Comprehensive Physiology Wiley Online Library

Regulation of Erythropoietin Production

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Physicochemical Properties of Erythropoietin
2 Assay and Standardization of Erythropoietin
3 Model for Kidney Production of Erythropoietin
4 Renal Site of Production of Erythropoietin
5 Extrarenal Erythropoietin Production
6 Sites of Action of Erythropoietin
7 Anemia of Renal Insufficiency
8 Erythropoietin and Polycythemia
9 Pharmacological Agents that Influence Erythropoietin Production
10 Pharmacokinetics of Erythropoietin
11 Potential Therapeutic uses of Erythropoietin
12 Summary
Figure 1. Figure 1.

Amino acid sequence of three mammalian erythropoietins. Sequence of mouse (MS) protein with differences from this sequence in human (HU) and monkey (MO) proteins on first and second lines below MS sequence, respectively. Numbering is from NH2 terminals of HU protein. Asterisks, sites of potential N‐linked glycosylation.

From McDonald et al. 184
Figure 2. Figure 2.

Dose–response regression line for International Reference Preparation(1RP)‐erythropoietin in exhypoxic polycythemic mice using modification of bioassay method of Cotes and Bangham 36.

From Rege et al. 244
Figure 3. Figure 3.

Radioimmunoassay dose–response regression lines with purified recombinant human erythropoietin (Ep) and International Reference Preparation‐erythropoietin (1RP‐Ep) used as standards. B, bound fraction with Ep; Bo, zero binding or binding without Ep.

unpublished observations using the method of Mason‐Garcia et al. 180
Figure 4. Figure 4.

Schematic model for renal oxygen sensing and erythropoietin production. Ep, erythropoietin; R, receptor; Gs, G stimulatory; Ac, adenylyl cyclase; ATP, adenosine triphosphate; cAMP, 3′,5′‐ adenosine cyclic monophosphate.

Figure 5. Figure 5.

Inhibitory effects of theophylline (20 and 80 mg/kg/day, I.P.) on the enhancement of radio‐iron incorporation in red cells induced by adenosine (hatched bars, 1,600 nmol/kg/day, I.V.) and 5′‐N′‐ethyl‐carboxamide (NECA; cross‐hatched bars, 100 nmol/kg/day, I.V.) in combination with 4 h hypoxia. Each value represents mean ±; SEM of 7–13 mice. Number of mice is at bottom of each bar. Mean percent 59Fe incorporation in red cells when standard erythropoietin was administered at 200 and 800 mU/mouse in these experiments was 5.48 ±; 0.73 and 25.07 ±; 1.46, respectively. Asterisks indicate groups significantly different from adenosine or NECA alone (P < 0.05). Mean hematocrit values ranged between 60.6% and 63.7%, and hematocrit values were not significantly different in any group.

From Ueno et al. 298
Figure 6. Figure 6.

Temporal pattern of erythropoietin (Ep) titers in plasma (upper panel) and in kidney tissue (lower panel) of rats during continuous hypoxia at 0.42 atm. Each Ep value is mean ±; SEM of several separate plasma (n = 4–5) or kidney (n = 4–7) samples.

From Jelkmann 139
Figure 7. Figure 7.

Effects of indomethacin on serum prostaglandin E (PGE) levels and plasma erythropoietin titers of dogs (n = 6 dogs in each group) after renal artery constriction (RAC) to 30% of normal flow. ESF, erythropoietic stimulating factor. Values are mean ±; 1 SE. Significantly different from RAC + 1 (0.1 > P > 0.05). Asterisk, significantly different from RAC ±; I (P < 0.05).

From Gross et al. 111
Figure 8. Figure 8.

Erythropoietin (Ep) titers in exhypoxic polycythemic mouse (EHPM) assay microsomal fraction of homogenates from kidneys and livers (EHPM/g tissue wet wt), which were flushed free of blood, and in plasma (EHPM/ml) of hypoxia‐exposed rats (6 h at 0.42 atm). Ep was extracted with phosphate buffer in the ratio of 8 ml/g kidney and 1 ml/g liver. Livers contained no significant EHPM. Each bar is mean ±; SE, and number of experiments is noted.

From Jelkmann and Bauer 141
Figure 9. Figure 9.

Indirect immunofluorescence of frozen section of anemic human kidney with antiserum for purified human recombinant erythropoietin. Note strong granular fluorescence of both glomerular epithelial (A) and interstitial (B) cells.

From Kochevar 157
Figure 10. Figure 10.

Dependency of the erythropoietic activity in glomerular primary cultures on culture time and on O2 concentration in incubation atmosphere (open circles, 20% O2; closed circles, 3.5% O2). The erythropoietic activity is expressed as percentage of the maximal number of erythroid clusters (CFU‐E) in the fetal mouse liver cell assay. Culture medium was changed every 2 days, tenfold concentrated, and dialyzed against phosphate‐buffered saline, pH 7.4. Unconditioned medium is erythropoietically active, because it contains insulin, which stimulates growth of CFU‐E.

From Jelkmann et al. 145
Figure 11. Figure 11.

Effect of chronic anemia on liver to kidney switch of erythropoietin (Ep) synthesis in sheep. Each point represents mean of results from 3 separate animals. Shaded area, period when kidneys assume primary role in Ep formation in normal sheep. Percentages derived from actual values obtained by assaying plasma in exhypoxic polycythemic mice. Mean plasma Ep levels (IU/ml) for groups nephrectomized (closed circles) and hepatectomized (open circles), respectively, were day 145: 0.9, 0.1; day 170: 0.85, 0.1; day 180: 0.95, 0.05; day 190: 0.7, <0.05; day 200: 0.05, 0.65; day 210: <0.05, 0.60.

From Zanjani et al. 319
Figure 12. Figure 12.

Model of erythropoiesis describing mechanism of F cell and A cell production from immature and mature erythroid progenitors. Progeny of pluripotent stem cell (CFU‐S) are stochastically committed to erythroid differentiation and form primitive burst‐forming unit‐erythroid (BFU‐E). These progenitors are called BFU‐EFA, because, if stimulated to undergo functional differentiation by high levels of erythropoeitin (Epo), they form colony‐forming unit‐erythroid (CFU‐EFA) and F cells (red cells containing hemoglobins F and A). Factors synthesized by T cells appear necessary to promote interaction of Epo with progenitors. Under normal circumstances at ambient Epo levels, BFU‐EFA undergo process of maturation–differentiation to BFU‐EA, during which their numbers amplify and their hemoglobin program changes to synthesis of hemoglobin A without hemoglobin F. In further stage of amplication, BFU‐EA and A erythrocytes predominate in blood. Very few BFU‐EFA undergo functional differentiation of ambient levels of Epo. Those that do form rare F cells found in normal blood.

From Nathan et al. 211
Figure 13. Figure 13.

Stages of cellular development in production of erythrocytes. Ep, erythropoietin; RBC, red blood cell; ERC, erythropoietin responsive cells; ECP, erythroid‐committed precursors.

From Schofield and Lajtha 267
Figure 14. Figure 14.

Model for mechanism of anemia of renal disease. CFU‐S, stem cell colony‐forming unit; BFU‐E, erythroid burst‐forming unit; CFU‐E, erythroid colony‐forming unit; RBC, red blood cell.

From Fisher, J. W., H. W. Radtke, and A. B. Rege. Mechanism of the anemia of chronic renal failure. In: Current Concepts in Erythropoiesis, edited by C. D. R. Dunn. Copyright 1983. Reprinted by permission of John Wiley & Sons, Ltd
Figure 15. Figure 15.

Relationship between serum erythropoietin concentration and hematocrit level in children with varying degrees of anemia and normal renal function.

From McGonigle et al. 186
Figure 16. Figure 16.

Relationship between serum erythropoietin concentration and hematocrit level in children with renal disease.

From McGonigle et al. 186
Figure 17. Figure 17.

Effects of uremic serum dialysate fractions derived from gel filtration chromatography on erythrocytic colony formation (AC). Enumeration of fractions (3.3 ml) begins with void volume (Vo). A: effects of Bio‐Gel P‐2 fractions from normal serum dialysate. B: serum dialysate from azotemic patient. C: serum dialysate from azotemic patient preincubated with spermine antiserum. D: radioactivity (cpm) of 1.1 ml fractions when [14C]spermine tetrahydrochloride was added to uremic serum dialysate prior to fractionation. Bars, SEM of three replicates.

From Radtke et al. 241
Figure 18. Figure 18.

Serum creatinine from normal human subjects and patients with chronic renal failure plotted against serum spermidine (r = 0.699, P < 0.001, y = 31.8X‐4.08).

From Saito et al. 261. Reprinted from Kidney International with permission
Figure 19. Figure 19.

Serum creatinine from normal subjects and patients with chronic renal failure plotted against serum putrescine (r = 0.799, P < 0.001, y = 18.5X − 2.55).

From Saito et al. 261. Reprinted from Kidney International with permission
Figure 20. Figure 20.

Time course of erythropoietin (Ep) production in monolayer cell cultures of human renal carcinoma clone (TP 1 clone 21). Each Ep determination represents mean Ep level (radioimmunoassay) in 3 day spent culture media of renal carcinoma clones and reflects amount of Ep produced by clone during past 3 day incubation period. (Unpublished observations.)

Figure 21. Figure 21.

Effects of dibutyryl adenosine 3′,5′‐cyclic monophosphate (dbcAMP) on cell growth, erythropoietin (Ep) production, and dome formation in primary monolayer cultures of human renal carcinoma cells. Renal carcinoma cells grown for 6 days to semiconfluency and for 12 days to confluency were incubated for 6 days in media with and without 0.1 mmol/liter of dbcAMP. Incubation media were assayed for Ep by radioimmunosassay and amount of Ep produced by renal carcinoma cells during 6 day incubation period was calculated after subtracting Ep levels in control unincubated media (6.5 ±; 1.15 mU/ml; n = 3 culture flasks) from those in incubated media. Domes were counted in 9.6 cm2 area after 6 days of incubation. Note significant increase in Ep production and dome formation by confluent cultures of renal carcinoma cells in presence of 0.1 mmol dbcAMP. *P < 0.01 when compared with controls.

From Hagiwara et al. 121
Figure 22. Figure 22.

Mean hourly blood O2 saturation values on perfusates of isolated kidneys perfused with hypoxic blood alone or hypoxic blood containing cobalt. Each point on cobalt curve represents mean of six experiments and on control curve, five experiments. Standard error of mean is shown for each point.

From Fisher and Langston 73
Figure 23. Figure 23.

Hematocrit response in patients with progressive renal failure given erythropoietin three times per week. Four patients received 100 units/kg subcutaneously (open circles), and four patients received 150 units/kg intravenously (solid circles). Results are expressed as means ±; SD.

From Eschbach et al. 57


Figure 1.

Amino acid sequence of three mammalian erythropoietins. Sequence of mouse (MS) protein with differences from this sequence in human (HU) and monkey (MO) proteins on first and second lines below MS sequence, respectively. Numbering is from NH2 terminals of HU protein. Asterisks, sites of potential N‐linked glycosylation.

From McDonald et al. 184


Figure 2.

Dose–response regression line for International Reference Preparation(1RP)‐erythropoietin in exhypoxic polycythemic mice using modification of bioassay method of Cotes and Bangham 36.

