochondria and submitochondrial particles following ischemic cell injury. Beitr. Pathol. 161: 230–243, 1977.
 392. Michell, R. H. Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta 415: 81–147, 1975.
 393. Michell, R. H. Inositol phospholipids in membrane function. TIBS June, 1979.
 394. Miller, B. M., E. Cersosimo, J. McRae, P. E. Williams, W. W. Lacy, and N. N. Abumrad. Interorgan relationships of alanine and glutamine during fasting in the conscious dog. J. Surg. Res. 35: 310–318, 1983.
 395. Mitch, W. E., and R. W. Chesney. Amino acid metabolism by the kidney. Miner. Electrolyte Metab. 9: 190–202, 1983.
 396. Molitoris, B. A., A. C. Alfrey, R. A. Harris, and F. R. Simon. Renal apical membrane cholesterol and fluidity in regulation of phosphate transport. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F12–F19, 1985.
 397. Molitoris, B. A., K. A. Hruska, N. Fishman, and W. H. Daughaday. Effects of glucose and parathyroid hormone on the renal handling of myoinositol by isolated perfused dog kidneys. J. Clin. Invest. 63: 1110–1118, 1979.
 398. Molitoris, B. A., and F. R. Simon. Renal cortical brush‐border and basolateral membranes: cholesterol and phospholipid composition and relative turnover. J. Membr. Biol. 83: 207–215, 1985.
 399. Montgomery, R., Lipid metabolism. In: Biochemistry, edited by R. Montgomery, R. L. Dryer, T. W. Conway, and A. A. Spector. St. Louis: C. V. Mosby, 1977, p. 363–417.
 400. Morgan, T. E., D. O. Tinker, and D. J. Hanahan. Phospholipid metabolism in kidney. 1. Isolation and identification of lipids of rabbit kidney. Arch. Biochem. Biophys. 103: 54–65, 1963.
 401. Moriyama, J., A. Garcia‐Perez, and M. B. Burg. Osmotic regulation of aldose reductase protein synthesis in renal medullary cells. J. Biol. Chem. 264: 16810–16814, 1989.
 402. Morrison, A. R., and N. Pascoe. Modification of renal cortical subcellular membrane phospholipids induced by mercuric chloride. Kidney Int. 29: 496–501, 1986.
 403. Morrissey, J., D. Windus, S. Schwab, J. Tannenbaum, and S. Klahr. Ureteral occlusion decreases phospholipid and cholesterol of renal tubular membranes. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F136–F143, 1986.
 404. Nagai, K., S. Inoue, and H. Nakagawa. Reciprocal changes in gluconeogenic enzyme activity in liver and kidney by VMH lesion. Am. J. Physiol. 245 (Endocrinol. Metab. 8): E14–E18, 1983.
 405. Nagai, K., M. Suda, and H. Nakagawa. Studies on the circadian rhythm of phosphoenolpyruvate carboxykinase activity in rats. II. Effect of the autonomic nervous system on the rhythm in liver. J. Biochem. (Tokyo) 74: 863–871, 1973.
 406. Nagai, K., M. Suda, O. Yamagishi, Y. Toyama, and H. Nakagawa. Studies on the circadian rhythm of phosphoenolpyruvate carboxykinase. III. Circadian rhythm in kidney. J. Biochem. (Tokyo) 77: 1249–1254, 1975.
 407. Nagai, K., M. Suda, M. Yokoyama, and H. Nakagawa. Effect of carbachol on phosphoenolpyruvate carboxykinase and glucokinase in rat liver. Biochem. Biophys. Res. Commun. 43: 1340–1344, 1971.
 408. Nakagawa, H., and K. Nagai. Cold adaptation I. Effect of cold‐exposure on gluconeogenesis. J. Biochem. (Tokyo) 69: 923–934, 1971.
 409. Nakaniski, T., R. J. Turner, and M. B. Burg. Osmoregulatory changes in myo‐inositol transport by renal cells. Proc. Natl. Acad. Sci. USA 86: 6002–6006, 1989.
 410. Needleman, P., J. V. Passonneau, and O. H. Lowry. Distribution of glucose and related metabolites in rat kidney. Am. J. Physiol. 215: 655–659, 1968.
 411. Nicholls, D. G. Calcium transport and proton electrochemical potential gradient in mitochondria from guinea‐pig cerebral cortex and rat heart. Biochem. J. 170: 511–522, 1978.
 412. Nieth, H., and P. Schollmeyer. Citratstoffwechsel der menchlichen Niere. Verh. Dtsch. Ges. Inn. Med. 71: 693–696, 1965.
 413. Nieth, H., and P. Schollmeyer. Substrate‐utilization of the human kidney. Nature 209: 1244–1245, 1966.
 414. Nishizuka, Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308: 693–698, 1984.
 415. Norby, L. H., and J. H. Schwartz. Relationship between the rate of H+ transport and pathways of glucose metabolism by the turtle urinary bladder. J. Clin. Invest. 62: 532–538, 1978.
 416. Nord, E., S. H. Wright, I. Kippen, and E. M. Wright. Pathways for carboxylic acid transport by rabbit renal brush border membrane vesicles. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F456–F462, 1982.
 417. Nord, E. P., S. H. Wright, I. Kippen, and E. M. Wright. Specificity of the Na+‐dependent monocarboxylic acid transport pathway in rabbit renal brush border membranes. J. Membr. Biol. 72: 213–221, 1983.
 418. Nordlie, R. C., Glucose‐6‐phosphatase‐phosphotransferase: roles and regulation in relation to gluconeogenesis. In: Gluconeogenesis: Its Regulation in Mammalian Species, edited by R. W. Hanson and M. A. Mehlman. New York: John Wiley & Sons, 1976, p. 93–152.
 419. Nowinski, W. W., and A. Pigon. The Krebs cycle in glomeruli of normal rat kidney and in compensatory hypertrophy. J. Histochem. Cytochem. 15: 32–37, 1967.
 420. Odessey, R., E. A. Khairallah, and A. L. Goldberg. Origin and possible significance of alanine production by skeletal muscle. J. Biol. Chem. 249: 7623–7629, 1974.
 421. Ordonez, N. G., F. G. Toback, H. N. Aithal, and B. H. Spargo. Zonal changes in renal structure and phospholipid metabolism during reversal of potassium depletion nephropathy. Lab. Invest. 36: 33–47, 1977.
 422. Owen, E. E., P. Felig, A. P. Morgan, J. Wahren, and G. Cahill, Jr. Liver and kidney metabolism during prolonged starvation. J. Clin. Invest. 48: 574–583, 1969.
 423. Owen, E. E., and R. R. Robinson. Amino acid extraction and ammonia metabolism by the human kidney during the prolonged administration of ammonium chloride. J. Clin. Invest. 42: 263–276, 1963.
 424. Park, H. C, E. Leal‐Pinto, M. B. MacLeod, and R. F. Pitts. CO2 production from plasma free fatty acids by the intact functioning kidney of the dog. Am. J. Physiol. 227: 1192–1198, 1974.
 425. Parks, J. H., and F. L. Coe. A urinary calcium‐citrate index for the evaluation of nephrolithiasis. Kidney Int. 30: 85–90, 1986.
 426. Pashley, D. H., and J. J. Cohen. Substrate interconversion in dog kidney cortex slices: regulation by ECF pH. Am. J. Physiol. 25: 1519–1528, 1973.
 427. Peterson, J., J. Kitaji, W. C. Duckworth, and R. Rabkin. Fate of 125I‐insulin removed from the peritubular circulation of isolated perfused rat kidney. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F126–F132, 1982.
 428. Pfaller, W. Structure‐function correlation in rat kidney. Quantitative correlation of structure and function in the normal and injured rat kidney. Adv. Anat. Embryol. Cell Biol. 70: 1–106, 1982.
 429. Pfaller, W., and M. Rittinger. Quantitative morphology of the rat kidney. Int. J. Biochem. 12: 17–22, 1980.
 430. Pilkington, L. A., and D. J. O'Donovan. Metabolism of glutamine in cortex slices from dog kidney during acid‐base alterations. Am. J. Physiol. 220: 1634–1639, 1971.
 431. Pitts, R. F. The renal metabolism of ammonia. Physiologist 9: 97, 1966.
 432. Pitts, R. F. Control of renal production of ammonia. Kidney Int. 1: 297–305, 1972.
 433. Pitts, R. F., Production and excretion of ammonia in relation to acid‐base regulation. In: Handbook of Physiology. Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington, DC: Am. Physiol. Soc., 1973, p. 455–496.
 434. Pitts, R. F. Production of CO2 by the intact functioning kidney of the dog. Med. Clin. North Am. 59: 507–518, 1975.
 435. Pitts, R. F., A. C. Damian, and M. B. MacLeod. Synthesis of serine by rat kidney in vivo and in vitro. Am. J. Physiol. 219: 584–589, 1970.
 436. Pitts, R. F., and M. B. Macleod. Synthesis of serine by the dog kidney in vivo. Am. J. Physiol. 222: 394–398, 1972.
 437. Pitts, R. F., and M. B. Macleod. Metabolism of blood glucose by the intact functioning kidney of the dog. Kidney Int. 7: 130–136, 1975.
 438. Pitts, R. F., L. A. Pilkington, M. B. Macleod, and E. Leal‐Pinto. Metabolism of glutamine by the intact functioning kidney of the dog. Studies in metabolic acidosis. J. Clin. Invest. 51: 557–565, 1972.
 439. Pitts, R. F., and W. J. Stone. Renal metabolism of alanine. J. Clin. Invest. 46: 520–538, 1967.
 440. Pogson, C. I., I. D. Longshaw, A. Roobol, S. A. Smith, and G. A. O. Alleyne. Phosphoenolpyruvate carboxykinase and renal gluconeogenesis. In: Gluconeogenesis: Its Regulation in Mammalian Species, edited by R. W. Hanson and M. A. Mehlman. New York: John Wiley & Sons, 1976, p. 335–368.
 441. Pratz, J., and B. Corman. Age‐related changes in enzyme activities, protein content and lipid composition of rat kidney brush‐border membrane. Biochim. Biophys. Acta 814: 265–273, 1985.
 442. Rabkin, R., and J. Kitaji. Renal metabolism of peptide hormones. Miner. Electrolyte Metab. 9: 212–226, 1983.
 443. Randall, H. M., Jr., and J. J. Cohen. Anaerobic CO2 production by dog kidney in vitro. Am. J. Physiol. 211: 493–505, 1966.
 444. Raskin, P., and M. D. Siperstein. Mevalonate metabolism by renal tissue in vitro. J. Lipid Res. 15: 20–25, 1974.
 445. Rennick, B., M. Acara, P. Hysert, and B. Mookerjee. Choline loss during hemodialysis: homeostatic control of plasma choline concentration. Kidney Int. 10: 329–335, 1976.