From Rege et al. 244


Figure 3.

Radioimmunoassay dose–response regression lines with purified recombinant human erythropoietin (Ep) and International Reference Preparation‐erythropoietin (1RP‐Ep) used as standards. B, bound fraction with Ep; Bo, zero binding or binding without Ep.

unpublished observations using the method of Mason‐Garcia et al. 180


Figure 4.

Schematic model for renal oxygen sensing and erythropoietin production. Ep, erythropoietin; R, receptor; Gs, G stimulatory; Ac, adenylyl cyclase; ATP, adenosine triphosphate; cAMP, 3′,5′‐ adenosine cyclic monophosphate.



Figure 5.

Inhibitory effects of theophylline (20 and 80 mg/kg/day, I.P.) on the enhancement of radio‐iron incorporation in red cells induced by adenosine (hatched bars, 1,600 nmol/kg/day, I.V.) and 5′‐N′‐ethyl‐carboxamide (NECA; cross‐hatched bars, 100 nmol/kg/day, I.V.) in combination with 4 h hypoxia. Each value represents mean ±; SEM of 7–13 mice. Number of mice is at bottom of each bar. Mean percent 59Fe incorporation in red cells when standard erythropoietin was administered at 200 and 800 mU/mouse in these experiments was 5.48 ±; 0.73 and 25.07 ±; 1.46, respectively. Asterisks indicate groups significantly different from adenosine or NECA alone (P < 0.05). Mean hematocrit values ranged between 60.6% and 63.7%, and hematocrit values were not significantly different in any group.

From Ueno et al. 298


Figure 6.

Temporal pattern of erythropoietin (Ep) titers in plasma (upper panel) and in kidney tissue (lower panel) of rats during continuous hypoxia at 0.42 atm. Each Ep value is mean ±; SEM of several separate plasma (n = 4–5) or kidney (n = 4–7) samples.

From Jelkmann 139


Figure 7.

Effects of indomethacin on serum prostaglandin E (PGE) levels and plasma erythropoietin titers of dogs (n = 6 dogs in each group) after renal artery constriction (RAC) to 30% of normal flow. ESF, erythropoietic stimulating factor. Values are mean ±; 1 SE. Significantly different from RAC + 1 (0.1 > P > 0.05). Asterisk, significantly different from RAC ±; I (P < 0.05).

From Gross et al. 111


Figure 8.

Erythropoietin (Ep) titers in exhypoxic polycythemic mouse (EHPM) assay microsomal fraction of homogenates from kidneys and livers (EHPM/g tissue wet wt), which were flushed free of blood, and in plasma (EHPM/ml) of hypoxia‐exposed rats (6 h at 0.42 atm). Ep was extracted with phosphate buffer in the ratio of 8 ml/g kidney and 1 ml/g liver. Livers contained no significant EHPM. Each bar is mean ±; SE, and number of experiments is noted.

From Jelkmann and Bauer 141


Figure 9.

Indirect immunofluorescence of frozen section of anemic human kidney with antiserum for purified human recombinant erythropoietin. Note strong granular fluorescence of both glomerular epithelial (A) and interstitial (B) cells.

From Kochevar 157


Figure 10.

Dependency of the erythropoietic activity in glomerular primary cultures on culture time and on O2 concentration in incubation atmosphere (open circles, 20% O2; closed circles, 3.5% O2). The erythropoietic activity is expressed as percentage of the maximal number of erythroid clusters (CFU‐E) in the fetal mouse liver cell assay. Culture medium was changed every 2 days, tenfold concentrated, and dialyzed against phosphate‐buffered saline, pH 7.4. Unconditioned medium is erythropoietically active, because it contains insulin, which stimulates growth of CFU‐E.

From Jelkmann et al. 145


Figure 11.

Effect of chronic anemia on liver to kidney switch of erythropoietin (Ep) synthesis in sheep. Each point represents mean of results from 3 separate animals. Shaded area, period when kidneys assume primary role in Ep formation in normal sheep. Percentages derived from actual values obtained by assaying plasma in exhypoxic polycythemic mice. Mean plasma Ep levels (IU/ml) for groups nephrectomized (closed circles) and hepatectomized (open circles), respectively, were day 145: 0.9, 0.1; day 170: 0.85, 0.1; day 180: 0.95, 0.05; day 190: 0.7, <0.05; day 200: 0.05, 0.65; day 210: <0.05, 0.60.

From Zanjani et al. 319


Figure 12.

Model of erythropoiesis describing mechanism of F cell and A cell production from immature and mature erythroid progenitors. Progeny of pluripotent stem cell (CFU‐S) are stochastically committed to erythroid differentiation and form primitive burst‐forming unit‐erythroid (BFU‐E). These progenitors are called BFU‐EFA, because, if stimulated to undergo functional differentiation by high levels of erythropoeitin (Epo), they form colony‐forming unit‐erythroid (CFU‐EFA) and F cells (red cells containing hemoglobins F and A). Factors synthesized by T cells appear necessary to promote interaction of Epo with progenitors. Under normal circumstances at ambient Epo levels, BFU‐EFA undergo process of maturation–differentiation to BFU‐EA, during which their numbers amplify and their hemoglobin program changes to synthesis of hemoglobin A without hemoglobin F. In further stage of amplication, BFU‐EA and A erythrocytes predominate in blood. Very few BFU‐EFA undergo functional differentiation of ambient levels of Epo. Those that do form rare F cells found in normal blood.

From Nathan et al. 211


Figure 13.

Stages of cellular development in production of erythrocytes. Ep, erythropoietin; RBC, red blood cell; ERC, erythropoietin responsive cells; ECP, erythroid‐committed precursors.

From Schofield and Lajtha 267


Figure 14.

Model for mechanism of anemia of renal disease. CFU‐S, stem cell colony‐forming unit; BFU‐E, erythroid burst‐forming unit; CFU‐E, erythroid colony‐forming unit; RBC, red blood cell.

From Fisher, J. W., H. W. Radtke, and A. B. Rege. Mechanism of the anemia of chronic renal failure. In: Current Concepts in Erythropoiesis, edited by C. D. R. Dunn. Copyright 1983. Reprinted by permission of John Wiley & Sons, Ltd


Figure 15.

Relationship between serum erythropoietin concentration and hematocrit level in children with varying degrees of anemia and normal renal function.

From McGonigle et al. 186


Figure 16.

Relationship between serum erythropoietin concentration and hematocrit level in children with renal disease.

From McGonigle et al. 186


Figure 17.

Effects of uremic serum dialysate fractions derived from gel filtration chromatography on erythrocytic colony formation (AC). Enumeration of fractions (3.3 ml) begins with void volume (Vo). A: effects of Bio‐Gel P‐2 fractions from normal serum dialysate. B: serum dialysate from azotemic patient. C: serum dialysate from azotemic patient preincubated with spermine antiserum. D: radioactivity (cpm) of 1.1 ml fractions when [14C]spermine tetrahydrochloride was added to uremic serum dialysate prior to fractionation. Bars, SEM of three replicates.

From Radtke et al. 241


Figure 18.

Serum creatinine from normal human subjects and patients with chronic renal failure plotted against serum spermidine (r = 0.699, P < 0.001, y = 31.8X‐4.08).

From Saito et al. 261. Reprinted from Kidney International with permission


Figure 19.

Serum creatinine from normal subjects and patients with chronic renal failure plotted against serum putrescine (r = 0.799, P < 0.001, y = 18.5X − 2.55).

From Saito et al. 261. Reprinted from Kidney International with permission


Figure 20.

Time course of erythropoietin (Ep) production in monolayer cell cultures of human renal carcinoma clone (TP 1 clone 21). Each Ep determination represents mean Ep level (radioimmunoassay) in 3 day spent culture media of renal carcinoma clones and reflects amount of Ep produced by clone during past 3 day incubation period. (Unpublished observations.)



Figure 21.

Effects of dibutyryl adenosine 3′,5′‐cyclic monophosphate (dbcAMP) on cell growth, erythropoietin (Ep) production, and dome formation in primary monolayer cultures of human renal carcinoma cells. Renal carcinoma cells grown for 6 days to semiconfluency and for 12 days to confluency were incubated for 6 days in media with and without 0.1 mmol/liter of dbcAMP. Incubation media were assayed for Ep by radioimmunosassay and amount of Ep produced by renal carcinoma cells during 6 day incubation period was calculated after subtracting Ep levels in control unincubated media (6.5 ±; 1.15 mU/ml; n = 3 culture flasks) from those in incubated media. Domes were counted in 9.6 cm2 area after 6 days of incubation. Note significant increase in Ep production and dome formation by confluent cultures of renal carcinoma cells in presence of 0.1 mmol dbcAMP. *P < 0.01 when compared with controls.

From Hagiwara et al. 121


Figure 22.

Mean hourly blood O2 saturation values on perfusates of isolated kidneys perfused with hypoxic blood alone or hypoxic blood containing cobalt. Each point on cobalt curve represents mean of six experiments and on control curve, five experiments. Standard error of mean is shown for each point.

From Fisher and Langston 73


Figure 23.

Hematocrit response in patients with progressive renal failure given erythropoietin three times per week. Four patients received 100 units/kg subcutaneously (open circles), and four patients received 150 units/kg intravenously (solid circles). Results are expressed as means ±; SD.