 446. Robinson, B. H., J. Oei, S. Cheema‐Dhadli, and M. L. Halperin. Regulation of citrate transport and pyruvate dehydrogenase in rat kidney cortex mitochondria by bicarbonate. J. Biol. Chem. 252: 5661–5665, 1977.
 447. Rodriguez, J. H., and S. Klahr. Renal cell metabolism. In: Textbook of Nephrology, edited by S. G. Massry and R. J. Glassock. Baltimore: Williams & Wilkins, 1983, vol. 1, p. 1.65–1.78.
 448. Ross, B. D. The isolated perfused rat kidney. Clin. Sci. Mol. Med. 55: 513–521, 1978.
 449. Ross, B. D., F. H. Epstein, and A. Leaf. Sodium reabsorption in the perfused rat kidney. Am. J. Physiol. 225: 1165–1171, 1973.
 450. Ross, B. D., J. Espinale, and P. Silva. Glucose metabolism in renal tubular functions. Kidney Int. 29: 54–67, 1986.
 451. Ross, B., D. Freeman, and L. Chan. Contributions of nuclear magnetic resonance to renal biochemistry. Kidney Int. 29: 131–141, 1986.
 452. Ross, B. D., and W. G. Guder. Heterogeneity and compartmentation in the kidney. In: Metabolic Compartmentation, edited by H. Sies. London: Academic, 1982, p. 363–408.
 453. Ross, B., P. Silva, and S. Bullock. Role of the malate‐aspartate shuttle in renal sodium transport in the rat. Clin. Sci. 60: 419–426, 1981.
 454. Ross, B. D., and R. L. Tannen. Effect of decrease in bicarbonate concentration on metabolism of the isolated perfused rat kidney. Clin. Sci. 57: 103–111, 1979.
 455. Rouser, G., G. Simon, and G. Kritchevsky. Species variations in phospholipid class distribution of organs: I. Kidney, liver and spleen. Lipids 4: 599–606, 1969.
 456. Roxe, D. M., G. E. Schreiner, and H. G. Preuss. Regulation of renal gluconeogenesis and ammoniagenesis by physiologic fuels. Am. J. Physiol. 225: 908–911, 1973.
 457. Ruderman, N. B., T. T. Aoki, and G. F. Cahill, Jr., Gluconeogenesis and its disorders in man. In: Gluconeogenesis: Its Regulation in Mammalian Species, edited by R. W. Hanson and M. A. Mehlman. New York: John Wiley & Sons, 1976, p. 515–558.
 458. Ruderman, N. B., and M. Berger. The formation of glutamine and alanine in skeletal muscle. J. Biol. Chem. 249: 5500–5506, 1974.
 459. Ruiz‐Guinazu, A., G. Pehling, G. Rummrich, and K. J. Ullrich. Glukose und milchsaurekonzentrationen an der spitze des vaskularen gegenstromsystem in nierenmark. Pflugers Arch. 274: 311–317, 1961.
 460. Sacktor, B., Transport in membrane vesicles isolated from the mammalian kidney and intestine. In: Current Topics in Bioenergetics, edited by R. Sanadi. New York: Academic, 1977, vol. 6, p. 39–81.
 461. Saggerson, E. D., and C. A. Carpenter. Effect of compound D‐600 (methoxyverapamil) on gluconeogenesis and on acceleration of the process by α‐adrenergic stimulin in rat kidney tubules. Biochem. J. 190: 283–291, 1980.
 462. Sakhrani, L. M., and L. G. Fine. Renal tubular cells in culture. Miner. Electrolyte Metab. 9: 276–281, 1983.
 463. Sanchez‐Medina, F., J. P. Garcia‐Ruiz, J. A. Lupianez, M. J. Faus, and P. Hortelano. Induction of rat kidney gluconeogenic ability after impairment of liver gluconeogenesis. In: Current Problems in Clinical Biochemistry, edited by W. G. Guder and U. Schmidt. Bern: Huber, 1978, vol. 8, p. 310–316.
 464. Sandermann, H., Jr. Regulation of membrane enzymes by lipids. Biochim. Biophys. Acta 515: 209–237, 1978.
 465. Sapir, D. G., and O. Owen. Renal conservation of ketone bodies during starvation. Metabolism 24: 23–33, 1975.
 466. Sastrasinh, M., T. C. Knauss, J. M. Weinberg, and H. D. Humes. Identification of the aminoglycoside binding site in rat renal brush border membranes. J. Pharmacol. Exp. Ther. 222: 350–358, 1982.
 467. Scaglione, P. R., R. B. Dell, and R. W. Winters. Lactate concentration in the medulla of the rat. Am. J. Physiol. 209: 1193–1198, 1965.
 468. Scalera, V., Y. K. Huang, B. Hildmann, and H. Murer. A simple isolation method for basal‐lateral plasma membranes from rat kidney cortex. Membr. Biochem. 4: 49–61, 1981.
 469. Schaefer, R. M., A. Heidland, and W. H. Horl. Carbohydrate metabolism in potassium‐depleted rats. Nephron 41: 100–109, 1985.
 470. Schafer, J. A., and D. W. Barfuss. Membrane mechanisms for transepithelial amino acid absorption and secretion. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F335–F346, 1980.
 471. Schlender, K. K. Regulation of renal glycogen synthase interconversion of two forms in vitro. Biochim. Biophys. Acta 297: 384–398, 1973.
 472. Schlondorff, D. Isolation and use of specific nephron segments and their cells in biochemical studies. Kidney Int. 30: 201–207, 1986.
 473. Schmid, H., A. Mall, M. Scholz, and U. Schmidt. Unchanged glycolytic capacity under conditions of stimulated gluconeogenesis: determination of phosphofructokinase and pyruvate kinase in microdissected nephron segments of fasted and acidotic animals. Hoppe‐Seylers Z. Physiol. Chem. 361: 819–827, 1980.
 474. Schmidt, U., and U. C. Dubach. Quantitative histochemie am nephron. Prog. Histochem. Cytochem. 2: 185–298, 1971.
 475. Schmidt, U., and W. G. Guder. Sites of enzyme activity along the nephron. Kidney Int. 9: 233–242, 1976.
 476. Schmidt, U., J. Marosvari, and U. C. Dubach. Renal metabolism of glucose: anatomical sites of hexokinase activity in the rat nephron. FEBS Lett. 53: 26–28, 1975.
 477. Schnellmann, R. G., and L. J. Mandel. Inhibition of respiration in rabbit proximal tubules by bromophenols and 2‐bromohydroquinone. In: Biological Reactive Intermediates III. Mechanisms of Action in Animal Model and Human Disease, edited by R. Snyder. New York: Plenum, 1986, p. 911–917.
 478. Scholer, D. W., and I. S. Edelman. Isolation of rat kidney cortical tubules enriched in proximal and distal segments. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F350–F359, 1979.
 479. Schoolwerth, A. C., and K. F. La Noue. Transport of metabolic substrates in renal mitochondria. Annu. Rev. Physiol. 47: 143–171, 1985.
 480. Schurek, H. J., J. P. Brezht, H. Lohfert, and K. Hierholzer. The basic requirements for the function of the isolated cell‐free perfused rat kidney. Pflugers Arch. 354: 349–365, 1975.
 481. Schwenke, W. D., S. Soboll, H. J. Seitz, and H. Sies. Mitochondrial and cytosolic ATP/ADP ratios in rat liver in vivo. Biochem. J. 200: 405–408, 1981.
 482. Schwertz, D. W., J. I. Kreisberg, and M. A. Venkatachalam. Effects of aminoglycosides on proximal tubule brush border membrane phosphatidylinositol‐specific phospholipase C. J. Pharmacol. Exp. Ther. 231: 48–55, 1984.
 483. Sejersted, O. M., M. Lie, and F. Kiil. Effect of ouabain on metabolic rate in renal cortex and medulla. Am. J. Physiol. 220: 1488–1493, 1971.
 484. Shalhoub, R., W. Webber, S. Glabman, M. Canessa‐Fischer, J. Klein, J. de Haas, and R. F. Pitts. Extraction of amino acids from and their addition to renal blood plasma. Am. J. Physiol. 204: 181–186, 1963.
 485. Shayman, J. A., K. A. Hruska, and A. R. Morrison. Bradykinin stimulates increased intracellular calcium in papillary collecting tubules of the rabbit. Biochem. Biophys. Res. Commun. 134: 299–304, 1986.
 486. Shayman, J. A., and A. R. Morrison. Bradykinin‐induced changes in phosphatidyl inositol turnover in cultured rabbit papillary collecting tubule cells. J. Clin. Invest. 76: 978–984, 1985.
 487. Sherwin, R. S., R. G. Hendler, and P. Felig. Effect of ketone infusions on amino acid metabolism in man. J. Clin. Invest. 55: 1382–1390, 1975.
 488. Shinitzky, M. Fluidity of cell membranes—current concepts and trends. Int. Rev. Cytol. 60: 121–147, 1979.
 489. Shulman, G. I., W. W. Lacy, J. E. Liljenquist, U. Keller, P. E. Williams, and A. D. Cherrington. The effect of glucose, independent of changes in insulin and glucagon secretion, on alanine metabolism in the conscious dog. J. Clin. Invest. 65: 496–505, 1980.
 490. Siebens, A. W., and W. F. Boron. Effect of electroneutral luminal and basolateral transport on cell pH (pHi) in isolated perfused Ambystoma proximal tubules. Kidney Int. 29: 376A, 1986.
 491. Siegel, N. J., W. B. Glazier, I. H. Chaudry, K. M. Gaudio, B. Lytton, A. E. Baue, and M. Kashgarian. Enhanced recovery from acute renal failure by the postischemic infusion of adenine nucleotides and magnesium chloride in rats. Kidney Int. 17: 338–349, 1980.
 492. Silbernagl, S. Renal transport of amino acids. Klin. Wochenschr. 57: 1009–1019, 1979.
 493. Silbernagl, S., Amino acids and oligopeptides. In: The Kidney: Physiology and Pathophysiology, edited by D. Seldin and G. Giebisch. New York: Raven, 1985, p. 1677–1701.
 494. Silva, P., R. Hallac, R. Swartz, and F. H. Epstein. Competition between different metabolic demands for oxygen consumption in the kidney. Int. J. Biochem. 12: 251–255, 1980.
 495. Silva, P., B. D. Ross, A. N. Charney, A. Besarab, and F. H. Epstein. Potassium transport by the isolated perfused kidney. J. Clin. Invest. 56: 862–869, 1975.
 496. Silva, P., B. Ross, and K. Spokes. Competition between sodium reabsorption and gluconeogenesis in kidneys of steroid‐treated rats. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F290–F295, 1980.
 497. Simpson, D. P. Effect of nephrectomy on citrate metabolism in the rat. Am. J. Physiol. 205: 1049–1052, 1963.
 498. Simpson, D. P. Regulation of renal citrate metabolism by bicarbonate ion and pH: observations in tissue slices and mitochondria. J. Clin. Invest. 46: 225–238, 1967.