From Eschbach et al. 57
References
 1. Abramson, S., R. G. Miller, and R. A. Phillips. The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid systems. J. Exp. Med. 145: 1567–1579, 1977.
 2. Adamson, J. W. The erythropoietin/hematocrit relationship in normal and polycythemic man: implications of marrow regulation. Blood 32: 597–609, 1968.
 3. Adamson, J. W. High levels of the circulating form of parathyroid hormone do not inhibit in vitro erythropoiesis. J. Lab. Clin. Med. 102: 613–620, 1983.
 4. Adamson, J. W., and J. W. Eschbach. The use of recombinant human erythropoietin (rHuEpo) in humans. Cancer Surv. 9 (1): 157–167, 1990.
 5. Adamson, J. W., and C. A. Finch. Erythropoietin and the polycythemias. Ann. NY Acad. Sci. 149: 560–563, 1968.
 6. Anagnostou, A., R. Baranowski, V. K. G. Pillary, N. Kurtzmen, G. Vercelloti, and W. Fried. Effect of renin on extrarenal erythropoietin production. J. Lab. Clin. Med. 88: 707–715, 1976.
 7. Anagnostou, A., J. Barone, A. Kedo, and W. Fried. Effect of erythropoietin therapy on the red cell volume of uraemic and non‐uraemic rats. Br. J. Haematol. 37: 85–91, 1977.
 8. Anagnostou, A., S. Schade, J. Barone, and W. Fried. Effects of partial hepatectomy on extrarenal erythropoietin production in rats. Blood 50: 457–462, 1977.
 9. Annable, L., P. M. Cotes, and M. V. Mussett. The second International Reference Preparation of erythropoietin, human urinary, for bioassay. Bull. WHO 47: 99–112, 1972.
 10. Ardaillou, N., J. Sraer, J. D. Sraer, and R. Ardaillou. Prostaglandin synthesis by human isolated glomeruli and human glomerular cultured cells, abstracted. V Int. Prostaglandin Conf., Florence, Italy, 1982, edited by B. Samuelsson. New York: Raven, 1983, p. 473.
 11. Axelrad, A. A., D. L. McLeod, M. M. Shreeve, and D. S. Heath. Properties of cells that produce erythrocytic colonies in vitro. In: Hemopoiesis in Culture, edited by W. A. Robinson,. Washington, DC: US Govt. Printing Office, 1974, p. 226–234.
 12. Barron, A. G., and E. S. G. Barron. Mechanism of cobalt polycythemia: effect of ascorbic acid. Proc. Soc. Exp. Biol. Med. 35: 407–409, 1936.
 13. Baumbach, L., and O. Skott. Renin release from isolated rat glomeruli: seasonal variations and effects of D600 on the response to calcium deprivation. J. Physiol. (Lond.) 310: 285–292, 1981.
 14. Beckman, B., B. Maddux, A. Segaloff, and J. W. Fisher. Effects of testosterone and 5β‐androstanes on in vitro erythroid colony formation in mouse bone marrow. Proc. Soc. Exp. Biol. Med. 167: 51–54, 1981.
 15. Berger, L., and M. W. Sinkoff. Systemic manifestations of hypernephroma: a review of 273 cases. Am. J. Med. 22: 791–796, 1957.
 16. Birgeård, G., O. Miller, J. Caro, and A. Erslev. Serum erythropoietin levels by radioimmunoassay in polycythaemia. Scand. J. Haematol. 29: 161–167, 1982.
 17. Boggs, D. R. Homeostatic regulatory mechanisms of hematopoiesis. Annu. Rev. Physiol. 28: 39–56, 1966.
 18. Bonsdorff, E., and E. Jalavisto. A humoral mechanism in anoxic erythrocytosis. Acta Physiol. Scand. 16: 150–170, 1948.
 19. Bradley, J. E., J. D. Young, Jr., and G. Lentz. Polycythemia secondary to pheochromocytoma. J. Urol. 86: 1–6, 1961.
 20. Brueggenmeyer, C. D., G. Ramirez, and H. E. Cruce. The therapy of anemia of chronic renal failure oral versus injectable androgens. Dial. Transplant. 15: 142–144, 1986.
 21. Burlington, H., E. P. Cronkite, U. Reineke, and E. D. Zanjani. Erythropoietin production in cultures of goat renal glomeruli. Proc. Natl. Acad. Sci. USA 69: 3547–3550, 1972.
 22. Burwell, C. S., E. D. Robin, R. D. Whaley, and Albert G. Bickelmann. Extreme obesity associated with alveolar hypoventilation—a Pickwickian syndrome. Am. J. Med. 21: 811–818, 1956.
 23. Busuttil, R. W., B. L. Roh, and J. W. Fisher. The cytological localization of erythropoietin in the human kidney using the fluorescent antibody technique. Proc. Soc. Exp. Biol. Med. 137: 327–330, 1971.
 24. Busuttil, R. W., B. L. Roh, and J. W. Fisher. Localization of erythropoietin in the glomerulus of the hypoxic dog kidney using a fluorescent antibody technique. Acta Haematol. (Basel) 47: 238–242, 1972.
 25. Campbell, R., Y. Talwalker, D. Bartos, F. Bartos, J. Musgrave, M. Harner, H. Puri, D. Grettie, A. M. Dolney, and B. Loggan. Polyamines, uremia and hemodialysis. Adv. Polyamine Res. 2: 319–343, 1978.
 26. Carnot, P., and C. DeFlandre. Sur l'activité hématopoietique des différents organes au cours de la régénération du sang. C. R. Acad. Sci. Paris 143: 432–435, 1906.
 27. Caro, J., S. Brown, O. Miller, T. Murray, and A. J. Erslev. Erythropoietin levels in uremic nephric and anephric patients. J. Lab. Clin. Med. 93: 449–458, 1979.
 28. Caro, J., and A. J. Erslev. Biologic and immunologic erythropoietin in extracts from hypoxic whole rat kidneys and in their glomerular and tubular fractions. J. Lab. Clin. Med. 103: 922–931, 1984.
 29. Caro, J., J. Hickey, and A. J. Erslev. Erythropoietin production by an established kidney proximal tubule cell line (LLCPK), abstracte. Exp. Hematol. 12: 357, 1984.
 30. Chang, S. C. S., D. Sikkema, and E. Goldwasser. Evidence for an erythropoietin receptor protein on rat bone marrow cells. Biochem. Biophys. Res. Commun. 57: 399–405, 1974.
 31. Choppin, J., C. Lacombe, N. Casadevall, O. Muller, P. Tambourin, and B. Varet. Characterization of erythropoietin produced by IW32 murine erythroleukemia cells. Blood 64: 341–347, 1984.
 32. Churchill, P. C., and M. C. Churchill. A1‐ and A2‐ adenosine receptor activation inhibits and stimulates renin secretion of rat renal cortical slices. J. Pharmacol. Exp. Ther. 232: 589–594, 1985.
 33. Clark, B. F. C., and H. U. Petersen, (eds.). Gene Expression: The Translational Step and Its Control. Copenhagen: Munksgaard, 1984, p. 127. (Alfred Benzon Symp., 19th, 1984.).
 34. Congote, L. F., and S. Solomon. On the site of origin of erythropoietic factors in human fetal tissues. Endocr. Res. Commun. 1: 495–504, 1974.
 35. Cotes, P. M. Immunoreactive erythropoietin in serum. I. Evidence for the validity of the assay method and the physiological relevance of estimates. Br. J. Haematol. 50: 427–438, 1982.
 36. Cotes, P. M., and D. R. Bangham. Bioassay of erythropoietin in mice made polycythemic by exposure to air at a reduced pressure. Nature 191: 1065–1067, 1961.
 37. Crout, J. R., Catecholamine metabolism in pheochromocytoma and essential hypertension. In: Hormones and Hypertension, edited by W. M. Manger. Springfield, IL: Thomas, 1966.
 38. Cutler, R. L., D. Metcalf, N. A. Nicola, and G. R. Johnson. Purification of a multipotential colony‐stimulating factor from pokeweed mitogen—stimulated mouse spleen cell conditioned medium. J. Biol. Chem. 260: 6579–6587, 1985.
 39. Damon, A., D. A. Holub, M. M. Melicow, and A. C. Uson. Polycythemia and renal carcinoma: report of 10 new cases, two with long hematologic remission following nephrectomy. Am. J. Med. 25: 182–197, 1958.
 40. Dinkelaar, R. B., E. Y. Engels, A. A. Hart, L. P. Schoemaker, E. Bosch, and R. A. F. M. Chamuleau. Metabolic studies on erythropoietin (Ep). II. The role of liver and kidney in the metabolism of Ep. Exp. Hematol. 9: 796–803, 1981.
 41. Donati, R. M., J. M. McCarthy, R. D. Lange, and N. I. Gallagher. Erythrocythaemia and neoplastic tumors. Ann. Intern. Med. 58: 47–55, 1963.
 42. Dordal, M. S., F. F. Wang, and E. Goldwasser. The role of carbohydrate in erythropoietin action. Endocrinology 116: 2293–2299, 1985.
 43. Dunn, C. D. R., J. H. Jarvis, and J. M. Greenman. A quantitative bioassay for erythropoietin using mouse fetal liver cells. Exp. Hematol. 3: 65–78, 1975.
 44. Dunn, C. D. R., and R. D. Lange. Erythropoietin: assay and characterization. In: Topical Reviews in Haematology, edited by S. Roath. Bristol, UK: Wright, 1980, p. 1–32.
 45. Eaves, A. C., and C. J. Eaves. Erythropoiesis in culture. Clin. Haematol. 57: 57–62, 1984.
 46. Egrie, J. C., J. W. Eschbach, T. McGuire, and J. W. Adamson. Pharmacokinetics of recombinant human erythropoietin (rHuEpo) administered to hemodialysis patients abstracted. Kidney Int. 33: 262, 1988.
 47. Emmanouel, D. S., E. Goldwasser, and A. I. Katz. Metabolism of pure human erythropoietin in the rat. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F168–176, 1984.
 48. Erkelens, D. W., and L. W. Statius Van Eps. Bartter's syndrome and erythrocytosis. Am. J. Med. 55: 711–719, 1973.
 49. Erslev, A. J. Humoral regulation of red cell production. Blood 8: 349–357, 1953.
 50. Erslev, A. J. Hematology control of red cell production. Annu. Rev. Med. 2: 315–332, 1960.
 51. Erslev, A. J. In vitro production of erythropoietin by kidneys perfused with a serum‐free solution. Blood 44: 77–85, 1974.
 52. Erslev, A. J. Renal biogenesis of erythropoietin. Am. J. Med. 58: 25–30, 1975.
 53. Erslev, A. J., J. Caro, E. Kansu, and R. Silver. Renal and extrarenal erythropoietin production in anaemic rats. Br. J. Haematol. 45: 65–72, 1980.
 54. Eschbach, J. W., and J. W. Adamson. Improvement in the anemia of chronic renal failure with fluoxymesterone. Ann. Intern. Med. 78: 527–534, 1973.
 55. Eschbach, J. W., and J. W. Adamson. Anemia of end stage renal disease (ESRD). Kidney Int. 28: 1–5, 1985.
 56. Eschbach, J. W., D. Funk, J. Adamson, I. Kuhm, B. H. Scribner, and C. A. Finch. Erythropoiesis in patients with renal failure undergoing chronic dialysis. N. Engl. J. Med. 276: 653–658, 1967.
 57. Eschbach, J. W., M. R. Kelly, R. Haley, R. I. Abels, and J. W. Adamson. Treatment of the anemia of progressive renal failure with recombinant human erythropoietin. N. Engl. J. Med. 321: 158–163, 1989.
 58. Eschbach, J. W., J. Mladenovic, J. F. Garcia, P. W. Wahl, and J. W. Adamson. The anemia of chronic renal failure in sheep. Response to erythropoietin rich plasma in vivo. J. Clin. Invest. 74: 434–441, 1984.
 59. Faura, J., J. Ramos, C. Reynafarje, E. English, P. Finne, and C. A. Finch. Effect of altitude on erythropoiesis. Blood 33: 668–676, 1969.
 60. Ferreri, N. R., J. C. McGiff, M. J. S. Miller, M. Shwartman, E. G. Spokas, and P. Y.‐K. Wong. The kidney and arachidonate metabolism. In: Advances in Prostaglandin, Thromboxane and Leukotriene Research, edited by B. Samuelsson, R. Paoletti, and P. W. Ramwell. New York: Raven, 1983, vol. II, p. 481–485.
 61. Fink, G. D., and J. W. Fisher. Erythropoietin production after renal denervation or beta‐adrenergic blockade. Am. J. Physiol. 230: 508–513, 1976.
 62. Fink, G. D., and J. W. Fisher. Stimulation of erythropoiesis by beta adrenergic agonists. I. Characterization of activity in polycythemic mice. J. Pharmacol. Exp. Ther. 202: 192–198, 1977.
 63. Fink, G. D., and J. W. Fisher. Stimulation of erythropoiesis by beta adrenergic agonists. II. Mechanism of action. J. Pharmacol. Exp. Ther. 202: 199–208, 1977.
 64. Fink, G. D., L. G. Paulo, and J. W. Fisher. Effects of beta‐adrenergic blocking agents on erythropoietin production in rabbits exposed to hypoxia. J. Pharmacol. Exp. Ther. 193: 176–181, 1975.
 65. Fisher, J. W. Erythropoietin, pharmacology, biogenesis and control of production. Pharmacol. Rev. 24: 459–508, 1972.
 66. Fisher, J. W. Extrarenal erythropoietin production. J. Lab. Clin. Med. 93: 695–699, 1979.
 67. Fisher, J. W. Prostaglandins and kidney erythropoietin production. Nephron 25: 53–56, 1980.
 68. Fisher, J. W. Pharmacologic modulation of erythropoietin production. Annu. Rev. Pharmacol. Toxicol. 28: 101–122, 1988.
 69. Fisher, J. W. Control of erythropoietin production. Proc. Soc. Exp. Biol. Med. 173: 289–305, 1983.
 70. Fisher, J. W., and B. J. Birdwell. The production of an erythropoietic factor by the in situ perfused kidney. Acta Haematol. (Basel) 26: 224–232, 1961.
 71. Fisher, J. W., and J. J. Crook. Influence of several hormones on erythropoiesis and oxygen consumption in the hypophysectomized rat. Blood 19: 557–565, 1962.
 72. Fisher, J. W., D. B. Knight, and C. Couch. The influence of several diuretic drugs on erythropoietin formation. J. Pharmacol. Exp. Ther. 141: 113–121, 1963.
 73. Fisher, J. W., and J. W. Langston. The influence of hypoxemia and cobalt on erythropoietin production in the isolated perfused dog kidney. Blood 29: 114–125, 1967.
 74. Fisher, J. W., P. K. Nelson, B. Beckman, and A. Burdowski. Kidney control of erythropoietin production. In: Renal Endocrinology, edited by M. J. Dunn. Baltimore, MD: Williams & Wilkins, 1983, p. 142–180.
 75. Fisher, J. W., H. W. Radtke, and A. B. Rege. Mechanism of the anemia of chronic renal failure. In: Current Concepts in Erythropoiesis, edited by C. D. R. Dunn. New York: Wiley, 1983.
 76. Fisher, J. W., and B. L. Roh. Influence of alkylating agents on kidney erythropoietin production. Cancer Res. 24: 983–988, 1964.
 77. Fisher, J. W., B. L. Roh, and S. Halvorsen. Inhibition of erythropoietic effects of hormones by erythropoietin antisera in mildly plethoric mice. Proc. Soc. Exp. Biol. Med. 126: 97–100, 1967.
 78. Fisher, J. W., A. I. Samuels, and J. W. Langston. Effects of angiotensin and renal artery constriction on erythropoietin production. J. Pharmacol. Exp. Ther. 157: 618–625, 1967.
 79. Fisher, J. W., R. Schofield, and D. D. Porteous. Effects of renal hypoxia on erythropoietin production. Br. J. Haematol. 11: 382–388, 1965.
 80. Fisher, J. W., W. J. Stuckey, D. D. Lindholm, and S. Abshire. Extrarenal erythropoietin production. Isr. J. Med. Sci. 7: 991–992, 1971.
 81. Fisher, J. W., G. Taylor, and D. D. Porteous. Localization of erythropoietin in glomeruli of sheep kidney by fluorescent antibody technique. Nature 205: 611–612, 1965.
 82. Fishman, A. P., R. M. Goldring, and G. M. Turino. General alveolar hypoventilation: a syndrome of respiratory and cardiac failure in patients with normal lungs. Q. J. Med. 35: 261–275, 1966.
 83. Flower, R. J., and G. J. Blackwell. The importance of phospholipase A in prostaglandin biosynthesis. Biochem. Pharmacol. 25: 285–291, 1976.
 84. Freedman, B. J., and D. G. Pennington. Erythrocytosis in emphysema. Br. J. Haematol. 9: 425–430, 1963.
 85. Freedman, M. H., D. C. Cattran, and E. F. Saunders. Anemia of chronic renal failure: inhibition of erythropoiesis by uremic serum. Nephron 35: 15–19, 1983.
 86. Frenkel, E. P., W. Suki, and J. Baum. Some observations on the localization of erythropoietin. Ann. NY Acad. Sci. 149: 292–293, 1968.
 87. Freudenrich, C. C., K. W. Snowdowne, and A. B. Borle. The effect of anoxia on cytosolic free calcium in kidney cells, abstracted. Federation Proc. 43: 769, 1984.
 88. Fried, W. The liver as a source of extrarenal erythropoietin production. Blood 40: 671–677, 1972.
 89. Fried, W., and A. Anagnostou. Extrarenal erythropoietin production. In: Kidney Hormones: Erythropoietin, edited by J. W. Fisher. New York: Academic, 1977, vol. 2, p. 231–244.
 90. Fried, W., J. Barone‐Varelas, and M. Berman. Detection of high erythropoietin titers in renal extracts of hypoxic rats. J. Lab. Clin. Med. 97: 82–86, 1981.
 91. Frohlich, E. D., and R. C. Tarazi. High hematocrit in hypertension and its relationship with renal arterial disease. Ann. NY Acad. Sci. 149: 569–575, 1968.
 92. Fu, J., J. J. L. Lertora, J. Brookins, J. C. Rice, and J. W. Fisher. Pharmacokinetics of erythropoietin in intact and anephric dogs. J. Lab. Clin. Med. 111: 669–676, 1988.
 93. Gallagher, N. I., and R. M. Donati. Inappropriate erythropoietin elaboration. Ann. NY Acad. Sci. 149: 528–538, 1968.
 94. Gallo, R. C., W. Fraimow, R. T. Cathcart, and A. J. Erslev. Erythropoietic response in chromic pulmonary disease. Arch. Intern. Med. 113: 559–568, 1964.
 95. Garcia, J. F., S. N. Ebbe, L. Hollander, H. O. Cutting, M. E. Miller, and E. P. Cronkite. Radioimmunoassay of erythropoietin: circulating levels in normal and polycythemic human beings. J. Lab. Clin. Med. 99: 624–635, 1982.
 96. Garcia, J. F., J. Sherwood, and E. Goldwasser. Radioimmunoassay or erythropoietin. Blood Cells 5: 405–419, 1979.
 97. Garrett, H. E., R. Scott, J. F. Howell, and M. E. DeBakey. Pheochromocytoma and renal artery stenosis. Surgical treatment of secondary hypertension: a case report. Arch. Surg. 90: 97–100, 1965.
 98. Gill, J. R., Jr. J. C. Frö;lich, R. E. Bowden, A. A. Taylor, H. R. Keiser, H. W. Seyberth, J. A. Oates, and F. C. Bartter. Bartter's syndrome: a disorder characterized by high urinary prostaglandins and a dependence of hyperreninemia on prostaglandin synthesis. Am. J. Med. 61: 43–51, 1976.
 99. Gokal, R., M. McHugh, R. Fryer, M. K. Ward, and D. N. S. Kerr. Continuous ambulatory peritoneal dialysis: one year's experience in a UK dialysis unit. Br. Med. J. 281: 474–477, 1980.
 100. Goldwasser, E., Erythropoietin and red cell differentiation. In: Control of Cellular Division and Development, Part A, edited by D. Cunningham, E. Goldwasser, J. Watson, and C. F. Fox. New York: Liss, 1981, p. 387–494.
 101. Goldwasser, E., J. F. Eliason, and D. Sikkema. An assay for erythropoietin in vitro at the milliunit level. Endocrinology 97: 315–323, 1975.
 102. Goldwasser, E., L. O. Jacobson, W. Fried, and L. Plzak. Mechanism of the erythropoietic effect of cobalt. Science 125: 1085–1086, 1957.
 103. Gordon, A. S. Hemopoietin, Physiol. Rev. 39: 1–40, 1959.
 104. Gordon, A. S., G. W. Cooper, and E. D. Zanjani. The kidney and erythropoiesis. Semin. Hematol. 4: 337–357, 1967.
 105. Gordon, A. S., E. D. Zanjani, and R. Zalusky. A possible mechanism for the erythrocytosis associated with hepatocellular carcinoma in man. Blood 35: 151–157, 1970.
 106. Gould, A. B., S. Goodman, R. DeWolf, G. Onesti, and C. Swartz. Interrelation of the renin system and erythropoietin in rats. J. Lab. Clin. Med. 96: 523–634, 1980.
 107. Gould, A. B., S. A. Goodman, and D. Green. An in vivo effect of renin on erythropoietin formation. Lab. Invest. 28: 719–722, 1973.
 108. Grant, W. C., and W. S. Root. Fundamental stimulus for erythropoiesis. Physiol. Rev. 32: 449–498, 1952.
 109. Gregory, C. J. Erythropoietin sensitivity as a differentiation marker in the hemopoietic system: studies of three erythropoietic colony responses in culture. J. Cell. Physiol. 89: 289–302, 1976.
 110. Gross, D. M., J. Brookins, G. D. Fink, and J. W. Fisher. Effects of prostaglandin A2, E2 and F2 on erythropoietin production. J. Pharmacol. Exp. Ther. 198: 489–496, 1976.
 111. Gross, D. M., V. M. Mujovic, W. Jubiz, and J. W. Fisher. Enhanced erythropoietin and prostaglandin E production in the dog following renal artery constriction. Proc. Soc. Exp. Biol. Med. 151: 498–501, 1976.
 112. Gruber, D. F., J. R. Zucali, and E. A. Mirand. Identification of erythropoietin producing cells in fetal mouse liver cultures. Exp. Hematol. 5: 392–398, 1977.
 113. Gruber, D. F., J. R. Zucali, J. Wleklinski, V. LaRussa, and E. A. Mirand. Temporal transition in the site of rat erythropoietin production. Exp. Hematol. 5: 399–407, 1977.
 114. Grunberg‐Manago, M., and B. Safer (eds.). Interaction of Translational and Transcriptional Controls in the Regulation of Gene Expression. Developments in biochemistry. New York: Elsevier, 1982, p. 524. (Dev. Biochem. Ser., vol. 24.).