 499. Simpson, D. P. Citrate excretion: a window on renal metabolism. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F223–F234, 1983.
 500. Simpson, D. P. Mitochondrial transport functions and renal metabolism. Kidney Int. 23: 785–793, 1983.
 501. Simpson, D. P., and S. R. Hager. pH and bicarbonate effects on mitochondrial anion accumulation. Proposed mechanism for changes in renal metabolite levels in acute acid‐base disturbances. J. Clin. Invest. 63: 704–712, 1979.
 502. Singer, S. J., and G. L. Nicolson. The fluid mosaic model of the structure of cell membrane. Science 175: 720–731, 1972.
 503. Smith, C. H., and J. M. Kissane. Distribution of forms of lactic dehydrogenase within the developing rat kidney. Dev. Biol. 8: 151–164, 1963.
 504. Snell, K., and D. A. Duff. Alanine release by rat adipose tissue in vitro. Biochem. Biophys. Res. Commun. 77: 925–931, 1977.
 505. Snell, K., and D. A. Duff. The release of alanine by rat diaphragm muscle in vitro. Biochem. J. 162: 399–403, 1977.
 506. Sochor, M., N. Z. Baquer, and P. McLean. Glucose over‐utilization in diabetes: evidence from studies on the changes in hexokinase, the pentose phosphate pathway and glucuronate‐xylulose pathway in rat kidney cortex in diabetes. Biochem. Biophys. Res. Commun. 86: 32–39, 1979.
 507. Sodoyez, J., F. Sodoyez‐Soffaux, and Y. Morris. 125I‐insulin: kinetics of interaction with its receptors and rate of degradation in vivo. Am. J. Physiol. 239 (Endocrinol. Metab. 2): E3–E11, 1980.
 508. Soling, H.‐D., and J. Kleineke. Species dependent regulation of hepatic gluconeogenesis in higher animals. In: Gluconeogenesis: Its Regulation in Mammalian Species, edited by R. W. Hanson and M. A. Mehlman. New York: John Wiley & Sons, 1976, p. 369–462.
 509. Soling, H.‐D., J. Kleineke, B. Willms, G. Janson, and A. Kuhn. Relationship between intracellular distribution of phosphoenolpyruvate carboxykinase, regulation of gluconeogenesis, and energy cost of glucose formation. Eur. J. Biochem. 37: 233–243, 1973.
 510. Solomon, S., and J. C. Vanatta. Implication of phospholipids in rat proximal tubule reabsorption. Biol. Med. 122: 1040–1045, 1966.
 511. Soltoff, S. P. ATP and the regulation of renal cell function. Annu. Rev. Physiol. 48: 9–31, 1986.
 512. Soltoff, S. P., and L. J. Mandel. Active ion transport in the renal proximal tubule. I. Transport and metabolic studies. J. Gen. Physiol. 84: 601–622, 1984.
 513. Soltoff, S. P., and L. J. Mandel. Active ion transport in the renal proximal tubule. II. Ionic dependence of the sodium pump. J. Gen. Physiol. 84: 623–642, 1984.
 514. Soltoff, S. P., and L. J. Mandel. Active ion transport in the renal proximal tubule. III. The ATP dependence of the sodium pump. J. Gen. Physiol. 84: 643–662, 1984.
 515. Somermeyer, M. G., T. C. Knauss, J. M. Weinberg, and H. D. Humes. Characterization of Ca2+ transport in rat renal brush‐border membranes and its modulation by phosphatidic acid. Biochem. J. 214: 37–46, 1983.
 516. Somlyo, A. P., M. Bond, and A. V. Somlyo. Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo. Nature 314: 622–625, 1985.
 517. Spector, A. Metabolism of free fatty acids. Prog. Biochem. Pharmacol. 6: 130–176, 1971.
 518. Speziale, N. B., E. H. S. Speciale, A. Terragno, and N. A. Terragno. Phospholipase C activity in rat kidney—effect of deoxycholate on phosphatidyl turnover. Biochim. Biophys. Acta 712: 65–70, 1982.
 519. Spicer, S. S. Histological location of glycogen in the urinary tract and lung. J. Histochem. Cytochem. 6: 52–60, 1958.
 520. Steer, K. A., M. Sochor, A. M. Gonzalez, and P. Mc‐Clean. Regulation of pathways of glucose metabolism in kidney specific linking of pentose phosphate pathway activity with kidney growth in experimental diabetes and unilateral nephrectomy. FEBS Lett. 150: 494–498, 1982.
 521. Stoff, J. S., F. H. Epstein, R. Narins, and A. S. Relman. Recent advances in renal tubular biochemistry. Annu. Rev. Physiol. 38: 46–68, 1976.
 522. Stone, W. J., and R. F. Pitts. Pathways of ammonia metabolism in the intact functioning kidney of the dog. J. Clin. Invest. 46: 1141–1150, 1967.
 523. Stumpf, B., and H. Kraus. Inhibition of gluconeogenesis in isolated rat kidney tubules of branched chain α‐ketoacids. Pediatr. Res. 12: 1039–1044, 1978.
 524. Suda, M., K. Nagai, and H. Nakagawa. Studies on the Circadian rhythm of phosphoenolpyruvate carboxykinase activity in rats. I. Mechanisms of circadian increase in liver enzyme with special reference to hormonal and dietary effects. J. Biochem. (Tokyo) 73: 727–738, 1973.