 115. Gurney, C. W. Erythremia in renal disease. Trans. Assoc. Am. Physicians 73: 102–112, 1960.
 116. Hagiwara, M., I.‐L. Chen, and J. W. Fisher. Erythropoietin production in long‐term cultures of human renal carcinoma cells: the role of cell population density. Exp. Cell Res. 154: 619–624, 1984.
 117. Hagiwara, M., I.‐L. Chen, and J. W. Fisher. Renal cell production of erythropoietin. In: Kidney Hormones, edited by J. W. Fisher. London: Academic, 1986, vol. III, p. 585–604.
 118. Hagiwara, M., I.‐L. Chen, R. McGonigle, B. Beckman, F. H. Kasten, and J. W. Fisher. Erythropoietin production in a primary culture of human renal carcinoma cells maintained in nude mice. Blood 63: 828–835, 1984.
 119. Hagiwara, M., D. B. McNamara, I.‐L. Chen, and J. W. Fisher. Role of endogenous prostaglandin E2 in erythropoietin production and dome formation by human renal carcinoma cells in culture. J. Clin. Invest. 74: 1252–1261, 1984.
 120. Hagiwara, M., K. Nagakura, M. Ueno, and J. W. Fisher. Inhibitory effects of tetradecanoylphorbol acetate and diacylglycerol on erythropoietin production in human renal carcinoma cell cultures. Exp. Cell Res. 173: 129–136, 1987.
 121. Hagiwara, M., S. M. Pincus, I.‐L. Chen, B. S. Beckman, and J. W. Fisher. Effects of dibutyryl adenosine 3',5'‐cyclic monophosphate on erythropoietin production in human renal carcinoma cell cultures. Blood 66: 714–717, 1985.
 122. Hammond, D., and S. Winnick. Paraneoplastic erythrocytosis and ectopic erythropoietins. Ann. NY Acad. Sci. 230: 219–227, 1974.
 123. Hassid, A., A. Sebrosky, and M. J. Dunn. Prostaglandin metabolism in human kidney. Synthesis of 6‐keto‐prostaglandin E1 from prostaglandin I2, abstracted. V Int. Prostaglandin Conf., Florence, Italy, 1982, edited by B. Samuelsson. New York: Raven, 1983, p. 472.
 124. Hedlund, S. Studies on erythropoietin and total red cell volume in congestive heart failure. Acta Med. Scand. 146 (Suppl. 284): 1–15, 1953.
 125. Hendler, D., J. A. Coffinet, S. Ross, R. Longnecker, and E. Bakovic. Controlled study of androgen therapy in anemia of patients on maintenance hemodialysis. N. Engl. J. Med. 291: 1046–1051, 1974.
 126. Hennessy, T. G., W. E. Stern, and S. E. Herrick. Cerebellar hemangioblastoma: erythropoietic activity by radioiron assay. J. Nucl. Med. 8: 601–606, 1967.
 127. Hewlett, J. S., G. C. Hoffman, D. A. Senhauser, and J. D. Battle, Jr. Hypernephroma with erythrocythemia: report of a case and assay of the tumor for an erythropoietic‐stimulating substance. N. Engl. J. Med. 262: 1058–1062, 1960.
 128. Hsueh, W., and P. Needleman. Sites of lipase activation and prostaglandin synthesis in isolated, perfused rabbit hearts and hydronephrotic kidneys. Prostaglandins 16: 662–681, 1978.
 129. Huang, S. L. Cloning and expression of human erythropoietin cDNA in Escherichia coli. Proc. Natl. Acad. Sci. USA 81: 2708–2712, 1984.
 130. Huang, S. L., and G. Y. Sun. Cerebral ischemia induced quantitative changes in rat membrane lipids involved in phosphoinositide metabolism. Neurochem. Int. 9: 185–190, 1986.
 131. Hudgson, P., J. M. S. Pearce, and W. K. Yeates. Renal artery stenosis with hypertension and high haematocrit. Br. Med. J. 1: 18–21, 1967.
 132. Hutchinson, D. C. S., R. P. Sapru, M. D. Summerling, G. W. K. Donaldson, and J. Richmond. Cirrhosis, cyanosis and polycythemia: multiple pulmonary arteriovenous anastomoses. Am. J. Med. 45: 139–151, 1968.
 133. Ihle, J. N., J. Keller, S. Oroszlan, L. E. Henderson, T. D. Copeland, F. Fitch, M. B. Prystowsky, E. Goldwasser, J. W. Schrader, E. Palaszynski, M. Dy, and B. Lebel. Biologic properties of homogeneous interleukin 3. I. Demonstration of WEHI‐3 growth factor activity, mast cell growth factor activity, CEH‐stimulating factor activity, colony‐stimulating factor activity, and histamine‐producing cell‐stimulating factor activity. J. Immunol. 131: 282–287, 1983.
 134. Iscove, N. N., Erythropoietin—independent stimulation of early erythropoiesis in adult marrow cultures by conditioned media from lectin‐stimulated mouse spleen cells. In: Hematopoietic Cell Differentiation, edited by D. W. Golde, M. J. Cline, D. Metcalf, and C. F. Fox. New York: Academic, 1978, p. 37–82.
 135. Iscove, N. N., and F. Sieber. Erythroid progenitors in mouse bone marrow detected by macroscopic colony formation in culture. Exp. Hematol. 3: 32–43, 1975.
 136. Iscove, N. N., F. Sieber, and K. H. Winterhalter. Erythroid colony formation in cultures of mouse and human bone marrow: analysis of the requirement for erythropoietin by gel filtration and affinity chromatography on agarose‐concanavalin A. J. Cell. Physiol. 83: 309–320, 1974.
 137. Jacobs, K., C. Shoemaker, R. Rudersdorf, S. D. Neill, R. J. Kaufman, A. Mufson, J. Seehra, S. S. Jones, E. F. Fritsche, M. Kawakita, T. Shimizu, and T. Miyake. Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature 313: 806–810, 1985.
 138. Jacobson, L. O., E. Goldwasser, W. Friend, and L. Plzak. Role of the kidney in erythropoiesis. Nature 179: 633–634, 1957.
 139. Jelkmann, W. Temporal pattern of erythropoietin titers in kidney tissue during hypoxic hypoxia. Pflugers Arch. 393: 88–91, 1982.
 140. Jelkmann, W. Renal erythropoietin: properties and production. Rev. Physiol. Biochem. Pharmacol. 104: 139–215, 1986.
 141. Jelkmann, W., and C. Bauer. Demonstration of high levels of erythropoietin in rat kidneys following hypoxic hypoxia. Pflugers Arch. 392: 34–39, 1981.
 142. Jelkmann, W., B. Beckman, and J. W. Fisher. Enhanced effects of hypoxia on erythropoiesis in rabbits following beta‐2 adrenergic activation with albuterol. J. Pharmacol. Exp. Ther. 211: 99–103, 1979.
 143. Jelkmann, W., J. Brookins, and J. W. Fisher. Indomethacin blockade of albuterol‐induced erythropoietin production in isolated perfused dog kidneys. Proc. Soc. Exp. Biol. Med. 162: 65–70, 1979.
 144. Jelkmann, W., A. Kurtz, and C. Bauer. Extraction of erythropoietin from isolated renal glomeruli of hypoxic rats. Exp. Hematol. 11: 581–588, 1983.
 145. Jelkmann, W., A. Kurtz, and C. Bauer. In vitro production of erythropoietin. In: Kidney Hormones, edited by J. W. Fisher. London: Academic, 1986, vol. III, p. 559–583.
 146. Jelkman, W., A. Kurtz, U. Forstermann, J. Pfeilschifter, and C. Bauer. Hypoxia enhances prostaglandin synthesis in renal mesangial cell cultures. Prostaglandins 30: 109–118, 1985.
 147. Jelkmann, W., A. Kurtz, J. Seidl, and C. Bauer. Mechanisms of the renal glomerular erythropoietin production. In: Atemgaswechsel und O‐Versorgung der Organe, edited by J. Grote and E. Witzleb. Mainz, FRG: Akademie der Wissenschaften und der Literatur, 1984, p. 130–137.
 148. Jepson, J. H., and H. G. Friesen. The mechanism of action of human placental lactogen on erythropoiesis. Br. J. Haematol. 15: 465–471, 1968.
 149. Jepson, J. H., E. E. McGarry, and L. Lowenstein. Erythropoietin excretion in a hypopituitary patient. Arch. Intern. Med. 122: 265–270, 1968.
 150. Jones, D. P. Renal metabolism during normoxia, hypoxia, and ischemic injury. Annu. Rev. Physiol. 48: 33–50, 1986.
 151. Jones, N. F., R. W. Payne, R. D. Hyde, and T. M. L. Price. Renal polycythemia. Lancet 1: 299–303, 1960.
 152. Katsuoka, Y., S. Baba, M. Hata, and H. Tazaki. Transplantation of human renal cell carcinoma to the nude mice: as an intermediate of in vivo and in vitro studies. J. Urol. 115: 373–376, 1976.
 153. Katsuoka, Y., B. Beckman, W. J. George, and J. W. Fisher. Increased levels of erythropoietin in kidney extracts of rats treated with cobalt and hypoxia. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F129–F133, 1983.
 154. Kazal, L. A., and A. J. Erslev. Erythropoietin production in renal tumors. Ann. Clin. Lab. Sci. 5: 98–109, 1975.
 155. Keberer, G., R. Engelking, and F. W. Eigler. Diagnostische und therapeutische besonderheiten beieinigen hockdruckkranken mit nierenarterienstenosen. Dtsch. Med. Wochenschr. 92: 581–592, 1967.
 156. Kerzner, M. S., J. A. Reeves, D. DeNyse, and B. C. Claunch. Pheochromocytoma with renal artery compression in an identical twin. Arch. Intern. Med. 121: 91–94, 1968.
 157. Kochevar, J., J. A. Stanek, M. Mason‐Garcia and J. W. Fisher. Glomerular and interstitial cell sites of erythropoietin production in anemic human kidneys, abstracted. Clin. Res. 38: (2): 235A, 1990.
 158. Kolk‐Vegter, A. J., E. Bosch, and A. M. Van Leeuwen. Influence of serum hepatitis on haemoglobin level in patients on regular haemodialysis. Lancet 1: 526–528, 1971.
 159. Koury, S. T., M. C. Bondurant, and M. J. Koury. Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization. Blood 71: 524–527, 1988.
 160. Krantz, S. B., and E. Goldwasser. Specific binding of erythropoietin to spleen cells infected with the anemia strain of Friend virus. Proc. Natl. Acad. Sci. USA 81: 7574–7578, 1984.
 161. Krantz, S. B., and L. O. Jacobson. Erythropoietin and the Regulation of Erythropoiesis. Chicago, IL: Univ. of Chicago Press, 1970, p. 1–329.
 162. Krystal, G. A simple microassay for erythropoietin based on 3H‐thymidine incorporation into spleen cells from phenyl‐hydrazine treated mice. Exp. Hematol. 11: 649–660, 1983.
 163. Krystal, G., H. R. Pankratz, N. M. Farber, and J. E. Smart. Purification of human erythropoietin to homogeneity by a rapid five‐step procedure. Blood 67: 71–79, 1986.
 164. Kuratowska, Z., B. Lewartowski, and E. Michalak. Studies on the production of erythropoietin by the isolated perfused organs. Blood 18: 527–534, 1961.