 525. Taegtmeyer, H., M. B. Peterson, V. V. Ragavan, A. G. Ferguson, and M. Lesch. De novo alanine synthesis in isolated oxygen‐deprived rabbit myocardium. J. Biol. Chem. 252: 5010–5018, 1977.
 526. Takano, T., S. P. Soltoff, S. Murdaugh, and L. J. Mandel. Intracellular respiratory dysfunction and cell injury in short‐term anoxia of rabbit renal proximal tubules. J. Clin. Invest. 76: 2377–2384, 1985.
 527. Tannenbaum, J., M. L. Purkerson, and S. Klahr. Effect of unilateral ureteral obstruction on metabolism of renal lipids in the rat. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F254–F262, 1983.
 528. Tau, J. S., and C. G. Huggins. In: Lipid Metabolism in Mammals, edited by F. Snyder. New York: Plenum, 1977, vol. II, p. 39–82.
 529. Teixeira, R. B., J. Kelley, H. Alpert, V. Pardo, and C. A. Vaamonde. Complete protection from gentamicin‐induced acute renal failure in the diabetes mellitus rat. Kidney Int. 21: 600–612, 1982.
 530. Terris, S., and D. Steiner. Retention and degradation of 125I‐insulin by perfused livers from diabetic rats. J. Clin. Invest. 57: 885–896, 1976.
 531. Thurau, K. Renal Na reabsorption and O2 uptake in dogs during hypoxia and hydrochlorothiazide infusion. Proc. Soc. Exp. Biol. Med. 106: 714–717, 1961.
 532. Tilghman, S. M., R. W. Hanson, and F. J. Ballard. Hormonal regulation of phosphoenolpyruvate carboxykinase (GTP) in mammalian tissues. In: Gluconeogenesis: Its Regulation in Mammalian Species, edited by R. W. Hanson and M. A. Mehlman. New York: John Wiley & Sons, 1976, p. 47–91.
 533. Tinker, D. O., and D. J. Hanahan. Phospholipid metabolism in kidney. III. Biosynthesis of phospholipids from radioactive precursors in rabbit renal cortex slices. Biochemistry 5: 423–435, 1966.
 534. Tischler, M. E., P. Hecht, and J. R. Williamson. Determination of mitochondrial/cytosolic metabolic gradients in isolated rat liver cells by cell disruption. Arch. Biochem. Biophys. 181: 278–292, 1977.
 535. Tizianello, A., G. Deferrari, G. Garibotto, G. Gurreri, and C. Robaudo. Renal metabolism of amino acid and ammonia in subjects with normal renal function and in patients with chronic renal failure. J. Clin. Invest. 65: 1162–1173, 1980.
 536. Tizianello, A., G. Deferrari, G. Garibotto, C. Robaudo, N. Acquarone, and G. M. Ghiggeri. Renal ammoniagenesis in an early stage of metabolic acidosis in man. J. Clin. Invest. 69: 240–250, 1982.
 537. Tizianello, A., G. Deferrari, G. Garibotto, C. Robaudo, G. Salvidio, and S. Saffioti. Renal ammoniagenesis in the postpradial period. In: New Advances in Renal Ammonia Metabolism, edited by A. C. Schoolwerth, K. Kurokawa, R. L. Tannen, and P. Vinay. Basel: S. Karger, 1985, p. 44–57.
 538. Toback, F. G. Phosphatidylcholine metabolism during renal growth and regeneration. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F249–F259, 1984.
 539. Toback, F. G., and L. J. Havener. Mechanism of enhanced phospholipid formation during potassium depletion nephropathy. Am. J. Physiol. 236 (Endocrinol. Metabol. Gastrointest. Physiol. 5): E429–E433, 1979.
 540. Toback, F. G., L. J. Havener, and B. H. Spargo. Stimulation of renal phospholipid formation during potassium depletion. Am. J. Physiol. 233 (Endocrinol. Metab. Gastrointest. Physiol. 2): E212–E218, 1977.
 541. Toback, F. G., N. G. Ordonez, S. L. Bortz, and B. H. Spargo. Zonal changes in renal structure and phospholipid metabolism in potassium‐deficient rats. Lab. Invest. 34: 115–124, 1976.
 542. Toback, F. G., D. E. Teegarden, and L. J. Havener. Amino acid–mediated stimulation of renal phospholipid biosynthesis after acute tubular necrosis. Kidney Int. 15: 542–547, 1979.
 543. Tou, J.‐S., M. W. Hurst, W. H. Baricos, and C. G. Huggins. The hydrolysis of triphosphoinositide by a phosphodiesterase in rat kidney cortex. Arch. Biochem. Biophys. 154: 593–600, 1973.
 544. Tou, J.‐S., M. W. Hurst, and C. G. Huggins. A phosphatidylinositol kinase in rat kidney cortex. Arch. Biochem. Biophys. 127: 54–58, 1968.
 545. Tou, J.‐S., M. W. Hurst, C. G. Huggins, and W. E. Foor. Biosynthesis of triphosphoinositide in rat kidney cortex. Arch. Biochem. Biophys. 140: 492–502, 1970.
 546. Trimble, M. E. Transport and metabolism of octanoate by the perfused rat kidney. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F210–F217, 1979.
 547. Trimble, M. E. Long chain fatty acid transport by the perfused rat kidney. Renal Physiol. 5: 136–142, 1982.
 548. Trimble, M. E., and R. H. Bowman. Renal Na+ and K+ transport: effects of glucose, palmitate and α‐bromopalmitate. Am. J. Physiol. 225: 1057–1062, 1973.