 165. Kurtz, A., W. Jelkmann, J. Pfeilschifter, and C. Bauer. Role of prostaglandins in hypoxia‐stimulated erythropoietin production. Am. J. Physiol. 249 (Cell Physiol. 18): C3–C8, 1985.
 166. Kurtz, A., W. Jelkmann, A. Pfuhl, K. Malmstrom, and C. Bauer. Erythropoietin production by fetal mouse liver cells in response to hypoxia and adenylate cyclase stimulation. Endocrinology 118: 567–572, 1986.
 167. Kurtz, A., W. Jelkmann, F. Sinowatz, and C. Bauer. Renal mesangial cell cultures as a model for study of erythropoietin production. Proc. Natl. Acad. Sci. USA 80: 4008–4011, 1983.
 168. Lai, P. H., R. Everett, F.F. Wang, T. Arakawa, and E. Goldwasser. Structural characterization of human erythropoietin. J. Biol. Chem. 261: 3116–3121, 1986.
 169. Lange, R. D., J. P. Chen, and C. D. R. Dunn. Erythropoietin assays: some new and different approaches. Exp. Hematol. 8 (Suppl. 8): 197–223, 1980.
 170. Lechermann, B., and W. Jelkmann. Erythropoietin production in normoxic and hypoxic rats with increased blood O2 affinity. Respir. Physiol. 60: 1–8, 1985.
 171. Leong, G. F., R. L. Pessotti, and R. W. Brauer. Liver function in regenerating rat liver: CrPO4 colloid uptake and bile flow. Am. J. Physiol. 197: 880–886, 1959.
 172. Levy, H., V. Levison, and A. L. Schade. The effect of cobalt on the activity of certain enzymes in homogenates of rat tissu. Arch. Biochem. 27: 34–40, 1950.
 173. Lin, F.‐K., S. Suggs, C. H., J. K. Browne, R. Smalling, J. C. Egrie, K. K. Chen, G. M. Fox, F. Martin, Z. Stabinsky, S. M. Badrawi, P. H. Lai, and E. Goldwasser. Cloning and expression of the human erythropoietin gene. Proc. Natl. Acad. Sci. USA 82: 7580–7584, 1985.
 174. Londos, C, D. M. F. Cooper, and J. Wolff. Subclasses of external adenosine receptors. Proc. Natl. Acad. Sci. USA 77: 2551–2554, 1980.
 175. Lucarelli, G., A. Porcellini, C. Carnevali, A. Carmena, and F. Stohlman, Jr. Fetal and neonatal erythropoiesis. Ann. NY Acad. Sci. 149: 544–559, 1968.
 176. Luke, R. G., A. C. Kennedy, W. B. Stirling, and G. A. McDonald. Renal artery stenosis, hypertension and polycythaemia. Br. Med. J. 1: 164–166, 1965.
 177. Malgor, L. A., and J. W. Fisher. Effects of testosterone on erythropoietin production in isolated perfused kidneys. Am. J. Physiol. 218: 1732–1736, 1970.
 178. Mann, D. L., N. I. Gallagher, and R. M. Donati. Erythrocytosis and primary aldosteronism. Arch. Intern. Med. 66: 335–340, 1967.
 179. Martelo, O. J., E. F. Toro, and J. Hirsch. Activation of renal erythropoietic factor by phosphorylation. J. Lab. Clin. Med. 87: 83–88, 1976.
 180. Mason‐Garcia, M., B. S. Beckman, J. W. Brookins, J. S. Powell, W. Lanham, S. Blaisdell, L. Keay, S. C. Li, and J. W. Fisher. Development of a new radioimmunoassay for erythropoietin using recombinant erythropoietin. Kidney Int. 38: 969–975, 1990.
 181. Massry, S. G. Is parathyroid hormone a uremic toxin? Nephron 19: 125–130, 1977.
 182. McCord, J. M. Oxygen‐derived free radicals in postischemic tissue injury. N. Engl. J. Med. 312: 159–163, 1985.
 183. McCully, K. S., L. A. Rinehimer, C. G. Gillies, S. M. Hopfer, and F. W. Sunderman, Jr. Erythrocytosis, glomerulomegaly, mesangial hyperplasia, sialyl hyperplasia, and arteriosclerosis induced in rats by nickel subsulfide. Virchows Arch. [Pathol. Anat.] 394: 207–220, 1982.
 184. McDonald, J. D., F. K. Lin, and E. Goldwasser. Cloning sequencing and evolutionary analysis of the mouse erythropoietin gene. Mol. Cell. Biol. 6: 842–848, 1986.
 185. McDonald, T. P., D. H. Martin, M. L. Simmons, and R. D. Lange. Preliminary results of erythropoietin production by bovine kidney cells in culture. Life Sci. Part II Biochem. Gen. Mol. Biol. 8: 949–954, 1969.
 186. McGonigle, R. J. S., F. Boineau, B. Beckman, K. O. Frempong, J. Lewy, R. K. Shadduck, and J. W. Fisher. Erythropoietin and inhibitors of in vitro erythropoiesis in the development of anemia in children with renal failure. J. Lab. Clin. Med. 105: 449–458, 1985.
 187. McGonigle, R. J. S., F. Husserl, J. D. Wallin, and J. W. Fisher. Hemodialysis and continuous ambulatory dialysis effects on erythropoiesis in renal failure. Kidney Int. 25: 430–436, 1984.
 188. McGonigle, R. J. S., J. D. Wallin, F. Husserl, L. J. Deftos, J. C. Rice, W. J. O'Neil, Jr., and J. W. Fisher. Potential role of parathyroid hormone as an inhibitor of erythropoiesis in the anemia of renal failure. J. Lab. Clin. Med. 104: 1016–1026, 1984.
 189. McGonigle, R. J. S., J. D. Wallin, R. K. Shadduck, and J. W. Fisher. Erythropoietin deficiency and inhibition of erythropoiesis in renal insufficiency. Kidney Int. 25: 437–444, 1984.
 190. McLeod, D. L., M. M. Shreeve, and A. A. Axelrad. Improved plasma culture system for production of erythrocytic colonies in vitro: quantitative assay method for CFU‐E. Blood 44: 517–534, 1974.
 191. Meyrier, A., P. Simon, G. Boffa, and P. Brissot. Uremia and the liver. Nephron 29: 3–6, 1981.
 192. Meytes, D., E. Ma, A. Bogin, P. P. Dukes, and S. G. Massry. Effect of parathyroid hormone on erythropoiesis. J. Clin. Invest. 67: 1263–1269, 1981.
 193. Miller, M. E., J. F. Garcia, R. A. Cohen, E. P. Cronkite, G. Moccia, and J. Acevedo. Diurnal levels of immunoreactive erythropoietin in normal subjects and subjects with chronic lung disease. Br. J. Haematol. 49: 189–200, 1981.
 194. Miller, W. L., R. A. Thomas, R. M. Berne, and R. Rubia. Adenosine production in the ischemic kidney. Circ. Res. 43: 390–397, 1978.
 195. Mirand, E. A., and A. S. Gordon. Mechanism of estrogen action in erythropoiesis. Endocrinology 78: 325–332, 1966.
 196. Misiti, J., and J. L. Spivak. Erythropoiesis in vitro, role of calcium. J. Clin. Invest. 64: 1573–1579, 1979.
 197. Miyake, T., C. K.‐H. Kung, and E. Goldwasser. Purification of human erythropoietin. J. Biol. Chem. 252: 5558–5564, 1977.
 198. Mizoguchi, H., and R. D. Levere. Enhancement of heme and globin synthesis in cultured human bone marrow by certain 5‐H steroid metabolics. J. Exp. Med. 134: 1501–1512, 1971.
 199. Mladenovic, J., J. E. Eschbach, J. F. Garcia, J. Kaup, and J. W. Adamson. Erythropoiesis (Ep) kinetics: studies in sheep, abstracted. Clin. Res. 30: 324A, 1982.
 200. Monge, C. High altitude disease. Arch. Intern. Med. 59: 32–40, 1937.
 201. Mori, S., T. Saito, Y. Morishita, K. Saito, A. Urabe, T. Wakabayashi, and F. Takaku. Glomerular epithelium as the main locus of erythropoietin in human kidney. Jpn. J. Exp. Med. 55: 69–70, 1985.
 202. Muirhead, E. E., B. E. Leache, J. W. Fisher, and M. Kosinski. Renal transplantation and extracts and erythropoiesis. Ann. NY Acad. Sci. 149: 135–142, 1968.
 203. Mujovic, V. M., and J. W. Fisher. The effects of indomethacin on erythropoietin production in dogs following renal artery constriction. I. The possible role of prostaglandins in the generation of erythropoietin by the kidney. J. Pharmacol. Exp. Ther. 191: 575–580, 1974.
 204. Murphy, G. P., G. M. Kenny, and E. A. Mirand. Erythropoietin levels in patients with renal tumors on cysts. Cancer 26: 191–194, 1970.
 205. Naets, J. P., and M. Wittek. Erythropoietic activity of marrow and disappearance rate of erythropoiesis in the rat. Am. J. Physiol. 217: 297–301, 1969.
 206. Naets, J. P., M. Wittek, F. Delwiche, and I. Kram. Polycythemia and erythropoietin producing uterine fibromyoma. Scand. J. Haematol. 19: 75–78, 1977.
 207. Nagakura, K., I.‐L. Chen, M. Ueno, A. I. Sytkowski, and J. W. Fisher. Immunocytochemical localization of erythropoietin (Ep) in the glomerular epithelial cells of the rat kidney, abstracted. Blood 68 (Suppl. 1): 182, 1986.
 208. Nagakura, K. and J. W. Fisher. Enhancement of erythropoietin secretion by low calcium medium and calcium entry blockers in renal carcinoma cells in culture. J. Clin. Invest. Submitted.
 209. Nagakura, K., M. Ueno, J. Brookins, B. Beckman, and J. W. Fisher. Effects of low calcium levels on erythropoietin production by human renal carcinoma cells in culture. Am. J. Physiol. 253 (Cell Physiol. 22): C797–C801, 1987.
 210. Nakao, K., K. Kimura, Y. Miura, and F. Takaku. Erythrocytosis associated with carcinoma of the liver (with erythropoietin assay of tumour extract). Am. J. Med. Sci. 251: 161–165, 1966.
 211. Nathan, D. G., D. E. Houseman, and B. J. Clarke. The anatomy and physiology of hematopoiesis. In: Hematology of Infancy and Childhood. Bone Marrow Failure (2nd ed.), edited by D. G. Nathan and F. A. Oski. Philadelphia: Saunders, 1981, vol. 1, p. 144–167.
 212. Naughton, B. A., B. S. Dornfest, and A. S. Gordon. Extra‐renal erythropoietin. In: Kidney Hormones, edited by J. W. Fisher. London: Academic, 1986, vol. III, p. 475–521.
 213. Naughton, B. A., S. A. Kaplan, M. Roy, A. J. Burdowski, and A. S. Gordon. Hepatic regeneration and erythropoietin production in the rat. Science 196: 301–302, 1977.
 214. Naughton, B. A., P. Liu, G. K. Naughton, and A. S. Gordon. Evidence for an erythropoietin‐stimulating factor in patients with renal and hepatic disease. Acta Haematol. (Basel) 69: 171–179, 1983.
 215. Naughton, B. A., D. J. Birnbach, P. Liu, G. A. Kolker, M. Z. Tung, J. A. Piliero, and A. S. Gordon. Reticuloendothelial system (RES) hyperfunction and erythropoiesis (EP) production in the regenerating liver. J. Surg. Oncol. 12: 227–242, 1979.
 216. Naughton, G. K., B. A. Naughton, and A. S. Gordon. Erythropoiesis production by macrophages in the regenerating liver. J. Surg. Oncol. 30: 184–197, 1985.
 217. Nayler, W. G., P. A. Poole‐Wilson, and A. Williams. Hypoxia and calcium. J. Mol. Cell. Cardiol. 11: 683–706, 1979.