 549. Troyer, D. A., J. I. Kreisberg, D. W. Schwertz, and M. A. Venkatachalam. Effects of vasopressin on phospho‐inositides and prostaglandin production in cultured mesangial cells. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F139–F147, 1985.
 550. Troyer, D. A., D. W. Schwertz, J. I. Kreisberg, and M. A. Venkatachalam. Inositol phospholipid metabolism in the kidney. Annu. Rev. Physiol. 48: 51–71, 1986.
 551. Trump, B. F., I. K. Berezesky, and R. A. Cowley. The cellular and subcellular characteristics of acute and chronic injury with emphasis on the role of calcium. In: Pathophysiology of Shock, Anoxia, and Ischemia, edited by R. A. Cowley and B. F. Trump. Baltimore: Williams & Wilkins, 1982, p. 6–46.
 552. Tsutsumi, M., U. Alvarez, L. V. Avioli, and K. A. Hruska. Effect of 1,25‐dihydroxyvitamin D3 on phospholipid composition of rat renal brush border membrane. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F117–F123, 1985.
 553. Uchida, T., and C. R. Filburn. Affinity chromatography of protein kinase C–phorbol ester receptor on polyacrylamide‐immobilized phosphatidylserine. J. Biol. Chem. 259: 12311–12314, 1984.
 554. Ullrich, K. J., Renal transport of organic solutes. In: Membrane Transport in Biology, edited by G. Giebisch, D. C. Tosteson, and H. H. Ussing. Berlin: Springer‐Verlag, 1979, vol. 4A, p. 413–448.
 555. Ullrich, K. J., G. Rumrich, and S. Kloss. Reabsorption of monocarboxylic acids in the proximal tubule of the rat kidney. II. Specificity for aliphatic compounds. Pflugers Arch. 395: 220–226, 1982.
 556. Underwood, A. H., and E. A. Newsholme. Control of glycolysis and gluconeogenesis in rat kidney cortex slices. Biochem. J. 104: 300–305, 1967.
 557. Vancura, P., and R. A. Malt. Aerobic and anaerobic energy metabolism in compensatory renal hypertrophy. Am. J. Physiol. 225: 281–286, 1973.
 558. Vandewalle, A., G. Wirthenson, H. G. Heidrich, and W. G. Guder. Distribution of hexokinase and phosphoenol‐pyruvate carboxykinase along the rabbit nephron. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F492–F500, 1981.
 559. Veech, R. L., J. W. Randolph, N. W. Cornell, and H. A. Krebs. Cytosolic phosphorylation potential. J. Biol. Chem. 254: 6538–6547, 1979.
 560. Venkatachalam, M. A., D. B. Bernard, J. F. Donohoe, and N. G. Levinsky. Ischemic damage and repair in the rat proximal tubule: differences among the S1; S2, and S3 segments. Kidney Int. 14: 31–49, 1978.
 561. Venkatachalam, M. A., D. B. Jones, H. G. Rennke, D. Sandstrom, and Y. Patel. Mechanism of proximal tubule brush border loss and regeneration following mild renal ischemia. Lab. Invest. 45: 355–365, 1981.
 562. Vinay, P., A. Gougoux, and G. Lemieux. Isolation of a pure suspension of rat proximal tubules. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F403–F411, 1981.
 563. Vinay, P., G. Lemieux, P. Cartier, M. Ahmad, and G. Baveral. Effect of fatty acids on renal ammoniagenesis in in vivo and in vitro studies. Am. J. Physiol. 231: 880–887, 1976.
 564. Vinay, P., G. Lemieux, and A. Gougoux. Characteristics of glutamine metabolism by rat kidney tubules: a carbon and nitrogen balance. Can. J. Biochem. 57: 346–356, 1979.
 565. Vinay, P., J. P. Mapes, and H. A. Krebs. Fate of glutamine carbon in renal metabolism. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F123–F129, 1978.
 566. Wahren, J., and P. Felig. Renal substrate exchange in human diabetes mellitus. Diabetes 24: 730–734, 1975.
 567. Wang, M.‐S., and K. Kurokawa. Renal gluconeogenesis: axial and internephron heterogeneity and the effect of parathyroid hormone. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F59–F66, 1984.
 568. Watford, M. Gluconeogenesis in the chicken: regulation of phosphoenolpyruvate carboxykinase gene expression. Federation Proc. 44: 2469–2474, 1985.
 569. Watford, M., Y. Hod, Y.‐B. Chiao, M. R. Utter, and R. W. Hanson. The unique role of the kidney in gluconeogenesis in the chicken. J. Biol. Chem. 25: 10023–10027, 1981.
 570. Waugh, W. H., and T. Kubo. Development of an isolated perfused dog kidney with improved function. Am. J. Physiol. 217: 277–290, 1969.
 571. Weidemann, M. J. and H. A. Krebs. The fuel of respiration of rat kidney cortex. Biochem. J. 112: 149–166, 1969.
 572. Weinberg, J. M. Oxygen deprivation–induced injury to isolated rabbit kidney tubules. J. Clin. Invest. 76: 1193–1208, 1985.
 573. Weinberg, J. M., and H. D. Humes. Increases of cell ATP produced by exogenous adenine nucleotides in isolated rabbit kidney tubules. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F720–F733, 1986.
 574. White, D. A., The phospholipid composition of mammalian tissues. In: Form and Function of Phospholipids, edited by G. B. Ansell, J. N. Hawthorne, and R. M. C. Dawson. New York: Elsevier, 1973, p. 441–482.