 218. Neff, M. S., J. Goldberg, R. F. Slifkin, A. R. Eiser, V. Calamia, M. Kaplan, A. Baez, A. Gupta, and N. Mattoo. A comparison of androgens for anemia in patients on hemodialysis. N. Engl. J. Med. 304: 871–875, 1981.
 219. Nelson, P. K., J. Brookins, and J. W. Fisher. Erythropoietic effects of prostacyclin (PGI2) and its metabolite 6‐ketoprostaglandin (PG) E. J. Pharmacol. Exp. Ther. 226: 493–499, 1983.
 220. Nicola, N. A., D. Metcalf, M. Matsumoto, and G. R. Johnson. Purification of a factor inducing differentiation in murine myelomonocytic leukemia cells. J. Biol. Chem. 258: 9017–9023, 1983.
 221. Nijhof, W., and P. K. Wierenga. Isolation and characterization of the erythroid progenitor cell: CFU‐E. J. Cell Biol. 96: 386–392, 1983.
 222. Noveck, R. J., and J. W. Fisher. Erythropoietic effects of 5‐hydroxytryptamine. Proc. Soc. Exp. Biol. Med. 138: 103–107, 1971.
 223. Ogle, J. W., C. D. R. Dunn, T. P. McDonald, and R. D. Lange. The in vitro production of erythropoietin and thrombopoietin. Scand. J. Haematol. 21: 188–196, 1978.
 224. Ogle, J. W., R. D. Lange, and C. D. R. Dunn. Production of erythropoietin in vitro: a review. In Vitro 14: 945–950, 1978.
 225. Ormstad, K., S. Orrenius, and D. P. Jones. Preparation and characteristics of isolated kidney cells. Methods Enzymol. 77: 137–146, 1981.
 226. Ortega, J. A., P. P. Dukes, A. Ma, N. A. Shore, and M. H. Malekzadehg. A clinical trial of prostaglandin E to increase erythropoiesis in anemia of end stage renal disease. Prostaglandins Leukotrienes Med. 14: 411–416, 1984.
 227. Orten, J. M., and A. U. Orten. The production of polycythemia by cobalt in rats made anemic by a diet low in protein. Am. J. Physiol. 144: 464–467, 1945.
 228. Orten, J. M., F. A. Underhill, E. R. Mugrage, and R. C. Lewis. Production of experimental polycythemia with cobalt. Proc. Soc. Exp. Biol. Med. 29: 174–176, 1931.
 229. Ossias, A. L., E. D. Zanjani, R. Zalusky, S. Estren and L. R. Wasserman. Case report: studies on the mechanism of erythrocytosis associated with a uterine fibromyoma. Br. J. Haematol. 25: 179–185, 1973.
 230. Ozawa, S. Erythropoietin from the kidney cells cultured in vitro. Keio J. Med. 16: 193–203, 1967.
 231. Parks, D. A., and D. N. Granger. Oxygen derived radicals and ischemia‐induced tissue injury. In: Oxy Radicals and Their Scavenger Systems, edited by G. Cohen and M. D. Greenwald. Amsterdam: Elsevier, 1983, vol. 2, p. 135–144.
 232. Paul, P., S. A. Rothmann, J. T. McMahon, and A. S. Gordon. Erythropoietin secretion by isolated rat Kupffer cells. Exp. Hematol. 12: 825–830, 1984.
 233. Paulo, L. G., G. D. Fink, B. L. Roh, and J. W. Fisher. Effects of several androgens and steroid metabolites on erythropoietin production in the isolated perfused dog kidney. Blood 43: 39–47, 1974.
 234. Paulo, L. G., R. D. Wilkerson, B. L. Roh, W. J. George, and J. W. Fisher. The effects of prostaglandin E1 on erythropoietin production. Proc. Soc. Exp. Biol. Med. 142: 771–775, 1973.
 235. Pavlovic‐Kentera, V., D. P. Hall, C. Bragassa, and R. D. Lange. Unilateral renal hypoxia and production of erythropoietin. J. Lab. Clin. Med. 65: 577–588, 1965.
 236. Peschle, C., G. Marone, A. Genovese, I. A. Rappaport, and M. Condorelli. Increased erythropoietin production in anephric rats with hyperplasia of the reticuloendothelial system induced by colloidal carbon or zymosan. Blood 47: 325–337, 1976.
 237. Peschle, C., I. A. Rapport, G. F. Sasso, A. S. Gordon, and M. Condorelli. Mechanism of growth hormone (GH) action on erythropoiesis. Endocrinology 91: 511–517, 1972.
 238. Peschle, C., G. F. Sasso, G. Mastroberardino, and M. Condorelli. The mechanism of endocrine influences on erythropoiesis. J. Lab. Clin. Med. 78: 20–29, 1971.
 239. Plzak, L. F., W. Fried, L. O. Jacobson, and W. F. Bethard. Demonstration of stimulation of erythropoiesis by plasma from anemic rats using 59Fe. J. Lab. Clin. Med. 46: 671–678, 1955.
 240. Race, G. J., J. W. Finney, J. T. Mallams, and G. A. Balla. Hematopoietic stimulating effect of a cerebellar hemangioblastoma. JAMA 187: 150–151, 1964.
 241. Radtke, H. W., A. B. Rege, M. B. LaMarche, D. Bartos, F. Bartos, R. A. Campbell, and J. W. Fisher. Identification of spermine as an inhibitor of erythropoiesis in patients with chronic renal failure. J. Clin. Invest. 67: 1623–1629, 1981.
 242. Ramsay, I. D., and J. H. M. Langlands. Phaeochromocytoma with hypotension and polycthaemia. Lancet 2: 126–128, 1962.
 243. Recny, M. A., H. A. Scoble, and Y. Kim. Structural characterization of natural human urinary erythropoietin and recombinant DNA‐derived erythropoietin. J. Biol. Chem. 262 (25): 17156–17163, 1987.
 244. Rege, A. B., J. Brookins, and J. W. Fisher. A radioimmunoassay for erythropoietin: serum levels in normal human subjects and patients with hemopoietic disorders. J. Lab. Clin. Med. 100: 829–843, 1982.
 245. Reissmann, K. R. Studies on the mechanism of erythropoietic stimulation of parabiotic rats during hypoxia. Blood 5: 372–380, 1950.
 246. Reissmann, K. R., D. A. Diederich, K. Ito, and J. W. Schmaus. Influence of disappearance rate and distribution space on plasma concentration of erythropoietin in normal rats. J. Lab. Clin. Med. 65: 967–975, 1965.
 247. Reissmann, K. R., and T. Nomura. Erythropoietin formation in isolated kidneys and liver. In: Erythropoiesis, edited by L. O. Jacobson and M. Doyle. New York: Grune & Stratton, 1962, p. 71–77.
 248. Rhodes, C. B. Cavernous hemangioma of the lung with secondary polycythemia. JAMA 110: 1914–1915, 1938.
 249. Roberts, M. F., R. A. Deems, and E. A. Dennis. Dual role of interfacial phospholipid in phospholipase A2 catalysis. Proc. Natl. Acad. Sci. USA 74: 1950–1954, 1977.
 250. Robinson, B. E., and P. J. Quesenbery. Hematopoietic growth factors: overview and clinical applications, part III. Am. J. Med. Sci. 300 (5): 311–321, 1990.
 251. Rodgers, G. M., J. W. Fisher, and W. J. George. The role of renal adenosine 3',5'‐monophosphate in the control of erythropoietin production. Am. J. Med. 58: 31–38, 1975.
 252. Rodgers, G. M., J. W. Fisher, and W. J. George. Increase in hematocrit, hemoglobin and red cell mass in normal mice after treatment with cyclic AMP. Proc. Soc. Exp. Biol. Med. 148: 380–382, 1975.
 253. Rodgers, G. M., J. W. Fisher, and W. J. George. Renal cyclic GMP and cholinergic mechanisms in erythropoietin production. Life Sci. 17: 1807–1814, 1976.
 254. Rodgers, G. M., W. J. George, and J. W. Fisher. Increased kidney cyclic AMP levels and erythropoietin production following cobalt administration. Proc. Soc. Exp. Biol. Med. 140: 977–981, 1972.
 255. Roh, B. L., L. G. Paulo, J. Thompson, and J. W. Fisher. Plasma disappearance of 125I‐labeled erythropoietin in anesthetized rabbits. Proc. Soc. Exp. Biol. Med. 141: 268–270, 1972.
 256. Rosenheim, M. L., E. J. Ross, O. M. Wrong, C. J. Hodson, D. R. Davies, and J. F. Smith. Unilateral renal ischaemia due to compression of renal artery by a phaeochromocytoma. Am. J. Med. 34: 735–740, 1963.
 257. Rosse, W. F., T. A. Waldmann, and P. Choen. Renal cysts, erythropoietin and polycythemia. Am. J. Med. 34: 76–81, 1963.
 258. Roy, R. S., and J. M. McCord. Superoxide and ischemia: conversion of xanthine dehydrogenase to xanthine oxidase. In: Oxy Radicals and Their Scavenger Systems, edited by G. Cohen and M. D. Greenwald. Amsterdam: Elsevier, 1983, vol. 2, p. 145–153.
 259. Ryan, U. S., D. Habliston, I. Martin, and J. W. Ryan. Pulmonary endothelial cells and prostaglandins synthesis, abstracted. Circulation 56 (Suppl.): 123, 1977.
 260. Sagone, A. J., Jr., and L. T. Balcerzak. Effect of smoking on tissue oxygen supply. Blood 41: 845–851, 1973.
 261. Saito, A., T. Akagi, T. G. Chung, and K. Ohta. Serum levels of polyamines in patients with chronic renal failure. Kidney Int. 24 (Suppl. 16): S‐234–S‐247, 1983.
 262. Saltissi, D., G. A. Coles, J. A. F. Napier, and P. Bentley. The hematological response to continuous ambulatory peritoneal dialysis. Clin. Nephrol. 22: 21–27, 1984.
 263. Sanchez‐Medal, L., L. A. Gomez, and L. Duarte‐Zapata. Anabolic therapy in aplastic anemia, abstracted. Blood 28: 979, 1966.
 264. Sanberg, A. A. Chromosomes in Human Cancer and Leukemia. New York: Elsevier/North‐Holland, 1979.
 265. Sato, T., S. Sakamoto, M. Maebashi, C. Suzuki, T. Furuyama and K. Yoshinaga. Hypertension due to combination of pheochromocytoma and unilateral renal schemia by tumor compression. Jpn. Heart J. 8: 202–208, 1967.
 266. Schlondorff, D., P. Yoo, and B. E. Alpert. Stimulation of adenylate cyclase in isolated rat glomeruli by prostaglandins. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F458–F464, 1978.
 267. Schofield, R., and L. G. Lajtha. Erythropoietic effects on stem cell populations. In: Kidney Hormones: Erythropoietin, edited by J. W. Fisher. New York: Academic, 1977, vol. 2, p. 283–310.
 268. Schooley, J. C., and L. J. Mahlmann. Stimulation of erythropoiesis in the plethoric mouse by cyclic‐AMP and its inhibition by antierythropoietin. Proc. Soc. Exp. Biol. Med. 137: 1289–1292, 1971.
 269. Schramek, O., M. Adler, O. S. Hashmonai, O. S. Better, S. Tuma and A. Barzilai. Hypertensive crisis, erythrocytosis, and uraemia due to renal‐artery stenosis of kidney transplants. Lancet 1: 70–71, 1975.
 270. Shah, S. V. Effect of enzymatically generated reactive oxygen metabolites on the cyclic nucleotide content in isolated rat glomeruli. J. Clin. Invest. 74: 393–401, 1984.
 271. Shaw, A. B. Haemolysis in chronic renal failure. Br. Med. J. 2: 213–215, 1967.
 272. Sherwood, J. B., E. E. Burns, and D. Shouval. Stimulation by cAMP of erythropoietin secretion by an established human renal carcinoma cell line. Blood 69: 1053–1057, 1987.
 273. Sherwood, J. B., and E. Goldwasser. Erythropoietin production by human renal carcinoma cells in culture. Endocrinology 99: 504–510, 1976.
 274. Sherwood, J. B., and E. Goldwasser. A radioimmunoassay for erythropoietin. Blood 54: 885–893, 1979.
 275. Siggillino, J. J., C. J. Crawley, R. H. Blasus, G. E. Reed and D. A. Tice. Myxoma of the right atrium with polycythemia. Arch. Intern. Med. 111: 178–183, 1963.
 276. Smith, H., and E. Riches. Hemoglobin values in renal cell carcinoma. Lancet 1: 1017–1021, 1963.
 277. Smith, J. R., and S. A. Landaw. Smokers' polycythemia. N. Engl. J. Med. 298: 6–10, 1978.
 278. Smith, R. J., and J. W. Fisher. Neutral protease activity and erythropoietin production in the rat after cobalt administration. J. Pharmacol. Exp. Ther. 197: 714–722, 1976.
 279. Sobota, J. T., Erythropoietin treatment of end‐stage renal disease: North American and Japanese experience. In: Erythropoietin in Clinical Applications—An International Perspective, edited by M. C. Garnick. New York: Marcel Dekker, 1990.
 280. Sperber, M. A. Renal cell carcinoma and erythrocytosis complicated by congestive heart failure. Clin. Med. 76: 36–39, 1969.
 281. Spivak, J. L. The mechanism of action of erythropoietin. Int. J. Cell Cloning 4: 139–166, 1986.
 282. Spragg, B. P., and A. D. Hutchings. High performance liquid chromatographic determination of putrescine, spermidine and spermine after derivitization with 4‐fluoro‐3‐nitro‐benzotrifluoride. J. Chromatogr. 258: 289–291, 1983.
 283. Sraer, J., J. Foidart, D. Chansel, P. Mahien, B. Kouznetzova, and R. Ardaillou. Prostaglandin synthesis by mesangial and epithelial glomerular cultured cells. FEBS Lett. 104: 420–424, 1979.
 284. Stanley, E. R., and P. M. Heard. Factors regulating macrophage production and growth: purification and some properties of the colony‐stimulating factor from medium conditioned by mouse L cells. J. Biol. Chem. 252: 4305–4312, 1977.
 285. Steinberg, S. E., J. Mladenovic, G. R. Matzke, and J. F. Garcia. Erythropoietin kinetics in the rats: generation and clearance. Blood 67: 646–649, 1986.
 286. Stohlman, F., Jr. Erythropoiesis. N. Engl. J. Med. 267: 392–399, 1962.
 287. Stohlman, F., Jr., C. E. Rath, and J. C. Rose. Evidence for a humoral regulation of erythropoiesis: studies on a patient with polycythemia secondary to regional hypoxia. Blood 9: 721–733, 1954.
 288. Straube, K. R., and C. V. Hodges. Pheochromocytoma causing renal hypertension. Am. J. Roentgenol. Radium Ther. Nucl. Med. 98: 222–224, 1966.
 289. Strausz, I., E. Kekes, B. Janikovszky and A. Molinar. Erythropoietin effect of the blood serum of patients with cardiac decompensation. Kiserl. Orvostud. 15: 29–32, 1963.
 290. Strosznajder, J., H. Wikiel, and G. Y. Sun. Effects of cerebral ischemia on [3H]inositol lipids and [3H]inositol phosphates of gerbil brain and subcellular fractions. J. Neurochem. 48: 943–948, 1987.
 291. Sunderman, F. W., S. M. Hopfer, M. C. Reid, S. K. Shen, and C. B. Kevorkian. Erythropoietin‐mediated erythrocytosis in rodents after intrarenal injection of nickel subsulfide. Yale J. Biol. Med. 55: 123–136, 1982.
 292. Takaku, F., K. Hirashima, and K. Nakao. Studies on the mechanism of erythropoietin production. I. Effect of unilateral constriction of the renal artery. J. Lab. Clin. Med. 59: 815–820, 1962.
 293. Thorling, E. B., and J. Ersback. Erythrocytosis and hypernephroma. Scand. J. Haematol. 1: 38–46, 1964.
 294. Till, J. E., E. A. McCulloch, and L. Siminovitch. A stochastic model of stem cell proliferation, based on the growth of spleen colony‐forming cells. Proc. Natl. Acad. Sci. USA 51: 29–36, 1964.
 295. Toledo‐Pereyra, L. H., R. L. Simmons, and J. S. Najarian. Effect of allopurinol on the preservation of ischemic kidneys perfused with plasma or plasma substitutes. Ann. Surg. 180: 780–782, 1974.
 296. Toyama, K., N. Fujiyama, H. Suzuki, T. P. Chen, N. Tamaoki, and Y. Ueyama. Erythropoietin levels in the course of a patient with erythropoietin‐producing renal carcinoma and transplantation of this tumor in nude mice. Blood 54: 245–253, 1979.
 297. Troyer, D. A., D. W. Schwertz, J. I. Kreisberg, and M. A. Venkatachalam. Inositol phospholipid metabolism in the kidney. Annu. Rev. Physiol. 48: 51–71, 1986.
 298. Ueno, M., J. Brookins, B. Beckman, and J. W. Fisher. A1 and A2 adenosine, receptor regulation of erythropoietin production. Life Sci. 43: 229–237, 1988.
 299. Van Stone, J. C., and P. Max. Effect of erythropoietin on anemia of peritoneally dialyzed anephric rats. Kidney Int. 15: 370–375, 1979.
 300. Verel, D. Blood volume changes in cyanotic congenital heart disease and polycythemia rubra vera. Circulation 23: 749–753, 1961.
 301. Vertel, R. M., B. S. Morse, and J. E. Prince. Remission of erythrocytosis after drainage of a solitary renal cyst. Arch. Intern. Med. 120: 54–58, 1967.
 302. Viault, F. Sur l'augmentation considé;rable de nombre des globules rouges dans le sang chez les habitants des hautes plateaux de l'Amerique du Sud. C. R. Acad. Sci. Paris 111: 917, 1890.
 303. Waldmann, T. A., and J. E. Bradley. Polycythemia secondary to a pheochromocytoma with production of an erythropoiesis stimulating factor by the tumor. Proc. Soc. Exp. Biol. Med. 108: 425–427, 1961.
 304. Waldmann, T. A., W. F. Rosse, and R. L. Swarm. The erythropoiesis‐stimulating factors produced by tumors. Ann. NY Acad. Sci. 149: 509–515, 1968.
 305. Wallner, S. F., J. Kurnick, H. Ward, R. Vantrin, and A. C. Alfrey. The anemia of chronic renal failure and chronic diseases: in vitro studies of erythropoiesis. Blood 47: 561–569, 1979.
 306. Wallner, S. F., and R. M. Vautrin. Evidence that inhibition of erythropoiesis is important in the anemia of chronic renal failure. J. Lab. Clin. Med. 97: 170–178, 1981.
 307. Wallner, S. F., H. P. Ward, R. Vantrin, A. C. Alfrey, and J. Mishell. The anemia of chronic renal failure: in vitro response of bone marrow to erythropoietin. Proc. Soc. Exp. Biol. Med. 149: 939–944, 1975.
 308. Waltner, K., and K. Waltner. Kobalt and Blut, abstracte. Klin. Wochenschr. 8: 313, 1929.
 309. Wang, F. F., C. K.‐H. Kung, and E. Goldwasser. Some chemical properties of human erythropoietin. Endocrinology 116: 2286–2292, 1985.
 310. Weidmann, P., W. Siegenthaler, W. H. Ziegler, H. Sulser, P. Endres, and C. Werning. Hypertension associated with tumors adjacent to renal arteries. Am. J. Med. 47: 528–533, 1969.
 311. Weintraub, A. H., A. S. Gordon, E. L. Becker, J. F. Camiscoli, and J. F. Contrera. Plasma and renal clearance of exogenus erythropoietin in the dog. Am. J. Physiol. 207: 523–529, 1964.
 312. Westbrook, C. A., J. C. Gasson, S. E. Gerber, M. E. Selsted, and D. W. Golde. Purification and characterization of human T‐lymphocyte‐derived erythroid‐potentiating activity. J. Biol. Chem. 259: 9992–9996, 1984.
 313. Westin, J., J. Wahlstrom, and B. Swolin. Chromosome studies in untreated polycythemia vera. Scand. J. Haematol. 17: 183–196, 1971.
 314. Wrigley, P. F. M., J. S. Malpas, A. L. Turnbull, G. C. Jenkins, and A. McArt. Secondary polycythemia due to a uterine fibromyoma producing erythropoietin. Br. J. Haematol. 21: 551–555, 1971.
 315. Yanagawa, S., K. Hirade, H. Ohnota, R. Sasaki, H. Chiba, M. Ueda, and M. Goto. Isolation of human erythropoietin with monoclonal antibodies. J. Biol. Chem. 259: 2707–2710, 1984.
 316. Yasuda, H., K. Kishiro, N. Izumi, and M. Nakanishi. Biphasic liberation of arachidonic and stearic acid during cerebral ischemia. J. Neurochem. 45: 168–172, 1985.
 317. Yater, W. M., J. Finnegan, and H. M. Griffin. Pulmonary arteriovenous fistula (varix). JAMA 141: 581–589, 1949.
 318. Zangheri, E. O., H. Compana, F. Ponce, J. C. Silva, F. O. Fernandez, and J. R. E. Suarez. Production of erythropoietin by anoxic perfusion of the isolated kidney of a dog. Nature 199: 572–573, 1963.
 319. Zanjani, E. D., J. L. Ascensao, P. B. McGlave, M. Banisadre, and R. C. Ash. Studies on the liver to kidney switch of erythropoietin production. J. Clin. Invest. 67: 1183–1188, 1981.
 320. Zanjani, E. D., E. N. Peterson, A. S. Gordon, and L. R. Wasserman. Erythropoietin production in the fetus: role of the kidney and maternal anemia. J. Lab. Clin. Med. 83: 281–287, 1974.
 321. Zanjani, E. D., J. Poster, L. I. Mann, and L. R. Wasserman. Regulation of erythropoiesis in the fetus. In: Kidney Hormones, Erythropoietin, edited by J. W. Fisher. New York: Academic, 1977, vol. 2, p. 463–493.
 322. Zappacosta, A. R., J. Caro, and A. Erslev. Normalization of hematocrit in patients with end stage renal disease on continuous ambulatory peritoneal dialysis: the role of erythropoietin. Am. J. Med. 72: 53–57, 1982.
 323. Zaroulis, C. G., B. J. Hoffman, and I. A. Kourides. Serum concentrations of erythropoietin measured by radioimmunoassay in hematologic disorders and chronic renal failure. Am. J. Hematol. 11: 85–92, 1981.
 324. Zucali, J. R., and E. A. Mirand. In vitro aspects of erythropoietin production. In: In Vitro Aspects of Erythropoiesis, edited by M. J. Murphy Jr. New York: Springer‐Verlag, 1978, p. 218–224.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

James W. Fisher. Regulation of Erythropoietin Production. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 2407-2438. First published in print 1992. doi: 10.1002/cphy.cp080251