 575. Whittam, R. Active cation transport as a pacemaker of respiration. Nature 191: 603–604, 1961.
 576. Wildenhoff, K. E. Tubular reabsorption and urinary excretion of acetoacetate and 3‐hydroxybutyrate in normal subjects and juvenile diabetes. Acta Med. Scand. 201: 63–67, 1977.
 577. Williams, J. C., D. W. Barfuss, and J. A. Schafer. Transport of solute in proximal tubules is modified by changes in medium osmolality. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): 246–255, 1986.
 578. Williamson, J. R., Role of anion transport in the regulation of metabolism. In: Gluconeogenesis: Its Regulation in Mammalian Species, edited by R. W. Hanson and M. A. Mehlman. New York: John Wiley & Sons, 1976, p. 165–220.
 579. Wilson, D. B., T. E. Bross, W. R. Sherman, R. A. Berger, and P. W. Majerus. Inositol cyclic phosphates are produced by cleavage of phosphatidylphosphoinositols (polyphosphoinositides) with purified sheep seminal vesicle phospholipase C enzymes. Proc. Natl. Acad. Sci. USA 82: 4013–4017, 1985.
 580. Wilson, D. R., P. E. Arnold, T. J. Burke, and R. W. Schrier. Mitochondrial calcium accumulation and respiration in ischemic acute renal failure in the rat. Kidney Int. 25: 519–526, 1984.
 581. Windhager, E. E., Sodium chloride transport. In: Membrane Transport in Biology, edited by G. Giebisch, D. C. Tosteson, and H. H. Ussing. Berlin: Springer‐Verlag, 1979, vol. 4A, p. 145–213.
 582. Windmueller, H. G., and A. E. Spaeth. Uptake and metabolism of plasma glutamine by the small intestine. J. Biol. Chem. 249: 5070–5079, 1974.
 583. Windmueller, H. G., and A. E. Spaeth. Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from blood. Arch. Biochem. Biophys. 171: 662–672, 1975.
 584. Wirthensohn, G., M. Gerl, and W. G. Guder. Triacylglycerol metabolism in kidney cortex and outer medulla. Int. J. Biochem. 12: 157–161, 1980.
 585. Wirthensohn, G., and W. G. Guder. Triacylglycerol metabolism in isolated rat kidney cortex tubules. Biochem. J. 186: 317–324, 1980.
 586. Wirthensohn, G., and W. G. Guder. Phosphatidylcholine biosynthesis in rabbit kidney tubule suspensions: effect of metabolic substrates on precursor incorporation. Biochim. Biophys. Acta 750: 388–396, 1983.
 587. Wirthensohn, G., and W. G. Guder. Renal lipid metabolism. Miner. Electrolyte Metab. 9: 203–211, 1983.
 588. Wirthensohn, G., and W. G. Guder. Renal substrate metabolism. Physiol. Rev. 66: 469–497, 1986.
 589. Wirthensohn, G., S. LeFrank, and W. G. Guder. Phospholipid metabolism in rat kidney cortical tubules. II. Effects of hormones on 32P incorporation. Biochim. Biophys. Acta 795: 401–410, 1984.
 590. Wirthensohn, G., S. Lefrank, K. Wirthensohn, and W. G. Guder. Phospholipid metabolism in rat kidney cortical tubules. I. Effect of renal substrates. Biochim. Biophys. Acta 795: 392–400, 1984.
 591. Wirthensohn, G., A. Vandewalle, and W. G. Guder. Distribution of glycerol kinase activity along the rabbit nephron. In: Abstracts, Int. Congr. Nephrol. 8th, Athens, 1981, p. 58.
 592. Wittner, M., C. Weidtke, E. Schlatter, A. Di Stefano, and R. Greger. Substrate utilization in the isolated perfused cortical thick ascending limb of the rabbit nephron. Pflugers Arch. 402: 52–62, 1984.
 593. Witzleben, C. L. Renal cortical tubular glycogen localization in glycogenosis type II (Pompe's disease). Lab. Invest. 20: 424–429, 1969.
 594. Wong, G. G., and B. D. Ross. Application of phosphorus nuclear magnetic resonance to problems of renal physiology and metabolism. Miner. Electrolyte Metab. 9: 282–289, 1983.
 595. Wright, E. M. Transport of carboxylic acids by renal membrane vesicles. Annu. Rev. Physiol. 47: 127–141, 1985.
 596. Wright, S. H., I. Kippen, and E. M. Wright. Effect of pH on transport of Krebs cycle intermediates in renal brush border membranes. Biochim. Biophys. Acta 684: 287–290, 1982.
 597. Yasuda, M., T. Fujita, T. Higashio, T. Okahara, Y. Abe, and K. Yamamoto. Effects of 4‐pentenoic acid and furosemide on renal functions and renal uptake of individual free fatty acids. Pflugers Arch. 384: 111–116, 1980.
 598. Yeoh, H. H., L. E. Rice, A. Maggio, and M. R. Levin. Effects of 4‐pentenoic acid on renal phosphate and calcium excretion in the dog. Am. J. Physiol. 231: 216–221, 1976.
 599. Zeidel, M. L., P. Silva, and J. L. Seifter. Intracellular pH regulation and proton transport by rabbit renal medullary collecting duct cells. Role of plasma membrane proton adenosine triphosphatase. J. Clin. Invest. 77: 113–120, 1986.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Saulo Klahr, L. Lee Hamm, Marc R. Hammerman, Lazaro J. Mandel. Renal Metabolism: Integrated Responses. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 2263-2333. First published in print 1992. doi: 10.1002/cphy.cp080249